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Explicitly correlated Gaussians for high-precision variational
calculations of Se, Pe, and De states of quantum systems: An efficient algorithm
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In this work we consider an efficient algorithm for variational calculations of quantum few-particle systems
in S, P, and D states of the even parity using all-particle explicitly correlated Gaussian (ECG) basis sets. We
primarily focus on the description of states where the dominant configuration contains either two particles in
p states or a single particle in a d state (all other particles are in s states). The basis functions we consider
are products of spherically symmetric ECGs and bipolar harmonics. We introduced a scheme for deriving
expressions for matrix elements of the overlap, kinetic and potential energy, as well as their derivatives with
respect to the nonlinear parameters of the Gaussians. This allowed us to improve the efficiency of numerical
calculations of the matrix elements (which is the most critical part of any code that uses ECGs) by one to two
orders of magnitude compared to previous implementations. We provide a complete set of formulas for all basic
matrix elements using the formalism of matrix differential calculus and discuss some technical details relevant
to their efficient implementation. Lastly, we report a few example calculations of the 2De states of the Li atom,
4Pe and 2De states of the B atom, and 3Pe states of the C atom.
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I. INTRODUCTION

Obtaining nearly exact solutions to the Schrödinger equa-
tion for a system of particles with some nontrivial interparticle
interaction, e.g., Coulomb forces, is a challenging task. Many,
if not most, approaches that target ultrahigh accuracy in the
calculations of such systems are based on the wave-function
Ansätze that explicitly depend on the distances between
particles—explicitly correlated functions. The first one dates
back to the pioneering work of Hylleraas on the helium atom
[1]. Some benchmark variational calculations of two-electron
systems that employed the Hylleraas-type basis functions or
their modified variants have reported truly remarkable results,
where the estimated accuracy of the obtained energy eigen-
values exceeds 20 or even 40 decimal figures [2–5]. However,
the use of the Hylleraas-type basis becomes impractical for
systems with more than three electrons (or four particles in
total) due to the difficulties of evaluating necessary matrix
elements in the analytic form. This has led to the adoption
of simpler forms of all-particle explicitly correlated basis
sets—explicitly correlated Gaussians (ECGs)—which contain
a quadratic form of all interparticle distances in the exponent
[6,7]. The ECG basis functions demonstrate great flexibility
and performance in many applications that involve quantum
few-body systems of various nature, ranging from the nuclear
structure and excitonic complexes to the electronic structure
of small atoms and molecules [8–13].

Calculations of S states (L = 0) of few-particle systems
require the use of spherically symmetric basis functions, such

*toreniyaz.shomenov@nu.edu.kz
†sergiy.bubin@nu.edu.kz

as simple all-particle ECGs [14]. In order to study states
with nonzero angular momenta, it is necessary to multiply the
spherically symmetric ECGs by certain angular factors that
can be conveniently expressed in terms of Cartesian coordi-
nates [15–17]. In this work we focus on ECGs with prefactors
that are suitable for describing states with the following dom-
inant particle configurations:

(a) Two particles are in p states (li = 1, where li are indi-
vidual orbital angular momenta) while all others are in s states
(li = 0). The resulting multiparticle states can be of Se, Pe, or
De symmetry.

(b) A single particle is in a d state while all others are in s
states. This yields multiparticle states of De symmetry.

The superscript e here denotes the even parity. ECGs of
this type have been previously used in calculations of small
atoms [18–24]. A somewhat related EGG approach involving
Gaussians with single-particle angular prefactors for arbitrary
angular momenta of individual particles was also considered
in Ref. [25].

However, the applications of previously implemented algo-
rithms were essentially limited to lithium and beryllium atoms
only. Reaching sufficiently high accuracy for the ground state
energy of carbon atom [13] using existing computer hardware
was already difficult and required prohibitively long calcula-
tions. The main reason for this is the numerical complexity
of the formulas for the matrix elements of the Hamiltonian
and overlap. It should also be noted that using ECGs in high-
accuracy calculations of quantum few-body systems requires
extensive optimization of nonlinear parameters and generation
of large basis sets. This is partly due to the behavior of ECGs
at short interparticle distances (Gaussian basis functions do
not satisfy the Kato cusp condition [26]) and their rapid decay
at long distances. Therefore, developing new approaches that
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can facilitate much faster computation of matrix elements and
better optimization of nonlinear parameters is very critical for
practical applications.

In this work, we introduce an efficient algorithm for com-
puting the matrix elements of the Hamiltonian, overlap, and
their gradients with respect to the nonlinear parameters of
ECGs. This is achieved by using a different approach in de-
riving the formulas for the matrix elements with the products
of spherically symmetric Gaussians and bipolar harmonics. It
results in a significant reduction of the numerical complexity
of computing the matrix elements and amounts to an overall
speedup of about one to two orders of magnitude in compari-
son with previous implementations.

This article is organized in the following way. First, we
introduce the notation scheme we adopt. Second, we consider
the Hamiltonian for an arbitrary N-particle system in the
laboratory coordinate frame and the transformation that ex-
cludes the center-of-mass motion. Then we introduce the basis
functions employed in this work and discuss their properties.
After that we provide the derivation of the matrix elements for
the Hamiltonian, overlap, analytic energy gradient, and other
useful quantities with these basis functions. Lastly, we present
a few numerical results that demonstrate the performance of
the approach.

II. NOTATIONS

In this article we derive and present analytic expressions in
general matrix form and make extensive use of the formalism
of matrix differential calculus [27]. In the matrix formulation,
however, we encounter several types of vectors and matrices
whose dimensionality varies with the number of particles,
number of degrees of freedom per particle, choice of coordi-
nates, and the length of the variational basis. In order to avoid
any confusion with vector and/or matrix expressions, in this
section we introduce the notation scheme used in the article.

In the very beginning let us specify a few key integer
constants that define the dimensionalities and reserve certain
symbols to denote them:

(i) ν denotes the number of degrees of freedom per parti-
cle. In this article we will only deal with particles moving in
three dimensions, ν ≡ 3.

(ii) N denotes the total number of particles in the system.
νN = 3N gives the total number of degrees of freedom in the
system.

(iii) n = N − 1 denotes the effective number of
(pseudo)particles after separating the motion of the center
of mass. νn = 3n is the number of degrees of freedom
corresponding to the relative (or internal) motion of the
particles.

(iv) N denotes the number of ECG basis functions used
to expand the trial variational wave function. This integer
defines the dimension of the Hilbert space spanned by the
basis functions and the size of the Hamiltonian and overlap
matrices.

To distinguish between different types of vectors and matri-
ces we will adopt notations that use different alphabets, cases,
and font type. The intention is to indicate what type of matrix,
vector, or scalar is represented by a specific character. There
may be some exceptions to the rules listed below (e.g., they

do not apply to the symbols N , n, and N we reserved above).
However, the exceptions are obvious, and should not cause
any confusion.

(i) α, β, γ , etc.: Lowercase greek letters denote scalars.
(ii) α, β, γ, etc.: Lowercase greek letters written in bold

font denote 3-component vectors. The individual components
of these vectors, if needed, can be labeled by indices (1, 2, 3
or x, y, z), for example, αx or α1.

(iii) a, b, c, etc.: Lowercase latin letters are used to denote
n-component vectors, where n is the number of pseudopar-
ticles. Here, again, the components can be labeled with an
index; for instance, ai is the ith component.

(iv) a, b, c, etc.: Lowercase latin letters written in bold font
are used for 3n-component vectors. Note that ai denotes not a
single component but a 3-component vector.

(v) a, b, c, etc.: Lowercase latin letters in sans-serif font
denote N-component vectors, where N is the number of parti-
cles.

(vi) a, b, c, etc.: Lowercase latin letters in bold sans-serif
font denote 3N-component vectors.

(vii) �, �, �, etc.: Uppercase bold greek letters are used
for 3×3 matrices.

(viii) A, B, C, etc.: Uppercase latin letters are used for n ×
n matrices.

(ix) A, B, C, etc.: Uppercase latin letters written in bold
font are used for 3n×3n matrices.

(x) a, b, c, etc.: Lowercase latin letters in typewriter font
are used to denote N -component vectors in the Hilbert space
of basis functions.

(xi) A, B, C, etc.: Uppercase latin letters in typewriter font
are used to denote N×N matrices.

(xii) A, B, C, etc.: Calligraphic font is used to denote
operators, e.g., the Hamiltonian, and operators related to parti-
cle permutations such as antisymmetrizers, symmetrizers, pair
permutations, etc.

(xiii) I, I , I, I: Variants of the letter I are used to denote
an identity matrix. Specifically, I (bold capital greek iota) is
the 3×3 identity matrix, I (capital italic i) is the n×n identity
matrix, I is the 3n×3n identity matrix, and I is the N×N
identity matrix.

The symbols defined below are used to denote certain
common operations on scalars, matrices, and vectors:

(i) tr A, tr A, etc., stand for the trace of a matrix.
(ii) |�|, |A|, |A|, etc.: The vertical bars stand for the

determinant of a matrix. However, if the object in between
the vertical bars is a vector (e.g., |α|, |a|) or scalar, then
the bars stand for the magnitude of the vector or scalar,
respectively.

(iii) �−1, A−1, A−1, etc., stand for the inverse of a matrix.
(iv) α′, a′, A′, A′, etc.: The prime symbol stands for the

transpose of a matrix or vector.
(v) a ⊗ α, A ⊗ B, A ⊗ B, etc.: The symbol ⊗ denotes the

Kronecker product. When the Kronecker product applies to
vectors they are treated as rectangular matrices.

