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Rayleigh-Taylor instability in magnetohydrodynamics with finite resistivity in a
horizontal magnetic field
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Recent studies have revealed the significant influence of finite resistivity on high-energy-density plasmas,
contrary to the previous findings of Jukes [J. Fluid Mech. 16, 177 (1963)]. This paper reexamines Jukes’
theory in the context of magneto-Rayleigh-Taylor instability in magnetohydrodynamics with finite resistivity
represented by η. The inadequacy of Jukes’ approach due to an erroneous boundary condition is demonstrated,
and it is shown that although the theory provides some physical insights, it fails to capture crucial features.
The dispersion relation proposed in this study highlights that larger growth rates tend to diffuse the magnetic
field rapidly, negating its suppressive effect. Moreover, the Atwood number has a significant influence on the
growth-rate curves’ shape, which differs from those of viscous or elastic flows and ideal magnetohydrodynamics.
Additionally, long wavelengths grow proportionally to η1/3, while α indicating growth rates behaves classically
when the magnetic field is entirely diffused.
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I. INTRODUCTION

The Rayleigh-Taylor (RT) instability, a phenomenon in
fluid dynamics, commonly arises at interfaces between fluids
or materials exhibiting different densities. It has extensive ap-
plications across numerous scientific domains. Notably, recent
comprehensive surveys conducted by Zhou and colleagues
have shed light on these applications [1–4].

An extension of the Rayleigh-Taylor (RT) instability that
incorporates the presence of a magnetic field is known as the
magneto-Rayleigh-Taylor (MRT) instability. Its significance
spans a broad range of physics, encompassing astrophysics
and inertial confinement fusion [5–9]. Numerous experiments
and numerical simulations have demonstrated that using an in-
sulated magnetic field to decrease thermal conductivity losses
and guide fast electrons to enhance the fusion yield in mag-
netized laser-driven implosions poses a significant threat to
magnetized linear inertial fusion due to the MRT instability
[10–17]. The role of magnetic fields in this context can be
ambiguous. On one hand, strong magnetic fields can mitigate
hydrodynamic instabilities by means of magnetic tension.
On the other hand, the MRT instability is exacerbated by
the suppression of thermal conduction in the presence of a
magnetic field [18–20]. Magnetohydrodynamic instabilities
are also present in such implosions [21]. Nonlinear analyses
reveal that a magnetic field can suppress perturbation growth
rates due to the magneto-Richtmyer-Meshkov (MRM) and
MRT instabilities [22–24]. An analytical method can elucidate
the effects of a magnetic field, with the transverse magnetic
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field entirely suppressing the seeded wavelength below a crit-
ical value (λc), while a vertical magnetic field suppresses the
perturbation less. However, most studies limited to ideal mag-
netohydrodynamics neglect the diffusion of magnetic fields
[18].

Recent experiments on high-energy-density plasmas
[25,26] have shown that the magnetohydrodynamic equa-
tions must include finite resistivity for the design of future
experiments, and the widely used Lee-More model may also
underestimate plasma conductivity in high-energy-density
regimes [27], while the Spitzer model is strictly valid for
fully ionized plasmas with low density and high temperature
[28]. Manuel et al. demonstrated that the Lee-More resistivity
model is insufficient in the regime of interest to explain the
experimental results and that the eV, Mbar plasmas must have
a lower resistivity than expected [25–27]. To address these
issues, an experiment has been proposed to measure resistivity
and improve the mathematical modeling [29–31]. It has been
proposed that the assumption of infinite electrical conductiv-
ity for a fluid, besides neglecting other dissipative processes,
can result in significant discrepancies between idealized mag-
netohydrodynamics theoretical predictions and experimental
results. For example, the magneto-Kelvin-Helmholtz instabil-
ity, which is initially stable under magnetic field suppression,
can become unstable and grow exponentially and periodically
due to finite resistivity [32].

