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Machine learning for structure-property mapping of Ising models: Scalability and limitations
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We present a scalable machine learning (ML) framework for predicting intensive properties and particularly
classifying phases of Ising models. Scalability and transferability are central to the unprecedented computational
efficiency of ML methods. In general, linear-scaling computation can be achieved through the divide-and-
conquer approach, and the locality of physical properties is key to partitioning the system into subdomains that
can be solved separately. Based on the locality assumption, ML model is developed for the prediction of intensive
properties of a finite-size block. Predictions of large-scale systems can then be obtained by averaging results of
the ML model from randomly sampled blocks of the system. We show that the applicability of this approach
depends on whether the block-size of the ML model is greater than the characteristic length scale of the system.
In particular, in the case of phase identification across a critical point, the accuracy of the ML prediction is limited
by the diverging correlation length. We obtain an intriguing scaling relation between the prediction accuracy
and the ratio of ML block size over the spin-spin correlation length. Implications for practical applications are
also discussed. While the two-dimensional Ising model is used to demonstrate the proposed approach, the ML
framework can be generalized to other many-body or condensed-matter systems.
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I. INTRODUCTION

Machine learning (ML) is a fast-advancing field that has
reshaped many industries. ML has achieved surprising suc-
cess in many real-world problems, including machine vision,
speech recognition, and natural language processing. In re-
cent years, numerous successful ML applications in a wide
range of disciplines have also led to a paradigmatic shift in
scientific research. The remarkable capability of modern ML
methods to deduce complex patterns from large datasets has
allowed scientists to derive connections between raw data
and desired quantities, a task which previously would have
been impossible. One of the most important application of
ML in materials science is the fast and accurate prediction
of material properties from the structural or configurational
data [1–9]. Indeed, ML-based modeling of structure-property
relationships is expected to open a new avenue for accelerated
materials discoveries [10–14].

Similar ML approaches to structure-property modeling
also have enormous applications in condensed matter physics
[15,16]. A particularly interesting aspect of condensed mat-
ter systems is the emergence of complex symmetry-breaking
phases or topological orders. The objectives of ML models are
to provide proper characterizations of such emergent “struc-
tures,” from which accurate predictions about the properties
of the system can be made. Of particular interest is the clas-
sification of different phases and the identification of phase
transitions of many-body systems [17–26]. For example, deep
neural networks (NN) have been employed to distinguish the
ordered or critical phases from the high-temperature disor-
dered state in various classical spin systems [17,27–32]. With
proper feature engineering, ML models have also been devel-
oped to capture topologically nontrivial phases or many-body
localized states [33–37].

Despite the impressive success of ML models in clas-
sifying the various many-body phases, the crucial issue of
scalability, which is one of the main motivations for adopt-
ing ML approaches, has not been carefully addressed. In
most studies mentioned above, the ML models, mostly imple-
mented using deep-learning NNs, are designed for a specific
system size and take the processed configuration of the whole
system as the input. As a result, a new ML model has to be
rebuilt and retrained for different system sizes. Besides the
lack of transferability, importantly, such approach cannot be
feasibly generalized to realistic systems in the thermodynamic
limit. A scalable ML framework is thus required for both nu-
merical and practical applications. Here the scalability refers
to the capability of the framework to cope with arbitrary sys-
tem size without changing the ML structures and parameters,
such as the number of layers and neurons in a NN, while
maintaining satisfactory performance.

One representative example of scalable ML frameworks is
the Behler-Parrinello (BP) type schemes [38,39] for the ML
force field models in quantum MD simulations [40–50]. In
such approaches, the total energy, which corresponds to the
potential energy surface for atoms in the Born-Oppenheimer
approximation, is partitioned into local contributions: E =∑

i εi, where εi is called the atomic energy associated with the
ith atom. The atomic energy is then assumed to depend pre-
dominantly on the immediate chemical environment within a
length scale to be denoted as rBP. The complex dependence of
atomic energy on the local environment is to be approximated
by an ML model. It is worth noting that the locality principle,
or nearsightedness of electronic matter [51,52], is implicitly
employed in this framework. Crucially, the ML model in this
scheme has a fixed size which is determined by the linear scale
rBP of the input local neighborhood and is independent of the
system size to be modeled. As a result, the ML model can be
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used in systems of arbitrary large sizes through partitioning.
The atomic forces which are crucial to MD simulations are ob-
tained from the derivative of the total energy Fi = −∂E/∂Ri.
Similar scalable ML frameworks have also been developed for
multi-scale dynamical modeling of condensed-matter lattice
models and correlated electron systems [53–58].

Recently, a ML framework similar in spirit to the BP
scheme is proposed for efficient prediction of general exten-
sive properties such as energy, entropy, and magnetization of
arbitrarily large systems [59–62]. In this approach, dubbed
extensive deep-learning NN (EDNN), the system is first par-
titioned into partially overlapping subdomains, also called
“tiles,” of a fixed size. The length scale of the tiles is deter-
mined by the locality of the extensive quantity A of interest
[59]. The overlap regions are introduced to partially account
for the nonlocal effect involved in the determination of the
extensive property. Importantly, as in the BP approach, a
fixed-size NN model is developed to predict the extensive
property Aα of the αth tile, and the extensive property of the
whole system is given by the sum of contributions from each
tile: A = ∑

α Aα . Again, as the NN model is of fixed size,
it could be applied to arbitrarily large systems through the
partitioning into tiles of the designed size.

It is worth noting that the above BP and EDNN schemes
are examples of scalable ML models based on fully connected
neural networks. However, scalability can be naturally incor-
porated into other neural network structures, most notably in
models which build on convolutional neural networks (CNNs)
[63]. The convolution operation with a finite-sized kernel
naturally incorporates the locality principle into the ML struc-
ture. Indeed, CNN-based scalable ML spin torque models
have recently been developed to enable large-scale dynamical
simulations of metallic magnets [58,64]. Convolution oper-
ations are also employed in graph neural networks (GNNs)
to provide localized mappings of graph elements, thus of-
fering a natural implementation of scalable ML structures.
Several recent works have applied GNN to build scalable
interatomic potentials for quantum MD simulations [65–68].
Finally, building on transformations of a fixed size Fourier
modes, neural operators are yet another scalable neural net
architecture [69].

