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Calculating the classical virial expansion using automated algebra
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Using schematic model potentials, we calculate exactly the virial coefficients of a classical gas up to sixth order
and use them to calculate the virial expansion of basic thermodynamic quantities such as pressure, density, and
compressibility. At sufficiently strong couplings, as expected, the virial expansion fails to converge. However, at
least for the interactions and parameter ranges we explored, we find that Padé-Borel resummation methods are
very effective in improving the convergence of the expansion.
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I. INTRODUCTION

Understanding the finite-temperature thermodynamics of
interacting matter represents an important and challenging
problem across many areas of physics and chemistry. No-
table applications are the dynamics of neutron star mergers
(where the finite-temperature equations of state of neutron
matter and nuclear matter play a central role) (see, e.g., [1,2])
and ultracold atomic gases [3,4] (highly malleable systems
created in many laboratories around the world). While both
of those applications involve quantum matter, there are cases
in chemistry and nuclear physics which are better suited for
a classical description (usually at high-enough temperature
that quantum effects are irrelevant or whenever those can be
encoded into effective interactions) (see, e.g., [5]). Similarly,
classical dynamics simulations of neutron matter at finite tem-
perature have also been of interest [6]. This work focuses on
such classical descriptions of many-particle systems at finite
temperature.

At high temperatures and low densities, the virial ex-
pansion (VE) provides a rigorous approach to many-body
equilibrium thermodynamics whereby each successive or-
der N adds on the contribution of the N-body problem to
the grand-canonical description. Notably, in recent years the
quantum VE has attracted considerable attention, in particular
in connection with ultracold atomic gases [7,8], but also as
a way to characterize finite-temperature neutron star matter
in dilute regimes (see, e.g., [9–11]). Similarly, as explained in
Ref. [5], there is also considerable activity in this direction in
the area of chemistry, where the last decade has seen renewed
interest in virial equations of state. In all of these cases, novel
automated algebra approaches have enabled the calculation
of high-order virial coefficients, allowing for the successful
application of resummation techniques (see, e.g., [12,13]).

In this work we focus on the application of the VE to a
classical gas with a schematic interaction featuring a purely
repulsive two-body force as well as a repulsive force with an
attractive pocket at intermediate distances. Within the context
of that interaction, we explore varying temperatures and cou-
pling strengths in three spatial dimensions (although, as we
explain below, our method is capable of calculating the VE in
arbitrary dimensions). For this purpose, we have developed an
automated algebra approach to the calculation of high-order

VE coefficients (based on the seminal work of Ref. [14]),
which is now available online at [15]. For the specific form
of the schematic interaction considered here, our results for
the coefficients of the VE are exact (up to numerical accu-
racy limitations) and therefore free of statistical effects (as no
stochastic estimators are used in any way).

The remainder of this paper is organized as follows. Sec-
tion II presents the formalism of the VE for a gas of identical
particles, first in general form and then specializing to classi-
cal statistics. Section III explains the details of our approach to
calculating the virial coefficients in an automated fashion. In
Sec. IV we show the schematic model interaction and corre-
sponding results. Finally, in Sec. V we summarize, conclude,
and comment on the outlook of our work.

II. FORMALISM

The VE organizes the many-body problem into a sum of
N-body problems, specifically by Taylor expanding the grand-
canonical partition function Z in powers of the fugacity z,
such that

Z =
∞∑

N=0

QN zN , (1)

where QN is the N-particle canonical partition function, z =
eβμ, β is the inverse temperature, and μ is the chemical
potential. The grand thermodynamic potential � is then given
by

−β� = lnZ = Q1

∞∑
N=1

bN zN , (2)

where bN are the virial coefficients

b1 = 1, (3)

b2 = Q2

Q1
− Q1

2!
, (4)

b3 = Q3

Q1
− b2Q1 − Q2

1

3!
, (5)

b4 = Q4

Q1
−
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2

2
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2470-0045/2023/108(6)/065307(8) 065307-1 ©2023 American Physical Society

https://orcid.org/0009-0008-2344-0240
https://orcid.org/0000-0002-7412-7165
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.108.065307&domain=pdf&date_stamp=2023-12-21
https://doi.org/10.1103/PhysRevE.108.065307