Viscosity plays a significant role in suppressing the growth
rate of the MRT instability, which has recently attracted
special attention in inertial confinement fusion [33,34] and
in astrophysics [35]. Weber et al. discovered that a turbu-
lent kinetic-energy cascade was produced by the hot spot
when plasma viscosity was not considered. However, when
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the hot-spot Reynolds number falls between 10 and 100,
small-scale mixing is dampened by viscosity [33,34]. Hy-
drodynamic instability was observed in high-energy-density
plasma experiments at the National Ignition Facility and at
Omega lasers facility [36,37]. A theoretical examination indi-
cates that the most unstable wavelength derived from MRT
instability by considering viscosity is compatible with as-
trophysical observations [35]. Finite resistivity may be the
primary focus while studying the MRT instability in mag-
netized plasmas as fluid viscosity does not alter behavior at
short wavelengths, which are more strongly affected by finite
resistivity [38]. Walsh et al. performed detailed numerical
simulations to demonstrate that resistive diffusion will reduce
the effectiveness of tension stabilization for short wavelengths
and long timescales [39]. Moreover, for the nonlinear ablative
RT instability, the interface becomes more unstable by the
thermal conduction suppression effects and by the existence
of magnetic fields self-generated by the Biermann battery
mechanism [40,41].

Detailed analyses of the dependence of the MRT instability
on finite resistivity in magnetohydrodynamics were first made
by Jukes [42]. However, a careful examination of his deriva-
tions reveals that an erroneous boundary condition was used
in the continuity of the magnetic stress, resulting in incorrect
dispersion relations. Jukes’ derivation is included here for
illustration, as it occurs in infinite-conductivity theory where
there is a finite skin current of vanishing thickness, and the
product of current density and thickness remains finite. At
z = 0, the continuity equation takes the form

�(ρDuy) = gk2

n2
(ρ1 − ρ2)uy(0), (1)

where k is the perturbed wave number, g is the accelera-
tion due to gravity, ρ is the density of the plasma at the
interface, and uy(0) is the perturbed velocity at the interface
with y = 0. However, according to Chandrasekhar’s theory
[18], the continuity expression along the vertical direction is
obtained by integrating the momentum equation across the
interface, which should include the magnetic field. Therefore,
the boundary condition should be

�(ρDuy) + μ0H2k2

n2
�(Duy) = gk2

n2
(ρ1 − ρ2)uy(0). (2)

The validity of Eq. (2) can be attributed to the presence
of a horizontal magnetizing field H , which furnishes a
surface-tension-like force to stabilize the interface. Noted that
the stabilizing effect of the magnetic field only impacts the
MRT instability growth for perturbed modes parallel to the
magnetic field [39,43]. It is imperative to incorporate this
force explicitly in the boundary condition to obtain an ac-
curate description of the system under consideration. Jukes’
initial investigation into the MRT instability in magnetohy-
drodynamics, however, overlooked the impact of a horizontal
magnetic field, leading to an erroneous conclusion. To rectify
this, one must use Eq. (2) instead of Eq. (1) while formulating
the boundary conditions, as it provides the correct dispersion
relation. The revised expression encompasses various phe-
nomena of interest resulting from arbitrary Atwood number,
resistivities, and wavelengths.

FIG. 1. Diagram of perturbed interface in magnetohydrodynamics.

In this paper, we present a study of the magneto-Rayleigh-
Taylor (MRT) instability in magnetohydrodynamics with
finite resistivity. The governing equations are briefly described
in Sec. II. The dependence of the growth rates on physical
parameters of interest is discussed in Sec. III. Finally, the
conclusions and remarks are presented in Sec. IV.

II. PHYSICAL MODEL AND MATHEMATICS

Consider a partially conducting fluid of density ρ1 and
resistivity η1 occupying the half space 0 < z < ∞ and sup-
ported by another conducting fluid of density ρ2 and resistivity
η2 occupying the half space −∞ < z < 0. Both fluids are
placed in a horizontal magnetic field H = (Hx, 0, 0) and a ver-
tical gravitational field g = (0, 0, g), as shown in Fig. 1. The
equilibrium fluid pressure P, which satisfies the hydrostatic
equation ρg = ∇P, is assumed to be always positive and to
support the fluid.

