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Monte Carlo generation of localized particle trajectories
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We introduce modifications to Monte Carlo simulations of the Feynman path integral that improve sampling
of localized interactions. The algorithms generate trajectories in simple background potentials designed to
concentrate them around the interaction region, reminiscent of importance sampling. This improves statistical
sampling of the system and overcomes a long-time undersampling problem caused by the spatial diffusion
inherent in Brownian motion. We prove the validity of our approach using previous analytic work on the
distribution of values of the Wilson line over path integral trajectories and illustrate the improvements on some
simple quantum mechanical systems.
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I. INTRODUCTION

The (Feynman) propagator is of fundamental importance
in quantum mechanics, as the integral kernel of the time
evolution operator, Û (T ), in configuration space. Expressing
this operator in the position basis, {|x〉} normalized to 〈x|y〉 =
δD(x − y),

Û (T ) =
∫

dDx
∫

dDy K (y, x; T )|y〉〈x|, (1)

introduces the kernel as the matrix elements:

K (y, x; T ) := 〈y|Û (T )|x〉 −→ 〈y|e−iĤT |x〉, (T � 0) (2)

(assuming a static Hamiltonian, Ĥ). As is well-known, obtain-
ing the kernel is equivalent to solving the system, yet this can
be analytically challenging unless the system is particularly
simple or enjoys special symmetries.

This article presents improved numerical algorithms for es-
timating the kernel using the worldline Monte Carlo (WMC)
technique. In the imaginary time formalism, K (y, x; T ) can
be found from the path integral over trajectories propagating
from x to y in time T ,

K (y, x; T ) =
∫ x(T )=y

x(0)=x
Dx(τ ) e− ∫ T

0 dτ [ mẋ2

2 +V (x(τ ))], (3)

with V (x) the potential defined canonically according to Ĥ =
p̂2

2m + V (̂x). The WMC approach goes back to early work
on bound states in Refs. [1–5], but its adaptation [6–12] to
simulations based on the worldline formalism of quantum
field theory [13–16] and to processes in background fields
[17,18], the Casimir effect [19–25] and propagators in flat and
curved space [26–28], as well as fermionic models [29], has
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established a powerful and universal approach to estimating
path integrals.

However, as discussed below, WMC suffers a late time
(i.e., large T ) loss of precision. This undersampling prob-
lem, caused by the

√
T spatial growth of Brownian motion

trajectories, leads to poor sampling of localized potentials.
This has been a limiting factor for precise estimations of
the propagator. Here we modify the WMC algorithms that
generate trajectories to control this diffusion, concentrating
them around the support of V (x).

Naturally, this causes a bias in the WMC simulations,
as trajectories no longer diffuse correctly. We provide two
methods (analytic and numerical) to remove this bias by
modifying the Gaussian weight on particle velocities. We not
only recover the desired sampling of the quantum system,
but simulations based on this approach no longer suffer from
undersampling and hence improve the large time estimation of
the kernel, since they better sample the potential. We immedi-
ately obtain order of magnitude improvements in estimations
of ground-state energies.

The two methods can be summarized as follows. Denot-
ing v ≡ v[x] := ∫ T

0 V (x(τ ))dτ (the integral of the potential
along the trajectory x), the WMC simulation estimates the

expectation value of this Wilson line from NL trajectories (
MC=

indicates Monte Carlo estimate),

K (y, x; T )
MC= K0(y, x; T )

1

NL

NL∑
i=1

vi∼℘ (v)

e−vi , (4)

where the samples, vi, follow the distribution ℘(v|y, x; T )
described below, inherited from the free-particle Gaussian
weight on velocities [30], and K0 is the free-particle kernel.
Instead, we generate trajectories in a background potential,
U , with distribution on the {vi} now given by℘U . Our analytic
approach relies on a compensating factor, F (v) ≡ ℘ (v)

℘U (v) with
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which

K (y, x; T )
MC= K0(y, x; T )

1

NL

NL∑
i=1

vU
i ∼℘U (v)

e−vU
i

F
(
vU

i

) (5)

is a correct Monte Carlo estimation of the kernel when the
{vU

i } follow℘U (v).
Finding the compensating factor is nontrivial, in general

[31], so in the second, universally applicable numerical ap-
proach, the background can be compensated by a potential
subtraction, whereby the Wilson line variable becomes ν ≡
ν[x] := ∫ T

0 dτ [V (x(τ )) − U (x(τ ))], with values distributed
as ν ∼℘

Ū (ν). We will prove the equivalence of

K (y, x; T )
MC= KU (y, x; T )

1

NL

NL∑
i=1

νi∼℘ Ū (ν)

e−νi , (6)

where KU is the kernel in the potential U alone.
We begin in Sec. II with an outline of the WMC ap-

proach, emphasizing the late time undersampling problem.
We then analyze the distributions on the Wilson line variables
in Sec. III, leading to our numerical algorithms (pseudocode
is in the Appendix). There and in Sec. IV, we describe how to
compensate for these modifications. We illustrate their appli-
cation in Sec. V by estimating ground-state energies for some
simple systems.