In this paper, we propose a scalable ML framework similar
to the BP schemes for identifying phases and phase transitions
and, more generally, for predicting intensive properties of a
many-body system. We demonstrate our approach using the
2D Ising model as an example. We note that the phase classi-
fication is a special case of intensive properties, which denote
attributes of a system that is independent of system sizes.
Since intensive attributes are spatially nonlocal in nature, their
prediction poses great challenges for ML methodology. In
our approach, a ML model is first developed to predict the
intensive properties of a finite-size block, and the intensive
property of the whole system is obtained by averaging over
ML predictions of a number of randomly sampled blocks of
the system. The ML model here is of a fixed size characterized
by the size � of the block, which plays a role similar to the
length-scale rBP in BP-type ML models. We further show that
the prediction accuracy depends strongly on the ratio of the
block size � to the correlation length ξ of the system, under-
scoring the importance of locality in scalable ML models.

The rest of the paper is organized as follows. A general
framework of a scalable NN model for prediction of intensive
properties is outlined in Sec. II. ML models are developed for
the energy-density prediction and phase classification of the
2D Ising model. A detailed study of the effect of the finite
block size on the phase classification accuracy is presented
in Sec. III. In particular, we obtain a scaling relation relating
the prediction error to the ratio of block size relative to the
correlation length. A summary and implications of our results
are presented in Sec. IV.

II. SCALABLE ML FRAMEWORK
FOR INTENSIVE PROPERTIES

In this section we present a scalable ML framework for
predicting intensive properties of a many-body system. A
particular application of this ML model is the classification of
phases of a many-body system, as phase-labeling is a special
intensive property of the system. Indeed, classification has
long been a central subject in ML applications. Classification
algorithms used in ML utilize input training data for the pur-
pose of predicting the likelihood that a given new data will fall
into one of the predetermined categories. However, scalability
has not been a focus for computer scientists in traditional
vision and audio-based applications of deep-learning. For ex-
ample, most classification problems in image-processing, e.g.,
identification of certain objects or shapes in an image, are
independent to the physical dimensions of an image. More
specifically, the input of a ML model for image processing
depends on the number of pixels of a picture, instead of its
actual physical dimensions.

Early applications of ML models to classification prob-
lems in condensed-matter physics also paid little attention
to the issue of scalability. For example, it has been shown
that a simple fully connected feed-forward NN with only
one hidden layer is able to detect the two phases of the 2D
Ising model and accurately reproduce the critical temperature
through finite-size extrapolation [17]. Since each node of the
input layer corresponds to an Ising spin of the 2D lattice, the
size of the input layer depends on the system size. Similar ML
approaches have since been developed for phase classification
of numerous classical many-body systems [27–32]. However,
the architecture of such ML models obviously lacks scalabil-
ity: ML model developed for a particular system size cannot
be directly applied to systems of larger dimensions.

As discussed in Sec. I, linear scalability methods in many-
body systems rely on the principle of locality, which means
physical properties only depend on configurations of a finite
neighborhood. This allows for a divide-and-conquer approach
to the computation of the physical properties of interest.
Based on this locality principle, here we discuss a scalable
ML framework for efficient prediction of intensive properties
and particularly phase classification of a many-body system.
The limitations of this approach, due to the breakdown of
locality, will be discussed in Sec. III. While the formulation
presented here can be applied to general many-body systems,
for concreteness and as a proof of principle, we demonstrate
our approach using the square-lattice ferromagnetic Ising
model [70]: H = −J

∑
〈i j〉 σiσ j , where σi = ±1 represents an

Ising spin at site-i, 〈i j〉 denotes a nearest-neighbor pair, and
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FIG. 1. Machine learning model for phase classification or prediction of other intensive properties of a two-dimensional Ising model. The
ML model is composed of two central components: the descriptor and the neural network. The input of the ML model is a square block of
Ising spins with a linear size �. The descriptor corresponds to a representation of this spin-block that is invariant with respect to symmetry
operations of the D4 point group of the square lattice. Essentially, the eight symmetry-related configurations are mapped to the same feature
variables G = (G1, G2, G3, · · · ), which are then fed to the input layer of the NN. The output node of the NN gives the predicted intensive
property.

J > 0 is the strength of the ferromagnetic interaction. This
canonical spin model exhibits two thermodynamical phases:
a high-temperature paramagnet with disordered spins and a
long-range ordered ferromagnetic state at low temperatures.
A critical point at Tc ≈ 2.269J separates the two phases.

Central to our approach is the construction of a ML model
which takes a finite block of Ising spins as input and pre-
dicts some intensive quantities Q at the output; see Fig. 1.
There are two central components of the ML model: the
descriptor and the neural network (NN). The spin configura-
tion within the block is mapped to a set of feature variables
G = {G1, G2, · · · }, also known as a descriptor, which is in-
variant under the symmetry transformations of the original
Hamiltonian. With the symmetrized representation G as the
input, the NN produces the predicted intensive properties at
the output nodes. The linear size � of the spin block is a special
hyperparameter of the ML model. In particular, � determines
the size of the input layer of the NN.