(vi) The common rules of matrix multiplication are as-
sumed. Vectors are treated as rectangular matrices. For
instance, if A and B are n × n matrices then C = AB is also an
n × n matrix. Similarly, the a′b product of two n-component
vectors is a scalar, the ab′ product of two n-component vectors
is an n×n matrix, etc.
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We will also use two operations, vec and vech, that trans-
form matrices into vectors. They both stack the columns of
a matrix, one underneath the other. The difference between
them is that vech takes only the part of each column be-
low the diagonal, including the diagonal element. Hence,
vec transforms an n × n matrix into an n2-component vector,
while vech transforms the same matrix into an [n(n + 1)/2]-
component vector. For example, if n = 3 and A is a 3 × 3
matrix, then

vec A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A11

A12

A13

A21

A22

A23

A31

A32

A33

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, vech A =

⎛
⎜⎜⎜⎜⎜⎜⎝

A11

A12

A13

A22

A23

A33

⎞
⎟⎟⎟⎟⎟⎟⎠

. (1)

III. HAMILTONIAN

We consider a nonrelativistic Coulombic system of N par-
ticles. Let ri, mi, and qi denote the position vector, mass, and
charge of the ith particle in the laboratory frame. In atomic
units, the Hamiltonian of the system reads

H = −
N∑

i=1

1

2mi
∇2

ri
+

N∑
i=1

N∑
j>i

qiq j

ri j
, (2)

where ri j = |r j − ri| is the distance between the ith and jth
particles, and ∇ri is the gradient with respect to the position
of the ith particle. Unless the mass of at least one particle
in Eq. (2) is infinitely heavy, this Hamiltonian does have
a discrete spectrum. The discrete (or bound) states are em-
bedded in a continuum that results from the free motion of
the system as a whole. Indeed, Hamiltonian (2) is invariant
with respect to an arbitrary translation of all particle positions
by the same displacement vector. Thus, in order to target
these bound states in calculations, one must first separate
the motion of the center-of-mass from the laboratory-frame
Hamiltonian (2). This can be done in various ways. In this
article we adopt perhaps the most natural and straightforward
approach in which the heaviest particle of the system (e.g.,
atomic nucleus) is placed at the origin of the new, internal,
reference frame (see Fig. 1). Without any loss of generality
we can assume that this reference particle is particle 1. Then
the new internal coordinates of other particles are defined
relative to the reference particle. The transformation from N
laboratory-frame position vectors ri to the set of coordinates
composed of n = N −1 internal frame position vectors ri and
the position of the center of mass rN is given by

ri = ri+1 − r1, i = 1, . . . , n,

rN = rcm =
N∑

i=1

miri

mtot
, (3)

where mtot = ∑N
i=1 mi is the total mass of the system.

For further consideration it is convenient to intro-
duce the notations for charges and masses with a shifted

FIG. 1. Relation between the laboratory-frame coordinates and
the internal coordinates, where the origin is placed at the first particle

index: mi = mi+1, qi = qi+1, where i = 0, . . . , n. In these
notations m0 and q0 are the mass and charge of the reference
particle (particle 1), respectively.

In the new coordinates {r, rN } the laboratory-frame Hamil-
tonian separates into two independent terms,

H = Hint + Hcm, (4)

that correspond to the intrinsic motion of particles in the
system and free motion of the center of mass:

Hint = −
n∑

i=1

1

2μi
∇2

ri
−

n∑
i=1

n∑
i �= j

1

2m0
∇′

ri
∇r j

+
n∑

i=1

q0qi

ri
+

n∑
i=1

n∑
j>i

qiq j

ri j
, (5)

Hcm = − 1

2mtot
∇2

rN
. (6)

In the above expressions μi = m0mi/(m0 + mi ) are reduced
masses and ri j = |r j − ri|.

The motions of the pseudoparticles are described by
their kinetic energy terms, −∑n

i=1 ∇2
ri
/(2μi ), and they

are coupled through the so-called mass-polarization term,
−∑n

i=1

∑n
i �= j ∇′

ri
∇r j /(2m0), as well as through the Coulom-

bic interactions. We use the term “pseudoparticles” because,
despite the fact that the charges of the particles described
by the internal Hamiltonian are actual particle charges, their
masses are reduced masses rather than actual particle masses.
Lastly, we will rewrite the internal Hamiltonian in the matrix
form as it is more convenient for further analysis and deriva-
tions. This is done by combining the n position vectors and
gradients into 3n-component vectors as follows:

r =

⎛
⎜⎜⎝

r1

r2

. . .

rn

⎞
⎟⎟⎠, ∇r =

⎛
⎜⎜⎝

∇r1∇r2

. . .

∇rn

⎞
⎟⎟⎠. (7)

Then the internal Hamiltonian can be cast in the matrix
form as

Hint = −∇′
rM∇r +

n∑
i=1

q0qi

ri
+

n∑
i=1

n∑
j>i

qiq j

ri j
, (8)

where M = M ⊗ I is the Kronecker product of n × n matrix
M and 3 × 3 identity matrix I. The elements of a symmetric
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matrix M are given by

Mi j =
{ 1

2μi
, i = j

1
2m0

, i �= j.
(9)

IV. BASIS FUNCTIONS

The spatial part of ECG basis functions suitable for ex-
panding the wave function of a system that contains only
particles with zero angular momenta should be spherically
symmetric (i.e., rotationally invariant). They consist of a ra-
dial exponential part only and can be written in the following
compact matrix form [14]:

φk = exp[−r′(Ak ⊗ I)r]. (10)

The argument of the exponent contains the Kronecker product
of an n × n real matrix Ak , and 3 × 3 identity matrix I. The
matrix Ak stores nonlinear variational parameters. The prod-
uct r′(Ak ⊗ I)r defines a certain quadratic form in terms of
pseudoparticle coordinates. In fact, there is an infinite number
of possible choices for matrix Ak that yield the same quadratic
form. In order to remove this arbitrariness and simplify calcu-
lations, we will always assume that matrix Ak is symmetric,
in which case there is one-to-one correspondence between Ak

and the quadratic form. Subscript k is used to indicate that, in
general, matrix Ak is unique for each basis function. Because
bound state wave functions must be square integrable, it is
necessary to require that matrix Ak is positive definite. The
positive definiteness is automatically satisfied if matrix Ak is
represented in a Cholesky-factored form, Ak = LkL′

k , where
Lk is a lower triangular matrix. This allows unconstrained
variations of the elements of Lk in the range [−∞,∞] when
optimizing the nonlinear parameters of the basis function us-
ing the variational method.

In order to describe few-particle systems with nonzero total
orbital angular momenta, simple ECGs (10) must be modified
by including a suitable angular factor in front of the spheri-
cally symmetric Gaussian. This angular factor can be obtained
by means of the standard rules of addition of angular momen-
tum states of individual particles. For multiparticle states with
the total orbital angular momentum quantum number L and
its projection on the z axis, M, that correspond to dominant
single-particle configurations where only two particles (say,
particles i and j) have nonzero orbital angular momenta, the
angular factors θLM are proportional to the bipolar harmonics:

θLM (ri, r j ) = rli
i r

l j

j

∑
mi,mj

M=mi+mj

CLM
limil j m j

Ylimi (ri )Ylj mj (r j ). (11)

Here li and l j are the orbital angular momentum quantum
numbers of particles i and j, respectively, Ylm are the usual
spherical harmonics, and CLM

limil j m j
are the Clebsch-Gordan co-

efficients. Using the Cartesian form of the spherical harmonics
and the table of the Clebsch-Gordan coefficients, one can
obtain the angular factor θLM for an arbitrary value of the total
orbital angular momentum number and its projection on the
z axis. For example, in the case of L = 1, M = 0, even total

parity, and li = l j = 1, the angular factor comes out to be

θ10 = 3i

4π
√

2
(xiy j − x jyi ), (12)

while the corresponding ECG basis function is

φk = (xik y jk − x jk yik) exp[−r′(Ak ⊗ I)r]. (13)

In the above expression, integer indices ik and jk , which can
range from 1 to n, define a specific set of two particles that
have nonzero orbital angular momenta. Since the exact wave
function is a mixture of states with different single-particle
configurations, these indices can take different values for dif-
ferent basis functions (hence i and j have a subscript k that
relates them to a specific basis function). In general, indices
ik and jk can be considered integer variational parameters in
calculations and their optimal choice for each individual basis
function should be dictated by the energy minimization.

For L = 2, M = 0, and even parity, we can consider two
distinct cases. The first one is when li = l j = 1. The corre-
sponding basis function has the following form:

φk = (xik x jk + yik y jk − 2zik z jk ) exp[−r′(Ak ⊗ I)r]. (14)

The second case is when li = 2 and all other individual orbital
angular momenta are zeros. The corresponding basis function
is

φk = (
x2

ik + y2
ik − 2z2

ik

)
exp[−r′(Ak ⊗ I)r]. (15)

Lastly, for L = 0, M = 0, even parity, and li = l j = 1 the
corresponding basis function also acquires a factor, but it is
rotationally invariant:

φk = (xik x jk + yik y jk + zik z jk ) exp[−r′(Ak ⊗ I)r]. (16)

It should be noted that, in principle, states with L = 0 that re-
sult from coupling individual orbital angular momenta li = 1
and l j = 1 can be expanded in terms of simpler basis functions
(10). However, the presence of a factor that has a node at
the origin may provide certain practical advantages for basis
functions (16). In general, for states where two particles have
nonzero individual orbital angular momenta, basis functions
(16) should yield faster convergence when the basis size is
increased in comparison with the case of using functions (10).

As mentioned previously, indices ik and jk in Eqs. (13)–
(16) can range from 1 to n. The only restriction occurs for
basis functions (13), where the value of ik must not be equal
to jk as in that case the function automatically becomes a
null function. When dealing with sets of identical particles,
the range of possible values for ik and jk may be reduced to
avoid redundancy that occurs due to nondistinguishability of
particles. However, such a reduction is not at all required.