II. WORLDLINE NUMERICS

The main idea of WMC was proposed in Refs. [1–3] and
corresponds to replacing the continuous integral over trajec-
tories in (3) by a finite sum

∫
Dx(τ ) → 1

NL

∑NL
i=1 over NL

paths (originally closed “loops”) {xi(τ )}NL
i=1. To evaluate the

Wilson line, we further discretize these trajectories in τ , so
xi(τ ) → {xi(τk )}NP

k=1 becomes a set of NP points (we do not dis-
cretize the target space). Numerical implementation rescales
to the dimensionless variable u := τ

T and expands around the
straight line between the endpoints using unit trajectories,
q(u),

x(τ ) = x + (y − x)u +
√

T

m
q(u), (7)

thus arriving at (a normalized expectation value, 〈1〉 = 1),

K (y, x; T )

K0(y, x; T )
= 〈

e−T
∫ 1

0 duV (x(u))〉
MC= 1

NL

NL∑
i=1

e− T
NP

∑NP
k=1 V (xi (uk ))

, (8)

where the fluctuations qi = q(ui ) with ui = i
NP

should have a
Gaussian distribution on velocities

P[q(u)] ∝ e−
1
2

∫ 1
0 du q̇2 −→ e− NP

2

∑NP
k=1(qk−qk−1 )2

, (9)

and satisfy Dirichlet boundary conditions, q0 = 0 = qNP . We
thereby identify the discretized Wilson line variables as vi :=
v[xi] = T

NP

∑NP
k=1 V (xi(uk )).

Application of worldline numerics in field theory exploits
the first quantized worldline approach based on path integrals

FIG. 1. An illustrative WMC estimation of the kernel, K , for the
harmonic oscillator using NL = 25 000 trajectories and Np = 5000
points. Undersampling is manifest in the late time deviation from
linearity as predicted by (10).

over relativistic point particles. Indeed, these methods were
adapted to nonrelativistic quantum mechanics (which we fo-
cus on here) only recently, numerically in Refs. [26,28] and
analytically—for the same type of localized potential studied
here—in Refs. [30,32] (also [33]).

Trajectories distributed according to (9) can be generated
directly with various algorithms [20,27]. It is important that
they are not rejection-based, as Metropolis-type algorithms
are. Instead, a direct sampling of the distributions implies
that all trajectories generated contribute to the estimation of
physical quantities (alternative algorithms based on thermal-
ization also exist [2,3,6,7]). Crucially, the modified algorithms
proposed in this article preserve this property, in that the
effects of generating trajectories in background potentials are
subtracted without any accept or reject step.

A. Undersampling problem

References [11,26] show that the
√

T spatial growth of
trajectories—see (7)—causes late time diffusion away from
regions that dominate estimation of the potential in (8). For
systems with energies bounded from below, the spectral de-
composition provides the asymptotics

K (y, x; T )
T →∞∼ ψ0(y)ψ�

0 (x)e−T E0 , (10)

where E0 is the ground-state energy and ψn(x) := 〈x|�n〉
are energy eigenfunctions. Undersampling is shown for the
harmonic oscillator in Fig. 1: larger values of V (x) are
sampled for large T , underestimating ln(K (y, x; T )), which
deviates markedly from the linearity expected from (10).
This spoils estimation of E0 as the asymptotic gradient E0 =
− limT →∞ ∂

∂T ln(K (y, x; T )).
One cause of undersampling is that the Gaussian weight

on velocities in (9) lacks information on the potential, V (x).
Here, we propose algorithms that generate trajectories in
background potentials rather than as free particles, tuned to
favor trajectories that better sample the system in question.
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FIG. 2. The distribution ℘(v|0, 0, 40) for a harmonic oscillator
(m = 1, ω = 1) sampled with NL = 106 trajectories. The histogram
of sampled values of v[x] is shown against the analytic result (blue
solid line), with good agreement.

