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Sampling diverse near-optimal solutions via algorithmic quantum annealing
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Sampling a diverse set of high-quality solutions for hard optimization problems is of great practical relevance
in many scientific disciplines and applications, such as artificial intelligence and operations research. One of the
main open problems is the lack of ergodicity, or mode collapse, for typical stochastic solvers based on Monte
Carlo techniques leading to poor generalization or lack of robustness to uncertainties. Currently, there is no
universal metric to quantify such performance deficiencies across various solvers. Here, we introduce a new
diversity measure for quantifying the number of independent approximate solutions for NP-hard optimization
problems. Among others, it allows benchmarking solver performance by a required time-to-diversity (TTD), a
generalization of often used time-to-solution (TTS). We illustrate this metric by comparing the sampling power
of various quantum annealing strategies. In particular, we show that the inhomogeneous quantum annealing
schedules can redistribute and suppress the emergence of topological defects by controlling space-time separated
critical fronts, leading to an advantage over standard quantum annealing schedules with respect to both TTS
and TTD for finding rare solutions. Using path-integral Monte Carlo simulations for up to 1600 qubits, we
demonstrate that nonequilibrium driving of quantum fluctuations, guided by efficient approximate tensor network
contractions, can significantly reduce the fraction of hard instances for random frustrated 2D spin glasses with
local fields. Specifically, we observe that by creating a class of algorithmic quantum phase transitions, the
diversity of solutions can be enhanced by up to 40% with the fraction of hard-to-sample instances reducing
by more than 25%.
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I. INTRODUCTION

Sampling diverse solutions of combinatorial problems pose
a significant difficulty due to the exponential explosion of
the configuration space. This problem can be reformulated as
finding independent low-energy states of spin-glass systems
[1]. Sampling is at the core of discrete optimization, robust
optimization, and counting problems which are #P-complete
[2]. Unbiased or fair sampling over discrete spaces is also one
of the computational bottlenecks in machine learning tasks,
including training and inference tasks in structured proba-
bilistic models [3] and energy-based models [4]. In particular,
approximating partition function or evaluating the marginal
distributions for random Markov fields, Boltzmann machines,
Hopfield models, or Bayesian networks are yet intractable
over general graph topologies for high-dimensional data [3].

Historically, there have been many different proposals to
measure diversity in various fields, including statistics, biol-
ogy, economy, and computer science. However, there is no
universal measure to quantify the diversity of the “types” of
entities or elements in a population [5]. Additionally, in the
context of discrete optimization the notion of the types of
solutions is not well-defined within the configuration space.
Measures of variations such as the standard deviation are

typically defined over a single parameter or attribute (e.g.,
residual energy), but they do not address diversity in the types
of entities [5]. Such diversity can be captured by general-
ized entropy measures encompassing the Simpson diversity
index [6] and Renyi or Shannon entropy [7] as special cases.
Entropy measures, however, do not have a build-in notation
of distance among the types of solutions. Thus, as we show
here, one has to introduce an acceptable metric to estimate
the number of independent (pure) states within the desired
approximation ratio.

Traditionally, certain measures such as Weitzmann diver-
sity [8], which defines the distance as the minimal number
of links that connect two elements or solutions in treelike
graphs, have been widely used in ecology and economy.
However, constructing meaningful treelike structures is hard
within configuration space, and these measures could lead
to overestimating the diversity in our case. This difficulty
in estimating diversity is due to exponentially dense sets of
closely related solutions in various basins of attractions (pure
states) that could form a hierarchical structure [1], or the ex-
istence of a few extremely eccentric solutions. The challenges
of local stochastic solvers, such as parallel tempering, for a
fair sampling of the degenerate ground states of Ising models,
have been recently studied in Ref. [9].

2470-0045/2023/108(6)/065303(12) 065303-1 ©2023 American Physical Society

https://orcid.org/0000-0003-4065-9400
https://orcid.org/0000-0002-1235-7758
https://orcid.org/0000-0001-6576-2960
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.108.065303&domain=pdf&date_stamp=2023-12-11
https://doi.org/10.1103/PhysRevE.108.065303


MASOUD MOHSENI et al. PHYSICAL REVIEW E 108, 065303 (2023)

In operations research, the notion of diversity prominently
appears in robust optimization and black-box optimization
where the true cost function is not known, could be very
noisy, or hard to evaluate [10]. In the context of multiobjective
optimization, the diversity indicates the richness of states at
the Pareto fronts that could be more robust to uncertainties.
The fitness landscape of combinatorial optimization has been
studied via numerical estimation of the number of basins of
attraction and their neighborhoods [11]. However, such em-
pirical metrics did not account for the quality of the local
optima and were limited to simple local stochastic search
algorithms that are based on the steepest descent and random
restarts.

Diversity could be an essential feature in the construction
of certain heuristic algorithms. For example, diversity is a key
hyperparameter in genetic algorithms, population dynamics,
ant colony optimization, particle swarm optimization, and
evolutionary optimization [12]. In particular, the notation of
quality diversity has been introduced in the context of open-
ended evolutionary optimization to capture high-performing
solutions over certain phenotypic feature space [12]. The
quality diversity has applications in adaptive robotic sys-
tems that could be inherently equipped with a diverse set of
high-performing agents or policies to effectively cope with
uncertainties, damages, and changing environmental condi-
tions [13]. This is in contrast with traditional machine learning
methods that produce little diversity and typically fail if they
are exposed to inputs slightly outside of a narrow scope de-
fined by the training data [3].

For spin-glass systems, the notion of distance or dissim-
ilarity for solutions is usually captured by the Parisi’s order
parameter [14] that can be approximated by the probability
distribution function P(q), where qab := 1

N

∑N
i=1 s(a)

i s(b)
i is the

overlap of two randomly sampled pairs of spin configurations
s(a) and s(b), where si = ±1. However, this metric provides a
simple one-dimensional projection of the solution space and
thus cannot be used to quantify the diversity of independent
solutions, since by construction it doesn’t distinguish the con-
tributions from different types of solutions of the spin-glass
pure states in effectively high-dimensional space, see Fig. 1.