In this article we report expressions for the matrix elements
of the Hamiltonian, overlap, and the analytic energy gradient
with basis functions (13)–(16). These basis functions are suit-
able for high-accuracy variational calculations of the ground
and excited states of many different few-particle systems.
While our primary focus in this work is on few-electron atoms
and ions, they can also be used for other types of quantum
few-body systems, such as few-exciton complexes in materi-
als, systems composed of or containing exotic particles (e.g.,
positrons, muons), nuclei, small molecules, etc.
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In order to derive matrix elements with basis functions
(13)–(16) in matrix form it is convenient to represent them
as a sum of two or three general terms that read

φk = [v′
kr][w′

kr] exp[−r′Akr]

= [(vk ⊗ εv )′r][(wk ⊗ εw )′r] exp[−r′(Ak ⊗ I)r]. (17)

In this expression, 3n-component sparse vectors vk and wk

define a specific product of Cartesian coordinates (e.g., xik y jk ).
The sparsity of vk and wk here means that each of them
has only a single nonzero component. These 3n-component
vectors can be represented as Kronecker products, vk ⊗ εv and
wk ⊗ εw, that contain the corresponding n-component sparse
vectors vk and wk . The only nonzero element of vk is the
ikth element and it equals unity. Similarly, the only nonzero
element of wk is the jkth element that also equals unity. Each
of the two three-dimensional (3D) unit vectors, εv and εw, also
contains just a single nonzero element (equal to one) that con-
trols which Cartesian coordinate of a pseudoparticle (x, y, or z)
should appear in the prefactor of the Gaussian. For example,
if the system of interest has three particles (n = N − 1 = 2)
and the needed prefactor is [v′

kr][w′
kr] = x2y1, then

ik = 2, εv = εx, jk = 1, εw = εy,

and the corresponding sparse vectors are

vk = vk ⊗ εv =
(

0
1

)
⊗

⎛
⎝1

0
0

⎞
⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
0
1
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

wk = wk ⊗ εw =
(

1
0

)
⊗

⎛
⎝0

1
0

⎞
⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
1
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

For the derivation of matrix elements it is convenient to intro-
duce the following generating function:

ϕk = exp[−r′(Ak ⊗ I)r + αkv
′
kr + βkw

′
kr]. (18)

The mixed second derivative of ϕk with respect to parameters
αk and βk generates φk:

φk = ∂

∂αk

∂

∂βk
exp[−r′(Ak ⊗ I)r + αkv

′
kr + βkw

′
kr]

∣∣∣∣
αk ,βk=0

.

(19)

V. PERMUTATIONAL SYMMETRY

The Hamiltonian of a system containing k identical par-
ticles is invariant with respect to the permutations of these
particles, i.e.,

[H,Xi] = 0, (20)

where Xi is an arbitrary element (permutation) of the finite
symmetric group Sk that has order k!. This implies the simulta-
neous construction of both Hamiltonian and symmetric group
eigenfunctions. It is accomplished by projecting the spatial

basis functions onto the relevant irreducible representations
of the symmetric group. Because the nonrelativistic Hamil-
tonian (8) does not depend on the spin of particles, we can
eliminate the spin variables from further consideration. In this
spin-free formalism, the Young operators for the irreducible
representations of the symmetric group are constructed from
their corresponding Young tableaux [28,29]. For a system of
k identical particles, the Young tableaux are generated from
a series of k-connected empty boxes that are called Young
frames. For example, in the case of a system containing four
identical particles, they may look as follows:

, , , , .

(21)

The shape of the suitable Young frame depends on whether
the identical particles involved are fermions or bosons, their
spin, and the total spin of the system. For the case of fermions
with spin 1/2, the Young frame for the spatial wave function
must contain no more than two columns, while for fermions
with spin 3/2, the maximum number of columns is four.
The number of columns for bosons is not limited, but the
number of rows is. These are derived from the general rule
of constructing the Young frames [30]. The present work
primarily focuses on electrons, which are spin-1/2 particles.
To create a Young frame for such systems with the total spin
quantum number S, we first need to calculate the symmetry
quantum number, p = k/2 − S. Then a partition is written as
μ = [2p 1k−2p]. The Young frame then consists of two boxes
in the first p rows and one box in the remaining k − 2p rows.

A Young tableau is generated by filling a Young frame with
numbers labeling the identical particles (e.g., from 1 to k). A
specific order in which those numbers are placed in the boxes
is not important; e.g., they can increase when going from left
to right and from top to bottom. For example, let us consider
the carbon atom in a triplet spin state. In this case k = 6 (the
number of electrons) and for the total spin quantum number
S = 1 (triplet multiplicity) we have p = 2. Based on that, we
can write the partition, μ = [22 12]. If we assume that the
labels of the particles range from 2 to 7 (the first particle can
be a nucleus) then the corresponding Young tableau is filled
as follows:

2 3
4 5
6
7

.

(22)

Having the Young tableau, the Young symmetry projector
can now be constructed in the following way:

Y = SA, (23)

where S and A are symmetrization and antisymmetrization
operators. S is defined as a product of symmetrizers over
particles in each row of the Young tableaux, while A is a prod-
uct of antisymmetrizers over particles in each column. The
symmetrizers and antisymmetrizers are easily expressed using
the transpositions (pair permutations of particles), which we
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will denote Pi j . For instance, the Young tableau in Eq. (22)
yields the following Young operator:

Y = S2,3S4,5A2,4,6,7A3,5, (24)

where subscripts list the particles over which the symmetriza-
tion or antisymmetrization must be carried out. Note that
because each symmetrizer applies to a different set of parti-
cles, the order in which symmetrizers are written is arbitrary.
Similarly, the mutual placement of antisymmetrizers is also
arbitrary. Expressed in terms of transpositions the symmetriz-
ers and antisymmetrizers in expression (24) are

S2,3 = (I+P23),

S4,5 = (I+P45),

A2,4,6,7 = (I−P24)(I−P26−P46)(I−P27−P47−P67),

A3,5 = (I−P35),

where I is the identity operator and for the sake of simplicity
we dropped all common normalization factors.

Spatial matrix elements of spin-independent operators
evaluated with symmetry-projected spin-free basis functions
(projected by applying operator Y) are equivalent to the ma-
trix elements with the corresponding full (spatial + spin) basis
states after the summation over spin variables.

It is worth noting that in many cases the operators whose
expectation values need to be evaluated in variational cal-
culations are not only Hermitian but also commute with
all transpositions in symmetry projector (23). Consequently,
computations of matrix elements for such operators can al-
ways be limited to the scenario where the projection needs to
be applied to the ket basis functions only. This is because

〈Yφk|O|Yφl〉 = 〈φk|O|Y†Yφl〉, (25)

where O is some operator that commutes with all transposi-
tions involving identical particles and Y† = A†S† = AS is
the Hermitian conjugate of Y . The operator Y†Y ∝ ASA can
be simplified by means of multiplying the transpositions and
reducing identical terms. Such automatic simplification can be
implemented in the computer program that does variational
calculations. With this, the number of independent terms due
to the permutational symmetry that need to be summed when
evaluating a single matrix element of O reduces to k!.

When the system of interest contains multiple sets of iden-
tical particles (e.g., electrons and protons, or electrons and
positrons), the elimination of spin from explicit consideration
can be achieved by sequentially applying the Young symmetry
projectors for each set of particles.

When the summation over permutations of identical parti-
cles is carried out in the course of evaluating matrix elements
it is necessary to know how these permutations transform
basis functions in the ket, |φl〉. Apparently, the functional
form of the basis functions is not altered. What changes is
the nonlinear variational parameters (Al , vl , and wl ). When
an arbitrary permutational operator P acts on the laboratory-
frame coordinates r of the real particles, these coordinates
undergo a linear transformation. The transformation of inter-
nal coordinates r (e.g., pseudoparticle coordinates) as a result
of permutations of the real particles is also linear. This allows
to represent the transformation of the internal coordinates by

means of the permutation matrix P = P ⊗ I. If we act on basis
function (17) with P , we obtain

Pφl = (vl )
′(Pr)(wl )

′(Pr) exp[−(Pr)′Al (Pr)]

= (P′vl )
′r(P′wl )

′r exp[−r′(P′AlP)r]. (26)

This expression shows how the nonlinear parameters of the
Gaussians, i.e., matrices Al and the corresponding sparse vec-
tors vl and wl , are transformed. In the derivation of matrix
elements in the subsequent sections, we will make an explicit
assumption that the ket basis function may be transformed by
some permutations of particles. This implies that the matrix Al

and the vectors vl and wl presented in all expressions should
actually be replaced with P′AlP, P′vl , and P′wl , respectively.
However, for the sake of brevity, we will avoid including P′s
explicitly in the expressions.

VI. MATRIX ELEMENTS

The derivation of matrix elements will be carried out using
the formalism of matrix differential calculus [27]. To begin,
let us first list some useful relations for differentials involving
matrices. For an arbitrary square matrix X , the differentials of
its determinant, trace, and inverse are given by

d |X | = |X | tr[X −1 d X ],

d tr [X ] = tr [dX], (27)

d(X −1) = −X −1(dX)X −1.

We will also use the value of the following n-dimensional
Gaussian integral,∫ ∞

−∞
exp[−x′Ax + y′x] d x = πn/2

|A|1/2
exp

[
1

4
y′A−1y

]
, (28)

where x and y are n-component vectors (the first one con-
tains n variables x1, . . . , xn, while the latter is composed of
constants y1, . . . , yn), and A is an n × n positive definite sym-
metric matrix.

A. Overlap integral

The overlap integral between generating functions
ϕk given by expression (18) is easily obtained using
formula (28),

〈ϕk|ϕl〉 =
∫

exp[−r′Aklr + (αkvk +βkwk +αlvl +βlwl )
′r]dr

= π3n/2

|Akl |1/2
exp

[
1

4
(αkvk +βkwk +αlvl +βlwl )

′A−1
kl

× (αkvk +βkwk +αlvl +βlwl )

]
, (29)

where Akl = Ak + Al . Note that the determinant of a 3n × 3n
matrix Akl can be expressed through the determinant of an
n × n matrix Akl :

|Akl | = |Akl ⊗ I| = |Akl |3. (30)

The expression for the overlap integral with basis func-
tions (17) will acquire somewhat different forms depending
on the specific combination of the Cartesian coordinates in
the Gaussian prefactors defined in vectors vk and wk . Three
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distinct cases can be identified and we list them separately
below.

1. Case (xik x jk |xil x jl )

Let us start with the scenario where εv = εw. For defi-
niteness we can consider εv = εw = εx. Due to the rotational
symmetry of the simple Gaussians (10) the integral will be the
same in the case of εv = εw = εy or εv = εw = εz. Using the
following relation,

(a′ ⊗ εx′)(Akl ⊗ I)(a ⊗ εx ) = a′Akl a ⊗ εx′Iεx = a′Akla,

(31)

where a is some vector, we can reduce the size of matrix Akl

and vectors in Eq. (29) from 3n to n:

〈ϕk|ϕl〉 = π3n/2

|Akl |3/2
exp

[
1

4
(αkvk + βkwk + αlvl + βlwl )

′

× A−1
kl (αkvk + βkwk + αlvl + βlwl )

]
. (32)

Then the overlap integral between basis functions (17) is
obtained by means of taking four derivatives, which yields

Skl = ∂

∂βl

∂

∂βk

∂

∂αl

∂

∂αk
〈ϕk|ϕl〉

∣∣∣∣
αk ,αl ,βk ,βl =0

= π3n/2

|Akl |3/2

1

4

([
v′

kA−1
kl vl

][
w′

kA−1
kl wl

]
+ [

v′
kA−1

kl wk
][

v′
lA

−1
kl wl

] + [
v′

kA−1
kl wl

][
w′

kA−1
kl vl

])
.