To overcome the bias this induces, we must examine the
distribution of the Wilson line variable, v, for trajectories
following (9).

B. Path-averaged potential

In Ref. [30], motivated by Ref. [17], one of the authors be-
gan systematic studies of the statistical distribution on values
of the Wilson line variable. This path averaged potential (PAP)
is defined via a constrained path integral,

℘̄ (v|y, x; T ) :=
∫ x(T )=y

x(0)=x
Dx(τ ) δ(v − v[x]))e− ∫ T

0 dτ mẋ2

2 ,

(11)
normalized to define℘(v|y, x; T ) = ℘̄ (v|y,x;T )

K0(y,x;T ) .
This distribution on the space of trajectories describes the

path integral contribution of paths with a fixed value, v, of
the Wilson line variable and defines an invertible integral
transform of the kernel,

K (y, x; T ) =
∫ ∞

−∞
dv ℘̄ (v|y, x; T )e−v,

℘̄ (v|y, x; T ) = 1

2π

∫ ∞

−∞
dz eivzK̃ (y, x; T, z), (12)

where in K̃ (y, x; T, z) we continue V (x) → izV (x). An exam-
ple of this distribution for the harmonic oscillator is in Fig. 2,
with a numerical sampling using WMC.

Identification of the distribution on v is crucial for the
analysis in this article, mapping between configuration space
and a complementary Wilson line space, from which values of
v are drawn.

III. WILSON LINE STATISTICS

Equation (12) shows that good Monte Carlo sampling
equates with drawing values of v[x] from the appropriate
℘(v). Moreover, smaller values of v tend to contribute more
to the formation of the kernel in (12), yet this small-v tail was

shown in Ref. [26] to be sampled poorly. This suggests a strat-
egy to mitigate undersampling: we developed algorithms that
generate trajectories in background potentials, U (x), taken
to be a harmonic oscillator, U�(x) = 1

2 m�2
i x2

i , or a linear
potential, Uκ = κixi, designed, respectively, for approximately
symmetric potentials and for potentials with spatially skewed
dominant features. Thus, we change (9) to

P[q(u)] ∝ exp

(
−

∫ 1

0
du

[
q̇2

2
+ T 2U

(√
T

m
q(u)

)])
(13)

[this is sufficient for U� and Uκ since boundary terms in x(τ )
can be absorbed by shifting q(τ )]. Then, for symmetric, local-
ized potentials, V (x), we superimpose a harmonic oscillator
background centered at the potential’s minimum that favors
trajectories in this region; for potentials with skewed features
(we will call them one-side dominated potentials), the linear
background encourages trajectories towards smaller values of
V (x), providing the largest contributions to the path integral.

We must point out that a harmonic background was used in
heat kernel simulations on curved space in Ref. [28]; how-
ever, in contrast to their “regulating mass” valid for small
propagation times, we interpret the modification as a genuine
background potential and, crucially, show how to compensate
for the bias induced by such backgrounds.

A. Monte Carlo distributions

We present algorithms that produce discretized trajectories,
{x�

i } and {xκ
i }, according to (13) in the Appendix. In the main

text, we focus on the statistical distributions followed by the
Wilson line variable in the presence of these backgrounds.

As it stands, a WMC simulation with trajectories generated
according to (13) produces samples of the modified Wilson
line variable, denoted by {v�

i } and {vκ
i }. These will, of course,

follow different distributions, v� ∼℘
�(v�) and vκ ∼℘

κ (vκ ).
Such simulations would make incorrect Monte Carlo estima-
tions, respectively,

K0
〈
e− ∫ T

0 V (x(τ ))dτ
〉
�

MC= K0

NL

NL∑
i=1

v�
i ∼℘ �(v)

e−v�
i (14)

MC= K0

∫ ∞

−∞
℘

�(v) e−vdv, (15)

K0
〈
e− ∫ T

0 V (x(τ ))dτ
〉
κ

MC= K0

NL

NL∑
i=1

vκ
i ∼℘ κ (v)

e−vκ
i (16)

MC= K0

∫ ∞

−∞
℘

κ (v) e−vdv, (17)

where we suppress unimportant arguments to functions. The
notations 〈· · · 〉� and 〈· · · 〉κ indicate expectation values calcu-
lated in the appropriate background:

〈· · · 〉• := 1

K•

∫
Dx(τ ) · · · e− ∫ T

0 dτ [ mẋ2

2 +U•(x)], (18)

normalised by the kernel in the presence of the background
(i.e with · · · → 1). Likewise, the distributions on the values
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of the Wilson line are accordingly

℘ •(v) = 〈δ(v − v[x]dτ )〉•. (19)

Hence, we must compensate for the effect of the background
on the spatial distribution of the trajectories.