The geometry of near-optimal solutions, and the hardness
of sampling such low-energy states, can be captured by the
so-called overlap gap property (OGP) [15,16], where clusters
of solutions become shattered or disjoint near a computational
phase transition. OGP is present when Hamming distances
between any pair of solutions within some approximation
ratio, is either smaller than ν1 or greater than ν2 for some
fixed ν1 < ν2. A useful definition of diversity should be able
to provide an estimate of the number of independent solutions
when OGP holds.

In this work, we introduce such a measure of diversity
by quantifying the maximum number of likely independent
solutions that all satisfy a given cost function(s) for a de-
sired high precision and are unlikely to be related to each
other via a set of local updates. We also introduce a diver-
sity ratio as the fraction of such high-quality, independent
solutions that a given solver can find, in a given timescale,
normalized by the absolute value of diversity. We show that
our diversity ratio is separate from the approximation ratio
and can be used as a new probe to quantify the performance

FIG. 1. Diversity of the low-energy spectrum for the random
Ising model on a 2D lattice. In this plot, we consider a single random
instance of an Ising Hamiltonian in Eq. (1) with 1600 spins defined
on a square lattice with nearest-neighbor couplings Ji j ∈ [−1, 1] and
local fields hi ∈ [−0.1, 0.1] drawn from uniform distributions. In
panel (a), we show the distributions P(q) of overlaps q between
pairs of states independently sampled from the Gibbs distribution
for various temperatures. The black curve shows P(q) if all the low-
energy states would be equally probable within approximation ratio
ar = 0.001. This illustrates that P(q) distributions are inadequate to
capture the diversity of low-energy states. These distributions are
essentially featureless in the low-energy spectrum of interests, and
they cannot distinguish distinct droplet excitations of similar volume
leading to indistinguishable values of q. Those are shown in panel
(b), where the top-middle panel indicates the ground state configura-
tion of the considered instance. Other panels show some of the other
distinct low-energy configurations within the approximation ratio
of ar = 0.001. Those states are obtained by starting in the ground
state and then flipping the groups of neighboring spins, which are
indicated by colorful droplets, leading to minimal excitations above
the ground state within the target approximation ratio and informing
on the geometry of the low-energy manifold.

of several quantum and classical heuristic optimization
algorithms.

In particular, we compare algorithmic quantum annealing
strategies (with spatial and temporal inhomogeneities) ver-
sus standard adiabatic quantum computing. We use efficient
approximate tensor-network contractions as a preprocessing
step to create multiple critical fronts which could effectively
control (suppress and/or redistribute) the presence or location
of topological defects in many different ways, minimizing
the energy cost of solutions or increase their diversity. We
numerically simulate the quantum annealing protocol for sam-
pling rare solutions in a quasi-1D transverse Ising models of
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up to 512 qubits using matrix product state (MPS) [17,18]
techniques. We use quantum Monte Carlo techniques [19] to
simulate multicritical annealing fronts of the quantum spin-
glass dynamics for 2D systems of up to 1600 qubits. Using
inhomogeneous annealing schedules, we observe that the di-
versity of solutions can be enhanced by about 40% within a
timescale of 109 sweeps. Moreover, the fraction of the hard
instances can be reduced by more than 25% for capturing
at least a diversity of 50% of high-quality solutions on each
random instance.

II. DIVERSITY MEASURE

In this article, we introduce a notion of diversity that is an
inherent characteristic of the spin-glass configuration repre-
senting problem instances and not an attribute of any classical
or quantum solvers employed to tackle the problem. We focus
on spin-glass Ising Hamiltonians with quadratic interactions

HP =
∑

i< j

Ji, j sis j +
N∑

i=1

hisi, (1)

where Ji, j and hi = Ji,i are coupling interactions and local
fields encoding the problem specification for each instance
containing N binary variables si = ±1. However, our diver-
sity measure definition can be extended to other generalized
models over discrete spaces with nonbinary variables and/or
higher order interactions, such as factor graphs or k-SAT
problems with k � 3 [1] or modern Hopfield networks [20].

The widely used measure to benchmark various heuris-
tic solvers is time-to-solution (TTS) [21], or more generally
time-to-approximation-ratio; that is the time needed to find
(with a given certainty) at least a solution whose energy is
within the desired low-energy manifold, see Appendix A.
The targeted manifold’s width is typically taken as a fraction,
i.e., approximation ratio ar , of the total energy bandwidth.
However, one is often interested in having a protocol that not
only gives excellent residual energies but can also effectively
sample from a variety of distinct solutions. To quantify this,
below we introduce time-to-diversity (TTD).

Let us first consider all the low-energy states within a given
approximation ratio above the ground state. The goal is to
divide those states into classes, or types, such that the states
belonging to different classes differ significantly. We define
such types or clusters of solutions in the configuration space
by dividing the low-energy spectrum into distinct basins of
attraction as far as they are distant from all other such clusters
according to an acceptable metric,

d (s(a), s(b) ) � RN. (2)

Here, s(a) and s(b) are any two configurations belonging to the
set, R ∈ [0, 1] is the normalized distance threshold, and we
take d (s(a), s(b) ) as a Hamming distance (for low-dimensional
problems, one may consider its refinement, which we discuss
below). In the thermodynamics limit, these basins of attrac-
tions could correspond to a subset of the pure spin-glass states
that are mutually distant according to such metric. Spin-glass
pure states can be characterized within one-step replica sym-
metry breaking (1RSB) cavity method [1].

Formally, diversity measure can be evaluated as follows: (i)
We estimate the set of low energy states for a given approxi-
mation ratio ar . (ii) We build an undirected graph, G = (V, E ),
where each vertex or node, V , correspond to a low energy
state s, their edges E have weights correspond to their mutual
Hamming distance d (s(a), s(b) ) and we ignore all the edges
with weight larger than RN . (iii) The diversity measure, D,
becomes the cardinality of the maximal independent set [2]
over this graph. That is all the vertices that have mutual Ham-
ming distance larger than RN (for a system of N spins); e.g.,
for R = 1/8 this number will likely correspond to independent
low-energy states that belong to different pure states of the
original spin-glass encoding the problem (by having larger R
we can increase our confidence on the independence of these
low energy states). We show an example of such a maximal
independent set in Fig. 1(b), where D = 6 for R = 1/8. (iv)
Diversity ratio, dr , is the total number of independent low
energy states that one can find using a given solver (possibly
limited to some total computational time) for a given approx-
imation ratio, Dsolver, over the absolute diversity at the same
approximation ratio; that is dr = Dsolver/D.

