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Kappa distribution from particle correlations in nonequilibrium, steady-state plasmas
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Kappa-distributed velocities in plasmas are common in a wide variety of settings, from low-density to
high-density plasmas. To date, they have been found mainly in space plasmas, but are recently being considered
also in the modeling of laboratory plasmas. Despite being routinely employed, the origin of the kappa distribution
remains, to this day, unclear. For instance, deviations from the Maxwell-Boltzmann distribution are sometimes
regarded as a signature of the nonadditivity of the thermodynamic entropy, although there are alternative
frameworks such as superstatistics where such an assumption is not needed. In this work we recover the
kappa distribution for particle velocities from the formalism of nonequilibrium steady-states, assuming only
a single requirement on the dependence between the kinetic energy of a test particle and that of its immediate
environment. Our results go beyond the standard derivation based on superstatistics, as we do not require any
assumption about the existence of temperature or its statistical distribution, instead obtaining them from the
requirement on kinetic energies. All of this suggests that this family of distributions may be more common than
usually assumed, widening its domain of application in particular to the description of plasmas from fusion
experiments. Furthermore, we show that a description of kappa-distributed plasma is simpler in terms of features
of the superstatistical inverse temperature distribution rather than the traditional parameters κ and the thermal
velocity vth.

DOI: 10.1103/PhysRevE.108.065207

I. INTRODUCTION

Modelling the velocity distribution of particles in a
nonequilibrium, steady-state plasma is an interesting chal-
lenge from both theoretical and practical points of view
[1–4]. In general, particles in a steady state plasma do not
follow the typical Maxwell-Boltzmann distribution of ve-
locities one would expect in an equilibrium system but,
instead, their velocities are described by more general fam-
ilies of distributions. Among them, the kappa distribution,
a power-law distribution with long tails describing highly
energetic particles, appears predominantly in space plas-
mas [5,6]. These are weakly collisional plasmas in steady
states found in the Earth’s magnetosphere [7–10] and plasma
sheet [8,11,12], as well as in the solar wind [13–15]. Be-
yond Earth, kappa distributions have also been found in
other planetary atmospheres [16–19] and the interstellar
medium [20–22].

From the point of view of laboratory plasmas, even when
the energy distribution of suprathermal ions in fusion plas-
mas, such as the ones generated by Z-pinch discharges, has
been known for decades to be well described by power laws
[23–27], only recently kappa distributions have being pro-
posed in this context as possible statistical models [28,29].

*sergio.davis@cchen.cl

For the velocity v of a particle of mass m, the kappa
distribution is commonly written in the form

P(v|κ, vth) = 1

ηκ (vth)

[
1 + 1

κ − 3
2

v2

v2
th

]−(κ+1)

, (1)

where κ � 0 is a shape parameter, sometimes referred to as
the spectral index, vth is the thermal velocity, [30],

vth :=
√

2kBT

m
, (2)

and ηκ (vth) is a normalization constant given by

ηκ (vth) := (
√

π (κ − 3/2)vth)3 �(κ − 1/2)

�(κ + 1)
. (3)

In the limit κ → ∞, the kappa distribution in Eq. (1) re-
duces to the Maxwell-Boltzmann distribution,

P(v|m, T ) =
(√

m

2πkBT

)3

exp

(
− mv2

2kBT

)
, (4)

precisely the distribution expected in equilibrium at tem-
perature T . However, for finite κ the interpretation of the
parameter T in Eq. (2) is not straightforward [31,32], mainly
because there are multiple admissible definitions of tempera-
ture and not all of them agree with T .

Although the presence of kappa distributions in plasmas
has been traditionally explained [33,34] by the use of nonex-
tensive statistical mechanics, also known as Tsallis statistics
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[35], more recent frameworks such as superstatistics [36,37]
can recover them in a direct manner. Moreover, recently we
have shown [38] that superstatistics arises as a natural descrip-
tion for collisionless plasmas in nonequilibrium steady states,
providing support to recent efforts [39–41] in establishing a
foundational basis for steady-state distributions in plasmas
using superstatistics as a starting point.