From (15)–(17) follows an immediate solution: assuming
we can identify functions F (v) and G(v) such that ℘�(v) ≡
F (v)℘(v) and ℘

κ (v) ≡ G(v)℘(v), the following should be
faithful Monte Carlo simulations:

K0

NL

NL∑
i=1

v�
i ∼℘ �(v)

e−v�
i

F
(
v�

i

) MC= K0

∫ ∞

−∞
℘ (v)e−vdv = KV , (20)

K0

NL

NL∑
i=1

vκ
i ∼℘ κ (v)

e−vκ
i

G
(
vκ

i

) MC= K0

∫ ∞

−∞
℘ (v)e−vdv = KV . (21)

We prove these claims for harmonic oscillator and linear back-
grounds in the following section.

1. Analytic distributions

Here, explicit calculations are presented in both back-
ground potentials for some simple systems that allow us
to justify (20) and (21). To allow analytic determination of
the relevant distributions, we treat the harmonic oscillator
[V (x) = 1

2 mω2x2] in the background U� and the linear po-
tential [V (x) = kx] in the background Uκ , in one-dimensional
quantum mechanics for simplicity.

By emulating the steps in Ref. [30], it is straightforward to
obtain the multiplicative relations for these systems [34],

℘
�(v|y, x; T ) =

√
sinh(�T )

�T
e− �2

ω2 v ℘ (v|y, x; T ), (22)

℘
κ (v|y, x; T ) = ℘

(
v + κkT 3

12m

∣∣∣∣y, x; T

)
= e

κT
2 (x+y)− κ2T 3

24 e− κ
k v ℘ (v|y, x; T ), (23)

which identify the compensation factors F (v) =√
sinh(�T )

�T e− �2

ω2 v and G(v) = e
κT
2 (x+y)− κ2T 3

24 e− κ
k v .

To verify that the compensation factor F (v�
i ) is correct,

interpret the modified sum in (20) as a transformation on the
{v�

i }. Then it can be written

K0

NL

NL∑
i=1

v�
i ∼℘ �(v)

e−v�
i

F
(
v�

i

) ≡ K0

NL

NL∑
i=1

v′
i∼℘ ′(v)

e−v′
i , (24)

where we have defined a new set of Wilson line variables
{v′

i} := {v�
i + ln(F (v�

i ))}. This modified average is a Monte
Carlo estimation of the following integral:

K0

NL

NL∑
i=1

v′
i∼℘ ′(v)

e−v′
i

MC= K0

∫ ∞

−∞
℘ ′(v)e−vdv, (25)

with a new distribution, ℘′, inherited from ℘
�. Elementary

probability theory gives

℘ ′(v)= ℘
�

((
v − ln

√
sinh(�T )

�T

)
ω2

ω2 − �2

)
ω2

ω2 − �2
.

(26)
To see that this is the correct distribution, we use it in (25)

changing variables to (v − ln
√

sinh(�T )
�T ) ω2

ω2−�2 for

K0

NL

NL∑
i=1

v′
i∼℘ ′(v)

e−v′
i

MC= K0

∫ ∞

−∞
℘

�(v)e−v

√
�T

sinh(�T )
e

�2

ω2 dv

= K0

∫ ∞

−∞
℘ (v)e−vdv = KV , (27)

using (22), as required.
We verify the compensation factor G(vκ

i ) analogously,
treating the sum in (21) as a transformation on the {vκ

i }. So,
we write the sum as

K0

NL

NL∑
i=1

vκ
i ∼℘ κ (v)

e−vκ
i

G
(
vκ

i

) ≡ K0

NL

NL∑
i=1

v′′
i ∼℘ ′′(v)

e−v′′
i , (28)

where now {v′′
i } := {vκ

i + ln(G(vκ
i ))}. This average is a Monte

Carlo estimation of an integral,

K0

NL

NL∑
i=1

v′′
i ∼℘ ′(v)

e−v′′
i

MC= K0

∫ ∞

−∞
℘ ′′(v)e−vdv, (29)

with a new distribution,℘′′, induced by℘
κ :

℘ ′′(v)= ℘
κ

(
k

k − κ

[
v+ κT

2

(
κT 2

12
− (x + y)

)])∣∣∣∣ k

k − κ

∣∣∣∣.
(30)

Substituting into (29) with a change of variables to k
k−κ

[v +
κt
2 ( κt2

12 − (x + y))] and the help of (23) proves that (28) recov-
ers a correct estimation of the propagator.