A. Lattice descriptor

The construction of descriptor or feature variables is sim-
ilar to the so-called image augmentation which is a common
technique used to artificially expand the size and diversity of
a training dataset by applying various transformations to the
original images. These transformations can include rotation,
scaling, flipping, translation, or color changes, among others.
The goal is to make the model more robust and invariant
to these transformations, which helps improve generalization
and performance on new, unseen data. For applications to
materials science or condensed matter physics, however, even
with the augmented dataset, symmetries of the original physi-
cal Hamiltonian can only be learned approximately even with
the general approximation capability of NNs. In particular, for
ML models with output that are invariant under symmetry op-
erations, a proper representation of the input variables should
also be invariant with respect to the same symmetry group
for consistency. This crucial step of ML models, namely the
construction of the proper descriptor, is often referred to as
feature engineering [71–76].

Descriptors also play a crucial role in the scalable BP-type
ML interatomic potential or force-field models in quan-
tum MD methods. In MD applications, a proper descriptor
of the atomic configuration should be invariant under ro-
tational and permutational symmetries, while retaining the
faithfulness of the Cartesian representation. Over the past
decade, several descriptors have been proposed to represent
the atomic or chemical environment. Notably among them are
the Coulomb matrix method [71], moment tensor potentials
[76], the atom-centered symmetry functions (ACSFs) [38,77],
and the group-theoretical bispectrum method [39,73].

For condensed matter systems defined on a lattice, the
relevant symmetry operations are internal symmetries of the
constituent degrees of freedom and the discrete symmetries of
the lattice. Examples of the former are the Z2 symmetry of
Ising variables, O(2) symmetry of XY spins, and so on. For
lattice systems, the symmetry of a local neighborhood is de-
scribed by the point group associated with the site symmetry.
A descriptor of lattice models thus should be invariant with
respect to both types of symmetry groups. A general theory
of descriptors for lattice models has recently been presented
in Ref. [78]; several explicit implementations have also been
demonstrated for well-known model systems [53–58].

For application to the Ising model, the internal symme-
try group of Ising spins is Z2 while the lattice symmetry is
described by the D4 point group. We first consider invariant
representations with respect to the point-group symmetry. Es-
sentially, the goal here is to map the eight Ising configurations
related by symmetry operations of the D4 group, as shown in
Fig. 1, to the same feature variables G = {G�}. To this end, we
employ group-theoretical method to obtain invariant variables
of Ising configurations within a block Bα , where α is an index
of the block. First, we note that Ising spins {σ j} within a given
block forms a high-dimensional reducible representation of
the D4 group, which can then be decomposed into fundamen-
tal irreducible representations (IR’s) of the point group. This
decomposition can be highly simplified as the representation
matrix is automatically block-diagonalized, with each block
corresponding to a fixed distance from the center-site of the
block. We use f � = ( f �

1 , f �
2 , · · · , f �

D�
) to denote the basis
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function of IR of the symmetry-type �. For example, four
nearest-neighbor Ising spins {σ1, σ2, σ3, σ4} form a closed
representation, and can be decomposed as 4 = 1A1 + 1B1 +
1E , where f A1 = σ1 + σ2 + σ3 + σ4 and so on; more details
can be found in the Appendix.

Given these IR coefficients, one immediate class of in-
variants is their amplitudes p� = | f �|2, which is called the
power spectrum of the representation. However, the descriptor
also needs to account for crucial information on the relative
phases of different IRs. To capture the phase information, we
introduce the concept of reference IR coefficients f �

ref , which
are obtained by applying similar decomposition procedure
to large symmetry-related groups of Ising spins within the
block Bα such that they are insensitive to small variations
of the neighborhood [78]. Importantly, the relative phase of
two IRs can be restored from their respective relative phases
η� ∼ f � · f �

ref to the reference IR. A complete set of invariant
feature variables is then given by the power spectrum p� and
the phases η�; see the Appendix for more details. Finally,
we note that the power-spectrum obviously is invariant under
the Z2 transformation σ → −σ and f → − f . The relative
phases also remain the same under the Z2 symmetry as both
the IR and the corresponding reference IR change sign. The
Z2 symmetry is automatically preserved in this descriptor.

B. Neural network

Given the invariant representation of the spin block Bα , the
corresponding intensive property, let us call it Q, is assumed
to depend on the feature variables through a universal func-
tion. Specifically, let Bα be the spin configurations within the
αth block, the intensive property Q of the block is given by

Qα = Q(Bα ) = f̂ (Gα ), (1)

where Gα = {G1(Bα ), G2(Bα ), · · · } denote feature variables
built from the αth block, and the “universal” function f̂ (·)
(universal in the sense of a given Hamiltonian) is to be ap-
proximated by a deep neural network. Because of the discrete
nature of Ising spins, we include a number of convolutional
layers to better represent the discretized input feature vari-
ables. CNNs are a class of neural networks that utilize the
shared-weight architecture of convolutional filters, also called
kernels, to process input features. One of the main advantages
of CNN is that they can effectively handle discrete data by
smoothly sliding the filters over the input, which leads to
the emergence of translational equivariant responses. In other
words, the CNN’s ability to extract local features across multi-
ple spatial positions allows it to recognize patterns in the input
data regardless of their location, making it a powerful tool
for image and signal processing tasks. This property enables
CNN to capture the structural characters of the images and
other 2D/3D objects.

The output of the CNN is then fed into a fully con-
nected feed-forward NN, which performs a sequence of
transformations. Specifically, for the mth layer, the neu-
ron processes the activation a(m−1) from the previous (m −
1)th layer through weight and bias parameters: a(m) =
A(w(m−1)a(m−1) + b(m−1)), where A is an array of identical
activation functions, w(m−1) is the weight of the (m − 1)th
layer, and b(m−1) is the bias of the (m − 1)th layer. Finally,

the node at the end of the feed-forward NN is the predicted
intensive property Qα . These NN parameters w and b of both
CNN and feed-forward NN are essentially fitting parameters
for the high-dimensional function fML, which are determined
through training with stochastic gradient descent.