Despite these advances, superstatistics still requires the
assumption of a gamma distribution for the inverse temper-
ature β := 1/(kBT ) in order to recover Tsallis statistics, and
in particular, the kappa distributions. This particular choice
of temperature distribution is referred to as χ2 superstatistics.
Several mechanisms aiming to explain the origin of this χ2

family of superstatistics have been proposed in the literature
since the theory was originally presented. For instance, by
using the fact that a sum of squares of Gaussian random
variables becomes gamma distributed as the number of such
variables grows large [42], or by invoking Jaynes’ maximum
entropy principle on the distribution P(β|S) under macro-
scopic constraints [43].

Motivated by this somewhat unsatisfactory assumption
of gamma-distributed inverse temperatures, in this work we
delve deeper into the formalism established in Ref. [38],
by connecting it with more recent theoretical developments
[44,45] on the structure of superstatistics. In particular, we
show that the assumption of a gamma distribution for β can
be replaced by a simpler, and perhaps more fundamental,
assumption on the dependence between the kinetic energy of
a test particle and that of its surrounding environment.

In the following section we provide a brief account of
the superstatistical formalism and we connect it with a gen-
eralized definition of temperature for steady states [46,47],
namely the fundamental inverse temperature function βF .

II. NONEQUILIBRIUM STEADY STATES
AND SUPERSTATISTICS

Steady states are a special kind of nonequilibrium states
which are time independent, that is, where the nonequilibrium
probability density of microstates p(�; t ) at a time t reduces
to p(�). In particular, we will consider steady states where
p(�) depends on � only through the Hamiltonian H(�), and
we will write their probability density as

P(�|S) = ρ(H(�)), (5)

where ρ is the ensemble function, and S denotes the set of
parameters that uniquely define the steady state.

Within this general framework, superstatistics is a natu-
ral extension of statistical mechanics to steady states in the
form given by Eq. (5). Besides nonequilibrium plasmas, it
has been successfully used in high-energy physics [48,49],
anomalous diffusion [50,51], cosmology and gravitation [52],
turbulence [53–55], seismicity [56], bioinformatics [57], as
well as phenomena of interest in engineering such as the
electrical fluctuations of power grids [58].

In superstatistics, the canonical ensemble

P(�|β ) = exp(−βH(�))

Z (β )
(6)

is replaced by a superposition of canonical ensembles at dif-
ferent temperatures. The inverse temperature β is promoted
from a constant to a random variable with probability density
P(β|S), such that its joint distribution with the microstates is
given by

P(�, β|S) = P(�|β )P(β|S) =
[

exp
( − βH(�)

)
Z (β )

]
P(β|S).

(7)

By marginalization of β, the distribution of microstates
becomes

P(�|S) =
∫ ∞

0
dβP(β|S)

[
exp(−βH(�))

Z (β )

]
, (8)

which has the form of Eq. (5) with an ensemble function,

ρ(E ) =
∫ ∞

0
dβ f (β ) exp(−βE ), (9)

that is the Laplace transform of the superstatistical weight
function f (β ), defined by

f (β ) := P(β|S)

Z (β )
. (10)

The distinction between f (β ) and P(β|S) is an important
one. The formulation of superstatistics as in Eq. (8) is known
as type-B superstatistics, and is the standard version in use
nowadays [37]. The original formulation [36], now known
as type-A superstatistics, defines ρ as in Eq. (9) but f (β )
itself is taken as the probability density for β. This led to
inconsistencies with the application of the sum and product
rule of probability [59].

Among the possible families of distributions compati-
ble with superstatistics, three universality classes have been
shown to be especially relevant for nonequilibrium systems:
the so-called χ2 superstatistics where f (β ) has the form of
a gamma distribution, log-normal superstatistics, and inverse-
gamma superstatistics. Arguably the most predominant case
is the χ2 superstatistics, as it leads to the q-canonical en-
semble of Tsallis statistics, and in particular to the kappa
distribution. However, the log-normal superstatistics has been
found in the context of turbulence [53,60], and in stellar sys-
tems [61], among several other contexts. On the other hand,
the inverse-gamma superstatistics has been successfully em-
ployed to described the thermodynamics of small molecules
[62] and the dynamics of protein diffusion [63].