The relevant equations governing the incompressibility and
momentum in both flows require

∇ · u = 0, (3)

ρ
∂u
∂t

= −∇P + ρg + μ0J × H, (4)

where u is the perturbed velocity along the x and z directions,
P is the pressure, J is the electric-current density, and μ0 is the
magnetic permeability. It is well known that the instabilities in
compressible fluids behave very much like the incompressible
theory to assure the validity of Eq. (3) [44]. Moreover, to keep
the mathematics simple, throughout this paper, the effects of
the heat flow are neglected. To complete the derivations of
the perturbed magnetic field strength due to the perturbation
on the interface, we introduce Maxwell’s equations with the
displacement currents neglected, which read

∇ · H = 0, (5)

∇ × H = J, (6)

∇ × E = −μ0
∂H
∂t

, (7)
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where E is the intensity of the electric field. Note that, for a
moving medium, the electric field should be

J = σ (E + μ0u × H), (8)

where σ is the conductivity of the plasma. The detailed deriva-
tions of the perturbed magnetic fields and the decay modes can
be found in the Appendix. Next, our focus shifts to the con-
tinuity equations in order to establish the dispersion relations
for the MRT instability considering finite resistivity.

First, continuity of the velocity along the z direction re-
quires

kA1 − kB1 + kA2 + kB2 = 0. (9)

We derive the corresponding Maxwell’s stress tensor to
realize the requirements of the continuities of stress tensors
Tixz = Hxhiz. According to their definitions along the x direc-
tion, we have

Hxh1z = Hxh2z. (10)

Substituting Eqs. (A6) and (A8) into Eq. (A2) and using the
fact that Eq. (10) must hold for all z and about the perturbed
magnetic fields along the y direction, we have the following
expressions:

h1z =
[

Hxk2

n
A1e−kz + Hxk2

η1

μ0

(
q2

1 − k2
) − n

B1e−q1z

]
sin kx,

(11)

h2z =
[
−Hxk2

n
A2ekz + Hxk2

η2

μ0

(
q2

2 − k2
) − n

B2eq2z

]
sin kx.

(12)

Therefore, substituting Eq. (A9) into Eqs. (11) and (12),
we have

Hxk2

n
A1 + ρ1n

μ0Hx
B1 + Hxk2

n
A2 − ρ2n

μ0Hx
B2 = 0. (13)

Based on the expression of Maxwell’s stress tensor along the
z direction, we then have

Tizz = −Hxhix, (14)

which is alternatively written as

h1x = h2x. (15)

By using the same procedures for deriving Eqs. (11) and
(12), we have

h1x =
[
−Hxk2

n
A1e−kz − Hxq1k

η1

μ0

(
q2

1 − k2
) − n

B1e−q1z

]
cos kx,

(16)

h2x =
[
−Hxk2

n
A2ekz + Hxq2k

η2

μ0

(
q2

2 − k2
) − n

B2eq2z

]
cos kx.

(17)
Similarly, we can also obtain

−Hxk2

n
A1 − ρ1n

μ0Hx

q1

k
B1 + Hxk2

n
A2 − ρ2n

μ0Hx

q2

k
B2 = 0.

(18)
We now need to obtain the stress tensor based on

Eq. (A11). Before doing so, we first express the pressure on
the perturbed surface from Eq. (4), which gives

P1 = P0 −
(

ρ1n + ρ1gk

n

)
A1 +

(
ρ1n

k

q1
+ ρ1gk

n

)
B1 + u0Hx

2B1
η1

u0

(
q2

1 − k2
) − n

(
kq1 − k3

q1

)
,

P2 = P0 −
(

ρ2 − ρ2gk

n

)
A2 −

(
ρ2n

k

q2
− ρ2gk

n

)
B2 + u0Hx

2B2
η2

u0

(
q2

2 − k2
) − n

(
k3

q2
− kq2

)
. (19)

Finally, we have the equation for the continuity of stress tensor along y direction Sizz, and it reads as

−P − Hxh1x = −P − Hxh2x. (20)