AARON M. MILLER AND JOAQUÍN E. DRUT PHYSICAL REVIEW E 108, 065307 (2023)

and so on. (It is useful to note that the above are also histor-
ically known as the “cluster” coefficients, and they are still
referred to with that name in some areas of physics and chem-
istry. In the area of ultracold atoms and nuclear physics, it
appears that over the last two decades, at least, the nomencla-
ture has shifted to calling them “virial” coefficients. In other
areas, the “virial” name is reserved for the series representing
the pressure in powers of the density, which can be obtained
from the bN .)

In this work we focus on classical systems, but to make
the connection to the quantum case explicit, it is worth not-
ing that in that case the expansion coefficients encode both
quantum as well as interaction effects. Indeed, the coefficients
of noninteracting quantum gases are generally nonvanishing,
whereas their classical counterparts are all zero beyond b1.

In the above expressions for bN , the only contribution
comes from the term QN/Q1; the role of the remaining terms
is to cancel out contributions from within QN that scale with
superlinear powers of the spatial volume V . Once those can-
cellations are properly accounted for, the final result for bN

does not scale with the volume V . [We note that, as empha-
sized in Refs. [16,17], this does not mean that bN is volume
independent; the latter is only true if N/V � n, where n is the
actual density of the system.] In practice, this property implies
that one can focus exclusively on those terms in QN that are
proportional to V [since Q1 scales as V ; see Eqs. (4)–(6)]. We
use this property in our calculations, as further explained be-
low in connection with selecting the connected diagrammatic
contributions.

For a classical gas of N identical particles in d spatial
dimensions, the canonical partition function is

QN = 1

N!hdN

∫
dN p

∫
dN re−βH[{p},{r}], (7)

where

H[{p}, {r}] =
N∑

i=1

p2
i

2m
+

∑
i< j

vi j . (8)

Here pi represents the momentum of the ith particle, ri its
position, m its mass (which will be assumed to be the same for
all particles), and vi j = v(|ri − r j |) is the interaction potential
energy that depends on the distance between particle i and
particle j. We focus in this work on pairwise interactions,
but generalizations to three-body forces and beyond are pos-
sible. In contrast to the quantum case, where momentum and
position operators do not commute (and one must resort to
Trotter-Suzuki factorizations; see, e.g., [18]), here the mo-
menta can be integrated out, which yields

QN = 1

λdN
T N!

ZN , (9)

where λT =
√

2π h̄2β/m is the thermal wavelength and we
define the configuration integral

ZN =
∫

dN r exp

⎛
⎝−β

∑
i< j

vi j

⎞
⎠. (10)

Capturing the interaction effects on the grand canonical
partition function Z through the bN ’s amounts to calculating

the interaction-induced change

�QN = 1

λdN
T N!

�ZN , (11)

where

�ZN =
∫

ddN r

⎡
⎣exp

⎛
⎝−β

∑
i< j

vi j

⎞
⎠ − 1

⎤
⎦. (12)

The � denotes the difference between the relevant thermody-
namic quantity and the value it would take in a noninteracting
but otherwise equivalent system. In turn the above �QN de-
termine the change in the virial coefficients �bN , which enter
into the thermodynamics via

−β�� = ln(Z/Z0) = Q1

∞∑
N=1

�bN zN , (13)

where

�b1 = 0, (14)

�b2 = �Q2

Q1
, (15)

�b3 = �Q3

Q1
− �b2Q1, (16)

and so forth, where we have used the fact that �Q1 = 0, since
interactions only act among at least two particles.

The formalism presented above is the standard one due to
Mayer [19] and often found in textbooks (see, e.g., [20,21]),
albeit not always presented in as much detail as here. The
above formulas apply to any two-body interaction. Below we
show how our computational method organizes the calculation
of �ZN to access �bN .

