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A lifting relation connecting the distribution function explicitly with the hydrodynamic variables is neces-
sary for the Boltzmann equation-based mesoscopic approaches in order to correctly initialize a nonuniform
hydrodynamic flow. We derive two lifting relations for Guo et al.’s total-energy double-distribution-function
(DDF) kinetic model [Z. L. Guo et al., Phys. Rev. E 75, 036704 (2007)], one from the Hermite expansion of
the conserved and nonconserved moments, and the second from the O(τ ) Chapman-Enskog (CE) approximation
of the Maxwellian exponential equilibrium. While both forms are consistent to the compressible Navier-Stokes-
Fourier system theoretically, we stress that the latter may introduce numerical oscillations under the recently
optimized discrete velocity models [Y. M. Qi et al., Phys. Fluids 34, 116101 (2022)], namely a 27 discrete
velocity model of the seventh-order Gauss-Hermite quadrature (GHQ) accuracy (D3V27A7) for the velocity
field combined with a 13 discrete velocity model of the fifth-order GHQ accuracy (D3V13A5) for the total
energy. It is shown that the Hermite-expansion–based lifting relation can be alternatively derived from the latter
approach using the truncated Hermite-polynomial equilibrium. Additionally, a relationship between the order
of CE expansions and the truncated order of Hermite equilibria is developed to determine the minimal order of
a Hermite equilibria required to recover any multiple-timescale macroscopic system. Next, three-dimensional
compressible Taylor-Green vortex flows with different initial conditions and Ma numbers are simulated to
demonstrate the effectiveness and potential issues of these lifting relations. The Hermite-expansion–based lifting
relation works well in all cases, while the Chapman-Enskog-expansion–based lifting relation may produce
numerical oscillations and a theoretical model is developed to predict such oscillations. Furthermore, the
corresponding lifting relations for Qi et al.’s total energy DDF model [Y. M. Qi et al., Phys. Fluids 34, 116101
(2022)] are derived, and additional simulations are performed to illustrate the generality of our approach.
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I. INTRODUCTION

Compared to the traditional computational fluid dynamics
(CFD) methods solving directly the Navier-Stokes-Fourier
(NSF) system, the Boltzmann-equation–based mesoscopic
CFD methods, such as the lattice Boltzmann method (LBM)
[1], the unified gas kinetic scheme (UGKS) [2], and the
discrete unified gas kinetic scheme (DUGKS) [3], instead
solve a model Boltzmann equation (i.e., the kinetic model).
In the limit of small Knudsen number, which is of the pri-
mary interest here, these methods amount to solving the NSF
system. While these mesoscopic methods have the advantage
of addressing noncontinuum flows, as an approach living in
the higher-dimensional configuration space, they all require
a proper initialization of a number of discrete distribution
functions based on the initial hydrodynamic conditions. The
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number of hydrodynamic variables is typically significantly
less than the number of distribution functions involved in the
kinetic model; therefore, specifying these distribution func-
tions from the knowledge of the hydrodynamic variables is
an underdetermined problem, which here is referred to as
the lifting relation [4]. Specifically, the distribution functions
in the Boltzmann-equation based methods involve both hy-
drodynamics variables and their spatial gradients according
to the Chapman-Enskog (CE) expansion [5]. Although the
existing literature has discussed several lifting relations, their
consistency and implications to robust numerical simulations
have not been carefully discussed; in particular, their perfor-
mances in turbulent flow simulations have not been carefully
examined.

The existing lifting relations or initialization meth-
ods have primarily concerned the incompressible vis-
cous flows, and they can be roughly divided into three
groups, i.e., the potentially costly iterative approach [6],
the Hermite-expansion-based lifting relations [7,8], and the
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Chapman-Enskog-expansion-based lifting relations [4,9–11].
First, the iterative approach relies on numerical iterations of
the lattice Boltzmann equation under the constraints of initial
hydrodynamic conditions. For example, Mei et al. [6] ob-
tained the initial distribution functions by evolving the lattice
Boltzmann equation while constraining the hydrodynamic ve-
locity field in the equilibrium distribution, and this iterative
process yields the correct pressure field equivalent to solving
the pressure Poisson equation. The number of iterations could
be large for a nonuniform turbulent initial flow. Similarly,
van Leemput et al. [12] fixed the known conserved moments
at every iteration in the moment space, which are naturally
suited for the multiple-relaxation-time (MRT) LBM method.
The number of iterative steps is typically of the order of 1000
for the initialization of two-dimensional Taylor-Green vortex
flow [6]. Three-dimensional (3D) simulations could require
more iterations for proper initialization.

Second, the Hermite-expansion–based lifting relations ex-
press the equilibrium part of the distribution functions in
terms of conserved hydrodynamic variables and the nonequi-
librium part in terms of nonconserved moments such as
the viscous stress and heat flux. Krüger et al. [7] speci-
fied the nonequilibrium part of the distribution functions in
terms of the viscous stress tensor when solving the force-
free Boltzmann-Bhatnagar-Gross-Krook (Boltzmann-BGK)
equation [13] for isothermal viscous flows. Tong et al. [8]
derived the nonequilibrium part of the distribution function
for the forced Boltzmann-BGK equation and applied their
lifting relations in a multiscale approach combining LBM and
molecular dynamics simulation. This approach may not be
self sufficient as it requires prior knowledge of the constitutive
relations for the nonconserved moments.

Third, the Chapman-Enskog-expansion–based lifting rela-
tions are typically derived by first expanding the distribution
functions to a specific order in terms of the Knudsen number
or other small parameter, converting all the time and space
derivatives of the equilibrium distribution functions into the
spatial derivatives of the hydrodynamics variables by the
hydrodynamic equations, and then dropping certain terms
judged to be insignificant. In this process, this approach pro-
vides the constitutive relations for the nonconserved moments.
Skordos [9] proposed an approximate expression for the
nonequilibrium part of the distribution based on the first-order
CE expansion, for the force-free Boltzmann-BGK equation,
and retained only the terms up to O(Ma) for low-Mach-
number flows. Imamura et al. [10] provided a more rigorous
derivation of the nonequilibrium distribution based on the
first-order CE expansion of the force-free Boltzmann-BGK
equation and showed that the nonequilibrium distribution is
proportional to the strain-rate tensor. To better realize the
momentum conservation in the lifting relations, Xu et al.
[4] performed the second-order CE expansion of the force-
free Boltzmann-BGK equation and discarded the terms of
O(Ma2) for low Mach-number (Ma � 0.2) weakly compress-
ible flows. Tong et al. [11] extended the first-order CE analysis
to the passive-scalar distribution function. Due to the dis-
cretization errors, they [14] later claimed that the second-order
CE expansion of the lattice Boltzmann equation should be
used to construct the lifting relations in order to be more
consistent with the momentum equation.

Moreover, the CE expansions are not always limited to
the distribution function. Salimi et al. [15] considered the
second-order CE expansion of the force-free MRT lattice-
Boltzmann equation in the moment space and expressed the
distribution moments in terms of the equilibrium moments
and their derivatives. Overall, these previous studies concern
mainly the incompressible flow.

In contrast to the incompressible flow where the en-
ergy equation is not present, the mesoscopic methods for
the thermal compressible flow involve the energy equa-
tion in addition to the mass and momentum equations. To
make these mesoscopic methods computationally efficient,
a second reduced distribution is introduced in order to de-
scribe the internal energy or temperature field, known as the
double-distribution-function (DDF) approach. Depending on
the specific definition of this second reduced distribution,
there are several variations of the DDF approach, for example,
the total-energy DDF approach [16], and the partial-internal-
energy DDF approach [17]. For the DDF approach, the first
reduced distribution function handles the mass and the mo-
mentum as in the incompressible flow, while the design of
the second reduced distribution function and its equilibrium
affects the required Gauss-Hermite quadrature (GHQ) accu-
racy [18–20]. With respect to the computational cost, the
total energy DDF approach, which utilizes two sets of 3D
off-lattice discrete particle velocity models (see Appendix A),
namely a 27 discrete velocity model of the seventh-order GHQ
accuracy (D3V27A7) [21,22] combined with a 13 discrete
velocity model of the fifth-order GHQ accuracy (D3V13A5)
[22], is currently the most efficient discrete velocity model
[19,20]. The proper lifting relations in the DDF approach for
compressible flows have not been systematically studied.

In the absence of discretization and Hermite expansion
errors, the recovery of the NSF system would require the
O(τ ) CE approximation for the distribution functions, which
amounts to the requirement of computing the velocity mo-
ments of the equilibrium distributions and their derivatives up
to specific orders. It must be noted that the required order of
the Hermite expansion of the equilibrium distributions must
be carefully designed according to the detailed expressions
of the different terms in the O(τ ) CE expansion as well as
the rigorous computation of all the nonequilibrium moments,
as shown in Table I. Specifically, as we shall show that each
time derivative of the equilibrium distribution could reduce
the accuracy order of the Hermite expansion by one order,
as implied by the multiple timescales (e.g., the advection
timescale, diffusion timescale, and other slower timescales)
of the physical problem. This subtle detail, if not fully ob-
served, could lead to incorrect lifting relations based on the
CE expansion.

In this work, we shall derive the lifting relations using two
alternative approaches to illustrate the importance of matching
the resulting lifting relations with the GHQ accuracy order
of the particle velocity model, as well as explaining a source
of numerical oscillations in one form of the lifting relations
caused by high-order Hermite expansion terms. Then 3D
compressible turbulence with a nonuniform initial flow, as
specified by the 3D Taylor-Green vortex problem, is simulated
using two alternative kinetic models [19,20] to demonstrate
the optimal and correct choice of the lifting relations.
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TABLE I. The required order of the Hermite expansion of the distributions in different DDF formulations in order to recover the NSF
system. g is the first reduced distribution with its equilibrium geq, and h is the second reduced distribution with its equilibrium heq.

Approach Total-energy DDF Partial-internal-energy DDF

Terms Viscous stress Heat flux Viscous stress Heat flux

g 2 2 2 3
h Not used 1 Not used 1
geq 3 3 3 4
heq Not used 2 Not used 2

The remainder of this paper is organized as follows. After a
description of the macroscopic model (Sec. II A), Guo et al.’s
total energy DDF mesoscopic model (Sec. II B), and the
DUGKS approach (Sec. II C), we present the detailed deriva-
tions and inter-comparisons of the Hermite-expansion–based
lifting relation (Sec. III A), the Chapman-Enskog-expansion–
based lifting relation (Sec. III B), and the CE expansions for
the truncated Hermite polynomial equilibria (Sec. III C). In
Sec. IV, numerical results of compressible flow using differ-
ent lifting relations are presented and compared. Section V
summarizes our work and key conclusions. Appendices A–E
provide a description of the discrete particle velocity models
D3V13A5 and D3V27A7 (Appendix A), a brief introduction
for Qi et al.’s total energy DDF model along with the corre-
sponding numerical results (Appendix B), the implementation
of the sixth-order targeted essentially nonoscillatory (TENO)
scheme [23] (Appendix C), the essential details of Hermite
polynomials (Appendix D), and the discussions of the Her-
mite expansions for the external force terms (Appendix E).