2. Numerical sampling and discussion

In Figs. 3 and 4, we compare illustrative WMC estimates
of the kernel with and without a background potential (hence-
forth we set m = 1 throughout). The compensation factors
ensure that the kernel is correctly reproduced for short times,
agreeing both with previous estimations and known analytic
results. Note, however, that the simulations in background
potentials extend the time interval in which the analytic result
is reproduced by at least an order of magnitude.

The numerical simulations also provide data on the dis-
tributions of values of the Wilson line variables in the
backgrounds. They directly verify the relations (22) and (23)
for trajectories generated in the backgrounds, and of the
shifted distributions (26) and (30) after compensation as in
(20) and (21). The results of this analysis can be found in the
Supplemental Material [35]. They validate the algorithms in
the Appendix and the analytic determination of the adjusted
PAPs given in (26) and (30).
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FIG. 3. WMC estimate of the kernel K (0, 0; T ) for the harmonic
oscillator (ω = 1, NL = 25000, Np = 5000, � = 0.75) using free
particle (fp) paths and trajectories generated in a quadratic back-
ground potential (qbp), compensated via (20).

Analysis of these results reveals how undersampling is
overcome. The background potentials influence the spatial
distribution of trajectories to concentrates them about the
regions where the Wilson lines, e−v[x], provide significant con-
tributions to estimation of the path integral. This is reflected
in the modifications to the distribution,℘(v), from trajectories
generated by the new algorithms: smaller values of v become
more likely (see Supplemental Material [35]) which improves
the sampling of the potential. The systematic bias incurred
by modifying the distribution on the v[x] is removed by the
compensating factors in the Monte Carlo estimate.

The method has proven versatile to changes in the param-
eters of the systems under study (we discuss this in the next
section). However, it is apparent that the compensating factor
will only be obtainable for especially simple systems [see (22)

FIG. 4. WMC estimate of the kernel K (0, 0; T ) for the linear
potential (k = 0.5, NL = 25000, Np = 5000, κ = 0.48) using free
particle (fp) trajectories and trajectories generated in a linear back-
ground potential (lbp), compensated via (21).

and (23)]. Even in backgrounds with the same functional form
as the potential, say UV (x) ≡ μV (x), so (22) and (23) are
replaced by the general result

℘
μV (v|y, x; T ) = K0(y, x; T )

KμV (y, x; T )
e−μv ℘ (v|y, x; T ), (31)

it will be likely that (a) the PAP ℘(v|y, x; T ) is unknown for
this system and/or (b) it is nontrivial to generate trajectories
in said background. Hence, a more universal approach was
developed, outlined in the next section.

IV. COMPENSATING POTENTIAL

We present a method that exploits our ability to generate
trajectories in quadratic or linear backgrounds (see Appendix)
for application to any physical potential, V (x). Here, the com-
pensation for the background potentials is done numerically,
evading the need to determine the PAP analytically as in the
previous section.

As outlined in the Appendix, generating trajectories in
the backgrounds U� or Uκ is formally equivalent to adding
an unwanted term to the free-particle action, leading to the
incorrect estimations in (15) and (17). Clearly, the desired
action can be restored by subtracting the unwanted term by
hand:

KV = K�

〈
e− ∫ T

0 dτ [V (x(τ ))− 1
2 m�2x(τ )2]〉

�
, (32)

KV = Kκ

〈
e− ∫ T

0 dτ [V (x(τ ))−κx(τ )]〉
κ
, (33)

where the new normalization factors take into account the
background potentials. Then, simulations will provide Monte
Carlo estimations of the kernel via

KV
MC= K�

NL∑
i=1

ν�
i ∼℘̃ (v)

e−ν�
i

MC= K�

∫ ∞

−∞
℘̃ (v) e−vdv (34)

and the analogous relation

Kκ
MC= Kκ

NL∑
i=1

νκ
i ∼℘̂ (v)

e−νκ
i

MC= Kκ

∫ ∞

−∞
℘̂ (v) e−vdv. (35)

It remains to determine the new PAP, taking into account the
subtracted potential in the action.