(33)

For brevity, let us introduce the following quantities that
define vector-matrix-vector products:

γ1 = v′
kA−1

kl vl ,

γ2 = w′
kA−1

kl wl ,

γ3 = v′
kA−1

kl wk,

γ4 = v′
lA

−1
kl wl ,

γ5 = v′
kA−1

kl wl ,

γ6 = w′
kA−1

kl vl . (34)

With that we can rewrite the expression for the overlap inte-
gral as

Skl = 1

4

π3n/2

|Akl |3/2
γ , (35)

where

γ = γ1γ2 + γ3γ4 + γ5γ6. (36)

2. Case (xik y jk |yil x jl )

Because εx′Iεy = εy′Iεx = 0, expression (32) becomes

〈ϕk|ϕl〉 = π3n/2

|Akl |3/2
exp

[
1

4
(αkvk + αlvl )

′A−1
kl (αkvk +αlvl )

]

× exp

[
1

4
(βkwk + βlwl )

′A−1
kl (βkwk + βlwl )

]
.

(37)

Performing the same four differentiations as in the previous
case gives

Skl = 1

4

π3n/2

|Akl |3/2
γ1γ2. (38)

3. Case (xik x jk |yil y jl )

The last distinct case is when both coordinates in the
prefactor of the bra are x coordinates, while in the ket both
coordinates are y coordinates. The result of taking four deriva-
tives is then

Skl = 1

4

π3n/2

|Akl |3/2
γ3γ4. (39)

At this point it should be clear that the expressions and
derivation of matrix elements in all three distinct cases is very
similar. For this reason, in the following sections for other
matrix elements, such as those of the kinetic energy, potential
energy, and the analytic gradient, we will only present the
final expressions for the three cases rather than repeat almost
identical derivations three times.

B. Kinetic energy

1. Case (xik x jk |xil x jl )

For matrix elements of the kinetic energy and some other
quantities we will need the value of an auxiliary integral con-
taining a quadratic form with an arbitrary 3n × 3n symmetric
matrix X :

〈φk|r′Xr|φl〉 = − ∂

∂β
〈φk| exp[−βr′Xr]|φl〉

∣∣∣∣
β=0

= − ∂

∂β

π3n/2

|Akl + βX |3/2

(
[v′

k (Akl + βX )−1vl ][w
′
k (Akl + βX )−1wl ]

+ [v′
k (Akl + βX )−1wk][v′

l (Akl + βX )−1wl ] + [v′
k (Akl + βX )−1wl ][w

′
k (Akl + βX )−1vl ]

)∣∣∣∣
β=0

, (40)

where X = X ⊗ I3. After taking the derivative using relations (27) we obtain

〈φk|r′Xr|φl〉 = 3

2
tr

[
A−1

kl X
]
Skl + π3n/2

4|Akl |3/2

([
v′

kA−1
kl XA−1

kl vl
][

w′
kA−1

kl wl
] + [

v′
kA−1

kl vl
][

w′
kA−1

kl XA−1
kl wl

] + [
v′

kA−1
kl XA−1

kl wk
]

× [
v′

lA
−1
kl wl

] + [
v′

kA−1
kl wk

][
v′

lA
−1
kl XA−1

kl wl
] + [

v′
kA−1

kl XA−1
kl wl

][
w′

kA−1
kl vl

] + [
v′

kA−1
kl wl

][
w′

kA−1
kl XA−1

kl vl
])

.

(41)
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The evaluation of the kinetic energy matrix elements is easiest when we take into account the anti-Hermiticity of the gradient
operators so that ∇r is applied to both the bra and ket generating functions (18). Given the action of ∇r on ϕk , namely,

∇rϕk = [−2Akr + αkvk + βkwk]ϕk, (42)

then we obtain

〈∇rϕk|M|∇rϕl〉 = 〈(−2Akr + αkvk + βkwk )ϕk|M|(−2Alr + αlvl + βlwl )ϕl〉 = 4〈ϕk|r′A′
kMAlr|ϕl〉 − 2αl〈ϕk|r′A′

kMvl |ϕl〉
− 2βl〈ϕk|r′A′

kMwl |ϕl〉 − 2αk〈ϕk|v′
kMAlr|ϕl〉 + αkαlv

′
kMvl〈ϕk|ϕl〉 + αkβlv

′
kMwl〈ϕk|ϕl〉

− 2βk〈ϕk|w′
kMAlr|ϕl〉 + βkαlw

′
kMvl〈ϕk|ϕl〉 + βkβlw

′
kMwl〈ϕk|ϕl〉. (43)

As usual, matrix elements of the kinetic energy operator with
basis functions (17) are obtained by taking four derivatives
of the above expression. In this process we end up with three
types of integrals. The first one, which originates from the first
term on the right-hand side of Eq. (43), contains a quadratic
form. We can make the matrix defining this quadratic form
symmetric and then use expression (41) substituting X =
(A′

kMAl + A′
lMAk )/2. The second type of integral originates

from the second, third, fourth, and seventh terms on the right-
hand side of Eq. (43). These integrals are similar to the overlap
integral (35) after certain substitutions of matrices. Lastly, the
third type of integral happens to be similar to the overlap
integral of Gaussians with single Cartesian prefactors derived
in Ref. [15]. After some lengthy but straightforward algebraic
manipulation we obtain the final expression for the kinetic
energy matrix elements:

Tkl = Skl

(
6τ + 4ζ

γ

)
, (44)

where

τ = tr
[
A−1

kl AlMA′
k

]
,

ζ = (γ1η1 + γ2η2 − γ3η3 − γ4η4 + γ5η5 + γ6η6),

η1 = (
w′

kA−1
kl A′

lMAkA−1
kl wl

)
,

η2 = (
v′

kA−1
kl A′

l MAkA−1
kl vl

)
,

η3 = (
v′

lA
−1
kl A′

kMAkA−1
kl wl

)
, (45)

η4 = (
v′

kA−1
kl A′

l MAlA
−1
kl wk

)
,

η5 = (
w′

kA−1
kl A′

lMAkA−1
kl vl

)
,

η6 = (
v′

kA−1
kl A′

l MAkA−1
kl wl

)
.

2. Case (xik y jk |yil x jl )

Following the same recipe as in the previous case, we
obtain

Tkl = Skl

(
6τ + 4

η2

γ1
+ 4

η1

γ2

)
. (46)

3. Case (xik x jk |yil y jl )

Similarly, in this case we get

Tkl = Skl

(
6τ − 4

η4

γ3
− 4

η3

γ4

)
. (47)

C. Potential energy

1. Case (xik x jk |xil x jl )

First, let us note that the squares of the interparticle dis-
tances can be represented as quadratic forms:

r2
i = r′Jiir, r2

i j = r′Ji jr. (48)

Here matrix Ji j = Ji j ⊗ I is defined as

Ji j =
{

Eii if i = j
Eii + Ej j − Ei j − Eji if i �= j,

(49)

where all the elements of matrix Ei j are zeros except the
element in the ith row and jth column, which is equal to one.
Now, using the overlap matrix elements (35), we can trans-
form the Coulomb integrals 〈φk|1/ri|φl〉 and 〈φk|1/ri j |φl〉 as
follows:

Ri j
kl = 〈φk| 1

ri j
|φl〉 = 2√

π

∫ ∞

0
〈φk| exp[−β2r′Ji jr]|φl〉dβ

= π
3n−1

2

2

∫ ∞

0

1

|Akl + β2Ji j |3/2

(
[v′

k (Akl +β2Ji j )
−1vl ]

× [w′
k (Akl +β2Ji j )

−1wl ] + [v′
k (Akl +β2Ji j )

−1wk]

× [v′
l (Akl +β2Ji j )

−1wl ] + [v′
k (Akl +β2Ji j )

−1wl ]

× [w′
k (Akl +β2Ji j )

−1vl ]
)
dβ. (50)

To solve this integral, we need to simplify the terms en-
closed in square brackets, e.g., the terms such as v′

k (Akl +
β2Ji j )−1vl . This can be done by using the Sherman-Morrison
formula, e.g.,

v′
k (Akl +β2Ji j )

−1vl = tr[(Akl +β2Ji j )
−1vlv

′
k]

= tr[A−1
kl vlv

′
k] − β2 tr

[
A−1

kl Ji jA
−1
kl vlv

′
k

]
1 + β2 tr

[
A−1

kl Ji j
] .

(51)

After making such substitutions in Eq. (50), taking the inte-
gral, and doing some algebraic manipulations, we obtain the
final expression for the Coulomb integrals,

Ri j
kl = π (3n−1)/2

2|Akl |3/2ω1/2

(
γ − κ

3ω
+ ρ

5ω2

)
, (52)

where we introduced the following quantities:

ρ1 = (
w′

kA−1
kl Ji jA

−1
kl wl

)
,

ρ2 = (
v′

kA−1
kl Ji jA

−1
kl vl

)
,
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ρ3 = (
v′

lA
−1
kl Ji jA

−1
kl wl

)
,

ρ4 = (
v′

kA−1
kl Ji jA

−1
kl wk

)
,

ρ5 = (
w′

kA−1
kl Ji jA

−1
kl vl

)
, (53)

ρ6 = (
v′

kA−1
kl Ji jA

−1
kl wl

)
,

ω = tr
[
A−1

kl Ji j
]
,

ρ = [ρ1ρ2 + ρ3ρ4 + ρ5ρ6],

κ = [γ1ρ1 + γ2ρ2 + γ3ρ3 + γ4ρ4 + γ5ρ5 + γ6ρ6].