III. COMPUTATIONAL METHOD

A. Basic considerations

In order to calculate the central quantities �ZN , we use
Mayer’s definition of the so-called f function [19] given by

e−βvi j = 1 + fi j, (17)

such that

�ZN =
∫

dN r

⎡
⎣∏

i< j

(1 + fi j ) − 1

⎤
⎦. (18)

The product in this equation has
(N

2

)
factors and hence

2(N
2 ) individual terms. One of these terms contains no f func-

tions (thus representing a noninteracting contribution) and is
equal to unity, which will cancel out with the −1 term in
the square bracket, thus leaving 2(N

2 ) − 1 total terms in the
integrand. Letting n denote the number of f functions that
appear in a given term, each integrand is a product of the
form fi1 j1 fi2 j2 · · · fin jn , where 1 � ik < jk � N and 1 � n �(N

2

)
. Following the definition used in [20], we establish a

bijective correspondence between the integrals in Eq. (18) and
simple undirected N-particle graphs. The restriction to simple
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FIG. 1. The graph on the left is simply connected, so the integral
Eq. (19) scales as V and hence contributes to �b5. The graph on
the right corresponds to an integral that scales faster than V , so
it must get canceled in Eq. (18) and hence can be disregarded in
computation.

graphs excludes self-loops and multiple edges, reflecting the
fact that each factor fi j must have distinct indices and can
appear at most once in a given integrand. Let the nodes of
an N-particle graph be labeled 1, 2, . . . , N . Given an arbitrary
integral term, for each factor fik jk appearing in the integrand
(which has the form fi1 j1 fi2 j2 · · · fin jn ), connect an undirected
edge between nodes ik and jk . As is well known, of all the
graphs generated by the terms in the expansion, only the sim-
ply connected ones yield nonvanishing contributions to the bN ,
as these correspond precisely to the terms of QN that scale
linearly with V .

As examples, we show in Fig. 1 two contributions at order
N = 5, n = 5, which represent the integrals∫

dd r1dd r2dd r3dd r4dd r5 f12 f13 f14 f15 f23 (19)

and ∫
dd r1dd r2dd r3 f12 f23 f13

∫
dd r4dd r5 f45 (20)

on the left and right, respectively.

B. Efficient identification of contributing graphs

We are thus interested in calculating and summing the
integral contributions to Eq. (18) that correspond to simply
connected N-particle graphs. Assuming that all particles in-
teract via the same pairwise potential, the result of a given
integral is invariant to permutation of the indices. Expressed
graphically, this means that any two isomorphic graphs will
yield the same numerical value upon computation. Graph
isomorphism is an equivalence relation on a set of graphs, so
we can partition the set of simply connected N-particle graphs
into isomorphism equivalence classes such that the integral
terms in each are numerically equivalent.

We can represent this collection with a “multiset”

G∗ = {g1G1, g2G2, . . . }, (21)

where the elements Gi represent unique isomorphism class
representatives and the repetition numbers gi represent the
size of the corresponding isomorphism class. After nu-
merically evaluating the Gi, we can form the vectors g =
[g1 g2 . . . ]T and G = [G1 G2 . . . ]T and calculate Eq. (18)

via

�ZN = gT G. (22)

Our implementation contains the combinatorial data of G∗
(and hence can compute the VE coefficients) beyond the
sixth order presented here. The data through order six
were obtained by brute force isomorphism testing using the
graph-tools library, which implements the VF2 algorithm
of Cordella et al. [22]. The data for higher orders were ob-
tained using the repository from Ref. [23] and the fact that

gi = N!

|Aut(Gi )| , (23)

where |Aut(Gi )| is the cardinality of the automorphism class
of an N-particle graph Gi.

We note that having such combinatorial data for high or-
ders available beforehand resulted in considerable savings in
terms of computation time. Fortunately, these data are uni-
versal: they do not depend on the shape of the (two-body)
interaction.