A. Wilson Line distributions

The distribution on the ν� is given by constraining values
of the line integral of the effective potential on trajectories in
the harmonic oscillator background, ℘̃(v) = 〈δ(v − ν[x])〉�,
which we determined to be

℘̃ (v) = ω2

ω2 − �2
℘

�

(
ω2

ω2 − �2
v

)
(36)

=
√

sinh(�t )

�t

ω2

ω2 − �2
e− �2

ω2−�2 v℘
(

ω2

ω2 − �2
v

)
.

(37)

With this, we can show that (34) indeed gives a correct Monte
Carlo estimation by changing the integration variable to
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FIG. 5. WMC estimate of K (0, 0; T ) for the harmonic oscillator
(ω = 1, NL = 25000, Np = 5000, � = 0.75) using fp trajectories
and a qbp, with the potential subtraction (32).

v′ = ω2

ω2−�2 v, yielding

K�

∫ ∞

−∞
℘̃ (v) e−vdv = K�

K0

K�

∫ ∞

−∞
℘ (v′) e−v′

dv′ = KV ,

(38)
as desired.

Similarly, we calculate how the νκ are distributed through
the constrained path integral taking the linear background into
account:℘̂(v) = 〈δ(v − ν[x])〉κ , giving

℘̂ (v) = k

k − κ
℘

κ

(
k

k − κ
v

)
(39)

= e
κT
2 (x+y)− κ2T 3

24
k

k − κ
e− κ

k−κ
v ℘

(
k

k − κ
v

)
. (40)

After changing variables to v′ = k
k−κ

v, (40) proves that (35)
is a faithful Monte Carlo estimation of the kernel.

WMC simulations were carried out to confirm the predic-
tions of the above analysis. In particular, the modified PAPs in
(37) and (40) were sampled by probing the values of the Wil-
son line variable for trajectories produced in the backgrounds.
We present results of this sampling in the Supplemental
Material [35], which confirm the theoretical determination
presented above. Here we instead focus on showing the im-
provement in the estimation of the propagator for the quantum
systems, overcoming the undersampling problem that limited
previous work. As a first step, we estimated the kernel for the
same potentials (i.e., harmonic oscillator and linear potential)
as for the analytic approach of the previous subsection. This
allows us to confirm that the subtraction in the action gives a
comparable improvement in precision that extends the range
of times for which the simulations provide good estimates of
the kernel—see Figs. 5 and 6.

A natural question is whether the undersampling problem
reappears, albeit for larger transition times. Indeed, for a fixed
value of the background parameters (� and κ), a deviation
from linearity can eventually occur. It is still associated to the
growth in the spatial extent of the trajectories driven by the

FIG. 6. WMC estimate of K (0, 0; T ) for the linear potential (k =
0.5, NL = 25000, Np = 5000, κ = 0.48) with fp trajectories and a
lbp, compensated with potential subtraction (33).

Gaussian distribution on velocities overcoming the confining
effect of the background potentials. But it can easily be miti-
gated by simply increasing the value of � or κ as appropriate
for the system under study. Doing so strengthens the back-
ground potential and ensures that it continues to compensate
for the diffusion of trajectories. This takes advantage of the
fact that the error induced by discretizing the Riemann integral
of the compensating potential is much smaller than that caused
by discretizing the path integral over trajectories.

V. APPLICATIONS

So far, we have focused on confirming the theoretical ad-
vances of earlier sections, using especially simple systems and
related, analytically convenient background potentials. In this
section, we analyze some less trivial quantum systems (where
sufficient analytic knowledge still exists) to test the proposed
method: the Pöschl-Teller reflectionless potential, the absolute
value potential, and a system with a cubic memory kernel.
In the symmetric cases, WMC trajectories are generated in
a harmonic background centered around the minimum of the
potential, and the potential subtraction scheme is applied; for
the cubic memory kernel system, we generate the trajectories
in a linear background centered at the origin to favor trajecto-
ries exploring the negative real axis.

We briefly comment on errors in the proceeding simu-
lations. As outlined by Refs. [6,7,26], for NL sufficiently
larger than NP the statistical error from the path integral dis-
cretization dominates the systematic error in calculating the
(Riemann) integral of the potential along the trajectories. Then
the error in the estimation of the kernel is well approximated
by the standard error in the mean of values of the Wilson
line. The percentage error in the simulations below was found
to be of order 2–4% (unless otherwise stated)—such small
error bars have been suppressed for clarity. Autocorrelation
is avoided by using an independent set of trajectories for each
value T .
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FIG. 7. WMC estimate of the kernel K (0, 0; T ) for the Pöschl-
Teller potential (λ = 1, α = 1, NL = 25000, Np = 5000, � = 0.75)
using fp trajectories and qbp with potential subtraction.