II. THE KINETIC MODEL AND NUMERICAL METHOD

A. Macroscopic governing equations

Different from the incompressible flow that treats tempera-
ture as a passive scalar, temperature in the energy equation for
a compressible flow is closely coupled with the mass and
momentum conservations. For example, the Euler equa-
tions describing continuum compressible flow of an ideal gas,
without nonequilibrium effects, are written in the form of

∂tρ + ∇ · (ρu) = 0, (1a)

∂t (ρu) + ∇ · (ρuu) = −∇p + ρb, (1b)

∂t (ρE ) + ∇ · (ρEu) = −∇ · (pu) + ρu · b, (1c)

where ρ(x, t ) is the density, x = (x1, . . . , xD) is the position in
D-dimensional space, where D is the space dimension of the
hydrodynamics variables, t is the time, u is the macroscopic
velocity, b is the external force, p is the pressure, E = 1

2 u2 + e
is the total energy per unit mass including the kinetic energy
and the internal energy per unit mass e = CvT , T is the
temperature, and Cv is the specific heat capacity at constant
volume. The ideal-gas equation of state (EOS), i.e., p = ρRT ,
is used where R is the specific gas constant. When the viscous
effect and thermal diffusion are considered, the macroscopic
equations are amended from the Euler equations Eq. (1) to the
NSF system, namely

∂tρ + ∇ · (ρu) = 0, (2a)

∂t (ρu) + ∇ · (ρuu) = −∇p + ∇ · σ + ρb, (2b)

∂t (ρE ) + ∇ · (ρEu) = −∇ · q − ∇ · (pu) + ∇ · (σ · u)

+ ρu · b, (2c)

where the Newtonian viscous stress tensor σ and the heat flux
q, up to the order of O(τ ), are given as

σ = 2μ(S − Iϑ/D) + μV ϑI, q = −κ∇T . (3)

Here μ = ρν is the dynamic viscosity and ν is the kinematic
viscosity, S = [∇u + (∇u)T ]/2 is the strain rate tensor, I is
the identity tensor, μV is the bulk viscosity, ϑ = ∇ · u is the
dilatation, κ = μCp/Pr is the thermal conductivity coefficient
given in terms of the Prandtl number Pr, and Cp is the specific
heat capacity at constant pressure. Assuming air as the work-
ing fluid, we employ Sutherland’s law [24] here, which has
the following form:

μ

μs
= 1.4042(T/Ts)1.5

(T/Ts) + 0.40417
, (4)

where μs = 1.716 × 10−5 kg/(m s) is the air dynamic viscos-
ity at the reference temperature Ts = 273.15 K.

The key idea in developing various kinetic models for a
continuum flow is to use the NSF equations Eq. (2) as the
design constraints [25]. Here we consider two specific total-
energy DDF models that can accommodate arbitrary Prandtl
numbers. The first is Guo et al.’s total-energy DDF model
[16], which has recently been re-examined in the framework
of DUGKS [20], where the bulk-to-shear viscosity ratio χ =
μV /μ is fixed to 2[1/D − 1/(K + 3)] once the internal degree
of freedom K is specified. The second model is Qi et al.’s
total energy DDF model, in which the bulk-to-shear viscosity
ratio is a free parameter in its design. Guo et al. adjust the
Prandtl number by introducing a separate relaxation time for
the energy distribution function, while Qi et al. accomplishes
this goal by designing a source term using a single relaxation
time. Both kinetic models properly recover the NSF system
under the CE analysis. We shall briefly introduce Guo et al.’s
model [20] in the following section, while Qi et al.’s model
[19] is summarized in Appendix B.

B. Guo et al.’s total energy double-distribution-function model

Guo et al.’s model starts with the Boltzmann-BGK equa-
tion [13],

∂t f + ξ · ∇ f + b · ∇ξ f = − 1
τ

( f − f eq ), (5)

where f (x, ξ, η, ζ, t ) is the density distribution function, ξ =
(ξ1, . . . , ξD) is the particle velocity in the D-dimensional
subspace as indicated by x, η is the particle velocity in the
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remaining (3 − D)-dimensional space, ζ = (ζ1, . . . , ζK ) de-
notes an internal kinetic variable of dimension K whose main
purpose is to adjust the specific heat ratio γ , ∇ξ is the nabla
operator in the ξ phase space, and τ = μ/p is the relax-
ation time. The equilibrium distribution f eq takes the standard
Maxwellian form

f eq(x, ξ, η, ζ, t ) = ρ

(2πRT )(K+3)/2
exp

(
−c2 + η2 + ζ 2

2RT

)
,

(6)
where c = ξ − u is the thermal fluctuating velocity. With
the given equilibrium distribution, it follows that Cv = (3 +
K )R/2 and the specific heat at constant pressure Cp = Cv +
R = (5 + K )R/2, yielding a specific heat ratio γ = Cp/Cv =
(K + 5)/(K + 3). The conservative variables are determined
by the moments of the distribution function and its equilib-
rium as

ρ =
∫

f dξdηdζ =
∫

f eq dξdηdζ,

ρu =
∫

ξ f dξdηdζ =
∫

ξ f eq dξdηdζ,

ρE = 1

2
ρu2 + ρe =

∫
ξ 2 + η2 + ζ 2

2
f dξdηdζ

=
∫

ξ 2 + η2 + ζ 2

2
f eq dξdηdζ. (7)

Matching the moment equations of f with the NSF system,
it can be shown that the viscous stress σ and the heat flux q
should be evaluated as

σ = −
∫

cc( f − f eq )dξdηdζ,

q =
∫

c
c2 + η2 + ζ 2

2
f dζdηdξ. (8)

To remove the internal degrees of freedom, we introduce
two reduced distributions,

g(x, ξ, t ) ≡
∫

f (x, ξ, η, ζ, t )dηdζ, (9a)

h(x, ξ, t ) ≡
∫

ξ 2 + η2 + ζ 2

2
f (x, ξ, η, ζ, t )dηdζ. (9b)

The collision kernel for the total energy distribution in Guo
et al.’s model [16] is divided into the mechanical energy part
and the internal energy part with two distinct relaxation times
in order to handle an arbitrary Prandtl number. Namely, the
corresponding Boltzmann-BGK equations for the two reduced
distributions in Eq. (9) are generalized to

∂t g + ξ · ∇g + b · ∇ξg = − 1

τg
(g − geq ), (10a)

∂t h + ξ · ∇h + b · ∇ξh = − 1

τh
[h − h(eq)]

+ Z

τhg
[g − g(eq)] + b · ξg,(10b)

where τg and τh are two relaxation times relating to the
momentum and energy relaxations respectively, τg = τ , τh =
τg/Pr, τ−1

hg = τ−1
h − τ−1

g , and Z = ξ · u − u2/2. The two

equilibrium distribution functions can be expressed as

geq(x, ξ, t ) = ρ

(2πRT )D/2
exp

(
− c2

2RT

)
,

heq(x, ξ, t ) = (3 − D + K )RT + ξ 2

2
geq. (11)

In terms of the reduced distributions, the conservative vari-
ables, the viscous stress, and the heat flux become

ρ =
∫

gdξ, ρu =
∫

ξgdξ, ρE =
∫

hdξ, (12a)

σ = −
∫

cc(g − geq )dξ, q =
∫

c(h − Zg)dξ

=
∫

chdξ + u · (σ − pI). (12b)

To recover the macroscopic equations, we perform the CE
analysis by taking τg and τh as small parameters. The CE
expansions of Eq. (10) yield the following approximations for
the two reduced distribution functions:

g = geq − τg(∂t + ξ · ∇ + b · ∇ξ )geq + O
(
τ 2

g

)
, (13a)

h = heq − τh[(∂t + ξ · ∇ + b · ∇ξ )heq − b · ξgeq ]

−Z (τg − τh)(∂t + ξ · ∇ + b · ∇ξ )geq + O
(
τ 2

g , τ 2
h

)
.

(13b)

If we truncate the expansions Eqs. (13a) and (13b) up to
the order of O(1), then the zeroth and the first-order veloc-
ity moment of g can lead to the mass conservation and the
momentum conservation in Eqs. (1a) and (1b), respectively,
and the zeroth-order velocity moment of h can recover the
energy equation in Eq. (1c). Moreover, if we truncate the
expansions Eqs. (13a) and (13b) up to the order of O(τ ) and
refine the aforementioned velocity moments, then the NSF
system, Eq. (2), can be recovered.

For the best computation efficiency, Guo et al. [20] utilized
two different 3D off-lattice discrete particle velocity models,
D3V27A7 and D3V13A5, for the two reduced distributions g
and h, respectively. Thus, a total of only 40 discrete particle
distributions are solved. Here D3V27A7 denotes a particle
velocity model in 3D space with 27 discrete velocities and
seventh-order GHQ accuracy; likewise, D3V13A5 is a par-
ticle velocity model in 3D space with 13 discrete velocities
and fifth-order GHQ accuracy. Therefore, the g-related terms
in Eq. (10b) should be projected to the D3V13A5 particle
velocity space. The CE analysis of the energy distribution,
specifically the heat flux moment at the NSF level, indicates
that moments up to the second order of g are needed when
recovering the energy equation, which is equivalent to the
requirement of moments of geq up to the third order. This then
implies the following Hermite projection [20] can be used

Z

τhg
[g − g(eq)] = 1 − Pr−1

τh
Z[g − g(eq)]

≈ Pr−1 − 1

τh
ω(ξ, T0)

ξ · σ · u
RT0

, (14)
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where ω(ξ, T0) = exp [−ξ 2/(2RT0)]/(2πRT0)D/2 is the
weighting function and T0 is the constant reference
temperature.

C. The DUGKS approach

The numerical simulations to be conducted in this study
utilizes the DUGKS approach. A brief description of the
DUGKS approach for solving the force-free total energy DDF
model is provided here. For convenience, we write Eqs. (10a)
and (10b) in a unified form,

∂tφ + ξ · ∇φ = − 1
τφ

(φ − φ′), (15)

where φ refers to either g or h and φ′ equals geq and heq +
(Pr−1 − 1)ω(ξ, T0)ξ · σ · u/(RT0), respectively. As a finite-
volume scheme, the computational domain of DUGKS is
discretized into many connected cells Vj with x j denoting the
positions of the cell centers. Integrating Eq. (15) over the cell
Vj from time tn to tn+1 = tn + �t and applying the midpoint
rule for the convective term ξ · ∇φ and the trapezoidal rule for
the collision term −(φ − φ′)/τφ , we obtain

φ̃n+1
j (ξ) = φ̃+,n

j (ξ) − �t

|Vj |Jn+1/2
φ (ξ), (16)

where two linear transformations, φ̃ = φ − φ′−φ

τφ

�t
2 and φ̃+ =

φ + φ′−φ

τφ

�t
2 , are introduced to convert the implicit scheme to

an explicit form. Here φ̃n
j , φ̃+,n

j , φn
j , and (φ′)n

j represent the
cell-averaged values of φ̃(x, ξ, tn), φ̃+(x, ξ, tn), φ(x, ξ, tn), and
φ′(x, ξ, tn), respectively. The flux across the cell interface is
given by

Jn+1/2
φ =

∮
∂Vj

(ξ · n)φ(x, ξ, tn+1/2)dS, (17)

where ∂Vj is the surface of Vj with the outward unit normal
vector n and tn+1/2 = tn + �t/2 ≡ tn + δt denotes the half
time step.

In the numerical implementation, we track φ̃ instead of the
original φ. The conservative variables, the viscous stress and
the heat flux at the cell center can be calculated by φ̃ as

ρ =
∫

g̃dξ, ρu =
∫

ξg̃dξ, ρE =
∫

h̃dξ, (18a)

σ = 2τg

2τg + �t

∫
cc(geq − g̃)dξ,

q = 2τh

2τh + �t

∫
ch̃dξ + u · (σ − pI). (18b)

The computation of flux across the cell interface in Eq. (17)
needs distribution functions at boundary nodes xb at the half
time step, which can be computed by integrating the Boltz-
mann equations, Eq. (15), along the characteristic line using
the trapezoidal rule, namely

φ(xb, ξ, tn + δt ) − φ(xb − ξδt, ξ, tn)

= δt

2

[(
φ′ − φ

τφ

)
(xb, ξ, tn + δt )

+
(

φ′ − φ

τφ

)
(xb − ξδt, ξ, tn)

]
. (19)

Similarly, another two auxiliary distribution functions,
namely φ̄ = φ − φ′−φ

τφ

δt
2 and φ̄+ = φ + φ′−φ

τφ

δt
2 , are intro-

duced to make the above explicit in time, giving

φ̄(xb, ξ, tn + δt ) = φ̄+(xb − ξδt, ξ, tn) ≈ φ̄+(x j, ξ, tn)

+ (xb − x j − ξδt )∇φ̄+(x j, ξ, tn), (20)

where φ̄+ may be constructed by linear interpolations
from the values at cell centers. To better capture the dis-
continuous structures such as shocklets in a compressible
turbulence without introducing numerical oscillations, the
gradient ∇φ̄+(x j, ξ, tn) at the cell center is calculated by dif-
ferencing the cell boundary values φ̄+(xb, ξ, tn) reconstructed
from cell-averaged values,

φ̄+,n
j (ξ) = 2τφ − δt

2τφ + �t
φ̃n

j (ξ) + 3δt

2τφ + �t
(φ′)n

j (ξ), (21)

through a the sixth-order TENO scheme (see Appendix C).
The distribution function in the flux Jn+1/2

φ is obtained by

φ(xb, ξ, tn + δt ) = 2τφ

2τφ + δt
φ̄(xb, ξ, tn + δt )

+ δt

2τφ + δt
φ′(xb, ξ, tn + δt ), (22)

where the computation of φ′(xb, ξ, tn + δt ) makes use of the
variables at the cell interface at the half time step. These
variables can be readily evaluated from Eq. (20) as

ρ(xb, tn + δt ) =
∫

ḡdξ, (ρu)(xb, tn + δt )

=
∫

ξḡdξ, (ρE )(xb, tn + δt )

=
∫

h̄dξ, σ(xb, tn + δt )

= 2τg

2τg + δt

∫
cc(geq − ḡ)dξ. (23)

The distribution function φ̃+ in Eq. (16) can be obtained by

φ̃+ = 4
3 φ̄+ − 1

3 φ̃. (24)

Finally, Eq. (16) is used to compute φ̃n+1
j (ξ).