The expression for the complete potential energy matrix ele-
ments is given by the sum of Ri

kl and Ri j
kl :

Vkl =
n∑

i=1

q0qiR
i
kl +

n∑
i< j

qiq jR
i j
kl . (54)

2. Case (xik y jk |yil x jl )

In this case, the expression for Ri j
kl is similar to that in

Eq. (52) except that we need to substitute

γ → γ1γ2, κ → γ1ρ1 + γ2ρ2, ρ → ρ1ρ2. (55)

3. Case (xik x jk |yil y jl )

Similarly, in this case in Eq. (52) we need to substitute

γ → γ3γ4, κ → γ3ρ3 + γ4ρ4, ρ → ρ3ρ4. (56)

D. Matrix elements with the Dirac δ function and
related quantities

The expectation values of the 3D Dirac δ function with an
argument in the form of various linear combinations of inter-
particle coordinates ri occurs in many practical applications.
For example, the particle contact density, 〈δ(ri j )〉, which is
defined as the probability density of finding particles i and j
in the same point in space, is used in the calculations of rela-
tivistic corrections and particle-antiparticle annihilation rates.
Let us consider the case of an arbitrary linear combination of
r′

is in the Dirac δ function:

δ(a1r1 + a2r2 + · · · + anrn − ξ) = δ((a ⊗ I)′r − ξ), (57)

where a and ξ are some arbitrary n-component and 3-
component real vectors, respectively. For the derivation of
matrix elements it is convenient to use the following repre-
sentation of the δ function:

δ((a ⊗ I)′r − ξ) = lim
β→∞

(
β3/2

π3/2
exp

[−β
(
(a ⊗ I)′r − ξ

)2])
.

(58)

First let us compute the matrix elements of the Dirac δ func-
tion with generating functions (18):

〈ϕk|δ((a ⊗ I)′r − ξ)|ϕl〉 = lim
β→∞

(
β3/2

π3/2
exp[−βξ2]〈ϕk| exp[−βr′(aa′ ⊗ I)r + 2β((a ⊗ I)ξ)′r]|ϕl〉

)
. (59)

Here the matrix element inside the limit is similar to the overlap integral in Eq. (29):

〈ϕk|δ((a ⊗ I)′r − ξ)|ϕl〉 = lim
β→∞

(
β

π

)3/2

exp[−βξ2]
π3n/2

|Akl + βaa′|3/2
exp

[
1

4
(αkvk + βkwk + αlvl + βlwl

+ 2β(a ⊗ I)ξ)′
(
(Akl + βaa′)−1 ⊗ I

)
(αkvk + βkwk + αlvl + βlwl + 2β(a ⊗ I)ξ)

]
. (60)

Taking the limit of this expression when β → ∞ requires expanding the argument of the exponent. Again, we can use the
Sherman-Morrison formula and replace

(Akl + βaa′)−1 = A−1
kl − βA−1

kl aa′A−1
kl

1 + βa′A−1
kl a

.

1. Case (xik x jk |xil x jl )

After taking the limit, we obtain the following expression for the matrix elements of the δ function with generator functions
(18):

〈ϕk|δ((a ⊗ I)′r − ξ)|ϕl〉 = π3(n−1)/2

|Akl |3/2

1(
a′A−1

kl a
)3/2 exp

[
1

a′A−1
kl a

(
1

4
(αkvk + βkwk + αlvl + βlwl )

′
([

a′A−1
kl a

]
A−1

kl − A−1
kl aa′A−1

kl

)

× (αkvk + βkwk + αlvl + βlwl ) + (αkvk + βkwk + αlvl + βlwl )
′A−1

kl a(εx′ξ) − ξ2
)]

. (61)

To find the expectation value with basis functions (17), we still need to take derivatives. After some lengthy but straightforward
calculations we find

〈φk|δ((a ⊗ I)′r − ξ)|φl〉 = π3(n−1)/2

4 |Akl |3/2 ω3/2
exp

[
−ξ2

ω

]([
γ − κ

ω
+ ρ

ω2

]
+ 2

ω2

[
κ − 2ρ

ω

]
(εx′ξ)2 + 4ρ

3ω4
(εx′ξ)4

)
. (62)
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Here for various quantities we adopted the notations from Eqs. (34), (36), (45), and (53). However, one must replace Ji j → aa′
everywhere in those equations.

Expression (62) provides a general formula for the matrix elements of the pair correlation functions and densities of particles
in the center-of-mass frame and in other reference frames. These quantities, in turn, can be used to calculate matrix elements of
such operators as powers of the interparticle distances, i.e., |ri|λ and |ri j |λ, where λ is any real number that satisfies λ > −3. To
do this, we consider partial cases of a = ji and a = j j − ji, respectively. Here ji is an n-component vector whose ith component
is one, while all others are zeros. One may note that ji( ji )′ = Jii and ( j j − ji )( j j − ji )′ = Ji j .

The final expression for the matrix elements of |ri j |λ is

〈φk|rλ
i j |φl〉 = π (3n−1)/2

2 |Akl |3/2
�

(
λ + 3

2

)
ωλ/2

[(
γ − κ

ω
+ ρ

ω2

)
+ λ + 3

3ω

(
κ − 2ρ

ω

)
+ (λ + 5)(λ + 3)ρ

15ω2

]
, (63)

where �(· · · ) stands for the Euler gamma function. One may easily check that the above expression reduces to formula (52)
when λ = −1. Similarly, when λ = 2, it reproduces matrix elements of r′Xr in Eq. (41) if we set X = Ji j . Lastly, the case λ = 0
yields the overlap integral in Eq. (35).

2. Case (xik y jk |yil x jl )

Here the expressions for the matrix elements of the Dirac δ function and rλ
i j are

〈φk|δ
(
(a ⊗ I)′r − ξ

)|φl〉 = π3(n−1)/2

4 |Akl |3/2

γ1γ2

(a′A−1
kl a)3/2

exp

[
− ξ2

a′A−1
kl a

][
1 + 1

a′A−1
kl a

v′
kA−1

kl aa′A−1
kl vl

v′
kA−1

kl vl

(
2

(εx′ξ)2

a′A−1
kl a

− 1

)]

×
[

1 + 1

a′A−1
kl a

w′
kA−1

kl aa′A−1
kl wl

w′
kA−1

kl wl

(
2

(εy′ξ)2

a′A−1
kl a

− 1

)]
, (64)

〈φk|rλ
i j |φl〉 = π (3n−1)/2

2 |Akl |3/2
�

(
λ + 3

2

)
ωλ/2γ1γ2

{(
1 − ρ2

ωγ1

)(
1 − ρ1

ωγ2

)
+

(
λ + 3

2

)
2

3

[(
1 − ρ2

ωγ1

)
ρ1

ωγ2
+ ρ2

ωγ1

(
1 − ρ1

ωγ2

)]

+ (λ + 5)(λ + 3)

15ω2

ρ1ρ2

γ1γ2

}
. (65)

3. Case (xik x jk |yil y jl )

In this case, the expression for the matrix elements of the Dirac δ function is similar to the previous case:

〈φk|δ((a ⊗ I)′r − ξ)|φl〉 = π3(n−1)/2

4 |Akl |3/2

γ3γ4

(a′A−1
kl a)3/2

exp

[
− ξ2

a′A−1
kl a

][
1 + 1

a′A−1
kl a

v′
kA−1

kl aa′A−1
kl wk

v′
kA−1

kl wk

(
2

(εx′ξ)2

a′A−1
kl a

− 1

)]

×
[

1 + 1

a′A−1
kl a

v′
lA

−1
kl aa′A−1

kl wl

v′
lA

−1
kl wl

(
2

(εy′ξ)2

a′A−1
kl a

− 1

)]
. (66)

The matrix elements of rλ
i j are

〈
φk

∣∣rλ
i j

∣∣φl
〉 = π (3n−1)/2

2 |Akl |3/2
�

(
λ + 3

2

)
ωλ/2γ3γ4

{(
1 − ρ4

ωγ3

)(
1 − ρ3

ωγ4

)
+ 2

3

(
λ + 3

2

)[(
1 − ρ4

ωγ3

)
ρ3

ωγ4
+ ρ4

ωγ3

(
1 − ρ3

ωγ4

)]

+ (λ + 5)(λ + 3)

15

ρ3ρ4

ω2γ3γ4

}
. (67)

VII. ENERGY GRADIENT

The formulas for the matrix elements of the Hamiltonian
and overlap derived in the preceding sections should, in prin-
ciple, be sufficient for performing the energy calculations
and generate wave functions. However, in practical calcu-
lations aiming to solve the Schrödinger equation with high
accuracy, many thousands of ECGs need to be generated.
What is even more important, the nonlinear parameters of
these thousands of ECGs must be optimized (at least to some

extent) for each system and state of interest. This process
may be extremely time consuming even on powerful parallel
computer systems. The use of the finite difference energy
gradient in the process of the energy minimization is very
costly and limits the number of basis functions that can be
used in the calculations. It has been demonstrated in many
applications that employing the analytic energy gradient in-
stead, which can be constructed and computed at a cost that
exceeds the cost of a single-point energy evaluation only by
a relatively small factor (of the order of 10) that does not
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grow with the basis size, can greatly expedite the optimization
[13–15]. In this section we will explain how the analytic
energy gradient can be constructed and evaluate all necessary
matrix elements with basis functions (17) that are needed
for it.

In the Rayleigh-Ritz variational method the wave function
of the system, ψ (r), is expanded in terms of some suitable
basis functions φk ,

ψ (r) =
N∑

k=1

ck|φk ({α}k )〉, (68)

where each basis function φk ({α}k ) may contain some unique
adjustable parameters {αk}. Minimizing the energy with
respect to linear coefficients ck results in a generalized eigen-
value problem

Hc = εSc, (69)

where H and S are N × N Hamiltonian and overlap matrices,
respectively, and c is an N -component vector of the linear
coefficients. The elements of these matrices are

Hkl = 〈φk|H|φl〉, Skl = 〈φk|φl〉. (70)

The solutions to the generalized eigenvalue problem, ε (there
are N of them), yield variational upper bounds to the exact
energies of ground and excited states.

When it comes to minimizing the energy with respect to
parameters αk , we end up with a much more difficult nonlinear
optimization problem.

Let us take the differential of Eq. (69):

d(H − εS)c = (dH)c − (dε)Sc − ε(dS)c + (H − εS)dc.

Multiplying this equation by c′ from the left and assuming the
wave function is normalized, i.e., c′Sc = 1, gives

dε = c′(dH − εdS)c. (71)

Because only the t th row and t th column of matrices H
and S depend on parameters {αt } that are unique to basis
function φt ({αt }), we can write the following expressions for
the derivatives:

∂Hkl

∂αt
= ∂Hkl

∂αt
(δkt + δlt − δktδlt ),

∂Skl

∂αt
= ∂Skl

∂αt
(δkt + δlt − δktδlt ).