Using the definition in Eq. (9) we can write ρ(E ) =
L{ f }(E ) and, conversely, f (β ) = L−1{ρ}(β ). An important
consequence of this is that ρ is completely determined by f
and viceversa, and as the latter depends on both the inverse
temperature distribution and the partition function, then both
aspects together define the form of the statistical ensemble
P(�|S).

Let us now consider a composite system, divided into
subsystems A and B such that � = (�A,�B), and where the
Hamiltonian of the entire system is of the form

H(�A,�B) = HA(�A) + HB(�B). (11)

Please note that, because we are considering a superstatis-
tical ensemble function ρ(E ) of the form in Eq. (8), it is no
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longer true that additive subsystems have a joint distribution
that is the product of their marginal distributions. That is, in
general,

ρ(E |S) �= ρ(EA|S)ρ(EB|S). (12)

The statistical independence of subsystems only remains
true for the canonical ensemble, where

ρ(EA + EB|β0) = ρ(EA|β0)ρ(EB|β0).

However, it is easy to show in the general case that P(β|S)
is a universal property of the entire system and its parts,
that is, the same P(β|S) function is involved when express-
ing the ensemble function of an arbitrary subsystem ν as
in Eq. (8),

P(�ν |S) =
∫ ∞

0
dβP(β|S)

[
exp(−βHν (�ν ))

Zν (β )

]
, (13)

noting that P(β|S), unlike Hν and Zν , does not carry the
subindex ν. It follows that fν (β ), being the ratio between
P(β|S) and the partition function Zν (β ), will in fact be de-
pendent on the details of the subsystem. We can show that
Eq. (13) holds as follows. Let the composite system be de-
scribed by an inverse temperature distribution P(β|S). Then
we have

P(�A,�B|S) =
∫ ∞

0
dβP(β|S)

[
exp(−β(HA + HB))

ZAB(β )

]
,

(14)

and the marginal distribution of �A is given by

P(�A|S) =
∫

d�B

∫ ∞

0
dβP(β|S)

[
exp(−β(HA + HB))

ZAB(β )

]

=
∫ ∞

0
dβP(β|S) exp(−βHA(�A))

×
∫

d�B

[
exp(−βHB(�B))

ZAB(β )

]

=
∫ ∞

0
dβP(β|S)

ZB(β )

ZAB(β )
exp(−βHA(�A)), (15)

that is,

P(�A|S) =
∫ ∞

0
dβP(β|S)

[
exp(−βHA(�A))

ZA(β )

]
, (16)

where we have used the well-known factorization of the par-
tition function for additive systems, ZAB(β ) = ZA(β )ZB(β ).
We see from Eq. (16) and Eq. (14) that the subsystem �A is
governed by the same inverse temperature distribution P(β|S)
as the composite system (�A,�B) and, because the choice of
A and B is arbitrary, it follows that any possible subsystem
is governed by the same P(β|S). In the following we will
use this fact to recover subsystem-independent parameters
for the kappa distribution describing the velocity of a single
particle.

We will now define the fundamental inverse temperature
function βF , motivated by the conditional distribution of β

given a fixed energy E . First, note that the distribution of

energy in an steady state given by Eq. (5) is

P(E |S) = 〈δ(E − H)〉S =
∫

d�ρ(H(�))δ(E − H(�))

= ρ(E )�(E ), (17)

where �(E ) := ∫
d�δ(E − H(�)) is the density of states as-

sociated to H. Now, from Bayes’ theorem [64,65] we obtain

P(β|E , S) = P(β|S)P(E |β, S)

P(E |S)
(18)

and, because exact knowledge of β supersedes the state of
knowledge S, we can replace P(E |β, S) in the numerator with
the usual canonical distribution of energy,

P(E |β ) = exp(−βE )�(E )