We note the threshold value of the Hamming distance
characterized by R in Eq. (2) can be selected according to the
parameters introduced within the OGP [16]. That is, whenever
the OGP holds for a given problem (when mutual distance
between any two solutions is smaller than ν1 or larger than ν2,
where ν1 < ν2) the relevant range of values for RN would be
inside the gap; i.e., between ν1 and ν2. That implies that we
are effectively counting the number of independent solutions
since their distances will be greater than ν1.

The evaluation of diversity measure D can be also de-
scribed by maximum clique problem [22] on the complement
graph of G in which any two low-energy vertices with mutual
Hamming distance of d (s(a), s(b) ) � RN become adjacent.
The maximum clique problem is known to be NP-complete.
However, several heuristic algorithms have been developed,
such as the approach by Balaji, Swaminathan, and Kannan
[23] which runs in O(n2) time. In this article, we use a greedy
procedure to approximate it and identify the seeds for basins
of attractions. We elucidate more on this in the context of our
examples.

The time-to-diversity-ratio for a given solver can be now
evaluated by the time (including restarts and repetitions)
needed to find low-energy configurations belonging to at least
drD basins of attraction seeded by the solutions of the above
max-clique problem, where dr is the desired diversity ratio.
We assign a configuration to a given basin if it is closer to its
seed than any other seed.

The above-described procedure poses some challenges in
itself – which is inevitable for spin-glass problems. In prac-
tice, the total diversity, D, can be calculated only within our
best knowledge of the solution’s space. However, that limi-
tation is also true for other well-known metrics to quantify
the optimality of solutions, such as approximate ratio. In the
absence of any provable bounds for best solutions, one can
combine the results from a portfolio of solvers, calculate
the total diversity, and evaluate dr and TTD for individual
solvers. The results can be improved iteratively by updating
the baseline benchmarks once new distinct classes of solu-
tions get identified for a specific problem. This procedure
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provides a natural platform to compare different solvers. In
the next sections, we test our diversity measure to quan-
tify the computational power of inhomogeneous quantum
annealing strategies [24] against standard adiabatic quantum
computing.

Finally, it is worth to further discuss the measure of
distance between two spin configurations, d (s(a), s(b) ), that
appears in Eq. (2). The most simple choice is a Hamming
distance between s(a) and s(b), i.e., the number of spins where
the two configurations differ. However, as we argue here,
that choice has to be further refined. A problem with this
measure is that certain solutions that are far from each other
in term of the Hamming distance could still be connected.
In such cases, there could be no significant energy barriers
to local stochastic search algorithms for navigating among
them; e.g., variations in many small clusters of variables could
still add to a large effective Hamming distance. A natural
choice for refinement of Hamming distance, in particular for
low-dimensional systems, is to look at the number of spins
in the largest singly connected cluster of spins (according to
the adjacency matrix of Ji, j) where the two configurations s(a)

and s(b) differ.
This choice is also motivated by droplet excitations in

spin-glass systems [25]. This singly connected Hamming dis-
tance captures the situations that relatively large clusters of
variables conspire together, due to intrinsic interplay of dis-
orders and/or frustration. This is at core of computational
complexity of random k-SAT problem where a large set of
frozen variables, or the backbone [1] could emerge deep into
a rigidity region near a computational phase transition [2].
The mixing time of many heuristics with local updates such
as Markov chain Monte Carlo (MCMC) grow exponentially
with the size of such droplets or backbones since the state of
Monte Carlo sampler is essentially pinned to a single basin
of attraction for sufficiently low temperatures. Indeed, Hou-
dayer or isoenergetic cluster moves (ICM) are designed with
the hope to overcome such shortcoming of local stochastic
updates [26,27]. For the aforementioned reasons, in this work,
we use such a refined singly connected Hamming distance. We
note that for a problem where variables reside on a fully con-
nected graph, the refined Hamming distance coincides with
the standard Hamming distance.

III. OVERVIEW OF NUMERICAL EXAMPLES

In this article, we numerically study two sets of exemplary
problems: (i) a quasi-one-dimensional (quasi-1D) setup with
nonzero Ji, j for 1 � |i − j| � r, where the parameter r sets
the maximal range of interaction along the chain, and (ii) a
two-dimensional (2D) N = L × L square lattice with nearest-
neighbor interactions and local fields.

For the quasi-1D setup, we take Ji, j as random uniformly
distributed in [−1, 1] with r = 3 where each spin can be
connected with up to six neighbors, see the inset of Fig. 3(a).
We note that for r = 1, one would recover a one-dimensional
random Ising model. Transverse field Ising models in 1D
have been exhaustively studied and well understood. They
allow for various efficient approximation techniques, like the
Strong-Disorder Renormalization Group approach [28–30].

These systems also allow for efficient exact simulation of
quantum quenches, using the Jordan-Winger transformation
to map the dynamics into a free-fermionic picture [24,31–33].
However, such a choice of r = 1 prohibits frustrated classical
ground states in the absence of quantum fluctuations. In this
article, we consider quasi-1D systems for r > 1, which could
contain frustration.

For the 2D case, we also select random Ji, j from the same
random distribution in [−1, 1], but we additionally include
relatively weak local fields Ji,i from a random uniform dis-
tribution in [−0.1, 0.1]. The addition of nonzero local fields
precludes the polynomial-time exact ground state solver on
a planar graph [34]. The 2D Ising model with local fields is
computationally universal, and in principle can simulate the
physics of all other higher dimensional spin-glass systems
with polynomial embedding overhead [35].