The time step �t is determined by the Courant-Friedricks-
Lewy (CFL) condition,

�t = CFL · �xmin

umax + ξmax
, (25)

where CFL is the CFL number, �xmin is the minimal grid
spacing, umax is the maximal macroscopic velocity magnitude
of u, and ξmax is the maximal particle velocity magnitude of ξ.

III. THE DESIGN OF THE LIFTING RELATIONS

In this section, we discuss two approaches in constructing
the lifting relations and compare their similarities and differ-
ences from the theoretical perspective. This sets the stage for
them to be used as an initialization method for compressible
flow simulations to be discussed in Sec. IV.
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A. The Hermite-expansion–based lifting relation

Now we discuss the lifting relation based on the Hermite
expansion alone. We divide each distribution function into
the equilibrium part and the nonequilibrium part, namely
g = geq + gneq and h = heq + hneq. Relating the conservative
variables, the viscous stress, and the heat flux in Eqs. (11) and
(12) to the velocity moments of the equilibrium and nonequi-
librium distribution functions, we obtain

∫
geq dξ = ρ,

∫
ξgeq dξ = ρu,

∫
ξξgeq dξ = ρuu + pI,

(26a)∫
gneqdξ = 0,

∫
ξgneqdξ = 0,

∫
ξξgneqdξ = −σ, (26b)

∫
heq dξ = ρE ,

∫
ξheq dξ = (ρE + p)u,∫

hneqdξ = 0,

∫
ξhneqdξ = q − σ · u. (26c)

Based on the O(τ ) CE expansion, Eq. (13), recovering the
viscous stress and the heat flux in Eq. (3) at the NSF level
needs additional two velocity moments as follows:∫

ξiξ jξkgeq dξ = ρuiu juk + puiIjk + pu jIik + pukIi j, (27a)∫
ξξheq dξ = p(RT + E )I + (2p + ρE )uu. (27b)

Now we shall construct the Hermite-expansion–based lifting
relation for gH and hH from the above moments for g and h. By
setting all the unmentioned moments to zero for convenience,
the truncated Hermite expansions (see Appendix D) are

gH = geq,(3) + gneq,(2) = ω(ξ, T0)

[
3∑

n=0

1

n!
ã(n)

i (geq )H(n)
i

(
ξ̃
)+

2∑
n=0

1

n!
ã(n)

i (gneq )H(n)
i (ξ̃)

]
, (28a)

hH = heq,(2) + hneq,(1) = ω(ξ, T0)

[
2∑

n=0

1

n!
ã(n)

i (heq )H(n)
i

(
ξ̃
)+

1∑
n=0

1

n!
ã(n)

i (hneq )H(n)
i (ξ̃)

]
, (28b)

where geq,(3) and gneq,(2) represent the third-order Hermite expansion of geq and the second-order Hermite expansion of gneq,
respectively; heq,(2) and hneq,(1) indicate the second-order Hermite expansion of heq and the first-order Hermite expansion of hneq,
respectively; and ã(n)

i (φ) denotes the nth-order Hermite expansion coefficient of φ that can be computed by Eq. (D7). It is noted
that, in each case, the equilibrium part and nonequilibrium part are handled separately, with the equilibrium part being expanded
to one order higher in the Hermite expansion, as required by the CE analysis. The respective Hermite expansion coefficients
follow from the moments in Eqs. (26) and (27), namely

ã(0)(geq ) = ρ, ã(1)(geq ) = ρ
u√
RT0

, ã(2)(geq ) = ρ

[
uu
RT0

+
(

T

T0
− 1

)
I
]
, (29a)

a(3)
i jk (geq ) = ρ

[
uiu juk

(RT0)3/2
+
(

T

T0
− 1

)
uiIjk + u jIki + ukIi j√

RT0

]
, (29b)

ã(0)(gneq ) = 0, ã(1)(gneq ) = 0, ã(2)(gneq ) = − σ

RT0
, (29c)

ã(0)(heq ) = ρE , ã(1)(heq ) = (ρE + p)
u√
RT0

, ã(2)(heq ) = ρE

[
uu
RT0

+
(

T

T0
− 1

)
I
]

+ T

T0
(2ρuu + pI), (29d)

ã(0)(hneq ) = 0, ã(1)(hneq ) = q − σ · u√
RT0

. (29e)

The above formal procedure then completes the construction of the lifting relation and we have

geq,(3) = ω(ξ, T0)ρ

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 + u · ξ

RT0
+ 1

2

[(
u · ξ

RT0

)2

− u2

RT0
+
(

T

T0
− 1

)(
ξ 2

RT0
− D

)]

+ u · ξ

6RT0

{(
u · ξ

RT0

)2

+ 3

(
T

T0
− 1

)[
ξ 2

RT0
− (D + 2)

]
− 3u2

RT0

}
⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

, (30a)

gneq,(2) = ω(ξ, T0)

2RT0

[
Tr(σ) − ξ · σ · ξ

RT0

]
, (30b)

065301-6



CONSISTENT LIFTING RELATIONS FOR THE … PHYSICAL REVIEW E 108, 065301 (2023)

heq,(2) = ω(ξ, T0)ρE

{
1 + u · ξ

RT0
+ 1

2

[(
u · ξ

RT0

)2

− u2

RT0
+
(

T

T0
− 1

)(
ξ 2

RT0
− D

)]}

+ ω(ξ, T0)p

{
u · ξ

RT0
+
(

u · ξ

RT0

)2

− u2

RT0
+ T

2T0

(
ξ 2

RT0
− D

)}
.

(30c)

hneq,(2) = ω(ξ, T0)

RT0
ξ · (q − σ · u), (30d)

where Tr(φ) means finding the trace of the tensor φ.
In summary, the above Hermite-expansion–based lifting relations identify, through the O(τ ) CE expansion, the minimum

set of moments required to derive the NSF system. This minimum set is also what we used to determine the minimum GHQ
accuracy requirements of the discrete velocity models. Therefore, they are fully consistent with the GHQ accuracy of D3V27A7
and D3V13A5, namely they can be used to formally recover the viscous stress and heat flux precisely with these discrete velocity
models. However, the exact constitutive relations for the viscous stress and the heat flux, such as Eq. (3), are not made explicit in
the above procedure; they have to be worked out separately, for example, by the CE analysis (see the subsection below). Since
the velocity moments for Guo et al.’s model are the same as these for Qi et al.’s model, the two models then share the same
Hermite-expansion–based lifting relations, Appendix Eqs. (28) and (30), as shown in Appendix B. Furthermore, it can be shown
that the lifting relations, Eqs. (28) and (30), satisfy the two reduced Boltzmann equations, Eq. (10), up to the order O(τ ), as well
as the two reduced Boltzmann equations with source terms, Eq. (B3), up to the order O(τ ).

B. The Chapman-Enskog-expansion–based lifting relation

It is well known that the NSF system can be derived from the O(τ ) CE analysis. In this process, the zeroth- and first-
order velocity moments of the O(τ ) approximation of Eq. (13a) yield the continuity equation and the Navier-Stokes equation,
respectively, while the energy equation corresponds to the zeroth-order velocity moment of the O(τ ) approximation of Eq. (13b).
After utilizing the Euler equations, Eq. (1), to convert all the temporal derivatives in Eq. (13) into spatial derivatives and keeping
all terms up to the O(τ ) order, the following Chapman-Enskog-expansion–based lifting relations of the two reduced distributions,
gCE and hCE, can be obtained

gCE = geq

{
1 − τg

[(
c2

2RT
− D + 2

2

)
c · ∇(ln T ) + c · ∇u · c

RT
−
(

c2

RT
+ K + 3 − D

)
ϑ

K + 3

]}
, (31a)

hCE = heq − geq τg

2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(3 − D + K )R

Pr

(
c · ∇ − 2ϑ

K + 3

)
T +

[
(3 − D + K )RT + c2

Pr
+ u2 + 2c · u

]
·

[(
c2

2RT
− D + 2

2

)
c · ∇(ln T ) + c · ∇u · c

RT
−
(

c2

RT
+ K + 3 − D

)
ϑ

K + 3

]
⎫⎪⎪⎪⎬
⎪⎪⎪⎭. (31b)

It is noted that these results obtained from the CE analysis may require high-order GHQ accuracy of the discrete velocity models,
as shown below.

Several comments can be made here for the two sets of the lifting relations. First, the lifting relations satisfy all the expected
conserved velocity moments, the viscous stress moment, and the heat flux moment, namely

ρ =
∫

gCEdξ =
∫

gH dξ, ρu =
∫

ξgCEdξ =
∫

ξgH dξ, (32a)

ρE =
∫

hCEdξ =
∫

hH dξ, (32b)

σ = −
∫

cc(gCE − geq )dξ = −
∫

cc(gH − geq )dξ, (32c)

q =
∫

c(hCE − ZgCE)dξ =
∫

c(hH − ZgH )dξ. (32d)

The above moments ensure that the NSF system can be realized. In fact, all the moments in Eq. (26) are satisfied by Eq. (31).
This implies that Eq. (31) is identical to the Hermite-expansion–based lifting relations, Eqs. (28) and (30), if Eq. (31) were
projected onto the same truncated Hermite moments space. In other words, the only difference is that Eq. (31) contains some
terms from the respective Hermite expansion at higher orders.

Second, for the reason expressed above, the required GHQ accuracy, with ω(ξ, T0) as the Gauss weighting function, is different
for the two sets of the lifting relations. Specifically, the Chapman-Enskog–based lifting relation demands a higher-order GHQ
accuracy in order to cleanly remove any potential contamination to the lower-order moments contained in Eq. (28), resulting

065301-7



QI, WANG, GUO, AND CHEN PHYSICAL REVIEW E 108, 065301 (2023)

from numerical errors in treating higher-order moments. In other words, direct use of Eq. (31) in flow initialization in LBM or
DUGKS with given discrete velocity models could introduce these numerical errors, as shown in Sec. IV A.

Specifically, we take the forms of Eq. (31) for the viscous stress and the heat flux, we obtain

pI − σ =
∫

ccgCEdξ

=
∫

ccgeq

{
1 − τg

[(
c2

2RT
− D + 2

2

)
c · ∇(ln T ) + c · ∇u · c

RT
−
(

c2

RT
+ K + 3 − D

)
ϑ

K + 3

]}
dξ, (33a)

q + u · (pI − σ) =
∫

chCEdξ

=
∫

cheq dξ − τg

2

∫
cgeq

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(3 − D + K )R

Pr

(
c · ∇ − 2ϑ

K + 3

)
T +

[
(3 − D + K )RT + c2

Pr
+ u2 + 2c · u

]
·

[(
c2

2RT
− D + 2

2

)
c · ∇(ln T ) + c · ∇u · c

RT
−
(

c2

RT
+ K + 3 − D

)
ϑ

K + 3

]
⎫⎪⎪⎪⎬
⎪⎪⎪⎭dξ.