A. Estimating the propagator and ground-state energies

The propagator for the modified Pöschl-Teller potential,
Vλ(x) = − α2

2m
λ(λ+1)

cosh2(αx)
, is known in closed form [36]. We sim-

ulate this for coupling α = 1 and with λ = 1 bound state
(making it most susceptible to the undersampling problem),
using a harmonic oscillator background with center x = 0.
Since the PAP is unknown for this system, a compensat-
ing factor cannot be determined analytically, so we rely on
the potential subtraction scheme. Figure 7 compares our re-
sults using the algorithms reported here favorably to those in
Ref. [26].

The background potential is seen to overcome the under-
sampling problem, allowing simulations up to transition times
at least eight times greater. Then, using (10), we estimate
the ground-state energy through a linear fit to the propagator
for t ∈ [5, 50]. We find E0 = −0.50004391 compared to the
analytic result E0 = −0.5, which represents an order of mag-
nitude increase in precision over previous WMC estimations.

We treat the the absolute value potential, defined by
Vκ (x) = κ|x|, in the Supplemental Material [35], reporting
simply the final estimation of the ground-state energy for
parameters m = 1, κ = 0.5 here. We find an estimation E0 =
0.50939336 for a linear fit to the propagator in the range
T ∈ [5, 30] (analytic result: E0 = 0.509397 . . .).

Finally, to demonstrate the use of a linear background, we
consider a system with a cubic memory kernel [36], such that
S[x] = ∫ T

0 dτ [m ẋ2

2 − μ(
∫ T

0 dτ x(τ ) )
3
] with μ constant. This

provides a linear asymmetry but with a cubic nonlinearity. The
propagator can be found in closed form as (we take x = y = 0
for convenience)

K (0, 0; T ) = 2

T 2

(√
3

μ

) 1
3

Ai

[
4

T 6

(√
3

μ

) 4
3
]

e
16

T 9μ2 , (41)

where Ai is the Airy function. For μ > 0, the path inte-
gral is strongly weighted by trajectories in the region x > 0,
where the potential is largest. As for the linear potential,
however, Monte Carlo estimation of the kernel suffers severe

FIG. 8. WMC estimate of the kernel K (0, 0; T ) for a cubic mem-
ory kernel (μ = 0.025, NL = 25000, Np = 5000, κ = 0.1) using fp
and lbp trajectories (potential subtraction).

undersampling due to the sum in (4) being dominated by a
small number of trajectories for which

∫ T
0 dτ x(τ ) is exces-

sively large. This can be seen in the simulations using free
particles (fp) in Fig. 8. In this case, then, we use a linear
background to encourage trajectories towards more negative
values of x.

Although Fig. 8 clearly shows that the estimation of the
propagator is substantially improved, especially for smaller
values of T , in this case we found greater instability in the
predictions obtained with the background potential method as
T increases, due to favoring trajectories in a lower-importance
region to avoid undersampling. Indeed, here for T < 15 the
percentage error is O(10%), but varies from 5% to 20% for
larger values of T. As demonstrated in Ref. [26], this insta-
bility can be partially overcome by (a) increasing NL and (b)
averaging over a suitable number of repeated simulations. It
can also be reduced by adaptively varying the value of κ as
the transition time increases. The instabilities found for this
system are intended to be clarified in future work.

VI. CONCLUSION

In this article, we have presented two methods for im-
proving Monte Carlo simulations of the quantum mechanical
propagator, along with accompanying algorithms (in the
Appendix) that generate point-particle trajectories in ap-
propriate background potentials. We have confirmed the
correctness of these Monte Carlo estimates, both analytically
and numerically, and shown how they overcome an undersam-
pling problem that has previously hindered simulation of the
Schrödinger kernel for large transition times, thereby limiting
the precision of estimations of physical quantities such as
energy levels.

The methods reported here allow us to extend the range
of transition times accessible to simulations by an order
of magnitude, consequently improving estimations of the
ground-state energies of the systems under study, again by
an order of magnitude. We expect that these methods will be
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widely applicable to more general systems, including singular
potentials [26], for (spatially dependent) electromagnetic
fields [6] or in curved space [28].