This set of problems allows us to use efficient approxi-
mate numerical methods to get insight into their low-energy
manifold as well as to numerically simulate quantum anneal-
ing protocols. Specifically, in Sec. IV, we briefly discuss a
tensor-network based algorithm [36] that for intermediate-size
quasi-2D random Ising problems in Eq. (1) allows uncovering
the manifold of low-energy solutions with great accuracy. We
use the results of that procedure as a ground truth to calcu-
late the diversity of low-energy solutions, as a reference to
quantify the performance of quantum annealing, and to set up
algorithmic annealing protocols with multiple spatio-temporal
fronts. The latter are briefly motivated in Sec. V. In Sec. VI we
study the performance of quantum annealing. In particular,
we explore if the knowledge of rough droplet shapes can
help to improve the sampling power of quantum annealing
protocols via inhomogeneous driving schemes, as measured
by TTS and TTD. To simulate the time evolution generated
by the transverse field, in the quasi-1D case, we use MPS
representation [17,18]. Here, it provides an effectively numer-
ically exact method to simulate the quench dynamics: as the
entanglement along the chain remains limited, the MPS ansatz
with finite bond dimension provides a faithful representation
of the state of the system during the ramp. For the 2D setup,
we emulate quantum fluctuations using quantum Monte Carlo
[19] simulations.

IV. GROUND-TRUTH DIVERSITY FOR
LOW-DIMENSIONAL SPIN-GLASS MODELS

The considered classes of problems allow us to identify
low-energy solution subspace for intermediate problem sizes
with high confidence. To that end, we employ the tensor-
network-based [17,18,37–39] approach of Ref. [36]. Below,
we will briefly summarize it, while we refer to Ref. [36] for
further details.

The method is based on representing the partition function
of the classical spin model at small but finite temperature as
a PEPS tensor network [40]. The partition function of the
model and, more importantly, the marginal and conditional
probabilities for any spin subconfiguration can be obtained
by contracting the network. While the exact contraction of
such a network would scale exponentially with the system
tree-width, powerful strategies exist to approximately contract
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it for 2D geometries. In this work, we employ a boundary-
MPS approach, see, e.g., Refs. [17,41], which amounts to a
transfer matrix method. In the exact simulation, the transfer
matrices—and boundary vectors at which they act—would
scale exponentially with the lattice width L. Here, they
are efficiently represented using a compact one-dimensional
structure of MPS. Such representation allows approximating
the boundary-MPS systematically after each application of the
transfer matrix, where each row of a 2D lattice corresponds to
a transfer matrix. This is done while retaining the manageable
size of the approximate boundary-MPS during the contraction
of the network and calculation of conditional probabilities.

The approach of Ref. [36] combines the above-
approximated tensor-network contraction technique with a
branch-and-bound strategy to essentially map the low-energy
spectrum. A sufficiently small temperature of the contracted
distribution allows us to view and resolve the low-energy
states. However, too low a temperature makes the approxi-
mate contraction numerically unstable. Successful execution
of the algorithm requires simultaneously satisfying both those
constraints, which puts a practical limitation on problem sizes
studied in this article for the 2D case.

We scan the 2D system row after row to identify the
most probable spin configurations, systematically building
partial configurations and keeping track of those with the
largest marginal probabilities. We further employ the locality
of the interactions on the low-dimensional grid; namely,
the energies and conditional probabilities for any region of
the lattice depend only on the orientation of spins directly
bordering this region. This locality is then used to identify
equivalent partial configurations with respect to the division
of the lattice into spins that have been considered at a given
step of the branch-and-bound search versus those that have not
yet considered or not attributed any values. Those equivalent
configurations look identical from the point of view of not-yet
considered part of the lattice and can be merged during the
search. This merging reveals sub-configurations with the
lowest conditional energies (conditioned on elements of the
configuration that are connected with not-yet considered
part of the lattice) and excitations above such partial
“ground states” encoded through spin-glass droplets. The
systematic application of such a procedure leads to significant
compression of the low-energy manifold, avoiding exhaustive
Monte Carlo search, see, e.g., Refs. [9,42,43], or targeting
single low-energy excitations (droplets) in a planar problem
without local fields [34,44]. It also goes beyond counting
the number of solutions of constraint satisfaction problems
represented as tensor network contraction [45–47], or
identifying the ground state via a combination of automatic
differentiation with an exact contraction of tensor network
with the topical algebra expressing the logarithm of the
partition function in the zero-temperature limit [48].

As a first approximation, the number of large distinct
droplet excitations can be related to the logarithm of diversity
measure for systems with nonoverlapping droplets of suffi-
ciently low energy. In a more general setting, the diverse
(independent) states of the low-energy manifold can be en-
coded through ground state configuration and a complicated
hierarchical structure of droplet excitations on top of that
ground state [36]. Those droplets indicate groups of spins that

TABLE I. Total diversity D of the studied examples. The
results are for approximation ratio ar = 0.0005 for a quasi-1D
setup, and ar = 0.001 for a 2D setup. We show quantiles 20%,
50% (median), and 80% of 100 disorder instances. They follow
from the approximate tensor-network-contraction-based branch-and-
bound calculations to identify the low-energy states, followed by a
greedy algorithm to identify independent configurations with nor-
malized distance between any pair of configurations above R = 1/8.

q = 20% q = 50% q = 80%

quasi-1D N = 128 1 2 2
quasi-1D N = 256 3 5 8
quasi-1D N = 512 13 16 24
2D L = 30 4 7 11
2D L = 40 4 6 12

have to be flipped to jump from one local minimum to another
one. An example of some large droplets above the ground state
is shown in Fig. 1(b) for a 2D lattice.

We apply the above procedure both for quasi-1D and 2D
setup. In the former, it is not particularly hard to extract all the
low-energy states within the approximation ratio ar = 0.0005,
which we employed in our examples (we later use this knowl-
edge to calculate the probability of any such configuration
following MPS time-dependent quench simulations). Such a
feat becomes impossible in the 2D setup as the total num-
ber of low-energy classical configurations (with ar = 0.001
used here) is enormous, particularly for the largest lattices of
N = 40×40 spins that we consider. In the latter case, even
a compressed description of the full low-energy manifold
produced by such an algorithm is prohibitive for ar of inter-
ests. We introduce the course-graining in the above merging
procedure to overcome such limitations, discarding droplets
with sizes below a few spins cutoff (which still can add up
during consecutive merges). Fundamental limitations of that
approach are ultimately related to the finite numerical pre-
cision and the accuracy of the approximate boundary-MPS,
though we corroborate the convergence by repeating simu-
lations for different temperatures and sizes of the boundary-
MPS representation, see Appendix B for further numerical
details.