At the perturbed interface, the expression of the perturbed magnetic field hix can be simplified as follows:

h1x = −Hxk2

n
A1 − Hxq1k

η1

μ0

(
q2

1 − k2
) − n

B1 = −Hxk2

n
A1 − ρ1n

μ0Hx

q1

k
B1, (21)

and

h2x = −Hxk2

n
A2 + Hxq2k

η2

u0

(
q2

2 − k2
) − n

B2 = −Hxk2

n
A2 − ρ2n

μ0Hx

q2

k
B2. (22)

Based on Eqs. (21) and (22), the fourth stress condition described by Eq. (20) can be shown as follows:

(
ρ1n + ρ1gk

n
+ k2H2

x

n

)
A1 − ρ1gk

n
B1 −

(
ρ2n − ρ2gk

n
+ k2H2

x

n

)
A2 + ρ2gk

n
B2 = 0. (23)

Actually based on Eq. (14), the contributions of magnetic terms Hxhix on both sides of the perturbed interface remain equivalent.
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FIG. 2. Growth rates α as a function of K for different values of At , with (a) η̄1 = η̄2 = 0.001 and (b) η̄1 = η̄2 = 10, where α = nV/g,
K = kV 2/g, V = (μ0Hx

2/ρ2)1/2, and η̄i = ηig/V 3.

These four equations including Eqs. (9), (13), (18), and (23) are linear and homogeneous in A1, B1, A2, and B2. They have
nontrivial solutions if and only if the determinant of the coefficient vanishes. Therefore, we have the dispersion relations

[
(ρ1 + ρ2)n2 − (ρ1 − ρ2)gk + 2μ0Hx

2k2
][ρ2n2 m2

k + μ0Hx
2k2

ρ2n2 + μ0Hx
2k2

+ ρ1n2 m1
k + μ0Hx

2k2

ρ1n2 + μ0Hx
2k2

]
− 4μ0Hx

2k2 = 0. (24)

Jukes derived the dispersion relation for the MRT instability in this case but only considered a partially conducting fluid above
the interface [42], which renders the following simplified dispersion relation,

(ρ1 + ρ2)n2

(
m

k
+ 1

)
+ (ρ1 − ρ2)(m + k)g − 2

(
1 − ρ2

ρ1

)
gk3B2

x

n2
− 2k2B2

x

(
m

k
+ ρ2

ρ1

)
= 0, (25)

where Bx = μ0Hx. In contrast, for the given continuity con-
dition involving the stress tensor along the z direction, Jukes
only considered the pressure and gravity forces along with the
vertical displacement, which reads

P1 + ρ1gξ = P2 + ρ2gξ, (26)

where ξ is the perturbed amplitude. Nevertheless, Jukes ig-
nored the magnetic stress acting on the perturbed interface,

Tizz = −Bxbix, (27)

which leads to the inconsistency with the dispersion relation
presented herein.

III. DISCUSSIONS

A. Effect of Atwood number

Figure 2(a) describes the variations of the perturbed growth
rates α as a function of the dimensionless wave number K .
α increases monotonically to the maximum value, and then
decreases gradually. However, after achieving the minimum
growth rates, α then grows linearly when At = 0.2. The curves
for At = 0.4 and At = 0.6 follow those for At = 0.2. How-
ever, when At = 0.9, in contrast with the previous cases, α

increases monotonically with the increasing wave number be-
cause the decay mode mi depends strongly on the growth rates
n, as shown in Eq. (A9). In this case, the interface is essentially
unaffected by the magnetic field because the magnetic field is

totally diffused by the resistivity. Note that, for the smallest
wave numbers, the growth rates of the instability are similar
to the classical dispersion relation

n2 = AT kg, (28)

which is consistent with the fact that the growth rates are
rather insensitive to the details of the velocity fields. By in-
cluding a horizontal magnetic field, the dispersion relation
becomes

n2 = AT kg − 2
μ0H2

x

ρ1 + ρ2
k2, (29)

which indicates that perturbations with wavelengths less than
λc are totally stabilized. λc is

λc = 4π
μ0H2

x

(ρ1 − ρ2)g
. (30)

The horizontal magnetizing field causes the clearly decreas-
ing trends. For the perturbation with small η and At , the
horizontal magnetic field strongly affects the instability and
significantly suppresses the perturbation with high wave num-
bers, as shown in Eq. (29), in which case the curves with
At = 0.2 behave like those of the MRT instability with infi-
nite conductivity. However, for wavelengths longer than λc

in the ideal magnetohydrodynamics, the interface is totally
stabilized.