C. Training of the ML model

The NN model can be optimized through standard su-
pervised training algorithms. For example, for a spin block
described by feature variables G, the loss function can be de-
fined as the mean square error (MSE) L = | f̂ (G) − fML(G)|2.
In this approach, each spin block is treated as independent
training dataset. However, for highly inhomogeneous systems,
large fluctuations of block-spin configuration are expected.
Such situations occur, for example, in spin systems close
to a critical point. To better account for local variations
of spin-blocks, here we propose a training scheme shown
schematically in Fig. 2, which is similar in spirit to the BP-
type ML models for quantum MD simulations. The training
dataset is obtained from a system of linear size L which could
be much larger than the block size �. We partition the large
Ising system into M ∼ (L/�)2 blocks, each is labeled by Bα ,
where the index α = 1, 2, . . . , M; see Fig. 2(a). Importantly,
the training is based on averaged predictions from these M
blocks. For example, we consider the following MSE loss
function for a given snapshot of the system

L =
∣∣∣∣Q̂ − 1

M

M∑
α=1

fML
(
Gα

)∣∣∣∣
2

, (2)

where Q̂ is the exact intensive property of the whole L × L
system, and Gα is the feature variables for the αth block of
the snapshot. For phase classification problem where Q = 1
or 0 corresponds to whether the system is in a specific phase
or not, a cross entropy can be used for the loss function.

With either MSE or cross entropy loss functions, as demon-
strated in Fig. 2(a), one can view the training process as the
optimization of a super-neural net build from M copies of the
same NN shown in Fig. 1. Finally, standard stochastic gradient
descent method with back propagation is used to optimize the
ML model from multiple snapshots of the whole system. It
is worth noting that the above scheme is different from ML
training based on M independent blocks. With loss function
determined from the averaged predictions from all blocks, the
optimization of the ML model is forced to take into account
the potentially diverse block-spin configurations within the
same system.

We emphasize again the similarity of our approach to
BP-type ML structures discussed above. By partitioning the
total energy of the system into local energies E = ∑N

i=1 εi,
where N is the number of atoms, the local energy associated
with the ith atom is assumed to depend on its immediate
chemical environment, also denoted as Ci, through a uni-
versal function, i.e., εi = εML(Ci ). This universal function
εML(·) is similarly to be approximated by a ML model. For
MD applications, one is mostly interested in atomic forces,
which are given by the derivatives, FML

i = −∂E/∂Ri, and are
dependent indirectly on the universal function. Importantly,
the loss function for a given snapshot of atoms is based on
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FIG. 2. A scalable ML approach relies on the partitioning of the system into finite-size blocks that can be solved individually. The
presumably time-consuming calculation of some physical properties of the block of linear size � is encoded in the ML model, which is
implemented using the multi-layer NN here. Panel (a) shows a schematic of the training process. The loss function L quantifies the difference
between the exact value and the average of the ML predictions from each block. For application of the ML framework to large systems, one
can design the partitioning such that the blocks cover the whole system. However, for extremely large system L � �, or experimental data
where the system approaches the thermodynamic limit, a practical approach is to randomly select a large number of blocks to represent the
system, as shown in panel (b). The estimation of the physical property is again the average of ML prediction from all blocks.

prediction difference of total energy and individual forces,
e.g., L = ∑

i |F̂i − FML
i |2 + r|Ê − ∑

i εi|2, where the F̂i and
Ê denote the forces and total energy, respectively, obtained
from, e.g., DFT calculations, and coefficient r specifies the
relative ratio of energy constraints compared to that of forces.
The ML model εML(·), which determines both the forces FML

i
and local energies, is optimized from the minimization of this
loss function defined on the whole atomic system.

Once the ML model is optimized, its utilization for predict-
ing intensive properties of a much larger system is based on
a random sampling method. As shown in Fig. 2(b), a number
Nsample of � × � blocks are randomly selected from the whole
system. Let Qα = fML(Gα ) be the ML prediction of the αth
block, the intensive property of the system is approximated by
averaging over these local predictions

Q = 1

Nsample

Nsample∑
α=1

fML(Gα ). (3)

One can also obtain an estimate of the prediction error from
the standard deviation of the local predictions:

σQ =
⎡
⎣ 1

Nsample

Nsample∑
α=1

( fML(Gα ) − Q)2

⎤
⎦

1/2

. (4)

For large number of sampling blocks, the prediction accuracy
can be improved by the average Q. Moreover, the standard
deviation σQ provides information of the intrinsic fluctuations
of the intensive properties within the system measured based
on the length scale � associated with the ML model.

D. ML prediction of energy density

As a demonstration, here we first apply the above approach
to the prediction of the energy density ρE = E/N of the 2D
Ising model, where E = −J

∑
〈i j〉 σiσ j is the total energy of

the system and N = L2 is the total number of spins. It is worth
noting that the energy calculation in short-range Ising model,

or most classical short-range spin models, is linear-scaling
and can be done rather efficiently. However, the computational
time is still of the order of O(N ), which will become infeasi-
ble in the thermodynamic limit. However, the time complexity
of the ML method scales as O(Nsample ), which is controlled by
the number of sampling blocks. Moreover, the ML approach
also offers a more efficient calculation of energy density
for models with long-range interactions or quantum systems
where the energy calculation requires time-consuming many-
body methods.

The construction of both the descriptor and the neural net-
work (NN) model was implemented using the PyTorch library.
To accelerate the training process of the machine learning
(ML) model, multiple graphics processing units (GPUs) were
employed in PyTorch. The training dataset was composed
of 40 000 Ising configurations of a lattice with linear size
L = 320, while an additional 8 000 Ising configurations were
used for validation. The temperature values of the training and
validation datasets were evenly distributed across 40 different
temperatures ranging from Tlow = 1.2J to Thigh = 3.6J . The
ML models were constructed using two block sizes � = 32
and 64 as the input data. Finally, the model is trained using
the Adam optimizer [79] with adaptive learning rate of 0.001
and 500 epochs.