To approximate (from below) the ground-truth diversity D
and to identify the seeds of basins of attraction, we resort
to a simple greedy algorithm. We start with the ground state
configuration and iterate over the rest of identified states by an
order that is indexed according to their residual energy above
the ground state. The particular state becomes a seed of a new
basin if its distance from each of the already identified seeds
is larger than the desired normalized distance that we set at
R = 1/8. Such a procedure is giving us an approximation for
the true diversity measure D for each instance. We show the
result of such a procedure for a particular disorder instance in
Fig. 1(b), where we identify D = 6 distinct attraction basins.
Smaller droplets, that have not been shown in the plot, can
be consequently flipped to further explore each basin of at-
traction. We provide further information on identified D for
various setups and system sizes in Table I.
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FIG. 2. Schematic of time evolution and shape of multiple quantum critical fronts for disordered quasi-1D and 2D Ising models. We show a
few sample profiles for quantum fluctuations driven by spatio-temporal inhomogeneous external magnetic field gi(t ) in Eq. (3). This allows for
spins (variables) that already experience the phase transition to influence the other variables in many different ways, essentially redistributing
and suppressing defects, thus increasing the diversity of solutions. The value of the external magnetic field gi(t ) is indicated with color-gradient
changing between the initial (red) and final values (blue). Black dots indicate spins, and solid lines are the nonzero couplings Ji, j . We show
a quasi-1D chain with a single cluster in panel (a) and multiple clusters in panel (b). The dashed lines indicate borders between clusters. We
discuss the specific procedure we used to obtain them for numerical experiments in this work in Sec. VI. In panel (c), we show time snapshots
of the magnetic fields for a 2D lattice divided into three clusters.

V. CONTROLLING INHOMOGENEOUS QUANTUM
PHASE TRANSITIONS

The approach overviewed in the previous section gives
us reference solutions and their diversity for the considered
set of problems. We can now explore a diversity of solu-
tions in quantum algorithms. In particular, we focus on a
class of solvers employing quantum fluctuations induced by
the transverse fields within a standard adiabatic quantum an-
nealing paradigm. We also consider their generalization to
quasi-adiabatic inhomogeneous quantum annealing and ex-
plore whether they may provide a way to improve TTS or
TTD. Here, we briefly motivate this generalization.

Inhomogeneous driving protocols as shortcuts to adi-
abaticity [49,50] have been motivated by studies of the
Kibble-Zurek mechanism [51,52]. The critical front is tak-
ing the system across a critical point one part after another;
see Fig. 2. Light cones or causal zones that are forming
can best explain the reduction of defects during a quantum
quench as a part of the system that had crossed the criti-
cal point earlier can bias the part of the system crossing it
later. That can happen if the spatial velocity of the inhomo-
geneous front is smaller than the velocity with which the
information propagates in the system. This intuition applies
both to classical [53–57] and quantum system [24,33,58–66].
For quantum phase transitions, the examples include crossing
the continuous critical points [58,59,63]—including the case
with long-range interactions [66] or preparing the critical state
itself [60], first-order transitions within mean-field treatment
[61,62], and unfreezing the Griffiths singularities for disor-
dered systems [24,33]. The quantum case can be understood
via opening the energy gap—or engineering the structure of
the low-energy spectrum [24]. This casually induced quan-
tum gap is dictated by the shape of the front and universal
many-body properties of the critical point. In Fig. 3(a), we
illustrate that such a mechanism can also be applied in frus-
trated systems, where we show that inhomogeneous driving
can, in some cases, substantially decrease the residual energy
in the quasi-1D setup with random interactions.

Multiple critical fronts [24], which simultaneously take
separate parts of the system through the transition, can consid-
erably speed up the process, however, at the cost of creating
defects between merging clusters. While detrimental at first
sight, the multiple driving fronts provide a new mechanism
to control the light cones influencing where the defects are
most likely created. This mechanism could change the prob-
ability distribution of defects to have a high presence on the
desired places with low Ji j minimizing the energy cost. This
essentially allows one to target a low-energy manifold in a
controllable manner by adjusting the shape and speed of crit-
ical fronts to create a diverse domain walls that have minimal
cost. Here we apply such a mechanism to frustrated systems,
both to reach the complicated, potentially degenerate, ground-
state energies and as a strategy to explore the low-energy
subspace capturing a diversity of near-optimal solutions.

The Hamiltonian of generalized transverse field Ising
model with space-time separated critical fronts can be
written as

Ĥ (t ) = ĤP(t ) −
N∑

i=1

gi(t )σ̂ x
i , (3)

with σ̂ z
i and σ̂ x

i being the standard Pauli operators for
an ith spin. The Hamiltonian ĤP(t ) = ∑

i< j Ji, j (t )σ̂ z
i σ̂ z

j +∑N
i=1 Ji,i(t )σ̂ z

i , which is diagonal in the computational basis,
encodes the classical Ising Hamiltonian in Eq. (1). The trans-
verse fields vary smoothly in time between gi(0) = 1 for the
initial t = 0, and gi(ta) = 0 for the final or annealing time ta
(the unit of time is fixed by setting h̄ = 1 and the amplitude
of couplings |Ji, j | � 1). We will use a protocol where the
couplings are gradually switched-on in time, proportional to
the switching-off of the transverse field. This entails intro-
ducing time-dependent couplings as Ji, j (t ) = (1 − gi(t )/2 −
gj (t )/2)Ji, j , so that at the initial time Ĥ (0) = −∑N

i=1 gi(t )σ̂ x
i ,

and the system is initialized in the ground state, being the
equal-weights superposition of all classical configurations. At
the final time, Ĥ (ta) corresponds to the original problem HP.
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FIG. 3. Inhomogeneous quenches for quasi-1D frustrated Ising
model. In panel (a), we show the reduction of the residual energy
allowed by intermediate values of the inhomogeneous front’s slope
α, comparing with the standard homogeneous protocol where α = 0.
The latter visibly flatten out at long ta, indicating slower-than-power-
law dependence on the annealing time ta. While the best residual
energy (here we plot median of 100 instances) is obtained for α =
1/64 at long times, we note that an optimal protocol is instance-
dependent: black circles that represent the best results from the set of
available α’s give smaller energy than selecting the same single α for
all instances. Here, we employ an inhomogeneous driving protocol
with one cluster, as depicted in Fig. 2(a). In panel (b), we focus on
TTD and a protocol involving multiple fronts [see Fig. 2(b)]. With
increasing system size and targeted diversity ratio dr , an inhomo-
geneous driving with a portfolio of α’s allows outperforming the
standard homogeneous approach. It becomes particularly relevant
for some hard instances (see scattered plots in Fig. 5 for further
evidence), outside of the regime of small-size effects where quick
repetitions still turn out to optimize TTD; here, the results for each
point are optimized with respect to ta.