In the above expressions αt represents any parameter from the
set {αt }, while indices k and l range from 1 to N . Using these
expressions and relation (71), the derivative of the energy
eigenvalue ε with respect to parameter αt can be written as

∂ε

∂αt
= 2c′

t

N∑
l=1

cl

(
∂Ht l

∂αt
−ε

∂St l

∂αt

)
− ctc

′
t

(
∂Htt

∂αt
−ε

∂Stt

∂αt

)
.

(72)

To obtain the entire energy gradient (i.e., all of its compo-
nents), it is necessary to calculate the derivatives with respect
to each αt . This is suboptimal if we compute a derivative
for each individual parameter (Lk )11, (Lk )21, . . . , (Lk )nn sep-
arately. Fortunately, we can evaluate all the derivatives with

respect to all components of the vech Lk vector in a single step.
For that we need the derivatives (more precisely [n(n + 1)/2]-
component gradient vectors) listed below:

∂Hkl

∂ (vech Lk )
,

∂Hkl

∂ (vech Ll )
, (73)

∂Skl

∂ (vech Lk )
,

∂Skl

∂ (vech Ll )
. (74)

In the following sections we will present compact vector and
matrix expressions for these derivatives for the case of basis
functions (17).

A. Overlap gradient

First, let us give the differentials of matrices Ak and Al that
appear in the bra and ket basis functions. They are

dAk = (dLk )L′
k +LkdL′

k,

dAl = (dLl )L
′
l +Ll (dL′

l ). (75)

Similarly, the differential of matrix Akl is given by

dAkl = (dLk )L′
k +LkdL′

k +(dLl )L
′
l +Ll (dL′

l ). (76)

1. Case (xik x jk |xil x jl )

The expression for the differential of the overlap integral is

dSkl = −Skl

[
3

2
tr

[
A−1

kl dAkl
] + 1

γ

(
γ2 tr

[
A−1

kl vlv
′
kA−1

kl dAkl
]

+ γ1 tr
[
A−1

kl wlw
′
kA−1

kl dAkl
] + γ4 tr

[
A−1

kl wkv
′
kA−1

kl dAkl
]

+ γ3 tr
[
A−1

kl wlv
′
lA

−1
kl dAkl

] + γ6 tr
[
A−1

kl wlv
′
kA−1

kl dAkl
]

+ γ5 tr
[
A−1

kl vlw
′
kA−1

kl dAkl
])]

. (77)

For convenience, let us define several matrices

K (1)
kl = A−1

kl wlw
′
kA−1

kl ,

K (2)
kl = A−1

kl vlv
′
kA−1

kl ,

K (3)
kl = A−1

kl wlv
′
lA

−1
kl ,

K (4)
kl = A−1

kl wkv
′
kA−1

kl ,

K (5)
kl = A−1

kl vlw
′
kA−1

kl ,

K (6)
kl = A−1

kl wlv
′
kA−1

kl ,

Kkl = (
γ1K (1)

kl + γ2K (2)
kl + γ3K (3)

kl + γ4K (4)
kl

+ γ5K (5)
kl + γ6K (6)

kl

)
,

Fkl = 3
2 A−1

kl + Kkl

γ
. (78)

Using these definitions, the differential of the overlap integral
can be written as

dSkl = −Skl tr
[
L′

k (Fkl + F ′
kl )dLk + L′

l (Fkl + F ′
kl )dLl

]
.

(79)

When evaluating derivatives with respect to the elements of
matrices, it is convenient to use vec and vech operations that
transform matrices to long vectors, as defined in Eq. (1). Note
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that if X and Y are arbitrary complex square matrices, and L is
the lower triangular matrix, then the following relations hold:

tr[X ′Y ] = (vec X )′ vecY,

(vec X )′ vec L = (vech X )′ vech L. (80)

Using these relations, expression (77) becomes

dSkl = −Skl
[

vech((Fkl + F ′
kl )Lk )′d vech Lk

+ vech
(
(Fkl + F ′

kl )Ll
)′

d vech Ll
]
. (81)

Consequently, the sought derivatives for the overlap integral
are

∂Skl

∂ (vech Lk )
= −Skl vech((Fkl + F ′

kl )Lk ), (82)

∂Skl

∂ (vech Ll )
= −Skl vech((Fkl + F ′

kl )Ll ). (83)

2. Case (xik y jk |yil x jl )

In this case γ and Kkl reduce to

γ = γ1γ2, Kkl =
(

γ1K (1)
kl + γ2K (2)

kl

)
, (84)

while the expressions for the derivatives of Skl remain the
same.

3. Case (xik x jk |yil y jl )

In this case we have

γ = γ3γ4, Kkl =
(

γ3K (3)
kl + γ4K (4)

kl

)
. (85)

The expressions for the derivatives of Skl also remain un-
changed.

B. Kinetic energy gradient

1. Case (xik x jk |xil x jl )

The expression for the kinetic energy matrix elements in
this case is

Tkl = Skl

(
6τ + 4

γ
ζ

)
. (86)

Let us list the differentials for γ ′
i s, τ , and η′

is that are defined
in Eqs. (34) and (45):

dγ1 = − tr
[
K (2)

kl dAkl
]
,

dγ2 = − tr
[
K (1)

kl dAkl
]
,

dγ3 = − tr
[
K (4)

kl dAkl
]
,

dγ4 = − tr
[
K (3)

kl dAkl
]
,

dγ5 = − tr
[
K (6)

kl dAkl
]
,

dγ6 = − tr
[
K (5)

kl dAkl
]
, (87)

dτ = tr
[
A−1

kl AlMA′
l A

−1
kl dA′

k + A−1
kl AkMA′

kA−1
kl dAl

]
,

dηi = tr
[(

K (i)
kl A′

lMAl A
−1
kl − A−1

kl A′
lMAkK (i)

kl

)
dA′

k

+ (
A−1

kl A′
kMAkK (i)

kl − K (i)
kl A′

lMAkA−1
kl

)
dAl

]
,

i = 1, 2, 5, 6,

dη3 = tr
[(

A−1
kl A′

lMAkK (3)
kl + K (3)

kl A′
kMAlA

−1
kl

)
dA′

k

− (
A−1

kl A′
kMAkK (3)

kl + K (3)
kl A′

kMAkA−1
kl

)
dA′

l

]
,

dη4 = tr
[
(A−1

kl A′
kMAl K

(4)
kl + K (4)

kl A′
lMAkA−1

kl )dAl

− (
A−1

kl A′
l MAlK

(4)
kl + K (4)

kl A′
lMAl A

−1
kl

)
dA′

k

]
. (88)

Using the above differentials, dTkl can be written as

dTkl = Tkl

Skl
dSkl + Skl

(
6dτ + 4

γ
dζ − 4ζ

γ 2
dγ

)
. (89)

Now let us define two more matrices,

Ukl = 6A−1
kl AlMA′

l A
−1
kl + 4

γ
Xkl + 4

ζ

γ 2
Kkl , (90)

Wkl = 6A−1
kl AkMA′

kA−1
kl + 4

γ
Ykl + 4

ζ

γ 2
Kkl , (91)

where

Xkl =
6∑

i=1
i �=3,4

γi
(
K (i)

kl A′
l MAlA

−1
kl − A−1

kl A′
lMAkK (i)

kl

)

+ Gkl + γ4
(
A−1

kl A′
lMAl K

(4)
kl + K (4)

kl A′
lMAl A

−1
kl

)
− γ3

(
A−1

kl A′
lMAkK (3)

kl + K (3)
kl A′

kMAl A
−1
kl

)
, (92)

Ykl =
6∑

i=1
i �=3,4

γi
(
A−1

kl A′
kMAkK (i)

kl − K (i)
kl A′

l MAkA−1
kl

)

+ Gkl + γ3
(
A−1

kl A′
kMAkK (3)

kl + K (3)
kl A′

kMAkA−1
kl

)
− γ4

(
A−1

kl A′
kMAlK

(4)
kl + K (4)

kl A′
lMAkA−1

kl

)
, (93)

and

Gkl = (
η3K (4)

kl + η4K (3)
kl − η1K (2)

kl

− η2K (1)
kl − η5K (6)

kl − η6K (5)
kl

)
. (94)

With these the differential of the kinetic energy can be cast
in the following form:

dTkl = Tkl

Skl
dSkl + Skl tr[vech((Ukl + U ′

kl )Lk )′d vech Lk

+ vech((Wkl + W ′
kl )Ll )

′d vech Ll ]. (95)

The derivatives of the kinetic energy matrix elements are
then given by

∂Tkl

∂ (vech Lk )
= Tkl

Skl

∂Skl

∂ (vech Lk )
+ Skl vech((Ukl + U ′

kl )Lk ),

(96)

∂Tkl

∂ (vech Ll )
= Tkl

Skl

∂Skl

∂ (vech Ll )
+ Skl vech((Wkl + W ′

kl )Ll ).