Note that this article also clarifies why the “regulating
mass” in Ref. [28] had a minimal effect on their numeri-
cal results. There, a small α [see (A4)] was used at short
times, corresponding to �T � 1 and �2

ω2 v � 1. For these
parameters, F (v) ≈ 1 so℘�(v) →℘(�) and the Monte Carlo
estimation remains approximately faithful. We have verified
that even the free-particle propagator can be simulated with
the algorithms proposed here, by using potential subtraction
in either background for an otherwise noninteracting system.

The extension of this article to relativistic particle trajec-
tories relates, via the worldline formalism, to studying the
propagator (open worldlines) or effective action (closed tra-
jectories) for quantum fields. In this context, the formation
of bound states can be examined by considering a multipar-
ticle interacting system. Such interparticle interactions are
often highly localized, or even singular, where the importance
sampling presented here would be of considerable benefit
for accelerating the convergence of numerical simulations.
Of course, the inclusion of spin degrees of freedom is an
important aspect of numerical simulations. In the case of a
magnetic moment coupling to a magnetic field, for instance,
we would aim to incorporate information about the spatial
variation of the magnetic field to achieve a similar importance
sampling of this interaction, as demonstrated here for spatially
localized potentials.
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APPENDIX: MONTE CARLO ALGORITHMS

In this Appendix, we present the numerical algorithms for
generating trajectories in quadratic and linear backgrounds.
The method is based on discretizing (13) for U� and Uκ and
diagonalizing the result.

1. Harmonic oscillator background

An algorithm was introduced in Ref. [28] to generate tra-
jectories with a regularizing mass term (quadratic in the field
x). Denoting by Y the sum in the exponent of (9), Ref. [28]
considered the modification:

Y → Y (α) =
Np∑

k=1

[
(qk − qk−1)2 + αq2

k

]
, α > 0. (A1)

This can be (nonorthogonally) diagonalized by

Y (α) =
Np−1∑
k=1

C(α)
Np−kq̄2

k , (A2)

with the identification

q̄k = qk − 1

C(α)
Np−k

qk−1, k = 1, 2, . . . , Np − 1, (A3)

and with C(α)
k = C(α)

1 − 1
C(α)

k−1

(C(α)
1 = 2 + α). In this article, we

instead interpret the αq2
k term in Y (α) as providing a genuine

background potential, U� = 1
2 m�2x2, that concentrates tra-

jectories about its minimum. The frequency of this harmonic
potential is related to the mass parameter in the continuum
limit by

α = �2T 2

N2
p

. (A4)

Then the corresponding algorithm reads as follows:
(1) Generate Np − 2 vectors ωi, i = 1, 2, . . . , Np − 1, dis-

tributed according to P (ωi) ∝ exp(−ω2
i ).

(2) Compute unit vectors q̄i =√
2

NpC(α)
Np−i

ωi−1, for

i = 1, 2, . . . , Np − 1.

(3) Construct the unit loop according to

q1 = q̄1, qi = q̄i + 1

C(α)
Np−i

qi−1, i = 2, 3, . . . , Np − 1.

(A5)
(4) Repeat the process NL times.
We describe in the main text how to compensate for the

unwanted bias caused by this modification to trajectories.

2. Linear background

For one-side dominated potentials, it is instead favorable to
produce trajectories in a linear background potential, so we let

Y → Y (β ) =
Np∑

k=1

[(qk − qk−1)2 + 2βqk], β > 0. (A6)

This time the diagonalization is achieved by

Y (β ) =
Np−1∑
k=1

C(β )
Np−k q̄2

k −
Np−1∑
k=1

β2
k

C(β )
k

, (A7)

where

q̄k = qk − 1

C(β )
Np−k

(qk−1 − βNp−k ), k = 1, 2, . . . , Np − 1,

with C(β )
k = k+1

k and βk = k+1
2 β. The final sum in (A7) can be

evaluated to give

Np−1∑
k=1

βk

C(β )
k

= β2

12
Np(Np + 1)(Np − 1). (A8)
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In the continuum limit, the linear term in Y (β ) corresponds to
a potential Uκ (x) = κx, where

β = κ

m

T 2

N2
P

, (A9)

and the sum in Eq. (A8) tends to κ2T 3

24m . The numerical al-
gorithm for this background follows the previous one with
C(α)

k → C(β )
k , except that step 3 becomes

(3) Construct the unit loop according to
q1 = q̄1,

qi = q̄i + 1

C(β )
Np−i

(
qi−1 −

√
m

t
βNp−i

)
, i = 2, 3, . . . , Np − 1.

(A10)

Again, the bias induced by the presence of the background
is removed by the procedures described in the main text.
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