(33b)

In Eq. (33a), the integrals related to the temperature gradient are equal to zero, but their precise computation needs at least a
10th-order GHQ accuracy. The integrals for the remaining parts of the right-hand side of Eq. (33a) require the 8th-order GHQ
accuracy, which ensure the recovery of the constitutive relation σ = 2τgp(S − ϑI/(K + 3)). Futhermore, Eq. (33b) contains the
following integral terms:∫

cheq dξ = pu,

∫
cgeq

(
c · ∇ − 2ϑ

K + 3

)
T dξ = p∇T, (34a)

∫
cgeq

[
(3 − D + K )RT + c2

Pr
+ u2 + 2c · u

]

×
[(

c2

2RT
− D + 2

2

)
c · ∇(ln T ) + c · ∇u · c

RT
−
(

c2

RT
+ K + 3 − D

)
ϑ

K + 3

]
dξ

=
∫

geq

{[
(3 − D + K )RT + c2

Pr
+ u2

](
c2

2RT
− D + 2

2

)
cc · ∇(ln T )

+2

[
c · ∇u · c

RT
−
(

c2

RT
+ K + 3 − D

)
ϑ

K + 3

]
cc · u

}
dξ, (34b)

where the eliminations of the highest odd-order velocity moments of geq in Eq. (34b) require the 10th-order GHQ accuracy. And
the part involving the temperature gradient should be calculated using the 12th-order GHQ accuracy to yield the correct heat
flux expression∫

geq

[
c4

2PrRT
+
(

u2

2RT
+ 3 − D + K

2Pr
− D + 2

2Pr

)
c2 − D + 2

2

(
u2 + (3 − D + K )RT

Pr

)]
cc · ∇(ln T )dξ = (D + 2)R

Pr
p∇T .

(35)
In addition, the remaining parts of Eq. (34b) are equal to 4pu[S − ϑI/(K + 3)] = 2σ · u/τg, and their computation demands the
8th-order GHQ accuracy.

To sum up, the requirements, using the specific forms of gCE and hCE, that the 10th-order GHQ accuracy is needed to compute
the viscous stress and the 12th-order GHQ accuracy is needed to compute the heat flux far exceed the accuracy of D3V27A7
designed for g. As a result, due to insufficient GHQ accuracy, if Eq. (31) is used to initialize the flow field, then unphysical
numerical oscillations may occur, which will be shown in Sec. IV A.

Third, our Chapman-Enskog-expansion–based lifting relation is derived from the original exponential equilibria Eq. (11),
while the exponential equilibria are replaced by the truncated Hermite polynomials Eq. (30) during the LBM or DUGKS
simulations. In other words, the Chapman-Enskog-expansion–based lifting relations, Eq. (31), are only appropriate from the
theoretical viewpoint only. Next, we shall prove that the Hermite-expansion–based lifting relations can in fact be derived from
Eq. (31), as shown in the following subsection.

C. The Chapman-Enskog analysis based on the truncated Hermite-polynomial equilibria

This subsection is divided into three parts. In the first part, we shall show that the Hermite-expansion–based lifting relations in
Eq. (28) can be acquired by the CE analysis based on the truncated Hermite-polynomial equilibria of geq,(3) and heq,(2). Compared
with the determination of the nonequilibrium Hermite polynomial distributions in the Boltzmann-BGK equation [22,26], we
here extend this manipulation to analyze the reduced distributions in the total-energy DDF model. Then in the second part,
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we discuss the relation between the order of CE expansions and the truncated order of Hermite equilibria. If the operator
Dt = (∂t + ξ · ∇ + b · ∇ξ ) applies to either the original exponential or the truncated Hermite-polynomial equilibria, then the
power exponent in particle velocity (i.e., m in ξm) will increase by one. For an N th truncated Hermite-polynomial equilibrium,
however, only the first (N − M + 1) Hermite coefficients are correctly derived from the O(τM ) CE approximation. This
observation is also reported in Shan et al. [22] without an explicit proof. Here we shall rigorously prove such a conclusion by the
fundamental theorem of linear maps. In the third part, we examine the relationship between the number of Hermite coefficients
necessary to recover a macroscopic system and the order of the Hermite-polynomial equilibrium. As a result, given a system
with many equations and timescales, an inequality for the required order of a Hermite-polynomial equilibrium is developed.

First, we examine the CE expansions based on geq,(3) and heq,(2). Without lose of generality, we consider an arbitrary function
f (x, ξ, t ) with its N th-order Hermite polynomial given by

f (N )(x, ξ, t ) = ω(ξ, T0)
N∑

k=0

1

k!
a(k)

i (x, t, T0)H(k)
i (ξ, T0) = ω(ξ, T0)

N∑
k=0

1

k!
a(k)

i1···ik (x, t, T0)H(k)
i1···ik (ξ, T0), (36)

where H(k)
i (ξ, T0) is the kth-order Hermite polynomial (see Appendix D). We apply the operator Dt = (∂t + ξ · ∇ + b · ∇ξ ) to it

and obtain

Dt f (N )(x, ξ, t ) = ω

N∑
k=0

1

k!

[(
∂t a

(k)
i1···ik + ξi∇ia

(k)
i1···ik

)
H(k)

i1···ik − bia
(k)
i1···ik√
RT0

H(k+1)
ii1···ik

]

= ω

N∑
k=0

1

k!

⎡
⎣∂t a

(k)
i1···ikH

(k)
i1···ik + √

RT0

⎛
⎝∇ia

(k)
i1···ikH

(k+1)
ii1i2···ik +

k∑
j=1

∇i j a
(k)
i1···ikH

(k−1)
i1i2···i j−1i j+1···ik

⎞
⎠− bia

(k)
i1···ik√
RT0

H(k+1)
ii1···ik

⎤
⎦

= ω

⎡
⎢⎢⎢⎢⎢⎣

∂t a
(0) + √

RT0∇ia
(1)
i +

N−1∑
k=1

∂t a
(k)
i1···ik + √

RT0∇ik+1 a(k+1)
i1···ik+1

+ k
(√

RT0∇ik − bik /
√

RT0
)
a(k−1)

i1···ik−1

k!
H(k)

i1···ik

+ ∂t a
(N )
i1···iN + N

(√
RT0∇iN − biN /

√
RT0

)
a(N−1)

i1···iN−1

N!
H(N )

i1···iN +
(√

RT0∇iN+1 − biN+1/
√

RT0
)
a(N )

i1···iN
N!

H(N+1)
i1···iN+1

⎤
⎥⎥⎥⎥⎥⎦,

(37)
where the deriviation relies on the tensor symmetry property of Hermite polynomials. From Eqs. (26) and (27), the Hermite
coefficients for the equilibria in Grad’s short-hand notation [27] are computed as

ã(0)(geq,(3) ) = ρ, ã(1)(geq,(3) ) = ρ
u√
RT0

, ã(2)(geq,(3) ) = ρ

[
u2

RT0
+
(

T

T0
− 1

)
I
]
, (38a)

ã(3)(geq,(3) ) = ρ

[
u3

(RT0)3/2
+
(

T

T0
− 1

)
uI√
RT0

]
, ã(n�4)(geq,(3) ) = 0, ã(0)(heq,(2) ) = ρE , (38b)

ã(1)(heq,(2) ) = (ρE + p)
u√
RT0

, ã(2)(heq,(2) ) = ρE

[
u2

RT0
+
(

T

T0
− 1

)
I
]

+ T

T0

(
2ρu2 + pI

)
, ã(n�3)(heq,(2) ) = 0. (38c)

Applying the similar manipulation in Shan et al. [22] to here Guo et al.’s total-energy DDF model, the Hermite expansion
coefficients for Dt geq,(3) and Dt heq,(2), up to the order of O(τ 0), in Grad’s short-hand notation can be explicitly expressed as

ã(0)(Dt g
eq,(3) ) = 0, ã(1)(Dt g

eq,(3) ) = 0, ã(2)(Dt g
eq,(3) ) = ρ

T

T0

[
∇u + (∇u)T − 2

K + 3
ϑI
]
, (39a)

ã(3)(Dt g
eq,(3) ) = 1√

RT0

{(
2I − T

T0
− u2

RT0

)
∇p + ∇ · (ρu2I

)− RT0I∇ρ − ∇i
[(

ρu2 + pI
)
uui
]− 2pϑuI

(K + 3)RT0

}
, (39b)

ã(4)
i (Dt g

eq,(3) ) = 4ρ(RT0∇i − bi )√
RT0

[
u3

(RT0)3/2
+
(

T

T0
− 1

)
uI√
RT0

]
, ã(n�5)(Dt g

eq,(3) ) = 0, (39c)

ã(0)(Dt h
eq,(2) ) = ρu · b, ã(1)

i (Dt h
eq,(2) )

= 1√
RT0

{
ρuiu jb j + (p − ρE )bi + K + 5

2
pR∇iT + 2K + 4

K + 3
puiϑ + 2uiu j∇ j p + 2pu j∇iu j

}
, (39d)
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ã(2)(Dt h
eq,(2) ) = 1

RT0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ρu2 + pI)uk (bk − ∇kE ) −
[

3u2 + u2 + (K + 1)RT

2
I
]

uk∇k p

− u2 + (K + 7)RT

2

(
u∇p + ρuiuk∇ku j + ρu juk∇kui

)
+ pub − γ u2 + (K + 3)RT

2
pϑI − u2

[
Euk∇kρ + ϑ

ρu2 + (K + 5 + 4γ )p

2

]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

− I
T0

[
K + 7

K + 3
pT ϑ + uk∇k (pT )

]
+ I
[
ρu2 + (K + 5)p

2
ϑ − ρukbk + uk∇k (p + ρE )

]
+ 2∇i((p + ρE )uj ),

(39e)

ã(3)(Dt h
eq,(2) ) = 3(RT0∇i − bi )√

RT0

{
ρE

[
u2

RT0
+
(

T

T0
− 1

)
I
]

+ T

T0

(
2ρu2 + pI

)}
, ã(n�4)(Dt h

eq,(2) ) = 0. (39f)

An interesting observation for Hermite coefficients of Dt geq,(3) is that the mass conservation, the mass-momentum conser-
vation, and the mass-momentum-energy conservation at the Euler level appear collectively in ã(0)(Dt geq,(3) ), ã(1)(Dt geq,(3) ), and
ã(2)(Dt geq,(3) ), respectively. And for Dt heq,(2), the energy equation and the mass-momentum-energy conservation at the Euler
level show up in ã(0)(Dt heq,(2) ) and ã(1)(Dt heq,(2) ), respectively. In other words, mass conservation, momentum conservation,
and energy equation are three independent components, and at least three Hermite coefficients are required. Moreover, only the
second-order Hermite expansion of g and the first-order Hermite expansion of h in the O(τ ) CE approximations are required
to recover the NSF system in the total-energy DDF model. gH in Eq. (28a) can be obtained if we set ã(n�3)(Dt geq,(3) ) to zero.
Similarly, hH in Eq. (28b) can be evaluated through heq,(2) by keeping only ã(n�1)(Dt heq,(2) ) and ã(n�1)(ZDt geq,(3) ). By projecting
and truncating the Hermite polynomials to a given order finite-dimensional Hilbert space [i.e., a space of ξ spanned by a finite
number of Hermite polynomials with the inner product defined as 〈φ,ψ〉 = ∫

ω(ξ, T0)φψdξ], the Hermite-expansion–based
lifting relation indeed is the regularization [26] of the CE expansions by filtering out all the higher-order terms.