(97)
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2. Case (xik y jk |yil x jl )

All of the final formulas for derivatives of the kinetic en-
ergy matrix elements remain the same. However, matrices Xkl ,
Ykl , and Gkl acquire a different form:

Xkl = Gkl +
2∑

i=1

γi
(
K (i)

kl A′
lMAl A

−1
kl − A−1

kl A′
lMAkK (i)

kl

)
, (98)

Ykl = Gkl +
2∑

i=1

γi
(
A−1

kl A′
kMAkK (i)

kl − K (i)
kl A′

lMAkA−1
kl

)
, (99)

Gkl = −η1K (2)
kl − η2K (1)

kl , ζ = γ1η1 + γ2η2. (100)

3. Case (xik x jk |yil y jl )

In this case the expressions for the derivatives of Tkl also
remain unchanged, while Xkl , Ykl , and Gkl are

Xkl = Gkl + γ4
(
A−1

kl A′
lMAl K

(4)
kl + K (4)

kl A′
lMAl A

−1
kl

)
− γ3

(
A−1

kl A′
lMAkK (3)

kl + K (3)
kl A′

kMAlA
−1
kl

)
, (101)

Ykl = Gkl + γ3
(
A−1

kl A′
kMAkK (3)

kl + K (3)
kl A′

kMAkA−1
kl

)
− γ4

(
A−1

kl A′
kMAlK

(4)
kl + K (4)

kl AlMA′
kA−1

kl

)
, (102)

Gkl = η3K (4)
kl + η4K (3)

kl , ζ = −γ3η3 − γ4η4. (103)

C. Potential energy gradient

1. Case (xik x jk |xil x jl )

The differential of Ri j
kl is

dRi j
kl = Ri j

kl

Skl
dSkl + 2√

π

Skl

ω3/2

(
1

2

[
κ

ωγ
− ρ

ω2γ
− 1

]
dω +

[
κ

3γ 2
− ρ

5ωγ 2

]
dγ − dκ

3γ
+ dρ

5ωγ

)
. (104)

The differentials of dρq (q = 1, . . . , 6), ω, ρ, and κ are

dρq = − tr
[(

A−1
kl Ji jK

(q)
kl + K (q)

kl Ji jA
−1
kl

)
(dA′

k + dAl )
]
, q = 1, . . . , 6, (105)

dω = − tr
[
A−1

kl Ji jA
−1
kl dAkl

]
, (106)

dρ = −
(
ρ1 tr

[(
A−1

kl Ji jK
(2)
kl + K (2)

kl Ji jA
−1
kl

)
dAkl

] + ρ2 tr
[(

A−1
kl Ji jK

(1)
kl + K (1)

kl Ji jA
−1
kl

)
dAkl

] + ρ3 tr
[(

A−1
kl Ji jK

(4)
kl + K (4)

kl Ji jA
−1
kl

)
dAkl

]
+ ρ4 tr

[(
A−1

kl Ji jK
(3)
kl + K (3)

kl Ji jA
−1
kl

)
dAkl

] + ρ5 tr
[(

A−1
kl Ji jK

(6)
kl + K (6)

kl Ji jA
−1
kl

)
dAkl

] + ρ6 tr
[(

A−1
kl Ji jK

(5)
kl + K (5)

kl Ji jA
−1
kl

)
dAkl

])
,

(107)

dκ = −
(
ρ1 tr

[
K (2)

kl dAkl
] + ρ2 tr

[
K (1)

kl dAkl
] + ρ3 tr

[
K (4)

kl dAkl
] + ρ4 tr

[
K (3)

kl dAkl
] + ρ5 tr

[
K (6)

kl dAkl
] + ρ6 tr

[
K (5)

kl dAkl
]

+
6∑

q=1

γq tr
[(

A−1
kl Ji jK

(q)
kl + K (q)

kl Ji jA
−1
kl

)
dAkl

])
. (108)

Here we will also define the following matrix:

Qkl = 2√
πω3/2

(
1

2

[
1 + ρ

ω2γ
− κ

ωγ

]
A−1

kl Ji jA
−1
kl +

[
ρ

5ωγ 2
− κ

3γ 2

]
Kkl + 1

3γ

[
ρ1K (2)

kl + ρ2K (1)
kl + ρ3K (4)

kl + ρ4K (3)
kl + ρ5K (6)

kl

+ ρ6K (5)
kl +

6∑
q=1

γq
(
A−1

kl Ji jK
(q)
kl + K (q)

kl Ji jA
−1
kl

)] − 1

5ωγ

[
ρ1

(
A−1

kl Ji jK
(2)
kl + K (2)

kl Ji jA
−1
kl

) + ρ2
(
A−1

kl Ji jK
(1)
kl + K (1)

kl Ji jA
−1
kl

)

+ ρ3
(
A−1

kl Ji jK
(4)
kl + K (4)

kl Ji jA
−1
kl

) + ρ4
(
A−1

kl Ji jK
(3)
kl + K (3)

kl Ji jA
−1
kl

) + ρ5
(
A−1

kl Ji jK
(6)
kl + K (6)

kl Ji jA
−1
kl

)
+ ρ6

(
A−1

kl Ji jK
(6)
kl + K (6)

kl Ji jA
−1
kl

)])
. (109)

Using the above definitions the differential and derivatives of Ri j
kl can be written as

dRi j
kl = Ri j

kl

Skl
dSkl + Skl tr

[
Qkl (dA′

k + dAl )
]
, (110)

∂Ri j
kl

∂ (vech Lk )
= Ri j

kl

Skl

∂Skl

∂ (vech Lk )
+ Skl vech((Qkl + Q′

kl )Lk ), (111)

∂Ri j
kl

∂ (vech Ll )
= Ri j

kl

Skl

∂Skl

∂ (vech Ll )
+ Skl vech((Qkl + Q′

kl )Ll ). (112)
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TABLE I. CPU time (in seconds) spent on evaluating 108 sets of matrix elements of the Hamiltonian + overlap (Gradient = no) and
Hamiltonian + overlap + gradient (Gradient = yes) using two different schemes: the new one implemented in this work and the old one that
is based on derivations in Refs. [19,31]. All calculations were performed on a single-core of Intel Xeon W-2145 CPU using GNU FORTRAN

compiler version 9.5.

L = 1 L = 2

System Gradient New Old Ratio New Old Ratio

Li yes 96.06 5202 54.15 97.02 8184 84.35
no 11.39 511 44.86 16.25 820 50.46

Be yes 305.20 15062 49.35 310.20 25781 83.11
no 24.50 945 38.57 30.00 1462 48.73

B yes 620.62 43610 70.27 628.75 65984 104.94
no 41.36 1820 44.00 60.33 2524 41.83

C yes 1062.60 120297 113.21 1081.70 154922 143.22
no 71.94 3023 42.02 82.05 3733 45.50

2. Case (xik y jk |yil x jl )

In this case, we have

κ = γ1ρ1 + γ2ρ2, ρ = ρ1ρ2,

γ = γ1γ2, Kkl = (
γ1K (1)

kl + γ2K (2)
kl

)
, (113)

Qkl = 2√
πω3/2

(
1

2

[
1 + ρ

ω2γ
− κ

ωγ

]
A−1

kl Ji jA
−1
kl +

[
ρ

5ωγ 2
− κ

3γ 2

]
Kkl + 1

3γ

[
ρ1K (2)

kl + ρ2K (1)
kl +

2∑
q=1

γq
(
A−1

kl Ji jK
(q)
kl

+ K (q)
kl Ji jA

−1
kl

)] − 1

5ωγ

[
ρ1

(
A−1

kl Ji jK
(2)
kl + K (2)

kl Ji jA
−1
kl

) + ρ2
(
A−1

kl Ji jK
(1)
kl + K (1)

kl Ji jA
−1
kl

)])
, (114)

while expressions for the differential and derivatives of Ri j
kl are the same.

3. Case (xik x jk |yil y jl )

Similarly, here the expressions for the differential and derivatives of Ri j
kl are the same. The only thing that changes is the form

of expressions for κ , γ , Kkl , and Qkl :

κ = [γ3ρ3 + γ4ρ4], ρ = ρ3ρ4,

γ = γ3γ4, Kkl = (
γ3K (3)

kl + γ4K (4)
kl

)
, (115)

Qkl = 2√
πω3/2

(
1

2

[
1 + ρ

ω2γ
− κ

ωγ

]
A−1

kl Ji jA
−1
kl +

[
ρ

5ωγ 2
− κ

3γ 2

]
Kkl + 1

3γ

[
ρ3K (4)

kl + ρ4K (3)
kl +

4∑
q=3

γq
(
A−1

kl Ji jK
(q)
kl

+ K (q)
kl Ji jA

−1
kl

)] − 1

5ωγ

[
ρ3

(
A−1

kl Ji jK
(4)
kl + K (4)

kl Ji jA
−1
kl

) + ρ4
(
A−1

kl Ji jK
(3)
kl + K (3)

kl Ji jA
−1
kl

)])
. (116)

VIII. NUMERICAL TESTS

The expressions derived in the previous sections were
implemented into our FORTRAN 90 code for variational calcu-
lations of quantum few-body systems. We used the Message
Passing Interface (MPI) library to facilitate parallel calcu-
lations on computer systems with distributed and shared
memory architectures. The FORTRAN code for all individual
matrix elements as well as for all auxiliary functions and
subroutines was validated by comparing the corresponding
results with the numerical output generated by the Mathemat-

ica symbolic algebra package. We also used up to five-point
finite difference formulas to check the accuracy of our analytic
gradient of the energy with respect to the Gaussian nonlinear
parameters.

The scheme for calculating matrix elements adopted in
this work has a significant advantage in terms of efficiency
as compared to previous implementations [19,31]. This is
demonstrated in Table I, which shows the CPU timings for
evaluation of two sets of matrix elements (Hamiltonian +
overlap and Hamiltonian + overlap + gradient) using two
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schemes: the new one that represents basis functions as
[v′

kr][w′
kr] exp[−r′Akr] and the old one where basis functions

are represented as r′W kr exp[−r′Akr] [19,31]. Here, W is a
sparse 3n × 3n symmetric matrix, which defines the prefac-
tors of ECGs in Eqs. (13)–(16). We measured the time of
evaluating matrix elements for several systems: Li, Be, B, and
C atoms. In the table, L = 1 denotes the case of basis function

(xik y jk − yik x jk ) exp[−r′Akr],

while L = 2 corresponds to

(xik x jk + yik y jk − 2zik z jk ) exp[−r′Akr] or(
x2

ik + y2
ik − 2z2

ik

)
exp[−r′Akr].

In Table I one can see that the ratio of times spent on
evaluating matrix elements based on two different schemes
(old versus new) is very large. The use of the new scheme
results in roughly a two-order-of-magnitude speedup. More-
over, the ratio increases with the size of the system, i.e., with
the number of electrons. For D states of carbon atom (L = 2)
the ratio of old to new reaches the value of 143 when the
matrix elements of the gradient are included. When matrix el-
ements of the gradient are not evaluated, it is roughly 45 times
faster without gradients. A higher ratio in the case when the
gradient is included can be explained by the fact that the ex-
pressions for matrix elements of the analytic gradient derived
within the scheme where the basis functions are represented
as r′W kr exp[−r′Akr] [31] are somewhat more complicated
(from a computational standpoint) than those derived in this
work. It should be noted that in practical calculations with
ECGs, the optimization of the nonlinear parameters of the
Gaussians is very essential and usually represents the most
time-consuming part of the calculations. Therefore, doing the
optimization of the variational wave functions essentially be-
comes impractical without using the analytic energy gradient.
Thus the timings for the case without gradient seen in Table I
serve more of an illustrative purpose.