Figures 3(a) and 3(b) show the ML-predicted energy den-
sity versus temperature curves for an L = 320 Ising system
based on block sizes � = 32 and 64, respectively. The results
from the Monte Carlo (MC) simulations are also shown for
comparison. While the overall ML predictions agree well with
the MC results, a systematic discrepancy can be seen from
the figures: the ML models tend to overestimate the energy
density above the critical temperature and to underestimate the
energy below Tc; see also the comparison of ML predictions
against the energy density from MC simulations in Figs. 3(c)
and 3(d). This systematic errors become more noticeable for
ML models with a smaller block size �.

It should be noted that, while computing the energy of a
given spin-block is almost trivial especially for short-ranged
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FIG. 3. Left panels show the energy density ρE of the 2D Ising
model as a function of temperature obtained from Monte Carlo
(MC) simulations and ML predictions with block size (a) � = 32 and
(b) � = 64. The right panels show the comparison of energy density
predicted by ML models versus that obtained from MC simulations
again for two different block sizes (c) � = 32 and (d) � = 64.

spin models, our objective here is to predict the intensive
property of the whole system through a window of linear size
�. This is also the source of the prediction errors observed in
Fig. 3. The discrepancy is also due to the requirement that
same ML model is trained to predict the intensive property of
both high- and low-temperature phases, including the critical
regime around Tc. Indeed, excellent prediction accuracy can
be achieved if the ML model is restricted to either the high-
temperature paramagnet or the long-range ordered phase at
low T . The highly inhomogeneous spin states in the vicinity
of the critical point introduces significant uncertainties in the
training of finite-size ML models, giving rise to the systematic
errors in both phases. Intuitively, to model spin configurations
in the critical regime which comprises diverse spin configu-
rations characterized by large length scales, the ML model
is forced to compromise its prediction capability of both the
high and low temperature phases. A more systematic analysis
of prediction error and its relation to the diverging correlation
length at the critical point are discussed in the next section.

III. CORRELATION LENGTH AND LIMITATION
OF SCALABILITY

Although interactions of most physical systems are local
and characterized by microscopic length scales of the order of
lattice constants, emergent structures of the system are often
described by length scales, denoted as ξ for convenience, that
are often much larger than the microscopic one. More impor-
tantly, the locality of intensive quantities Q which depend on
the emergent structures is controlled such new length scales

ξ . For example, while spin-spin interactions in the standard
Ising model are restricted to nearest neighbors, the spatial
fluctuations of spin configurations are determined by the cor-
relation length ξ of the system. In general, the correlation
length characterizes the exponential decay of the structural
correlation function

C(r) ∼ exp(−|r|/ξ ). (5)

Importantly, the length scale ξ is often not a fundamental
parameter of the Hamiltonian, but is controlled by external
parameters such as temperature or magnetic field.

The effects of correlation length on the performance of ML
model with a finite block size � can be intuitively understood
from the two snapshots in Fig. 4. The squares in both panels
correspond to the spin-block for the input of the ML model.
For systems at high temperatures, as exemplified by Fig. 4(a),
the length scales of spatial fluctuations or inhomogeneity is
much smaller than the block size, ξ � �. Consequently, spin
configurations sampled by a given block are good representa-
tives of the whole system. As a result, ML predictions based
on even one block could be accurate in this limit.

However, larger and larger spin clusters start to emerge
as system approaches the critical temperature Tc, as shown
in Fig. 4(b). The average linear size of spin clusters is again
characterized by the correlation length ξ . When this length
scale is greater than the block size, ξ � �, an individual spin
block is expected to exhibit rather distinct spin configurations.
As a result, each block only captures partial information of the
larger-scale structures of the system. By taking into account
all spin blocks of the whole system in the optimization of
the ML model, the training scheme outlined in Fig. 2(a) with
a loss function of Eq. (2) aims to strike a balance between
spatial features of length scale �. The ML prediction shown in
Fig. 2(b) can be viewed as attempting to assemble information
contained in several small pictures of size � to form a big pic-
ture at the length scale of ξ . However, due to the ambiguities
and tradeoff between different blocks during the training, the
accuracy of ML prediction is significantly hampered in the
ξ � � limit.

To examine quantitatively the effects of a diverging corre-
lation length on the ML prediction accuracy, here we develop
a ML model for the phase classification of the 2D Ising model.
To this end, a deep-learning NN with one nonreducing and
five reducing fully connected layers was constructed. The
NN produces a single digit Y at the output layer such that
Y = 0 and 1 corresponds to the low-T ferromagnetic order
and the paramagnetic phase at high temperatures, respectively.
As discussed above, the ML model is designed to provide
an accurate approximation for the structure-property mapping
Y = fML(G) of the spin block, where G = {G1, G2, · · · } are
symmetry-invariant feature variables built from spin configu-
ration of the block discussed above. A binary cross entropy
(BCE) loss function was employed for the optimization of
NN model. Specifically, let Ym denotes the ML prediction
averaged over all blocks of the mth snapshot of an L × L Ising
system, and Ŷm be the true value of the corresponding phase,
the BCE loss function is defined as

L = − 1

N

N∑
m=1

[Ŷm log(Ym) + (1 − Ŷm) log(1 − Ym)], (6)
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(a)

(b)

FIG. 4. Comparison of the block size � and the correlation length
ξ of the 2D Ising model at (a) T = 4.2J , which is representative of
the high-temperature paramagnetic phase, and (b) T = 2.28J close
to the critical point Tc ≈ 2.269J .

where N is the number of snapshots used in the training.
For the phase classification, N = 50 000 Ising configurations
from Monte Carlo simulations on a L = 320 system were used
to train the NN model, with an additional 10 000 snapshots
reserved for validation. The datasets were obtained from MC
simulations over a range of temperatures similar to that in
the ML model for energy density. An Adam optimizer with

FIG. 5. (a) Accuracy A of ML phase classification versus
temperature for ML models of different block sizes �. (b) The tem-
perature window �T = T ∗

+ − T ∗
− where the classification accuracy

A drops below 85% and 90% versus the block size �. The dashed
lines indicate the power-law behavior �T ∼ �−1.

a global learning rate of 0.001 is used. A dropout layer is
added before the output layer with a dropout probability set
to 0.2.