C. Integral evaluation

Evaluating Eq. (22) requires us to calculate each of the
dN-dimensional integrals appearing in G. A completely gen-
eral treatment would involve constructing the functional form
of each integrand and proceeding with a broadly applicable
numerical integration method like Monte Carlo. We choose
instead to base our scheme on the multivariate Gaussian
identity

∫ ∞

−∞
exp

(
−1

2
xT Mx

)
dmx =

√
(2π )m

det M
, (24)

where M ∈ Rm×m is a symmetric positive definite matrix and
x ∈ Rm. While this identity is well known, it corresponds
to an exact integration only for potentials vi j that yield an
integrand of this form when transformed through Eq. (17), the
class of potentials for which this method is exact can emulate
both a purely repulsive interaction and an interaction with an
attractive pocket, as we describe below.

Additionally, this method is computationally efficient. The
integrands never have to be constructed explicitly, and the
results may be obtained by computing N × N determinants,
even though the integration space is dN-dimensional. Indeed,
computing the VE coefficients to ninth order, which requires
evaluating O(105) unique integrals, can be accomplished in
seconds. Lower orders can be achieved essentially instanta-
neously on a modern computer, allowing one to plot smooth
curves describing the evolution of the coefficients. In general,
however, we note that the scaling of the computation effort
needed to calculate the VE coefficients is nonpolynomial and
can quickly become prohibitive at large N . Ultimately, a given
N th-order calculation is limited by the number of terms that
need to be evaluated, not by the computation of each term.
The number of such integrals for 1 � N � 19 can be found
in Sequence A001349 of the Online Encyclopedia of Integer
Sequences.

Another advantage of Eq. (24) is that it permits the use
of noninteger dimensions. In our case the dimension enters
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the result via m = dN and the power to which we raise the
eigenvalues of one block of the quadratic form represented by
M. Thus, one could simply regard d as a parameter of the
investigation, such that examining how the VE coefficients
change with dimension would amount to the exponentiation of
scalars, sidestepping the already small cost of the determinant
computations.

As a final note, our current implementation offers to ap-
proximate a general integrand with one of the form in Eq. (24).
We have done this to provide some degree of generality to
others who may use our code, but the general case is not the
focus of this paper. We restrict our attention moving forward
to those potentials for which the results are exact.

IV. MODEL AND RESULTS

In this section we present our results for the pressure and
density equations of state, as well as the isothermal compress-
ibility. The approach detailed in the previous sections applies
to an arbitrary two-body potential vi j where, in general, the
integrals that result will not have exact analytic forms (i.e., one
will not be able to use the simple result valid for Gaussians,
mentioned above), such that a stochastic evaluation is needed,
with the concomitant statistical uncertainties. To avoid such
uncertainties, in this work we use a class of schematic model
potentials for which an exact evaluation is possible. Specifi-
cally, we define our two-body interaction potential vi j to be
such that

fi j = Ae−b1(ri−r j )2 − (1 + A)e−b2(ri−r j )2
, (25)

where A, b1, b2 are constants; we will refer to this assump-
tion as a Gaussian model. In other words, rather than fixing
the shape of vi j and setting the inverse temperature β, and
extracting fi j from them via Eq. (17), in this work we test
our calculations by fixing the constants A, b1, b2 above, thus
letting the interaction be dictated by

vi j = − 1

β
ln(1 + fi j ). (26)

In a realistic application, one would instead take vi j as an
input and determine the temperature dependence of A, b1, b2

by optimization.
With fi j given by Eq. (25), one may easily represent phys-

ically interesting situations such as a repulsive interaction
(setting A = 0 or A = −1), as well as a repulsive two-body
potential with an attractive pocket (for A > 0 or A < −1). In
this work we explore both of these situations, shown schemat-
ically in Fig. 2.