Second, we shall amend a rigorous proof about the relation between the order of CE approximations and the truncated order
of Hermite equilibria, which could be considered as the rationale for neglecting the high-order coefficients. For any square-
integrable function f (x, ξ, t ) in the ξ space, i.e., f ∈ { f | ∫ f 2dξ < ∞}, the existence and uniqueness of the Hermite projection,
f (x, ξ, t ) ≈ A(x, t ) : H (ξ), are guaranteed by the completeness and orthogonality of a given set of Hermite polynomials H (ξ)
[27]. We could consider H (ξ) as a set of tensor basis in the ξ space, and A(x, t ) is the corresponding unique coefficients for
a given f . Then we shall discuss the effects of Dt on the set of tensor basis H (ξ). The operator Dt = (∂t + ξ · ∇ + b · ∇ξ ) in
Eq. (37) can be viewed as a transformation from the original finite-dimensional subspace V of ξ to a new finite-dimensional
subspace W , as

∂t : V → W, (ξ · ∇) : V → W, (b · ∇ξ ) : V → W, b �= 0, (40a)

f eq,(N ) ∈ V (ξ) = span{H(0)(ξ, T0), · · · ,H(N )
i (ξ, T0)}, dim (V ) = N + 1, V ⊂ W, N ∈ N, (40b)

∂t f eq,(N ), ξ · ∇ f eq,(N ), b · ∇ξ f eq,(N ) ∈ W (ξ) = span{H(0)(ξ, T0), · · · ,H(N+1)
i (ξ, T0)}, dim(W ) = N + 2, (40c)

where N is the set of natural number and dim(· · · ) is the dimension of a given tensor space. From Eq. (37), we can verify that
the additivity and homogeneity for the operator Dt , i.e.,

(α1∂t + α2ξ · ∇ + α3b · ∇ξ )(β1 f eq,(N ) + β2geq,(N ) ) = (α1∂t + α2ξ · ∇ + α3b · ∇ξ )β1 f eq,(N )

+(α1∂t + α2ξ · ∇ + α3b · ∇ξ )β2geq,(N ) (41)

holds ∀ f eq,(N ), geq,(N ) ∈ V , and ∀α1, α2, α3, β1, β2 ∈ R, where R is the set of real number. Thus, ∂t , (ξ · ∇), (b · ∇ξ ) are in the
set of all the linear maps from V to W denoted as L(V,W ). Also, their ranges and null spaces can be represented in the form of

∂t f eq,(N ) ∈ range(∂t ) ⊂ W, null(∂t ) = φ, (ξ · ∇) f eq,(N ) ∈ range(ξ · ∇) ⊂ W, null(ξ · ∇) = φ, (42a)

b · ∇ξ f eq,(N ) ∈ range(b · ∇ξ ) ⊂ W, null(b · ∇ξ ) = span{H(0)(ξ, T0)} ⊂ V, b �= 0, (42b)

where φ is the empty set. According to the fundamental theorem of linear maps, the range of ∂t , (ξ · ∇), (b · ∇ξ ) ∈ L(V,W ) can
be evaluated by

dim [range(∂t )] = dim (V ) − dim (null(∂t )) = N + 1, range(∂t ) = span{H(0)(ξ, T0), · · · ,H(N )
i (ξ, T0)}, (43a)

dim[range(ξ · ∇)] = N + 1, range(ξ · ∇) = span
{
H(1)

i ,H(0)δi j + H(2)
i j , 2H(1)

i δ jk + H(3)
i jk, · · · , NH(N−1)

i1···iN−1
δiN iN+1 + H(N+1)

i1···iN+1

}
,

(43b)

dim[range(b · ∇ξ )] = dim(V ) − dim[null(b · ∇ξ )] = N, range(b · ∇ξ ) = span{H(0)(ξ, T0), · · · ,H(N−1)
i (ξ, T0)}, b �= 0. (43c)
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From Eq. (43b), the nth-order (1 � n � N − 1) Hermite
coefficient of ξ · ∇ f eq depends on the (n − 1)-th-order and
the (n + 1)-th-order coefficients of f eq. Hence, if f eq is trun-
cated to the N th order, then only the N th-order Hermite
coefficient of ξ · ∇ f eq,(N ) is incomplete, which cannot reflect
any conservative law. In conclusion, the N th Hermite order
of f eq,(N ) corresponds to (N − 1)-th valid Hermite order of
Dt f eq,(N ). Therefore, the N th and higher-order Hermite coeffi-
cients of Dt f eq,(N ) in Eq. (37) are all incomplete or spurious. It
follows that ã(3)(Dt geq,(3) ), ã(4)(Dt geq,(3) ), ã(2)(Dt heq,(2) ), and
ã(3)(Dt heq,(2) ) are all inappropriately represented and should
be eliminated since they have no impact on the resulting NSF
system but may induce numerical errors.

Third, we can infer the required order of the Hermite-
polynomial equilibrium when recovering a macroscopic
system. From the aforementioned discussion, the order of the
Hermite polynomial equilibrium N must satisfy the inequality
as

N � Nmac + NCE − 1, (44)

where Nmac is the number of the Hermite expansion coeffi-
cients involved in a macroscopic system, and NCE represents
the order of the CE approximation, implying that the number
of timescales is (NCE + 1). For instance, f eq,(N ) requires a
Hermite expansion with N � 2 or at least (2N ) or fourth-order
GHQ accuracy to produce the Euler equation from three Her-
mite coefficients (or Nmac = 3) of f with order O(1) (or NCE =
0), which involves one timescale and three separate moment
equations. Two moment equations and two timescales (or
NCE = 1) are included in the athermal Navier-Stokes equa-
tion. The first three Hermite coefficients (or Nmac = 3) of f
are utilized to recover the athermal Navier-Stokes equation,
particularly the viscous stress in the equations, hence f eq,(N )

needs a Hermite expansion with N � 3 or at least sixth-order
GHQ accuracy. Three moment equations and two timescales
(or NCE = 1) are incorporated in the thermal compressible
NSF equation. The first four Hermite coefficients (or Nmac =
4) of f are applied to derive the thermal compressible NSF
equation, especially the heat flux in the equations, conse-
quently f eq,(N ) demands a Hermite expansion with N � 4 or at
least eighth-order GHQ accuracy. We note that this inference
does not conflict with our previous efficient DUGKS method
for a compressible flow [19,20]. Under the total-energy DDF
formulation, however, the mass-momentum equation with the
viscous stress is obtained by the first three Hermite coeffi-
cients (or NCE = 3) of the first reduced distribution function,
and the energy equation with the heat flux is derived by the
first two Hermite coefficients (or NCE = 2) of the second
reduced distribution function. Therefore, as shown in Table I,
the equilibrium of the first reduced distribution function re-
quires a Hermite expansion with N � 3 or at least sixth-order
GHQ accuracy, and the equilibrium of the second reduced dis-
tribution function demands a Hermite expansion with N � 2
or at least fourth-order GHQ accuracy.

IV. THREE-DIMENSIONAL TAYLOR-GREEN VORTEX
PROBLEM

The main objective here is to demonstrate the use of
the two sets of lifting relations in the initialization of

compressible flow simulations. The DUGKS approach using
the total energy DDF model, as discussed in Sec. II, is used
as the numerical method. The 3D Taylor-Green vortex flow is
used as the macroscopic initial condition. The computation
domain [0, 2πL] × [0, 2πL] × [0, 2πL] is discretized by a
uniform grid and the periodic boundary condition is applied in
all three Cartesian directions. The sixth-order TENO scheme
[23] is incorporated in our simulations.

The initial pressure p and velocity u = (u, v,w) are speci-
fied as

p(x, t = 0) = p0 + ρu2
0

16

[
cos

(
2x

L

)
+ cos

(
2y

L

)]

×
[

cos

(
2z

L

)
+ 2

]
,

u(x, t = 0) = u0 sin
( x

L

)
cos

( y

L

)
cos

( z

L

)
,

v(x, t = 0) = −u0 cos
( x

L

)
sin
( y

L

)
cos

( z

L

)
,

w(x, t = 0) = 0,

(45)

where the variables with subscript “0” represent the constant
reference values and p0 = ρ0RT0.

Two initial conditions for density and temperature will be
studied. The first case is uniform density ρ = ρ0 and nonuni-
form temperature T = p/(ρ0R) at t = 0, which is discussed
in Sec. IV A. The second case is uniform temperature T = T0

and nonuniform density ρ = p/(RT0) at t = 0, presented in
Sec. IV B. The initial Mach and Reynolds numbers are de-
fined by Ma = u0/

√
γ RT0 and Re = ρ0u0L/μ0, respectively.

We set D = 3, K = 2, R = 0.5, L = 1, u0 = 1, ρ0 = 1, and
Re = 1600 for both cases. For the cases in Sec. IV A, we take
T0 = 1000/7, Ma = 0.1, Pr = 1, and CFL = 0.75. For the
cases in Sec. IV B, we take T0 = 10/7, Ma = 1.0, Pr = 0.71,
and CFL = 0.5. Furthermore, the previous study [20] simu-
lated the cases at Ma = 1.25 on a 2563 mesh with the same
discrete velocity model and applied the van Leer limiter [28]
and a fifth-order weighted essentially nonoscillatory (WENO)
scheme [29] for reconstructions, respectively. While the sim-
ulation using the van Leer limiter was stable, the one with
the WENO scheme was not. Here, our simulation using the
TENO scheme is numerically unstable at Ma = 1.25. This is
because the numerical stability of the kinetic model at high
Mach numbers is weakened by the reduced numerical viscos-
ity of a high-order reconstruction scheme, and more research
is required to create a robust DUGKS for compressible turbu-
lence. To further test the lifting relations, we also consider an
alternative kinetic model, Qi et al.’s total energy DDF model
(see Appendix B), in Sec. IV B.

The Taylor-Green vortex problem was introduced Taylor
and Green [30] to illustrate the formation of small-scale flow
structures due to nonlinear advection, and subsequent transi-
tion of the laminar flow to turbulence of an incompressible
fluid. Here the same initial flow is used but the NSF system
for a general compressible flow is solved. In the simulations,
we will focus on the evolution of the statistics including the
total kinetic energy Kρ , the solenoidal dissipation εs, the com-
pressive dissipation εc, and the total dissipation ε, which are
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FIG. 1. Temporal evolution of (a) total kinetic energy Kρ with a zoom-in view of the oscillations inserted and (b) solenoidal dissipation εs

for the case of Ma = 0.1. The reference data are taken from Ref. [31] obtained by the pseudospectral method on a 5123 mesh.

defined as

Kρ = 1

2
〈ρu · u〉, εs =

〈
D − 1

2
μω2

〉
,

εc =
〈(

μV + 2(D − 1)

D
μ

)
ϑ2

〉
, ε = εs + εc, (46)

where 〈· · · 〉 denotes the spatial average over the flow domain
at a given time, and the εc can be neglected for the case in
Sec. IV A since Ma = 0.1.

A. The case with uniform initial density and nonuniform initial
temperature

We first test both sets of lifting relations as the initializa-
tion method, for an initial flow with a uniform density but
a nonuniform temperature. The idea is to demonstrate the
numerical errors caused by inadequate GHQ accuracy in the
Chapman-Enskog-expansion–based lifting relations, Eq. (31).
Here ρ = ρ0 and T = p/(ρ0R) at t = 0, so the initial temper-
ature field is nonuniform.

The time evolutions of total kinetic energy and solenoidal
dissipation are presented in Fig. 1. Since the initial Mach
number (Ma = 0.1) is small, the flow field can be regarded as
incompressible flow. Our results are compared to the reference
data obtained by the pseudospectral method using a 5123 grid
resolution [31].

For the Hermite-expansion–based lifting relation, the total
kinetic energy [in Fig. 1(a)] is underestimated for the inter-
val of 0 < t < 16.5 and overestimated for t > 16.5 at the
two low grid resolutions (643 and 1283). And the solenoidal
dissipation [in Fig. 1(b)] is underestimated for all cases, com-
pared to the spectral result, when small-scale structures have
developed. At low grid resolutions, the physical dissipation
is underestimated due to the fact that small-scale features
cannot be resolved. At the same time, the numerical dissipa-
tion in DUGKS associated with interpolations is large. The
fact that the kinetic energy is underestimated implies that the

numerical dissipation dominates when compared to the errors
due to insufficient grid resolution. When the grid resolution
increases to 2563, the kinetic energy is reasonably predicted
with the initialization done by the Hermite-expansion–based
lifting relations, indicating that the numerical dissipation es-
sentially balances the unresolved physical dissipation, making
the numerical method a good implicit large-eddy simulation
tool. Additional simulations using DUGKS with the van-Leer
limiter [28] for reconstructions are performed and the results
(not shown here) show that the high-order reconstruction
methods like the sixth-order TENO scheme can improve the
results at coarse resolutions even for the nearly incompressible
flow considered here.

Next, we consider the cases with the flow initialization
done by the Chapman-Enskog-expansion–based lifting rela-
tion. The total kinetic energy is overestimated for 0 < t < 5
and t > 14 but underestimate for 5 < t < 14 at the two low
grid resolutions (643 and 1283). The most obvious difference
is the high-frequency, unphysical noises in the total kinetic
energy in Fig. 1(a). The oscillations are visible in all three
resolutions, and their magnitudes remain similar even the
kinetic energy is decayed significantly.