Figure 5(a) shows the prediction accuracy A versus tem-
perature for ML models of different block sizes �. The
prediction accuracy here is defined as the ratio of successful
predictions over the total number of test data. Overall, as
expected, the classification accuracy is better for ML models
with larger block size. Moreover, while relatively high classi-
fication accuracy can be reached in both the high and low-T
phases, especially for ML models with larger �, the prediction
accuracy is significantly reduced in the vicinity of the critical
temperature Tc for all ML models. More quantitatively, we
define T ∗

± as the temperatures at which the prediction accuracy
drops below a certain threshold; the subscript ± refers to the
high- and low-temperature side of the critical point, respec-
tively. The temperature window �T = T ∗

+ − T ∗
− within which

the accuracy is below threshold 85% and 90% is shown in
Fig. 5(b) as a function of ML block size. Interestingly, while
this temperature span �T indeed is reduced with increasing
block size, we find that its decrease can be very well described
by a power-law behavior �T ∼ �−1.

To understand this result, we note that the divergence of
the correlation length as a many-body system approaches
the critical point Tc is described by a power law with an
exponent ν:

ξ (T ) ∼ 1

|T − Tc|ν . (7)
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For the 2D Ising model, this exponent can be obtained from
Onsager’s exact solution, which gives ν = 1 [70]. As dis-
cussed above, when this correlation length becomes much
greater than the size � of spin block used for ML model, spin
configurations sampled by each block fail to capture the larger
spin structure. Consequently, an ML model with input block
size � will start to break down when the correlation length
reaches the block size

ξ ∗ = ξ (T ∗) ∼ �. (8)

Using the power-law relation for ξ (T ), one obtains the thresh-
old temperatures on both sides of the critical point

T ∗
± ∼ Tc ± const × �−1/ν . (9)

Defining the temperature span of reduced classification ac-
curacy as �T = T ∗

+ − T ∗
− , we thus obtain the following

power-law relation

�T ∼ �−1/ν . (10)

For 2D Ising model with ν = 1, the above result is consistent
with our numerical simulation shown in Fig. 5(b).

In fact, the above result suggests a scaling relation for the
prediction accuracy similar to the finite-size scaling relations
for a continuous phase transition. For example, the order-
parameter m of the 2D Ising model exhibits a scaling relation
with the system size: m ∼ Lβ/ν�(L/ξ ) in the critical regime;
here �(x) is a universal function and exponent β = 1/8 for
the 2D Ising model [70]. To apply similar analysis to our case,
first the role of system size L is now replaced by the block size
�. Moreover, as the accuracy tends to 1 at both high and low
temperatures, this suggests a scaling relation for the prediction
error which is defined as the difference ε = (1 − A). Assum-
ing that the system size L for generating either the training
and testing data is much larger than both the correlation length
and block size (which is not true when T ∼ Tc), the prediction
error should depend on the ratio �/ξ of the only two relevant
length scales. This suggests the following scaling relation:

ε = (1 − A) ∼ �−θ�(�/ξ ), (11)

where �(x) is a quasiuniversal function which depends on the
implementation of ML models, and θ is an exponent char-
acterizing the improvement of classification accuracy with
increasing block size. This scaling relation is indeed con-
firmed by our block-size scaling of ML predictions. As shown
in Fig. 6, by plotting (1 − A)�θ at the y axis and (�/ξ )1/ν ∼
(T − Tc) �1/ν at the x axis, rather nice data point collapsing
was obtained using exponent θ = 0.12 and ν = 1 from the
2D Ising model. The scaling relation Eq. (11) shows that, in
addition to the rather weak power-law dependence �−θ on the
block size, the ML prediction error depends strongly on the
ratio of the block size relative to the correlation length. This
dependence also underpins the power-law behavior Eq. (10)
for the temperature span with reduced prediction accuracy.

Finally, we note that the scaling relation Eq. (11) needs
to be modified when the correlation length ξ grows to be
greater than the finite system size L used in simulations, which
happens in the very vicinity of the critical point. In this ξ � L
limit, the prediction accuracy of our ML scheme depend on
both the block size and the system size, not necessarily on the
dimensionless ratio �/L. Specifically, we expect the prediction

FIG. 6. Block size scaling analysis of the ML prediction accu-
racy. The figure shows (1 − A)�θ versus (T − Tc )�ν from prediction
results with different block size �. The exponents ν = 1 is from
the 2D Ising model and θ = 0.12. The rather nice data collapsing
suggests a relation (1 − A)�θ = F [(T − Tc )�1/ν], where the function
F (x) is related to the scaling function in Eq. (11) as �(x) = F (x1/ν ).

error to be dependent on both ratios: �/ξ and L/ξ . First, for
a given system size L, based on arguments discussed above,
increasing block size � is expected to result in a better accu-
racy. However, even for a fixed block size �, the prediction
accuracy can be enhanced by a larger system size L. This is
because the characteristic features are now determined by L
(finite-size effect) in the large ξ limit. As a result, a larger
L could allow for more intrinsic features of the system to be
present in the system, which can then be better sampled by the
ML blocks.

IV. SUMMARY AND OUTLOOK

We have presented a scalable ML framework, which is a
natural generalization of previous ML-based approaches to
structure-property relationships, for the prediction of inten-
sive properties of many-body systems. In particularly, our
approach focuses on ML models which can be directly applied
to much larger systems without either rebuilding or retraining
the model. Specifically, an ML model is developed to produce
an estimate of intensive properties based on input of a finite
block, characterized by linear size �, of the system. The train-
ing of the ML model is carried out based on dataset of a larger
system of linear size L such that the combined prediction
of ML model on the (L/�)d blocks is used to optimization
parameters of the ML model, where d is the spatial dimension.
By including contributions of all blocks of a configuration as a
batch for the training, the optimization of the ML model takes
into account the structural variations of individual blocks.
Application of the trained ML model to large-scale systems
is via a random sampling method, i.e., prediction of system-
wise intensive properties is obtained by averaging over ML
predictions from a large number of randomly selected blocks.