A. Purely repulsive interaction

In Fig. 3 we show our results for the virial coefficients �bN

of the purely repulsive Gaussian model (i.e., A = −1; see left
panel of Fig. 2), as a function of the dimensionless coupling
α = T/b1. As α grows, so do the interaction effects on the
virial coefficients, as expected. In particular, we see how at
large enough α, high-order coefficients tend to become larger
than their lower-order counterparts; this type of behavior was
found as well in the quantum case in Refs. [12,13], and it
reflects the breakdown of the convergence properties of the

FIG. 2. Left panel: Solid line shows the potential vi j as a function
of ri j = |ri − rj|, resulting from the Gaussian model of Eq. (25)
setting A = −1, b1 > 0, shown with a dashed line. Right panel: More
general case corresponding to arbitrary A > 0 and b2 > b1 > 0 (or
A < −1 and b1 > b2 > 0).

series. With the virial coefficients in hand, it is straightfor-
ward to evaluate the partial sums up to the available order for
the pressure, density, and isothermal compressibility. They are
given by

P

P0
= 1 +

∞∑
N=2

�bN zN−1, (27)

n

n0
= 1 +

∞∑
N=2

N�bN zN−1, (28)

and

κ

κ0
= 1 + ∑∞

N=2 N2�bN zN−1

(
1 + ∑∞

N=2 N�bN zN−1
)2 , (29)

where in all cases the subscript 0 indicates the noninteracting
case and we have used the thermodynamic identity

κ = β

n2

∂n

∂ (βμ)

∣∣∣∣
T

. (30)

It is straightforward to evaluate Eqs. (27) and (28) as partial
sums, but doing so for Eq. (30) requires a bit more care. As
written, Eq. (30) will include partial contributions to higher

FIG. 3. Virial coefficients �bN for N = 2, 3, 4, 5, 6 for the re-
pulsive model (A = −1) as a function of the dimensionless coupling
α = T/b1.
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FIG. 4. Pressure P for the purely repulsive model, in units of its
noninteracting counterpart P0, as a function of the fugacity z for three
representative values of the dimensionless coupling α = T/b1. The
colored lines show the highest value of the virial coefficient included,
following the same convention as in Fig. 3. The black line shows the
result of a Padé-Borel resummation, described below.

orders, making it unclear what such an expression represents
[e.g., evaluating Eq. (30) with coefficients up to �b3 will not
result in a quadratic plot, but will instead include the contri-
butions of �b2 and �b3 to terms that are cubic and quartic in
the fugacity]. Hence, to keep Eq. (30) on the same footing as
Eq. (27) and Eq. (28), we rewrite it as a single power series

κ

κ0
=

∞∑
N=1

cN zN−1, (31)

where c1 = 1 and

c2 = 0, (32)

c3 = 3�b3 − 4�b2
2, (33)

c4 = 8�b4 − 24�b2�b3 + 16�b3
2, (34)

and so on. Equation (31) truncated at cN then represents the
largest partial sum of κ/κ0 exactly computable using VE
coefficients up to order N , analogous to Eqs. (27) and (28).

Figures 4 through 7 show the above quantities for rep-
resentative values of α. It is often useful to display the
pressure-density equation of state, which amounts to a para-
metric plot that combines the information in Figs. 4 and 5. We
show such a plot in Fig. 6.

1. Padé-Borel resummation of the VE

For strong enough interactions (in the sense of sufficiently
large α), the partial sums of the VE show clear signs of conver-
gence failure. To address this issue, we resort to resummation
methods, specifically Padé-Borel resummation [24–26]. In
this approach one replaces a given power series (in our case
the VE)

g(z) =
∞∑

n=0

anzn, (35)

FIG. 5. Density n for the purely repulsive model, in units of its
noninteracting counterpart n0, as a function of the fugacity z for three
representative values of the dimensionless coupling α = T/b1. The
colored lines show the highest value of the virial coefficient included,
following the same convention as in Fig. 3. The black line shows the
result of a Padé-Borel resummation, described below.