Here we develop a theory for predicting the oscillations of
the total kinetic energy ascribed to the numerical errors in the
initialization. We first note that the acoustic timescale, which
is significantly shorter than the typical advection timescale in
the NSF system, is where the numerical disturbances are orig-
inated. Additionally, the numerical disturbances in the weakly
compressible flows are confined to a fluid particle’s location
and a small area around it, leading to a different space scale
compared with the NSF system. Regarding the distinctions
between our study and linear stability analyses like the Squire
theorem [32], two points can be made. First, the disturbances
in the linear stability analyses, which are small quantities
whose squares may be neglected, share the same time and
space scales with the NSF system. The disturbances in our
study, however, are not only small quantities but also have

065301-12



CONSISTENT LIFTING RELATIONS FOR THE … PHYSICAL REVIEW E 108, 065301 (2023)

completely different time and space scales from those in the
NSF system. The flows determined by the NSF system may
appear stationary relative to acoustic waves. Second, since
Ma = 0.1, we utilize an inviscid and barotropic fluid model
[33] here, and the disturbances in the linear stability analyses
are consistent with the equations in the NSF system. In our
study, the Euler equations for barotropic fluid without external
force, which describe the evolution of the disturbances, are
written in the form of

∂tρ
′ + ∇ · (ρ ′u′) = 0, (47a)

∂t (ρ
′u′) + ∇ · (ρ ′u′u′ + p′) = 0, (47b)

d p′/dρ ′ = c2
s , (47c)

where ρ ′ is the disturbed density, u′ = (u′, v′,w′) is the dis-
turbed velocity, p′ is the disturbed pressure only related to
ρ ′, and cs = √

γ RT0 is the speed of sound, which equals to
10 in this case. We can obtain the momentum equation for
disturbances, Eq. (47b), in a nonconservation form as

∂t u′ + u′ · ∇u′ + c2
s

∇ρ ′

ρ ′ = 0, (48)

By multiplying u′, taking the divergence, and taking the curl
to Eq. (48), the equations for disturbed kinetic energy per
unit mass, the disturbed dilatation, and the disturbed vorticity,
respectively, are given as

∂t

( |u′|2
2

)
+ u′ · ∇

( |u′|2
2

)
+ u′ · c2

s ∇ρ ′

ρ ′ = 0, (49a)

∂tϑ
′ + u′ · ∇ϑ ′ + ∇u′ : ∇u′ + c2

s ∇ ·
(∇ρ ′

ρ ′

)
= 0, (49b)

∂tω
′ + ∇ × (u′ · ∇u′) = ∂tω

′ + u′ · ∇ω′ − ω′ · ∇u′ + ω′ϑ ′ = 0, (49c)

where ϑ ′ = ∇ · u′ is the disturbed dilatation, ω′ = ∇ × u′ is the disturbed vorticity, and ∇u′ : ∇u′ = ∂iu′
j∂ ju′

i is the contraction
of disturbed velocity gradient ∇u′. Here we apply the surface-deformation tensor B = ϑ ′I − (∇u′)T [34], which measures the
material rate of change for the surface elements, to simplify the contraction in Eq. (49b) and obtain

∂tϑ
′ + u′ · ∇ϑ ′ = c2

s ∇ ·
(∇ρ ′

ρ ′

)
− (ϑ ′)2 + ∇ · (B · u′). (50)

By amending the corresponding terms in Eq. (47a), the equation for disturbed kinetic energy per unit volume and disturbed
dilatation in conserved forms are given, namely

∂t

(
ρ ′ |u′|2

2

)
+ ∇ ·

(
ρ ′u′ |u′|2 + 2c2

s

2

)
= c2

s ρ
′ϑ ′, (51a)

∂t (ρ
′ϑ ′) + ∇ · (ρ ′u′ϑ ′) = c2

s

( |∇ρ ′|2
ρ ′ − ∇2ρ ′

)
− ρ ′(ϑ ′)2 + ρ ′∇ · (B · u′), (51b)

By taking the spatial average in Eq. (49c), Eq. (51a), and Eq. (51b) for the periodic boundary condition, we can find the
equations for the spatial average disturbed vorticity 〈ω′〉 and the disturbed total kinetic energy K ′

ρ as follows:

∂t 〈ω′〉 = 0, (52a)

∂tt K
′
ρ = ∂tt

〈
ρ ′|u′|2

2

〉
= c4

s

〈 |∇ρ ′|2
ρ ′

〉
− c2

s 〈ρ ′(ϑ ′)2〉 + c2
s 〈ρ ′∇ · (B · u′)〉. (52b)

From Eq. (52a), the spatial average disturbed vorticity is a constant in time. The vorticity associated to the NSF system
appears to be stationary compared with the small disturbed vorticity, and the square of the vorticity can be approximated by

〈|ω + ω′|2〉 = 〈ω2〉 + 2〈ω〉 · 〈ω′〉 ≈ 〈ω2〉.
As a result, the disturbed vorticity almost has no contributions to the solenoidal dissipation. The comparison in Fig. 1(b) confirms
that the noises seen in the kinetic energy do not seem to appear in the simulated solenoidal dissipation.

For the disturbed total kinetic energy, the right-hand-side terms of its oscillation equation, Eq. (52b), represent the vibrations
related to the nonuniform disturbed density, the material rate of change for the volume elements, and the material rate of change
for the surface elements, respectively. The last two terms can be ignored since the material rates of change for the volume
elements and the surface elements are very small in this case with Ma = 0.1. Since the oscillations in Fig. 1(a) have essentially
the same period roughly equal to 0.1, the disturbed density can be assumed to have the form of a traveling wave with a phase
speed of cs, i.e.,

ρ ′(x, t ) = A0 sin ϕ, ϕ = k ·
(

x − k
|k|cst

)
+ ϕ0, (53)
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TABLE II. The total kinetic energy Kρ and its oscillation amplitude in the cases with Chapman-Enskog-expansion–based lifting relations.

Maximum total kinetic energy Maximum oscillation amplitude Normalized maximum oscillation amplitude
Case (Kρ )max (Kρ )max − Kρ (t = 0) (Kρ )max/Kρ (t = 0) − 1

643 0.142386 0.017386 0.139088
1283 0.129322 0.004322 0.034576
2563 0.125994 0.000994 0.007952

where A0 is the amplitude, k is the constant wave vector, and ϕ0 is the initial phase. By changing the integral variables of the
spatial average 〈· · · 〉, the nonuniform disturbed density term in Eq. (52b) can be evaluated by

|∇ρ ′|2
ρ ′ = A0|k|2 cos2 ϕ

sin ϕ
,

〈 |∇ρ ′|2
ρ ′

〉
= A0|k|2

ϕmax − ϕmin

(∫ ϕmax

ϕmin

cos2 ϕ

sin ϕ
dϕ

)
= A0|k|2

ϕmax − ϕmin

[
ln
(

tan
(ϕ

2

))
+ cos ϕ

]ϕmax

ϕmin

, (54)

where ϕmin and ϕmax are the minimum and maximum of ϕ depending on the wave vector k, respectively. By taking the maximum
value of k · x in the computation domain as (k · x)max, ϕmin and ϕmax are specified as

ϕmin = −(k · x)max − |k|cst + ϕ0, ϕmax = (k · x)max − |k|cst + ϕ0, (55)

since ϕ is a linear function of x. With the help of Eq. (55), the spatial average term in Eq. (54) equals to〈 |∇ρ ′|2
ρ ′

〉
= 1

(k · x)max
ln

{
1 + 2 sin [(k · x)max]

sin (|k|cst − ϕ0) − sin [(k · x)max]

}
+ sin [(k · x)max]

(k · x)max
sin (|k|cst − ϕ0). (56)

The logarithmic term in Eq. (56) may be neglected since it
only pertains to nonlinear behaviors and has no effect on the
secular numerical oscillations. We yield the periodic solution
of the disturbed total kinetic energy K ′

ρ in Eq. (52b),

K ′
ρ (t ) = A0c2

s

sin [(k · x)max]

(k · x)max
sin (|k|cst − ϕ0). (57)

Equation 57 proves that the total kinetic energy oscillates over
time when there are small disturbances in the initial density
and velocity brought on by improper initialization. We note
that the aforementioned conclusion holds up on the premise
that the disturbances are in the weakly compressible flows
with the periodic boundary condition. Due to the shifting of
the time and space scales when the Mach number rises in the
flows, the disturbances will be coupled with the terms in the
NSF system. Therefore, the theory can be expanded to account
for the nonphysical oscillations of total kinetic energy in the
initial field of all weakly compressible flows with periodic
boundary conditions.

When the insufficient GHQ accuracy discrete velocity
model, D3V27A7, calculates the nonzero temperature gra-
dient terms in the Chapman-Enskog-expansion–based lifting
relations, it causes the disturbances of the initialization asso-
ciated with the numerical errors. The disturbed velocity u′ can
be approximated by u′ ∼ O(u�x/L), where �x = L/N is the
mesh size in one direction. The initial velocity u(t = 0) has
no z-direction component, and as a result, the amplitude A0 is
of the order O[1/(N2Ma2)]. For a given Ma, it follows that
the maximum oscillation amplitudes of Kρ with Chapman-
Enskog-expansion–based lifting relations scale with O(1/N2),
which are consistent with the data from the three cases, shown
in Table II.

The numerical noises may lead to numerical instability
in moderate and high Mach number cases. Therefore, the
Chapman-Enskog-expansion–based lifting relations may not

be suitable for constructing the initial distribution functions
with nonzero temperature gradients.

B. The case with uniform initial temperature and nonuniform
initial density

Next, the case with uniform initial temperature T = T0

and nonuniform initial density ρ = p/(RT0) is simulated for
Ma = 1.0 in Figs. 2 and 3. In this high-Ma case, our results
are compared to the reference data from Ref. [35] where
the flow was solved on a 5123 grid by a finite difference
method of the NSF system, combined with the sixth-order
TENO scheme with adaptive control of the numerical dissipa-
tion. The total kinetic energy in Fig. 2(a) increases with time
slightly during 0 < t < 3 due to the conversion of internal en-
ergy to the kinetic energy by the reversible pressure-dilatation
transfer as we have discussed previously [19], and then
it decays monotonically in time. For the case at 643, the
kinetic energy is underestimated for t < 14 and then over-
estimated for t > 14. As the grid resolution increases, the
results converge to the reference data from Ref. [35]. Addi-
tionally, two sets of lifting relations yield almost the same
results at the same resolution, indicating that the noises in
the Chapman-Enskog-expansion–based lifting relations are
primarily associated with the temperature gradients in the
initial flow rather than the velocity gradients or the dilata-
tion gradients. Interestingly, although D3V27A7 does not
meet the formal requirement of the eighth-order accuracy
for the Chapman-Enskog-expansion–based lifting relation in
the absence of temperature gradients [see Eq. (33a)], this
insufficient GHQ accuracy does not cause any problem in the
simulated total kinetic energy. We think certain eighth-order
terms can still be reasonably calculated by the quadrature of
the discrete velocity model even though it lacks the eighth-
order accuracy. Furthermore, the velocity gradient tensor ∇u
and the dilatation ϑ of the initial flow are not significant,
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FIG. 2. Temporal evolution of (a) total kinetic energy Kρ and (b) solenoidal dissipation εs for the case of Ma = 1.0. The reference data are
taken from Ref. [35] obtained by the sixth-order TENO scheme with adaptive control of the numerical dissipation on a 5123 mesh.

which implies that the high-order moments of the distribution
function are likely small. These may be the reasons for the
good simulated total kinetic energy.

At Ma = 1.0, the flow deems to be compressible with the
prominent dilatation. We plot the time evolutions of compres-
sive dissipation and total dissipation in Fig. 3. The results
based on the two sets of lifting relations overlap, and the
peak times are consistent with each other and the reference
data. Compared with the solenoid dissipation, the compres-
sive dissipation takes a shorter time to reach its maximum,
which is similar to the previous observation in decaying
compressible homogeneous isotropic turbulence [19]. This
phenomenon indicates that there are at least two timescales
in the flow field, and the compressive motion happens rapidly
while the vortical structures take a loner time to develop.