As a possible strategy to improve the diversity of solutions,
we make the fields gi(t ) explicitly space-time dependent. To
specify the driving protocol, we are going to divide the lat-
tice into M nonoverlapping clusters, see Fig. 2, and here we
assume the transverse field of the form

gi(t ) =
M∑

k=1

f (k)
(
d (k)

i − v(k)t
)
, (4)

where f (k) is nonzero for spins inside kth cluster, and zero for
spins that do not belong to the cluster, d (k)

i is a distance of ith

lattice site from the center of the cluster and a function f (k)

determines the shapes of the propagating fronts.
In this work, we use Euclidean distance on 1D and 2D

lattice and mean position of the spins belonging to the cluster
to specify its center. We assume time-independent velocity
v(k), which depends on the maximal d (k)

i for spins belonging
to the kth cluster, d (k)

max, and on the shape of the front encoded
by f (k). Here, we take a linear front with the (possibly
cluster-dependent) spatial slope α(k),

f (k)
(
d (k)

i − v(k)t
) = [

1 + α(k)
(
d (k)

i − v(k)t
)]

0,1, (5)

where we limit the possible values to lie between 0 and 1,
introducing [x]0,1 = max(0, min(1, x)). Finally, the velocity

v(k) = 1+α(k)d (k)
max

α(k)ta
, where ta is the annealing time. Such a front

is initialized at the center of the cluster and propagates toward
the cluster’s boundaries, see Fig. 2, utilizing total available
time ta. For alternative constructions of the driving protocol
with multiple critical fronts, see Ref. [24].

In the limit of α(k) → 0, we recover the standard homoge-
neous protocol with gi(t ) = 1 − t

ta
; however, then the spatial

velocity v(k) → ∞, limiting effective causal communication.
In the limit of α(k) → 1, one recovers a one-spin-at-a-time
protocol limiting the spatial extend of quantum fluctuations.
This intuition allows us to expect optimal results for some
intermediate values of the slope α(k).

VI. CONSTRUCTING NONEQUILIBRIUM QUENCHES
FOR ENHANCED DIVERSITY

Finally, we can quantify the performance of annealing pro-
tocols for our set of problems and, in particular, explore the
potential gains offered by an inhomogeneous driving strategy.
We start in Fig. 3 with an example of a connectivity graph
forming quasi-1D chains. Figure 3(a) shows residual energies
for relatively short chains of N = 128 spins and inhomoge-
neous driving protocol where all system spins form a single
cluster, corresponding to a driving protocol pictorially shown
in Fig. 2(a). The latter driving strategy allows for a notice-
able reduction of the excitation energy for longer annealing
times, reducing the number of generated defects. However,
the optimal slope of the inhomogeneous front turns out to
be instance-dependent, which suggests using a portfolio of
protocols with various slopes.

Gains in the residual energy (in particular for longer an-
nealing times) do not have to directly translate to TTS,
where the scenario involves multiple repetitions of the quench
followed by measurement of the resulting classical configura-
tion. We study the latter in Fig. 3(b), where we also consider
inhomogeneous protocols driven within multiple clusters; see
Fig. 2(b). As a proof of principle, here we set the borders
of clusters to approximately correspond to the low-energy
droplets outputted by the tensor-network branch-and-bound
algorithm described in Sec. IV; see below for further details.
We should stress here that rough droplets’ boundaries are
only needed here, and we do not include information about
the low-energy spin configurations. As a baseline study, we
tested our protocol for uniform distribution of random clus-
ters without observing noticeable gains. This confirms the
intuition that proper estimation of the cluster boundaries is
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FIG. 4. Time-to-diversity-ratio: homogeneous quench vs a port-
folio of inhomogeneous protocols in 2D disordered Ising model.
A portfolio of inhomogeneous fronts allows to substantially reduce
TTD required to reach intermediate and large values of the diver-
sity ratio dr . It opens a way to sample from attraction basins that
otherwise are inaccessible in reasonable times by the standard homo-
geneous driving. A separation (indicated with blue and red regions
for 50% and 80% quantiles, respectively) grows with increasing
system size, where we show a lattice of 30×30 variables in panel
(a) and 40×40 in panel (b). We plot the median TTD (q = 50%), as
well as the results for harder instances at q = 80% quantile (of 100
instances), where the separation looks more pronounced.

needed for discovering rare solutions. Indeed, as we show in
a subsequent work, efficient approximate estimation of the
droplets boundaries can be achieved, by similar methods as
presented here, that can be applied to arbitrary graphs without
having any detailed knowledge of the ground or low excitation
manifolds [67].

The advantage provided by inhomogeneous schedules,
measured in terms of the required TTD for various targeted
diversity ratios dr at fixed approximation ratio ar , becomes
significant with increasing system sizes where we see a grow-
ing separation between the performance of homogeneous and
inhomogeneous schedules; see Fig. 3(b). The small-size effect
appears to still be dominant for a setup with N = 128 spins,
where frequent repetitions of relatively fast quenches serve
as the best strategy (in that case, the optimal ta = 28 for the
median instance, with the optimum moving towards smaller
values of ta for harder instances).