The two-dimensional Ising model, which is widely used
as a benchmark system for ML applications to statistical me-
chanics and many-body systems, is used to demonstrate our
approach. ML models are built for energy-density prediction
and phase classification. We show that the breakdown of lo-
cality in the vicinity of the critical point leads to uncertainties
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of ML training, which in turn results in systematic errors for
the prediction of energy density. Nonetheless, the systematic
errors can be reduced with increasing block size � of the
ML model. Furthermore, we show that deterioration in the
phase classification accuracy is characterized by the condition
ξ � �. The prediction error ε is found to exhibit a scaling
relation which depends strongly on the ratio of block size to
the correlation length.

Our proposed ML framework is similar to other ML model-
ing of structure-property relationship. The crucial difference,
due to the demand of scalability, is that the ML model in
our approach is to provide a mapping from local structures
characterized by linear size � to global (intensive) properties
of the whole system. The feasibility of this scheme relies
on the locality of a many-body system, which is also key to
almost all linear-scaling methods. In general, the principle
of locality means that local physical quantities only depend
on configurations of the immediate surrounding. In our case,
however, the locality assumption means that intensive prop-
erties of a system can be inferred from finite-size structures
locally. Accurate predictions can be achieved only when the
linear size � of local structures to be modeled by the fixed-size
ML model is greater than the structural correlation length ξ of
the system. Interestingly, this means that ML models for ac-
curate phase classification are possible for systems exhibiting
first-order phase transitions, since correlation length remains
finite during such discontinuous transitions.

While our scalable ML modeling of the structure-property
relationships is based on supervised learning, it is worth
noting that phase classification, which is a special case of
intensive property prediction, can be achieved using other ML
approaches including unsupervised learning methods [26,80].
In particular, building on the analogy between the renormal-
ization group (RG) process and deep learning, neural network
models, such as super-resolution CNN [81] and restricted
Boltzmann machines (RBM) [82–84], have been developed
to accurately identify the phase transition temperature and
predict critical properties such as critical exponents. However,
as in the RG methods, these ML approaches are focused more
on the critical regime of a second-order phase transition. They
could not give quantitative predictions well outside the critical
regime of a continuous transition, or for a first-order phase
transition. Our proposed scalable ML framework, however,
aims at a quantitative structure-property mapping when the
correlation length ξ is comparable to the ML block size.

For quantitative predictions of continuous properties,
such as energy density, the intrinsic symmetry of the sys-
tem can be properly incorporated into ML models via a
symmetry-invariant descriptor. Explicit demonstration of how
D4 symmetry is exactly included in the ML prediction of
energy density of the 2D Ising model is presented in the
Appendix. Essentially, we show that ML models without any
symmetrization preprocessing of Ising configurations give rise
to the so-called equivariant errors, which means the ML model
predicts different energies for Ising configurations which are
related by D4 symmetry operations. However, we also note
that incorporation of symmetry-invariant descriptor has very
limited improvement in the performance of phase classifica-
tions. This is understandable because the distinguishing of
the two phases relies more on the very different spin-spin

correlations than on whether symmetry is properly preserved
in the ML model.

For predictions of electronic properties such as energy gap,
magnetic susceptibility, or electrical conductivity, although
the input to ML models is the directly measurable atomic
structures, it should be noted that the relevant correlation
length ξ is determined by the electron systems. A representa-
tive example is the BP-type ML interatomic potential models
for quantum molecular dynamics simulations. In these appli-
cations, ML models are designed to predict a local atomic
energy based on the neighborhood atomic configurations. Yet,
the size of the neighborhood depends on the electronic cor-
relation functions, instead of atomic configurations. As the
electron correlation decays exponentially for gapped systems,
ML models with large enough � are expected to provide an
accurate approximation for such systems.
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APPENDIX: DESCRIPTOR FOR
SQUARE-LATTICE ISING MODEL

As discussed in Sec. II, the goal of a descriptor is to
preserve lattice symmetry of the original lattice Hamiltonian
in the ML model. A general theory and several specific im-
plementations of descriptors in condensed matter systems,
especially for lattice models, have recently been presented
in Ref. [78]. In particular, the group-theoretical bispectrum
method was generalized to systematically generate feature
variables that are invariant under symmetry operations of the
on-site point group [53,78]. Here, we apply this method to
develop a descriptor for the 2D Ising model. There are two
sets of discrete symmetries in the square-lattice Ising model:
one is the Z2 symmetry of Ising spins which physically is
related to the time-reversal symmetry, and the second is the
D4 point-group symmetry of the � × � spin block on a square
lattice. To account for the Z2 symmetry, one approach is to first
build bilinear forms of Ising spins b jk = σ jσk , also known as
bond variables, within the spin block. These bilinear variables
b jk , which are invariant under Z2 transformation σi → −σi,
are then used as building blocks for the lattice descriptor.