Furthermore, the maximum compressive dissipation for the
case at 2563 is 1.196 times larger than that from the reference
data. We believe that this originates from the difference in
the values of the bulk viscosity between our kinetic model
and the reference simulation. The bulk viscosity of the ref-
erence is zero while the bulk-to-shear viscosity ratio is χ =
4/15 for Guo et al.’s model with K = 2, and the ratio of
(μV + 4μ/3)/(4μ/3) = 1.2 implied by Eq. (46) explains the
observed ratio of 1.196 in Fig. 3. Although the present cases
have the different bulk viscosity from the reference, the
compressive dissipation is still one to two orders of magni-
tude smaller than the solenoidal dissipation. Therefore, it is
reasonable to compare total kinetic energy, solenoidal dis-
sipation, and total dissipation in the present cases with the
reference.
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FIG. 3. Temporal evolution of (a) compressive dissipation εc and (b) total dissipation ε for the case of Ma = 1.0. The reference data are
taken from Ref. [35] obtained by the sixth-order TENO scheme with adaptive control of the numerical dissipation on a 5123 mesh.
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FIG. 4. Temporal evolution of (a) compressive dissipation εc for Qi et al.’s model [19] and (b) for two alternative kinetic models at the
finest resolution for the case of Ma = 1.0. The reference data are taken from Ref. [35] obtained by the sixth-order TENO scheme with adaptive
control of the numerical dissipation on a 5123 mesh.

Finally, numerical simulations for the Ma = 1.0 case and
the same initial flow field are also performed using Qi et al.’s
model with initialization done by the two sets of lifting rela-
tions, the results are shown in Appendix B. We purposely set
the bulk viscosity to zero in Qi et al.’s model, as, in Qi et al.’s
model, the bulk viscosity can be set to an arbitrary value.
Qi et al.’s model could be more appropriate when simulating
strong compressive effects. Another minor advantage in Qi
et al.’s model is that the source terms used to adjust the
Prandtl number and bulk viscosity has already been expanded
in the Hermite space in their design, see the discussions in
Appendix B. The results for total kinetic energy, solenoidal
dissipation, and total dissipation (not shown) are almost the
same as the previous results based on Guo et al.’s model,
so they are not shown. This confirms that the effects of bulk
viscosity on total kinetic energy, solenoidal dissipation, and
total dissipation are too weak to be recognized from the flow
field. The results of the compressive dissipation based on Qi
et al.’s model are shown in Fig. 4(a), for three grid resolutions,
again the two initialization methods yield identical results. As
expected, at the highest resolution, the result of the compres-
sive dissipation based on Qi et al.’s model is closer to the
reference data, as shown in Fig. 4(b), due to the same null
bulk viscosity setting as in the reference.

V. SUMMARY AND CONCLUSIONS

By the O(τ ) CE approximation, we deduce two kinds of
lifting relations for the two total-energy DDF models, i.e.,
the first kind is the Hermite-expansion–based lifting rela-
tions based on all the velocity moment constraints implied
by the NSF system, and the second kind is the Chapman-
Enskog-expansion–based lifting relations using the original
exponential equilibria. These lifting relations are intended
for fully compressible flows, extending the previous results

primarily designed for incompressible flows. While the two
kinds are theoretically identical at the level of the NSF sys-
tem, they are different in numerical implementations due to
potential contamination of numerical errors for a given set of
particle velocity models (or given GHQ accuracy orders). We
analyze the required GHQ accuracy orders for the Chapman-
Enskog-expansion–based lifting relations when computing
the viscous stress and the heat flux to illustrate the possibility
for numerical integration errors in the particle-velocity phase
space.

The exponential equilibria are replaced by the Hermite
polynomials in LBM or DUGKS, thus we also examine the
nonequilibrium distribution based on the CE expansions with
the truncated Hermite polynomial equilibria. This procedure
illustrates that the Hermite-expansion–based lifting relations
can be regarded as the Chapman-Enskog-expansion–based
lifting relation in the truncated Hilbert space. Furthermore,
we demonstrate that Dt f (N ) only has the accurate and com-
plete Hermite coefficients up to the (N − 1)-th valid Hermite
order. We may then infer the minimal order of the corre-
sponding Hermite polynomial equilibria with the required
GHQ accuracy for a given multiple-timescale macroscopic
system.

Next, we tested the two sets of lifting relations as the
initialization tool in numerical simulations for compressible
flows, to validate the lifting relations of the first kind, as well
as to demonstrate the potential error contamination in the
second kind. We perform numerical experiments for subsonic
flow and transonic flow using the initial flow from the Taylor-
Green vortex problem. Indeed, the potential contamination
in the lifting relations of the second kind is confirmed and
is reflected as unphysical oscillations in the kinetic energy
of the simulated flow. Furthermore, such contamination is
closely related to the nonzero temperature gradients in the
initial flow. The contamination, however, has essentially no
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TABLE III. Three-dimensional discrete velocity models D3V13A5 and D3V27A7. The subscript PP means the parity of the permutation
is strictly kept.

Quadrature Group ξα Number Weight

D3V13A5 1 (0, 0, 0) 1 2/5
r2 = (5 + √

5)/2, s2 = (5 − √
5)/2 2 (r, s, 0)PP 12 1/20

D3V27A7 1 (0, 0, 0) center1 (720 + 8
√

15)/2205
r2 = (15 + √

15)/2 2 (r, 0, 0) center6 (270 − 46
√

15)/15435
s2 = 6 − √

15 3 (s, s, 0) 12 (162 + 41
√

15)/6174
t2 = 9 + 2

√
15 4 (t, t, t ) center8 (783 − 202

√
15)/24696

impact on the solenoid dissipation since the oscillations have
no contributions to the spatial average of the square of the
vorticity. Moreover, the unphysical oscillations in the kinetic
energy persist even at high grid resolutions, with the oscil-
lation magnitude decreasing with increasing grid resolution.
They also persist in time, so the proper initialization of com-
pressible turbulence is an important issue. In contrast, the
Hermite-expansion–based lifting relations are fully consistent
with the GHQ accuracy of discrete velocity models and are
shown to be a great initialization method. We also tested
the two sets of lifting relations as the initialization method
for Qi et al.’s total energy DDF model capable of arbitrarily
adjusting the bulk-to-shear viscosity ratio. Overall, all the
results agree well with the reference data at the high grid
resolution. In conclusion, the Hermite-expansion–based lift-
ing relations are fully consistent with the model Boltzmann
equations and discrete particle velocity models, for com-
pressible flows at all Mach numbers at the level of the NSF
system.

Finally, we note that the Hermite-expansion–based lift-
ing relations developed in this work are not just a useful
and efficient initialization tool for compressible flows. They
are useful in constructing the proper bounce-back boundary
conditions [5], coupling the mesoscopic methods with other

numerical methods [8,11], formulating a way to accelerate the
steady-state flow simulation [36], or extending the theoretical
understanding of kinetic methods to general compressible
flows.
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APPENDIX A: DISCRETE PARTICLE VELOCITY MODELS: D3V27A7 AND D3V13A5

DUGKS is an off-lattice method, namely the discrete particle velocities are decoupled from the spatial Cartesian grids. As
shown in Eqs. (26) and (27), the evaluations of the moments of geq and heq need a GHQ of sixth-order accuracy and fourth-
order accuracy, respectively. Since the GHQ accuracy is typically given at odd orders, we adopt D3V27A7 [21,22] with 27
discrete particle velocities and seventh-order GHQ accuracy, and D3V13A5 [22] with 13 discrete particle velocities and the fifth-
order GHQ accuracy. The reasons for using these particle velocity models are explained in detail in Refs. [19,20]. The relevant
symmetric group of discrete velocity vectors, number in each group, and associated weights for D3V13A5 and D3V27A7 are
summarized in Table III.

APPENDIX B: THE CHAPMAN-ENSKOG-EXPANSION–BASED LIFTING RELATION AND THE
HERMITE-EXPANSION–BASED LIFTING RELATION FOR QI ET AL.’S TOTAL ENERGY DDF MODEL

Here we provide a brief but sufficient introduction for Qi et al.’s model [19]. The kinetic equation in Eq. (5) of Qi et al.’s
model is replaced by the Boltzmann-BGK equation with a source term as

∂t f + ξ · ∇ f + b · ∇ξ f = f eq − f

τ
+ S f . (B1)

The source term S f may alter the microscopic physics, but with the advantages of preserving the simplicity of the Boltzmann-
BGK collision term and at the same time correctly recovering the general NSF system of the original Boltzmann equation in
the continuum limit. Although the equilibrium, the conservative variables, the viscous stress, the heat flux, and two reduced
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distribution functions with their equilibria are the same as before, Eq. (B1) can be converted as two Boltzmann equations sharing
the same relaxation time, namely

∂t g + ξ · ∇g + b · ∇ξg = geq − g

τ
+ Sg, (B2a)

∂t h + ξ · ∇h + b · ∇ξh = b · ξg + heq − h

τ
+ Sh, (B2b)

where Sg and Sh are the integrated source terms of S f , respectively. By assuming that τ has a small magnitude, we carry out the
CE analysis on Eq. (B2) for recovering the macroscopic equations, and we obtain

g = geq − τ

(
∂t g

eq + ξ · ∇geq − b · c
RT

geq − Sg

)
+ O(τ 2), (B3a)

h = heq − τ

(
∂t h

eq + ξ · ∇heq − b · c
RT

heq − Sh

)
+ O(τ 2). (B3b)

By taking the zeroth- and the first-order velocity moment of Eq. (B3a) up to the order of O(1) for the mass conservation and the
momentum conservation at the Euler level, we can find the first two velocity moment constraints for the source terms∫

Sgdξ = 0,

∫
ξSgdξ = 0. (B4)

Moreover, we take the zeroth-order velocity moment of Eq. (B3b) up to the order of O(1) for the energy equation at the Euler
level, the third constraint for the source terms can be derived as

∫
Shdξ = 0. Take the O(τ ) approximation of Eq. (B3) into

Eq. (12), the viscosity stress and the heat flux at the NSF level can be expressed as

σ = τ

∫
cc
(

∂geq

∂t
+ ξ · ∇geq − b · c

RT
geq − Sg

)
dξ + O(τ 2), (B5a)

q = −τ

∫
c
[(

u2

2
− u · ξ

)(
∂t g

eq + ξ · ∇geq − b · c
RT

geq − Sg

)
+
(

∂t h
eq + ξ · ∇heq − b · c

RT
heq − Sh

)]
dξ + O(τ 2). (B5b)

With the help of the Euler equations Eq. (1) in the order of O(1), all the derivatives of geq and heq are transformed into the
products of equilibria with the hydrodynamics variables and their derivatives as

∂t g
eq + ξ · ∇geq − b · c

RT
geq = geq

[(
c2

2RT
− D + 2

2

)
c · ∇(ln T ) + c · ∇u · c

RT
−
(

c2

RT
+ K + 3 − D

)
ϑ

K + 3

]
, (B6a)

∂t h
eq + ξ · ∇heq − b · c

RT
heq = heq

[(
c2

2RT
− D + 2

2

)
c · ∇(ln T ) + c · ∇u · c

RT
−
(

c2

RT
+ K + 3 − D

)
ϑ

K + 3

]

+ geq (3 − D + K )RT

2

(
�c · ∇(ln T ) − 2ϑ

K + 3

)
. (B6b)

Take the above expansions along with the constitutive laws in Eq. (3), we could obtain two additional constraints for the source
terms, namely∫

ξξSgdξ =
(

2

D
− 2

K + 3
− μV

μ

)
pϑI,

∫
ξShdξ =

(
2

D
− 2

K + 3
− μV

μ

)
pϑu + p

(
1 − 1

Pr

)
(K + 5)R

2
∇T . (B7)

With the five velocity moment constraints for the source terms, we can construct the second-order Hermite expansion for Sg and
the first-order Hermite expansion for Sh as follows:

Sg = (Sg)(2) = exp
(− ξ 2

2RT0

)
(2πRT0)D/2

(
ξ 2

RT0
− D

)(
2

D
− 2

K + 3
− χ

)
pϑ

2RT0
, (B8a)

Sh = (Sh)(1) = exp
(− ξ 2

2RT0

)
(2πRT0)D/2

[(
2

D
− 2

K + 3
− χ

)
ξ · u
RT0

pϑ +
(

1 − 1

Pr

)
K + 5

2

p

T0
ξ · ∇T

]
. (B8b)

After the establishment of Qi et al.’s model, we here introduce the numerical implementations. We only replace the φ′ by the
φeq + τSφ , and keep the rest in Sec. II C unchanged. Moreover, the dilatation terms in Sφ is evaluated by a fourth-order central
finite difference.