with its Borel transform, namely,

Bg(z) =
∞∑

n=0

an

n!
zn, (36)

whose convergence properties can be expected to be more fa-
vorable than those of the partial sums of the original function
g(z). We emphasize that this resummation method is simply a
way to interpret the coefficients of the virial expansion. How-
ever, it does introduce a degree of arbitrariness in that it is not
truly known to what extent a given Padé approximant captures
the Borel transform of the series in question. Using the highest
available partial sum for Bg(z), a Padé approximant is used as
an ansatz to fit the resulting function. These approximants take
the rational form P(z)/Q(z), where P and Q are polynomials.
Once a proper fit is obtained (in particular one that does not
display poles for real values of z, which would be unphysical),
the resummed function is obtained (in fact, defined within the

FIG. 6. Pressure-density equation of state for the purely repul-
sive model at α = T/b1 = 1.25. The colored lines show the highest
value of the virial coefficient included, following the same conven-
tion as in Fig. 3. The black line shows the result of a Padé-Borel
resummation, described below.
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FIG. 7. Compressibility κ for the repulsive model, in units of its
noninteracting counterpart κ0, as a function of the fugacity z. The
black line shows the result of a Padé-Borel resummation.

context of the resummation method) via

g(z) =
∫ ∞

0
e−t Bg(zt ) dt, (37)

which is evaluated numerically.
In each plot featuring a Padé-Borel resummation, the Padé

approximant is fitted to the Borel transform of the highest
partial sum displayed in the figure. Also, for all Padé approx-
imants, P(z) is linear and Q(z) is quadratic. We experimented
with different polynomials orders for P and Q but found
that this combination behaved most reliably when perform-
ing the inverse transform of Eq. (37). The linear-quadratic
approximant can replicate the Borel transforms of the pressure
and density partial sums well, but the approximation quality
lessens for the compressibility due to its increased curvature.

Figures 4 through 7 display the result of carrying out
a Padé-Borel resummation on the series for the pressure,
density, and compressibility. Our results show that this resum-
mation approach improves the convergence properties of the
VE (at least for the quantities and parameter ranges studied).

B. Repulsive interaction with attractive pocket

Encouraged by the results obtained for the purely repulsive
interaction, we analyze here the more interesting case of an
interaction that is repulsive at short distances but includes the
more realistic feature of having an attractive pocket. The pur-
pose of exploring this case, in the form of a toy model shown
below, is to mimic the behavior of atomic and nuclear systems
where the short-distance repulsion with intermediate-distance
attraction is typical (as it appears, e.g., in Lennard-Jones-type
potentials).

We obtain the desired shape for the interaction from
Eq. (25) by setting A = 1 (an arbitrary illustrative choice) and
varying values of γ = b2/b1. At γ = 1, the contribution from
A disappears in Eq. (25) and one recovers the repulsive case
considered in the previous section. As γ is increased beyond
1, an attractive pocket develops in the interaction (at a rate

FIG. 8. Potential vi j as a function of ri j = |ri − rj| (the horizon-
tal axis is the same for all three plots), resulting from the Gaussian
model of Eq. (25) setting A = 1 and varying the value of γ = b2/b1.
From top to bottom, the plots show the cases of γ = 1, 1.4, and 2.5,
respectively.

governed by the value of A), as shown qualitatively in Fig. 2
and Fig. 8.

In Fig. 9 we show the results of our calculations for the
virial coefficients as a function of γ at α = T/b1 = 2 (the
latter being the strongest coupling considered in the previous
section).

Following closely the discussion of the previous section,
we show in Figs. 10 and 11 the pressure and compressibility,
respectively, as functions of z, at fixed α and varying γ � 1,
for the model with an attractive pocket. In each figure the
fixed value of α used is the strongest coupling considered in
the corresponding purely repulsive case (see Figs. 4 and 7).
Once again, our results show that this resummation approach
improves the convergence properties of the VE (at least for
the quantities and parameter ranges studied).