The results for a 2D lattice are collected in Fig. 4. Here,
the gains allowed by the algorithmic (multiple-fronts inho-
mogeneous) annealing schedule are even more noticeable. In
particular, the standard homogeneous schedule is timing out
with the increasing diversity ratio dr , while the inhomoge-
neous one is still able to output some rare distinct low-energy
configurations. According to that metric, for a 40×40 spins
system, we see achievable diversity dr enhanced by around
40% of the maximum (both for a median and for harder
instances at 80% quantile). However, in the opposite limit of
dr → 0 in Fig. 4, one recovers the standard figure-of-merit
of TTS, where the separation between the two protocols is
negligible for median instances.

We collect further numerical evidence supporting such
conclusions in the Appendix, where, in Figs. 5 and 6, we
gather the scatter plots comparing the two driving strategies
for all instances. Here, one can see that the fraction of hard-
to-sample (timing out) instances can be reduced by more than
25% of the total, particularly in the limit of largest system
sizes and targeted diversity ratios presented there.

We now comment on setting up multiple-front driving
protocols simulated in our numerical experiments. Specifi-
cally, on dividing the lattice into clusters pictorially shown
in Fig. 2. The tensor-network procedure of Sec. IV gives us
reference diverse low-energy configurations seeding targeted
basins of attraction. For quasi-1D systems in Fig. 3(b), we
form the boundaries between clusters at positions correspond-
ing to the boundaries of all droplets connecting those states
with the ground state. We also absorb small clusters of few
spins into neighboring ones—we only have clusters with sizes
above 16 spins and an average cluster size of approximately
80 spins.

To simulate the quench dynamics in the quasi-1D setup,
we employ the time-dependent variational principle (TDVP)
for MPS [68,69] that projects the Schrödinger equation with
nonlocal Hamiltonian into the tangent space of the MPS
parametrization manifold. This allows one to integrate it by
performing updates of individual MPS tensors. We consider
100 disorder instances for each system size and select the
same critical fronts’ slope α in all clusters. Finally, having
the final state after the quench, we calculate the measurement
probability for each low-energy configuration within the tar-
geted ar . It allows us to calculate the probability of obtaining
a representative configuration from each basin of attraction.
Those are used to estimate TTS and TTD as described in
Appendix A. In this setup, we considered instances with the
global reflection symmetry, and we merge basins differing
by a global spin-flip transformation. The procedure is re-
peated for α = 0, 1/128, 1/64, 1/32, and a range of annealing
times. We choose a sufficiently small approximation ratio of
ar = 0.0005 to avoid benchmarking relatively easy problems
for larger ar or facing vanishing diversity for too small ar .

For the 2D setup, we estimate the probability of observing
each targeted basin of attraction by employing QMC. Here,
we follow an alternative approach to quasi-1D setup due to
the algorithm’s different nature. First, we consider a portfo-
lio of clusters. Here, we start with large connected droplets
between any pair of diverse low-energy configurations that
seed targeted basins of attraction. We group those droplets into
nonoverlapping sets (including their completion to the whole
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FIG. 5. Comparison of homogeneous and inhomogeneous driv-
ing strategies in quasi-1D setup. The scattered plots collect TTS and
TTD for 100 disorder instances overviewed in Fig. 3(b). The first
row shows TTS for a quasi-1D setup for ar = 0.005, and the second
row shows the corresponding data for TTD to dr = 0.8 at normal-
ized radius R = 1/8. The gray bars indicate the timed-out instances,
with digits giving the percentage of such instances (separately, for
homogeneous protocol only in the top bar, for the portfolio of inho-
mogeneous quenches only in the right bar, and simultaneously for
both strategies at the intersection of two bars). Of particular interest
are the selected hard (timed-out) instances that become unfrozen
by inhomogeneous strategy. Each set of instances and protocol is
optimized over annealing times.

2D lattice) forming a portfolio of clusters. Again, we do not
form small connected clusters of a few spins here, absorbing
them into neighboring clusters. This results in a mean cluster
size of approximately 300 for L = 30, and 600 for L = 40.
For each QMC restart, we sample from that portfolio, and, for
each cluster, randomly choose α from 0, 1/50, 1/20, 1/10,
and 1/5. We record the solutions for ar = 0.002 together with
their distance from each of the targeted states. We count a
solution as belonging to the closest basin of attraction, es-
timating the probability of reaching each basin. We perform
simulations with α = 0 in all clusters (i.e., standard homoge-
neous quench) as a reference. In building the inhomogeneous
portfolio, we can explicitly include a purely homogeneous
one—we indeed used such a possibility here with a 1/5 partic-
ipation ratio. The seeds of the targeted attraction basins have
been limited to be within ar = 0.001 due to numerical limita-
tions in identifying them using our branch-and-bound baseline
algorithm of Sec. IV. However, this limitation of attraction
basins that are seeded by configurations below ar = 0.001,
with counting a QMC solution as low-energy one when it is
within ar = 0.002, removes the possibility to have the basins
of attractions with only a few configurations within ar—which
would be artificially hard to sample.

FIG. 6. Comparison of homogeneous and inhomogeneous driv-
ing strategies for 2D disordered Ising model. The data corresponds
to the protocols studied in Fig. 4. The first row shows TTS for
ar = 0.002 and L = 30 (left column) and 40 (right column), and the
other rows focus on TTD to the targeted dr = 0.5 and 0.8. Gray bars
in the plots indicate that the solution has not been reached within the
maximal allowed time. The inhomogeneous strategy allows to sig-
nificantly reduce the number of time-outs for larger desired diversity
ratios. Each system size and protocol is optimized over annealing
time ta, minimizing the number of time-outs, with the same ta used
for all 100 instances.

VII. CONCLUSIONS

We introduced a procedure to decompose the low-energy
spectrum of a discrete optimization problem into likely
independent clusters of solutions. This decomposition leads
to a measure to quantify the diversity of independent,
high-quality solutions within a given approximation ratio. We
have examined this new measure on novel quantum annealing
schedules. In particular, we have constructed algorithmic
quantum annealing procedures by combining inhomogeneous
driving strategy with efficient approximate tensor network
contractions estimating distribution of topological defects
characterizing low-energy domain walls. Such density and
position of defects can be engineered by suitable choice of
multiple inhomogeneous fronts driving the fluctuations in the
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system to minimize the residual energy of final states. We
showed that such techniques can lead to sampling rare high
quality solutions that are inaccessible by the off-the-shelf
homogeneous strategies in the same timescales. In an
accompanying work, the diversity measure introduced here
was used as a new metric to experimentally quantify sampling
power of quantum annealers against classical counterparts
such as parallel tempering [70].