Figure 2(b) plots the variations of the growth rates
with dimensionless resistivity η̄1 = η̄2 = 10. The magnetic
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FIG. 3. Growth rates α as a function of K for η̄1 = 0.01 and different K , with (a) At = 0.2 and (b) At = 0.9, where α = nV/g, K = kV 2/g,
V = (μ0Hx

2/ρ2)1/2, and η̄i = ηig/μ0V 3.

diffusion induced by a larger resistivity can strongly decrease
the magnetic stress tensor and thus destabilize the interface.
Thus, the magnetic stabilization of the MRT instability would
be significantly reduced. Unexpectedly, these curves become
almost identical to the classical curves produced by Eq. (28),
which demonstrates that the suppression due to a horizontal
magnetic field entirely vanishes, which is consistent with the
numerical simulations [29,30]. However, it cannot be inferred
from Jukes’ theory.

B. Effects of electrical resistivity

One of the interesting phenomena observed by Jukes
is that the perturbations with moderately long wavelengths
grow rapidly at a rate α ∝ η1/3, as shown in Fig. 3. This
growth rate is also numerically verified in magnetized high-
energy-density plasmas [30], for which the Lee-More model
significantly underestimates the electrical conductivity for
plasmas in the eV, Mbar regime [25]. Specifically, we investi-
gate herein how long wavelengths grow at the rate α ∝ η1/3

when the resistivity is not large. In addition, after the di-
mensionless resistivity increases to η̄ ≈ 1, α tends to reach
a constant that depends strongly on K . This phenomenon
is again confirmed by the fact that the magnetic field in
the plasma with resistivity η2 is strongly diffused and the
other plasma with η1 = 0.01 contributes more to suppress the
growth rate, as shown in Fig. 3(a). However, with η1 = 1,
as shown in Fig. 3(b), α quickly grows to almost recover
the classical growth rate in ideal fluids shown as Eq. (28)
because the magnetic field on both sides is diffused by larger
resistivities and the suppressive effects of the magnetic field
disappear.

C. Effects of resistivity ratio

In the context of inertial confinement fusion plasmas, re-
cent numerical simulations reveal that the MRT instability is
not directly impacted by the electrical resistivity but rather by
the growth of the magnetic field. Furthermore, computations
based on the Lee-More model exhibit a loss of suppressive

effects for finite-conductivity plasmas [29]. Figure 4 shows
how resistivity affects the growth rates of the MRT instability
in the presence of a horizontal magnetic field. For the smallest
wave number K , the growth rates of the perturbation with
varying η̄ retain essentially identical values. Since the growth
rates are independent of the resistivity of the plasmas and of
the horizontal magnetic field, the results resemble the classical
results of a RT instability in ideal fluids shown in Eq. (28). The
growth rates behave differently for the larger wave number K :
They become dominated by the joint effects of the resistivity
and the horizontal magnetic field and are proportional to K at
high orders of K .

Figure 4(a) shows that, for the perturbed system with
At = 0.2, the growth rates are enhanced by the incremental
resistivity, particularly for high wave numbers. The separate
horizontal magnetic field suppresses the growth rate of the
RT instability and stabilizes the perturbed interface below
the critical wavelength. For ideal magnetohydrodynamics, the
magnetic flux tubes move with the fluids and therefore would
be bent by the vorticity, generating the magnetic stress ten-
sor acting on the perturbed interface [29,42]. However, for
nonzero resistivity, the damping current induced by the re-
sistivity causes the magnetic field to diffuse away from the
disturbed interface, which weakens the magnetic-field inten-
sity and thus weakens the inhibition effect.