V. CONCLUSION AND OUTLOOK

In this work we have implemented an automated algebra
approach to the calculation of high-order VE coefficients
�bN of a gas of classical particles interacting via a toy-
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FIG. 9. Virial coefficients �bN for N = 2, 3, 4, 5 for the repul-
sive model with an attractive pocket (A = 1, α = 2) as a function
of the dimensionless coupling γ = b2/b1. At γ = 1, the model
becomes the purely repulsive limit of the previous section. As γ

is increased beyond 1, the attractive pocket develops, as shown in
Fig. 8.

model Gaussian interaction. Using those, we calculated the
pressure and density equations of state, as well as the
isothermal compressibility. Additionally, we explored the
convergence properties of the expansion based on the in-
formation provided by those coefficients. A more thorough
study of the convergence properties of the expansion for
realistic interaction potentials (considering the asymptotic be-
havior of the coefficients at high orders) can be found in
Ref. [27].

As one of our main conclusions, we have found that re-
summation techniques such as Padé-Borel can extend the
applicability of the VE, at least for the class of models
and parameter ranges we studied. Although we present this
optimistic view, our results should be taken with the prover-
bial grain of salt, as the analytic properties of the VE

FIG. 10. Pressure P for the repulsive model with attractive
pocket, in units of its noninteracting counterpart P0, as a function of
the fugacity z, for three different values of the interaction parameter
γ . Note that γ = 1 corresponds to the purely repulsive case studied
in the previous section. The black line shows the result of a Padé-
Borel resummation.

FIG. 11. Compressibility κ for the repulsive model with attrac-
tive pocket, in units of its noninteracting counterpart κ0, as a function
of the fugacity z. The black lines show the result of a Padé-Borel
resummation, from top to bottom for γ = 1, 1.03, 1.05, respectively.

are not well known for the specific family of models we
considered.

The main result of this work is the creation of an auto-
mated algebra package, which can be found online as the
Classical Virial Expansion Engine (CVE2); see Refs. [14] and
[15] for continued developments and releases. To the best of
our knowledge, this is the first project addressing this prob-
lem by implementing an approach fully based on automated
algebra (without numerical integration), as presented here.
Although we have used only CVE2 to calculate up to b6 in
this work, the code is prepared to go beyond b7 in its present
form.

It is worth noting that the ability to evaluate bN essentially
algebraically, as advocated here, distinguishes our method
from other approaches one may use to calculate this quantity.
Indeed, fully numerical techniques like molecular dynam-
ics and Monte Carlo are severely limited in their ability to
calculate bN : in one way or another they have to face can-
cellations that scale with powers of the volume in order to
resolve the connected contributions that yield bN ; this would
be highly impractical in three dimensions beyond b2. In our
method, the volume cancellation is implemented analytically
in Eq. (24) by excluding zero eigenvalues from the com-
putation of det(M ), avoiding the issue entirely. While other
methods could fit a polynomial to an equation of state, that
would also be very imprecise, as it requires assuming that the
higher-order coefficients are in some sense small, which is not
a guarantee.

The most straightforward generalizations of our analy-
sis, which will shed further light on the possibilities of the
method, its implementation via CVE2, and the properties of
the VE, include extensions to multispecies systems (here we
focused on identical particles of a single type), and within
the latter the possibility of mass imbalance and spin polar-
ization. Another aspect worth exploring is the dependence
on spatial dimension, which is straightforward in our ap-
proach since the dimension enters analytically as a variable;
in other words, within CVE2, we can study classical gases
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not only in three spatial dimensions (as done here) and
lower integer dimensions, but also in fractional dimensions,
which may be of interest from the mathematical physics
perspective.

Finally, it is worth pointing out that we explored here a
schematic interaction where the Mayer factor f was modeled
as a single Gaussian function or a sum of two Gaussian func-
tions. In future generalizations of this study, a higher number

of Gaussians could be used to study, for instance, more re-
alistic interactions such as screened Coulomb potentials. We
leave such investigations to future work.
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