In addition to clustering the low-energy spectrum into
likely independent types, one could employ entropic
measures of diversity on top of them, going beyond the
number of classes D that was employed in this work.
Alternative strategies to estimate the boundaries of clusters
can also be envisioned by using homogeneous annealing as
a procedure to identify likely positions of defects, which
can be used to set up the subsequent inhomogeneous driving
protocols.

In related work, we show how one can adaptively learn
nontrivial clusters of variables for generalized spin-glass
Hamiltonians with k-local interactions, or arbitrary Boolean
logic formulas in conjunctive normal forms, by efficiently
estimating the geometry of the solutions in an instance-
wise fashion [67]. This method leads to the construction of
quantum-inspired nonlocal thermal annealing algorithms for
sampling diverse sets of near-optimal solutions that are indeed
sensitive to variations in the inputs, thus applicable to frozen
regimes near computational phase transitions where OGP is
expected to hold [67].
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APPENDIX A: CALCULATION OF TTS AND TTD

We calculate TTS in a standard way, namely, for 99%
success ratio, we employ the formula

TTS = log(0.01)

log(1 − r)/ts
, (A1)

where r is the estimated success rate (probability of finding
a solution within targeted ar), and ts is the time of a single
run (the number of sweeps in case of quantum Monte Carlo
simulations of 2D systems, and annealing time ta for quantum
annealing simulation in the quasi-1D setup). Such a formula
allows us to also average over the portfolio of solvers (e.g.,
combining runs with different front shapes α for the quasi-1D
setup),

TTS = log(0.01)

log (1 − rk )/t k
s

, (A2)

where the overline indicates a mean over the set of solvers
indexed with k, that, e.g., might encode various values of
α in our case. We use an algebraic mean for the quasi-1D
simulations, meaning that all α’s are equally weighted. In
principle, this also allows one to consider situations where

different protocols have different times of a single run, and—
for algebraic mean—are selected at random with the same
probability per unit of time.

To estimate TTD we have a success rate for observ-
ing a state belonging to each attraction basin rl with l =
1, 2, . . . , D, which we order as r1 > r2 > · · · > rD. Analyti-
cal evaluation of TTD does not allow for a simple formula like
Eq. (A1). While one can resort to numerics, we approximate
TTD by selecting r = rl for ceiling l = �Ddr� and using for-
mula in Eqs. (A1) and (A2). This estimate becomes accurate
in the case when there is a large separation between consec-
utive rk—which is indeed the case for rare attraction basins
and larger values of dr . It overestimates the actual value for
degenerate rl , or in the limit of dr → 0 when the actual TTD
converges to TTS. Still, we observe that using the approximate
formula for TTD in the limit dr → 0 does not changes the
results qualitatively.

We directly compare the TTS and TTD for homogeneous
and inhomogeneous strategies for all considered disorder
instances for a quasi-1D setup in Fig. 5 and for a 2D setup
in Fig. 6. For completeness, Table I includes an overview
of total diversities for considered problems. We note that for
the considered ar we do not see a clear correlation between
diversity of a given instance and its hardness reflected by TTS
and TTD.

The TTS (TTD) is optimized over annealing times for each
panel and protocol. For instance, for N = 256 in Fig. 5, the
globally optimal ta for homogeneous protocol TTS is ta = 28,
and for a portfolio (including α = 0) ta = 29. It reflects a
general trend that we observe in our examples, where op-
timal ta for inhomogeneous driving tends to be larger than
for homogeneous driving. That is also the reason behind the
appearance of a single extreme instance with TTS inhomo-
geneous timing-out (top left panel of Fig. 5), as this instance
gets trapped in local minimum for longer ta � 29. It illustrates
that forming a portfolio of annealing times might help solve
such extreme points, however, at the cost of increasing typ-
ical TTS. Alternatively, we could also optimize ta for each
solver and strategy included in the portfolio, which we have
not done here for simplicity. The optimal ta for TTD (N =
256, dr = 0.8) are ta = 28 for inhomogeneous and ta = 27

for homogeneous, which reflects another trend that we ob-
verse, where increasing targeted diversity dr promotes using
shorter ta.

APPENDIX B: NUMERICAL DETAILS

The reference low-energy subspace results discussed in
Sec. IV have been obtained using the open-source imple-
mentation of Ref. [36] available at Ref. [71]. Specifically,
for the largest considered 2D examples of N = 1600 spins,
we obtain the final results using inverse temperature β = 5,
boundary-MPS bound dimension χ = 64, and 1024 partial
configurations kept during the search. The cutoff on the re-
tained droplet size is 40 and the energy cutoff corresponds to
an approximation ratio of 0.001. For corroboration, we com-
bine the results of 4 runs where the search (PEPS contraction)
is performed from different edges of the square lattice and
checked against different selections of algorithm parameters.
To simulate the sampling from quantum annealing quenches
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in Sec. VI, in the quasi-1D setup we use TDVP for MPS
[69] to integrate the real-time evolution. Due to the inhomo-
geneous and nontranslationally invariant nature of the setup,
we combine one-site TDVP updates with only local appli-
cation of more computationally expensive two-site updates.
The latter is used to enlarge a given MPS bond dimension
and is triggered based on Schmidt cutoff on a given MPS
cut, which we set typically at 10−6, and the maximal bond
dimension of up to 50 (which for selected points was checked
for convergence against bond dimension 100). The time step
dt = 1/8 with 2nd order integrator proves to be small enough

due to relatively slow quenches. To avoid potential instability
of TDVP applied to product states (the initial state at gi = 1),
we start the dynamics in the ground state at gi = 0.95. The
TTS and TTD results are optimized over a set of annealing
times ta = 2m with m = 4, 5, 6, . . . , 10.

For annealing quenches in the 2D setup, we run QMC
simulations at inverse temperature β = 24. The number of
QMC sweeps in a single repetition is optimized over the
set 200, 500, 1000, 2000, …, 100 000 (for L = 40). The
statistic is gathered over 25 000 repetitions for each set of
parameters.
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