Similarly, when η̄ = 0.001, the perturbed growth rate first
increases to the maximum value and then decreases gradu-
ally to give rise to a linear relation between α and K . As η̄

varies from 0.1 to 10, the growth rate increases monotonically,
which differs from the aforementioned perturbation with η̄ =
0.001. In these cases, the resistivity significantly diffuses the
horizontal magnetic field, thereby destroying the stabilizing
mechanism and leading to the growth rate shown in Fig. 4(b),
which is almost the same as the classical growth rates.

D. Comparison of Jukes’ results with those of the present theory

Figure 5 shows the growth rates given by Jukes and those
obtained in this work when At = 0.9: Jukes’ theory and the
proposed method yield different growth rates. Combined with
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FIG. 4. Growth rates α as a function of K for different values of η̄, with (a) At = 0.2 and (b) At = 0.6, where α = nV/g, K = kV 2/g,
V = (μ0Hx

2/ρ2)1/2, and η̄i = ηig/V 3.

the discussion in Sec. III A, our results reveal that, when
At = 0.9, the growth rate increases monotonically as the wave
number grows, in which case the magnetic field is diffused by
a larger resistivity and does not suppress the disturbance of
high wave number. Apparently, in contrast with our results,
Jukes’ theoretical growth rates remain similar to those ob-
tained with small At . The diffusion effect of the resistivity on
the magnetic field also depends on the growth rate, as shown
in Eq. (A9). With sufficiently large growth rates, even a small
resistivity can dampen the inhibition effect of the magnetic
field on instability. However, Jukes’ theory does not reveal this
interesting insight.

According to Jukes’ dispersion relation, the growth rates
are given as a function of η

1/3
2 in Fig. 5(b), which reveals that,

for moderately long wavelengths, the analytical growth rate
depends on resistivity η as α ∝ η1/3. By comparing the growth
rates with Fig. 3, our results show that, for small resistivity,
the perturbed growth rates grow as α ∝ η1/3; however, as
the resistivity increases to a certain value, the growth rate

becomes independent of the resistivity and reproduces the
classical growth rate in ideal fluids. In short, the magnetic field
is diffused by the resistivity to enhance the instability, and the
perturbed growth rates reproduce the classical growth rates,
independent of the resistivity η2.

IV. CONCLUSIONS AND REMARKS

In this paper, we perform a revised analysis of Jukes’
derivation regarding the dispersion relation of MRT insta-
bility in magnetohydrodynamics with finite resistivity. We
identify an erroneous boundary condition that was previously
employed to ensure continuity of magnetic stress which is
physically incorrect and conflicts with Chandrasekhar’s the-
ory. To obtain an accurate dispersion relation, we use a correct
boundary condition. Our findings reveal interesting physical
insights.

The impact of larger growth rates on the magnetic field
can lead to rapid diffusion, which in turn can weaken the

FIG. 5. (a) Growth rates σ given by this work and by Jukes as a function of K with At = 0.9. (b) Growth rates σ given by Jukes as a
function of η

1/3
2 with K = 5 and K = 10.
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suppressive effects attributed to horizontal magnetic fields.
Hence, the Atwood number may significantly influence the
growth-rate curves, while a self-similarity is evident in the
growth-rate curves derived by Jukes’. Our findings demon-
strate that long wavelengths grow at a rate proportional to α ∝
η1/3, and under sufficiently large resistivity, growth rates tend
to stabilize at a constant value, once the suppressive effect of
the magnetic field fades away. However, such characteristics
are absent in Jukes’ theory. For instance, consider the physi-
cal parameters of hot plasma in high-energy-density physics,
where the acceleration is g ∼ 1013 m/s2 [45], the magnetic-
flux-density intensity is B ∼ 100 T, the fuel density of the
capsule is ρ ∼ 1 g/cm3, the resistivity is between η ∼ 10−5

and 10−3 kg m3 S−3 A−2 [46], the magnetic permeability is
approximately μ0 ∼ 10−1 H/m, and the typical plasma tem-
perature is ∼104 K. Therefore, the dimensionless parameter

η̄ = ηg
V 3 = ηgρ3/2

2

μ
3/2
0 (Bx/μ0 )3

∼ 106, which indicates that the MRT

instability remains unaffected by the presence of the magnetic
field.