The Hermite-expansion–based lifting relations for both model are the same since the velocity moment constraints are not
changed, however, the Chapman-expansion–based lifting relations from Eq. (B3) up to the order of O(τ ) need to be updated to
yield
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gCE,Qi = geq

{
1 − τ

[(
c2

2RT
− D + 2

2

)
c · ∇(ln T ) + c · ∇u · c

RT
−
(

c2

RT
+ K + 3 − D

)
ϑ

K + 3

]}
+ τSg, (B9a)

hCE,Qi = heq − τ

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

heq

[(
c2

2RT
− D + 2

2

)
c · ∇(ln T ) + c · ∇u · c

RT
−
(

c2

RT
+ K + 3 − D

)
ϑ

K + 3

]

+ geq (3 − D + K )RT

2

[
c · ∇(ln T ) + 2ϑ

K + 3

]
⎫⎪⎪⎪⎬
⎪⎪⎪⎭+ τSh. (B9b)

We note that g needs the 10th-order GHQ accuracy for the viscous stress and the 4th-order GHQ accuracy for the heat flux,
while h required the 8th-order GHQ accuracy for the heat flux. Moreover, if the initial dilatation and the temperature gradient
are zero, then the order of accuracy will reduce to the 4th-order GHQ accuracy for g and the 6th-order GHQ accuracy for h.

To test both lifting relations in different kinetic models, we take the same parameters as the cases of Sec. IV B except for the
χ = 0 according to the reference [35]. We compare the results based on initialization done by different lifting relations and at
different resolutions, and the curves from different lifting relations overlap with each other at the same resolution. The evolution
of total kinetic energy, solenoidal dissipation, and total dissipation (not shown here) are nearly identical to the results from Guo
et al.’s model at the same resolution, already discussed in the main body of the paper. This observation illustrates that the bulk
viscosity effects can be neglected for the evolution of total kinetic energy, solenoidal dissipation, and total dissipation. But in the
compressive dissipation, the bulk viscosity plays an important role. From Fig. 4(a), the time evolution of compressive dissipation
in Qi et al.’s model at the highest resolution is close but slightly below the reference curve. Compared the compressive dissipation
and the solenoidal dissipation at 2563 with the reference, we find that resolving the vortical structures requires more grids than
the compressive motion. In short, the results in Qi et al.’s model are in good agreement with the literature.

APPENDIX C: THE SIXTH-ORDER TENO SCHEME FOR RECONSTRUCTION OF DISTRIBUTION
FUNCTIONS AT CELL INTERFACE

If the sets of discrete particle velocity model are chosen, then the Boltzmann-BGK equation will become a set of finite-number
linear advection equations. We implement the sixth-order TENO [23] scheme to reconstruct the cell-interface particle distribution
function φ̄+(xb, ξα, tn) by using the cell-averaged value φ̄+,n

j (ξα ). To stabilize our numerical reconstruction, the upwind rule is
utilized depending on the direction of a discrete particle velocity.

Take the x-direction reconstruction of the particle distribution function at cell interface x j+1/2 with ξα,x > 0 as an example,
we divide the stencil with six cells into four adjacent substencils and interpolate for φ̄+(x j+1/2, ξα, tn), using

φ̄+,(0)(x j+1/2, ξα, tn) = −1

6
φ̄+,n

j−1(ξα ) + 5

6
φ̄+,n

j (ξα ) + 1

3
φ̄+,n

j+1(ξα ), (C1a)

φ̄+,(1)(x j+1/2, ξα, tn) = 1

3
φ̄+,n

j (ξα ) + 5

6
φ̄+,n

j+1(ξα ) − 1

6
φ̄+,n

j+2(ξα ), (C1b)

φ̄+,(2)(x j+1/2, ξα, tn) = 1

3
φ̄+,n

j−2(ξα ) − 7

6
φ̄+,n

j−1(ξα ) + 11

6
φ̄+,n

j (ξα ), (C1c)

φ̄+,(3)(x j+1/2, ξα, tn) = 1

4
φ̄+,n

j (ξα ) + 13

12
φ̄+,n

j+1(ξα ) − 5

12
φ̄+,n

j+2(ξα ) + 1

12
φ̄+,n

j+3(ξα ), (C1d)

where the superscripts of φ̄+(x j+1/2, ξ, tn) denote the sequence of substencils. The smoothness factor β0, β1, β2, and β3 for the
four substencils can be obtained by

β0 = 13

12

[
φ̄+,n

j−1(ξα ) − 2φ̄+,n
j (ξα ) + φ̄+,n

j+1(ξα )
]2 + 1

4

[
φ̄+,n

j+1(ξα ) − φ̄+,n
j−1(ξα )

]2
, (C2a)

β1 = 13

12

[
φ̄+,n

j (ξα ) − 2φ̄+,n
j+1(ξα ) + φ̄+,n

j+2(ξα )
]2 + 1

4

[
3φ̄+,n

j (ξα ) − 4φ̄+,n
j+1(ξα ) + φ̄+,n

j+2(ξα )
]2

, (C2b)

β2 = 13

12

[
φ̄+,n

j−2(ξα ) − 2φ̄+,n
j−1(ξα ) + φ̄+,n

j (ξα )
]2 + 1

4

[
φ̄+,n

j−2(ξα ) − 4φ̄+,n
j−1(ξα ) + 3φ̄+,n

j (ξα )
]2

, (C2c)

β3 = φ̄+,n
j (ξα )

[
2107φ̄+,n

j (ξα ) − 9402φ̄+,n
j+1(ξα ) + 7042φ̄+,n

j+2(ξα ) − 1854φ̄+,n
j+3(ξα )

]
+ φ̄+,n

j+1(ξα )
[
11003φ̄+,n

j+1(ξα ) − 17246φ̄+,n
j+2(ξα ) + 4642φ̄+,n

j+3(ξα )
]

+ φ̄+,n
j+2(ξα )

[
7043φ̄+,n

j+2(ξα ) − 3882φ̄+,n
j+3(ξα )

]+ 547
[
φ̄+,n

j+3(ξα )
]2

. (C2d)

The nonlinear weights of the sixth-order TENO can be evaluated by

ω j = γ jδ j∑3
k=0 γkδk

, γ̃ j =
[
C + β3 − (β0 + β2 + 4β1)/6

β j + ε0

]p

, ω̃ j = γ̃ j∑3
k=0 γ̃k

, δ j =
{

0, if ω̃ j < εT ,

1, otherwise,
(C3)
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FIG. 5. Reconstruction of cell-interface particle distribution functions with the sixth-order TENO scheme.

where γ0 = 0.462, γ1 = 0.3, γ1 = 0.054, and γ3 = 0.184 are the optimal weights. The parameters C = 1.0 and p = 6 are applied
for robustly separating the resolved scales from the nonresolved. A small number ε0 = 10−40 avoids zero occurring in the
denominator. εT = 10−7 is a cutoff threshold to suppress the substencils without enough smoothness. Those values above are all
set as suggested [23]. Then φ̄+(x j+1/2, ξα, tn) is calculated by

φ̄+(x j+1/2, ξα, tn) =
3∑

k=0

ωkφ̄
+,(k)(x j+1/2, ξα, tn). (C4)

If ξα,x < 0 at the cell interface x j+1/2, then we execute the similar procedure with three substencils in the upwind direction. If
ξα,x = 0, then we take the average of the results from the above-mentioned cases. The whole diagram of reconstruction is shown
in Fig. 5, and the technique is similar for the cell interfaces in then y and z directions.

For the compressible turbulence simulation, the numerical schemes are required to resolve small-scale flow structures and
capture discontinuities simultaneously. The former demand means low numerical dissipation for resolving small-scale flow
characters while the latter demand insists sufficient numerical dissipation to handle discontinuities. The well-established WENO
schemes are robust for many situations; however, they exhibit excessive dissipation that significantly damps out the small-scale
structures. With the benefits of essentially-non-oscillatory-like stencil selection, we choose TENO scheme for its robustness for
discontinuities and lower numerical dissipation than the popular WENO schemes.

APPENDIX D: CONSTRUCTION OF THE HERMITE POLYNOMIALS

We provide a brief yet complete background of the Hermite expansion. The nth-order Hermite polynomial in high dimensions
[27] is given by

H(n)(ξ, T0) = (
√

RT0)n (−1)n

ω(ξ, T0)
∇ξ · · · ∇ξ︸ ︷︷ ︸

n-fold

ω(ξ, T0), (D1)

where ω(ξ, T0) = exp (−ξ 2/(2RT0))/(2πRT0)D/2 is the weighting function and T0 is the constant reference temperature and ∇ξ

is the nabla operator in space of ξ. We adopt Grad’s short-hand notation [27] to represent the symmetric tensor, and the nth-order
polynomial is

H(n)(ξ, T0) =
(

ξ√
RT0

)n

−
(

ξ√
RT0

)n−2

I +
(

ξ√
RT0

)n−4

I2 − · · · , (D2)

where ( ξ√
RT0

)n−2mIm contains a total of n!
2mm!(n−2m)! terms. For example, ( ξ√

RT0
)I = ξi I jk√

RT0
+ ξ j Iik√

RT0
+ ξk Ii j√

RT0
. The recurrence relation

of the Hermite polynomials can be obtained in Grad’s short-hand notation as

ξi√
RT0

H(n)(ξ) = H(n+1)(ξ) + IiH(n−1)(ξ), (D3)
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which is equivalent to

ξi√
RT0

H(n)
i1i2···in = H(n+1)

ii1i2···in +
n∑

k=1

IiikH(n−1)
i1i2···ik−1ik+1···in . (D4)

The orthogonality of the Hermite polynomials can be shown as∫
ω(ξ, T0)Hm

i (ξ, T0)Hn
j (ξ, T0)dξ = δmnδ

n
i j, (D5)

where i denotes the sequence i1 · · · in, and δn
i j equals to 1 if and only if i is the permutation of j. We evaluate function f (x, ξ, t )

with the nth-order Hermite expansion f (N )(x, ξ, t ) in the following sense:

f (x, ξ, t ) ≈ f (N )(x, ξ, t ) = ω(ξ, T0)
N∑

k=0

1

k!
a(k)

i (x, t, T0)H(k)
i (ξ, T0), (D6)

where the Hermite expansion coefficient can be found as

a(k)
i (x, t, T0) =

∫
f (x, ξ, t )H(k)

i (ξ, T0)dξ. (D7)

The formulas in Eq. (14), Eq. (28), and Eq. (30) are all constructed from the velocity moments by the Hermite expansion.

APPENDIX E: THE HERMITE EXPANSIONS OF THE EXTERNAL FORCE TERMS

In this part, the Hermite expansions of the external force terms for both Guo et al.’s model [16] and Qi et al.’s model [19]
are presented here. To recover the mass and momentum conservations for Guo et al.’s model at the NSF level from the reduced
Boltzmann-BGK equation for g, Eq. (10a), the velocity moments of the force terms can be obtained as∫

(b · ∇ξg)dξ = 0,

∫
ξ(b · ∇ξg)dξ = ρb,

∫
ξiξ j (b · ∇ξg)dξ = ρ(biu j + b jui ). (E1)

Based on the reduced Boltzmann-BGK equation for h, Eq. (10b), recovering the energy equation at the NSF level requires two
velocity moments as follows:∫

(b · ∇ξh − b · ξg)dξ = ρu · b,
∫

ξ(b · ∇ξh − b · ξg)dξ = ρuu · b + (ρE + p)b. (E2)

By setting all the higher moments to zero, the truncated Hermite expansions for the force terms (see Appendix D) are

(b · ∇ξg)(2) = ω(ξ, T0)ρ

RT0

(
b · c + b · ξ

ξ · u
RT0

)
, (E3a)

(b · ∇ξh − b · ξg)(1) = ω(ξ, T0)

[
ρu · b + ρb · u

u · ξ√
RT0

+ (ρE + p)
b · ξ√
RT0

]
. (E3b)

The conversion from the continuous space-time Boltzmann equation to the lattice Boltzmann equation is done by integrating
the continuous Boltzmann equation along the characteristic line using the trapezoidal rule; in this process a transformation
is applied to convert the resulting implicit scheme to an explicit form [5]. This additional process adds an additional factor
[1 − 1/(2τL )−1] where τL = τg/�t + 1/2, then it will render Eq. (E3a) identical to the expression derived in Guo et al. [16].
A similar procedure can be performed for Qi et al.’s model [19]. The force terms in Qi et al.’s model have the same Hermite
expansions as those described in Eq. (E3) since recovering the external force terms at the NSF level from the reduced Boltzmann-
BGK equations Eqs. (B2a) and (B2b) requires the same velocity moments.
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