For timings shown in Table I, each set of matrix elements
did not include any summation over permutations of identical
particles. Therefore, in order to assess how the computational
cost of computing matrix elements grows with the system size
one would need to make ratios of the corresponding timings
each multiplied by the corresponding factorial of the number
of identical particles in the system (or products of factorials, if
there is more than one set of identical particles in the system).
For example, when we go from a three-electron lithium (3! =
6) to a six-electron carbon (6! = 720), the cost increases by a
factor of approximately 1300 in the case of the Hamiltonian +
overlap + gradient matrix elements for both L = 1 and L = 2
states.

Next, let us show the results of several test calculations on
specific states of Li, B, and C atoms that can be treated using
the new algorithms derived in this work. We include the finite
nuclear mass effects in our computations. However, for the
purpose of comparing our numbers with the benchmark data
available in the literature, we also report our nonrelativistic
energies for the infinite nuclear mass “isotopes.” Since the
atomic wave function undergoes a relatively minor change
when the nuclear mass is changed, there is no need to reop-

TABLE II. Convergence of the total nonrelativistic energies (in
a.u.) of the lithium atom in the lowest 2D state with the number of
ECG basis functions.

Basis size 1s23d (2D)

∞Li 500 −7.335 523 143 44
1000 −7.335 523 501 56
1500 −7.335 523 535 12
2000 −7.335 523 540 22
2500 −7.335 523 541 79
3000 −7.335 523 542 61

7Li 3000 −7.334 927 305 61

Hylleraas-type basis [33]
∞Li 32760 −7.335 523 543 524 685

timize the ECG basis set for a different nuclear mass. The
energy shift caused by the nuclear mass change is captured
very well by simply adjusting the linear variational parame-
ters (expansion coefficients) of the basis functions when the
modified Hamiltonian for a specific isotope is diagonalized in
a given ECG basis.

We would like to emphasize that the test calculations
presented below were performed only for the purpose of val-
idating the new algorithm for computing matrix elements of
the overlap, kinetic energy, potential energy, and their gra-
dients. In future works we are planning to focus on specific
applications that target bound states of atoms, ions, and sys-
tems with exotic particles such as positrons. More details and
comprehensive numerical data will be presented then. Apart
from the new scheme of deriving the matrix elements, the
algorithm implemented in this work includes an independent
optimization routine for integer indices labeling the particles.

The first test system for validating the new algorithm is
the Li atom in its lowest doublet D state. For the nuclear
mass of 7Li we adopted the value m0 = 12 786.392 282 a.u.,
which was determined based on the corresponding atomic
mass value from Ref. [32]. The results of our test calculations
in which we generated basis sets of up to 3000 ECGs are
shown in Table II. In this table one can see that with just 3000
ECGs we recover nine (in fact, almost ten) decimal figures in
the total nonrelativistic energy of this state. This is confirmed
by comparing with the most accurate value reported to date by
Wang et al. [33] that was obtained in a large-scale variational
calculation using Hylleraas-type basis functions. Such level
of convergence and very good agreement with the benchmark
data for a small, simple, yet nontrivial state of a three-electron
system provides solid evidence that the algorithm presented
in this work has been implemented correctly. The basis set
generation used in this work for all test systems was based
on the following strategy that was adopted from our pre-
vious works on ECGs and proved its robustness. It begins
with choosing randomly the nonlinear parameters of one or
a few Gaussians, i.e., the elements of matrix Lk , and then
optimizing them with an approach that utilizes the analytic
energy gradient. Then new basis functions are added one by
one, first by randomly selecting their nonlinear parameters
and then the best candidate that lowers the energy the most
is optimized further using the analytic energy gradient. At
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TABLE III. Convergence of the total nonrelativistic energies (in
a.u.) of the boron atom in the lowest 4P and 2D states with the number
of basis functions and comparison with the most accurate literature
values.

Basis size 1s22s2p2 (4P) 1s22s2p2 (2D)

∞B 3000 −24.522 039 882 −24.435 953 545
4000 −24.522 040 952 −24.435 968 363
5000 −24.522 041 368 −24.435 974 673
6000 −24.522 041 568 −24.435 977 820
7000 −24.522 041 671 −24.435 979 472
8000 −24.522 041 732 −24.435 980 588
9000 −24.522 041 775 −24.435 981 350

11B 9000 −24.520 827 254 −24.434 765 417

ECG lobe functions [34]
∞B 4672 −24.522 041 430

8231 −24.435 981 009

the stage of random selection the nonlinear parameters are
sampled from the distribution that is based on the nonlinear
parameters of the ECGs that are already in the basis. Typically,
a few hundred random basis function candidates are tested
before the best one is selected. After a certain number of new
functions (typically 5–50) have been added to the basis, we
perform a cycle in which the parameters of all basis functions
are tuned further, one function at a time. The reason why
only one (or few, at most) function is being optimized at a
time is because it allows considerable computational savings
as in such case there is no need to recompute all matrix el-
ements and solve the generalized eigenvalue problem (which
yields linear variational parameters) from scratch. When the
optimization cycle is completed, the procedure is repeated;
i.e., new functions are added and then a new optimization
cycle occurs. This way the basis is grown in a controlled
way until its size reaches a large predefined value. In this
process of gradual growing and optimizing the ECG basis
we also check for possible linear dependencies among basis
functions to maintain numerical stability of the calculations.
If at some point it is determined that a new function candidate
or a modification of already included basis function causes
severe linear dependencies (based on a predefined threshold),
such additions or modifications are discarded.

Another test calculation that we performed was of the
boron atom. We considered two states for this system: the
lowest 4P state and the lowest 2D state. Our data for the
total nonrelativistic energies are shown in Table III and we
compare them to the most recent and accurate values reported
by Strasburger [34]. The nuclear mass of 11B that we adopted
is m0 = 20 063.736 943 a.u., which was computed using the
known value of the atomic mass [32]. Based on the conver-
gence patterns and comparison with the data in Ref. [34] we
can conclude that the nonrelativistic energies for both states
are converged to about eight decimal figures. Moreover, our
values corresponding to the largest generated basis sets of
9000 ECGs provide a marginal improvement over the varia-
tional upper bounds reported by Strasburger.

The last test case that we present concerns the six-electron
carbon atom. For this system we considered two triplet states:

the ground state with the dominant electronic configura-
tion 1s22s22p2 (3P) and the first excited state of the same
multiplicity and rotational symmetry corresponding to the
configuration 1s22s22p3p (3P). For the nuclear mass of 12C
we used the value m0 = 21 868.663 851 a.u. Using up to 8000
ECGs for each state we were able to improve the ground state
energy of the carbon atom obtained by Strasburger in a bench-
marked variational calculation in Ref. [35] that employed
Gaussian lobe basis functions. With this many ECGs the
ground state energy is converged to seven decimal figures. It is
remarkable that the Gaussian lobe functions, which are vari-
ants of ECGs with shifted centers that are spatially projected
according to the point group representations of the considered
states, provide a rather fast convergence rate to the infinite
basis set limit. Apparently, part of the reason for this is due
to the fact that the spatial symmetry projector in the case of
the 3P state of carbon consists of eight terms; i.e., eight ECGs
with shifted centers are combined in order to form a single
basis function (and this does not take into account the permu-
tational symmetry of the electrons). Yet, ECG lobe functions
are not eigenfunctions of the square of the total orbital angular
momentum operator. Therefore, they cannot be easily used
for calculations of excited states such as the Rydberg series
of states with the dominant configurations 1s22s22pnp (3P)
(n = 3, 4, . . .). The ECG basis functions adopted in this work
do not have this deficiency and can be used for that purpose
(i.e., for calculations of excited states with Se, Pe, and De

symmetry).
This is demonstrated by our data for the first excited

1s22s22p3p (3P) state in Table IV, where the level of
convergence reached for the total nonrelativistic energy is
very similar (just a tad worse, as expected due to the in-
creased complexity of the wave function) to what we have
for the ground state. Let us also note that in spite of a rather
moderate size of the basis we generated in this numerical test

TABLE IV. Convergence of the total nonrelativistic energies (in
a.u.) of the carbon atom in the ground and excited 3P states with the
number of basis functions and comparison with the most accurate
literature values. Note that the energy uncertainty from Ref. [36] is
of purely statistical nature and does not account for the error due to
the wave function Ansatz employed in that work.

Basis size 1s22s22p2 (3P) 1s22s22p3p (3P)

∞C 1000 −37.844 310 1 −37.518 749 7
2000 −37.844 736 9 −37.519 414 4
3000 −37.844 822 2 −37.519 552 9
4000 −37.844 851 8 −37.519 600 6
5000 −37.844 869 6 −37.519 630 8
6000 −37.844 880 2 −37.519 648 7
7000 −37.844 887 0 −37.519 660 0
8000 −37.844 891 3

12C 7000 −37.517 946 1
8000 −37.843 179 3

ECG lobe functions [35]
∞C 5896 −37.844 889 402

Variational Monte Carlo [36]
∞C −37.496 97(5)
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calculation, to the best of our knowledge, this is by far most
accurate nonrelativistic energy ever reported for this state.

IX. CONCLUSION

All-particle explicitly correlated Gaussians with prefactors
in the form of bipolar harmonics is a powerful tool that can
be used in benchmark variational calculations of atomic Se,
Pe, and De states, where the dominant configuration con-
tains two p electrons or a single d electron. The algorithm
developed in this work provides a fast and efficient way of
computing the Hamiltonian and overlap matrix elements as
well as the analytic energy gradient with respect to the non-
linear parameters of the Gaussians. All necessary analytical
expressions are presented in compact matrix form for easier
implementation and theoretical analysis. Such basis functions
can be extended to perform bound state calculations for other

types of systems, such as those containing more than one
heavy particle or nucleus. They are also expected to be very
effective in calculations of excited Rydberg states of atoms
with some moderately large values of the principal quantum
number of the Rydberg electron. Future possible develop-
ments with these basis functions will include the evaluation
of the expectation values of effective operators representing
leading relativistic and quantum electrodynamics corrections,
interstate transition energies, and oscillator strengths.
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