We investigate the MRT instability in magnetohydrody-
namics with finite resistivity in the presence of a horizontal
magnetic field. Our study demonstrates that the outcomes
associated with Atwood number, resistivity, and diffusion
vary markedly from Jukes’ results. Additionally, recent ex-
periments indicate that Spitzer’s model may significantly
underestimate plasma conductivity in high-energy-density
regimes. Our straightforward analytical theory has the po-
tential to become a benchmark for comprehending plasma
resistivity under extreme conditions.
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APPENDIX

In this paper, we construct the coupled equations of the
piston and the shock to describe their coupled dynamics by
assuming that the shock wave is strong enough, in order to
solve the above-mentioned equations analytically. Once the
asymptotic behavior of the strong shock has been obtained,
the results about the weak shock wave are complementary to
clarify the attenuation and decay of the shock wave of medium
strength.

Therefore, considering the flows with finite conductivity,
we have the following component forms of the perturbed
magnetic fields,

∂hx

∂t
= Hx

∂ux

∂x
+ η∇2hx, (A1)

∂hz

∂t
= Hx

∂uz

∂x
+ η∇2hz, (A2)

where η is the resistivity of the plasma. The resistivity can be
expressed as

η = 1

σμ0
. (A3)

Taking Eqs. (6)–(8) in Eq. (4), the equation of motion
explicitly shows

∂ui

∂t
− μ0Hj

4πρ

∂Hi

∂x j
= − ∂

∂xi

(
p

ρ
+ μ0

|H|2
8πρ

)
+ g, (A4)

where i, j = 1, 2 represent the x and z directions. Here, we
follow the previous treatments of Helmholtz’s decomposition
theorem by assuming that the velocity field is the sum of an
irrotational part plus a solenoidal part. They are determined by
the scalar potential φ and the vector potential ψ, respectively:

u = ∇φ + ∇ × ψ. (A5)

To meet the requirement of incompressibility, the velocity
field along the x and z directions is normally written as

ux = ∂φ

∂x
− ∂ψ

∂z
, uz = ∂φ

∂z
+ ∂ψ

∂x
, (A6)

where φ satisfies the Laplace equation by using Eq. (A6)
in Eq. (3), and ψ can be determined by taking the curl of
Eq. (A4), leading to the vorticity equation

∂�

∂t
= μ0

Hx

ρ

(
∂2hz

∂x2
+ ∂2hz

∂z2

)
, (A7)

where � = ∇ × u = ∇2ψ is the vorticity generated in a
conducting fluid with finite resistivity. Interestingly, without
considering the finite resistivity, no vorticity is generated due
to the presence of a horizontal magnetic field in the linear
analysis [18]. When either a horizontal or vertical magnetic
field exists, vorticity travels away from the interface at the
local Alfvén velocity by considering the vorticity generated
by the perturbed interfaces [22,23]. As done in previous treat-
ments, the velocity potential and stream function are defined
as

φi = Aie
±kz+nt eikx, ψi = Bie

qiz+nt eikx, (A8)

where ±k with k = 2π/λ denotes the decay modes with
which the velocity of the irrotational part must vanish for
z → ∞ in both flows, and λ indicates the wavelength of the
perturbation. q is the decay mode determined by the presence
of a horizontal magnetizing field; when considering the resis-
tivity, it reads

m2
i = k2 + μ0n

η
+ μ2

0H2
x k2

ρiη
, (A9)

which recovers Jukes’ expressions for the decay modes [42].
The detailed information of the velocity field is known once
the decay modes are established. The dispersion relation is
obtained by using the continuities of velocities and stress
tensors along the x and z directions, which have been used
extensively and read

u1z = u2z, h1x = h2x, h1z = h2z, S1zz = S2zz, (A10)

where Si j is the stress tensor given by

Si j = Ti j − Pδi j, (A11)

and Ti j is the magnetic stress tensor, which reads

Ti j = (HiHj − δi jH
2/2), (A12)

where δi j is Kronecker’s delta.
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