Here, however, we employ a different and simpler ap-
proach by constructing invariants of the point-group sym-
metry first. The Z2 symmetry will be automatically included
in the reference method to be discussed below. To this end,
we first note that the Ising spins in an � × � block form a
high-dimensional reducible representation of the D4 group.
For convenience, we use Bα to denote spin configurations in
the αth block. The first step of finding invariants under site
symmetry is to decompose Bα into irreducible representations
(IRs) of the symmetry group. This decomposition is consider-
ably simplified due to the lattice geometry. Essentially, since
the distance between a neighborhood site- j and the center
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FIG. 7. Schematic diagrams of (a) four-site and (b) eight-site
groups within a spin block. Panel (c) shows the eight triangular
domains used to compute the coefficients of reference IRs.

site-i is invariant under operations of the D4 group, the re-
sultant matrix representation is thus block-diagonalized, with
each block corresponding to a group of Ising spins sharing
the same distance to the center. In the case of D4, the size
of these invariant spin groups is either 4 or 8; see Figs. 7(a)
and 7(b). The four-site block can be decomposed as 4 =
1A1 ⊕ 1B1 ⊕ 1E . The expansion coefficients of each IR are

fA1 = σa + σb + σc + σd ,

fB1 = σa − σb + σc − σd ,

f E = (σa − σc, σb − σd ). (A1)

The decomposition of the eight-site block is 8 = 1A1 + 1B1 +
1A2 + 1B2 + 2E , with the following coefficients for each IR:

fA1 = σa + σb + σc + σd + σe + σ f + σg + σh,

fA2 = σa − σb + σc − σd + σe − σ f + σg − σh,

fB1 = σa − σb − σc + σd + σe − σ f − σg + σh,

fB2 = σa + σb − σc − σd + σe + σ f − σg − σh,

f (E ,1) = (σa + σb − σe − σ f , −σc − σd + σg + σh),

f (E ,2) = (σc − σd − σg + σh, σa − σb − σe + σ f ). (A2)

As the spin block Bα contains several such four-site or eight-
site groups, we expect same IRs appear multiple times in the
overall decomposition of the spin block. In the following, we
label each IR in the decomposition of Bα as � = (T, r), where
T = A1, A2, · · · denotes the symmetry type of the IR, and r in-
dicates different occurrence of the same IR. For convenience,
we arrange the expansion coefficients of an IR � into a vector
f � = ( f�,1, f�,2, · · · , f�,n�

), where n� is the dimension of �.

The power spectrum of the representation are given by the
amplitudes of the IR coefficients

p� = | f �|2. (A3)

Since the power spectrum coefficients are obviously invariant
under symmetry transformations, they can be used as feature
variables for the ML models. However, a descriptor composed
only of power spectrum is incomplete since the relative phases
between different IRs are ignored. This also means that de-
scriptor contains spurious symmetries as the transformation of
each IR is independent of each other without the phase infor-
mation. A complete set of feature variables can be obtained
from the bispectrum coefficients b�1,�2,�3 , which are triple
products of the expansion coefficients f �1,2,3

based on the
Clebsch-Gordan coefficients of the point group. Intuitively,
they can be viewed as the analog of scalar triple product
of three-dimensional vectors. Not only are the bispectrum
coefficients invariant under symmetry transformations, they
can also be used to faithfully reconstruct the original disorder
configuration [73,74].

However, a descriptor based on all the bispectrum coeffi-
cients is in fact over-complete as many of them are redundant.
Moreover, since the dimension of most IRs of point groups
is rather small, the number of bispectrum coefficients is of-
ten a very large number, which makes the implementation
infeasible. Instead, here we employ the method of reference
IR discussed in Ref. [78] to retain the phase information. The
central idea is to first construct an eight-dimensional represen-
tation of the spin block Bα based on average of Ising spins over
symmetry-related finite regions. As shown in Fig. 7(c), an ex-
ample is given by (σ A, σ B, · · · , σ H ) where σ K = 1

|K|
∑

i∈K σi

is given by the average of all Ising variables within region-K .
The decomposition of this eight-dimensional representa-

tion σ K then gives coefficients f ∗
A1

, f ∗
A2

, · · · , f ∗
E for each

symmetry type. These coefficients f ∗
T are termed the reference

IR coefficients. For each IR, an effective phase can be defined
by the following inner product:

η� = (
f � · f ∗

T�

)
/| f �|∣∣ f ∗

T�

∣∣, (A4)

FIG. 8. Energy density ρE of 2D Ising model predicted by ML
models, with and without the descriptor, versus exact value for spin
configurations sampled by Monte Carlo simulations. Panel (a) shows
the comparison over a wide range of temperatures, while panel
(b) highlights the low-temperature region. As shown by the two ex-
amples highlighted by arrows in panel (b), the spreading of predicted
energies for exact the same Ising configuration indicates the equiv-
ariant error of the ML model without symmetry-invariant descriptor.
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where T� is the symmetry type of IR �. The phase η� , which is
an inner product of two IR coefficients, is naturally invariant
with respect to symmetry operations. More importantly, by
including η� in the descriptor, the relative phases between
different f � are now be inferred through the intermediate
reference IR coefficients. Finally, since the IR coefficients f
are linear combinations of Ising spins, they acquire a negative
sign f → − f under the Z2 transformation. However, both the
power spectrum Eq. (A3) and the relative phases Eq. (A4) are
bilinear product of the IR coefficients, the resultant descriptor
is automatically invariant with respect to the Z2 symmetry of
the Ising model.

To demonstrate how the D4 symmetry is properly incor-
porated in the ML model with the descriptor, we compare its
performance with a ML model but with the unprocessed Ising
spins within a block of same size � as the input. In particular,

here we focus on the prediction of energy density as discussed
in Sec. II D. We first prepare a test set of Ising configurations
obtained form Monte Carlo simulations. Then for each of the
Ising state in the test set, we include all eight configurations
which are related by the symmetry operations of the D4 group
in the expanded dataset. The predicted energy density ρE from
ML models with and without the symmetry-invariant descrip-
tor for the expanded test dataset is shown in Fig. 8. For the
ML model with symmetry-invariant descriptor, the model pre-
dicts exactly the same energy for the eight symmetry-related
Ising configurations as expected. However, the ML model
without the descriptor, namely using the unprocessed block
Ising spins as input, exhibits noticeable so-called equivariant
errors, which manifests as a spreading of predicted energies
for exactly the same Ising configurations as highlighted in
Fig. 8(b).
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