Z (β )
, (19)

a particular case of Eq. (17) with ρ(E ) = exp(−βE )/Z (β ).
Therefore, replacing Eq. (19) and Eq. (17) into Eq. (18) and
canceling the factor �(E ), we have

P(β|E , S) = f (β ) exp(−βE )

ρ(E )
, (20)

and we immediately see that Eq. (9) ensures that the left-hand
side is a properly normalized distribution. The fluctuation-
dissipation theorem [66] associated to P(β|E , S) is

∂

∂E
〈ω〉E ,S =

〈
∂ω

∂E

〉
E ,S

+
〈
ω

∂

∂E
ln P(β|E , S)

〉
E ,S

(21)

which, by replacing Eq. (20), becomes

∂

∂E
〈ω〉E ,S =

〈
∂ω

∂E

〉
E ,S

+ 〈ω(βF − β )〉E ,S, (22)

where we have defined the fundamental inverse temperature
function βF (E ) by

βF (E ) := − ∂

∂E
ln ρ(E ). (23)

Two consequences of the fluctuation-dissipation relation in
Eq. (22) are straightforward to obtain. First, by using ω = 1
and recalling that 〈 f 〉E ,S = f (E ) for any function f (E ) of the
energy, we immediately see that

βF (E ) = 〈β〉E ,S, (24)

which then gives meaning to the fundamental inverse tem-
perature in superstatistics: it is the conditional expectation of
the superstatistical inverse temperature given the energy of the
system. Second, by taking expectation of Eq. (24) under S on
both sides, we obtain

〈βF 〉S = 〈β〉S, (25)

that is, the expectation values of βF and β coincide, and we
can use this common value to define the inverse temperature
βS of the ensemble S without ambiguity as

βS := 〈βF 〉S. (26)

In the following sections, we will recover the kappa distri-
bution for the single-particle velocity from superstatistics plus
just one additional assumption. Furthermore, we will show
how a superstatistical approximation produces a distribution
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P(β|S) as the thermodynamic limit of the distribution of the
inverse fundamental temperature, P(βF |S), thus proving a
deeper connection between the superstatistical parameter β

and the function βF .

III. THE KAPPA DISTRIBUTION
IN STEADY STATE PLASMAS

The total energy of a system of N classical, nonrelativistic
interacting particles forming a plasma in a steady state can be
written as

E (r1, . . . , rN , v1, . . . , vN ) =
N∑

i=1

miv
2
i

2
+ �(r1, . . . , rN ),

(27)

in such a way that the details of the interaction with the
(self-consistent) electromagnetic fields are contained inside
the potential energy function �. This energy function E is
different from the Hamiltonian H, as the latter should be
written in terms of momenta instead of velocities. How-
ever, in a steady state the joint probability of positions
and velocities actually depends only on the energy func-
tion E (as we have shown earlier [38]), that is, is of
the form

P(R,V |S) = ρ(E (R,V ); S), (28)

where we have introduced the shortcut notation R :=
(r1, . . . , rN ) and V := (v1, . . . , vN ). The joint distribution of
velocities can be obtained by marginalization of the particle
positions,

P(v1, . . . , vN |S) =
∫

dR ρ(E (R, v1, . . . , vN ); S)

= pN

( N∑
i=1

miv
2
i

2

)
, (29)

where this relation defines the N-particle ensemble function
of velocities pN . Moreover, the single-particle velocity dis-
tribution, which is our main target in this work, is given by
marginalization in P(v1, . . . , vN |S) of the remaining N − 1
particle velocities,

P(v1|S) =
∫

dv2 . . . dvN P(v1, . . . , vN |S) = p1

(
m1v

2
1

2

)
.

(30)

Here it is important to note that Eq. (28) together with
the form of the energy function in Eq. (27) will only lead
to isotropic velocity distributions because then P(v1|S) de-
pends on v1 through its magnitude, according to Eq. (30).
By comparing P(v1|S) with the kappa distribution in Eq. (1),
we see that our single-particle ensemble function p1 must be
given by

p1(k1) = 1

ηκ (vth)

[
1 + 2k1

m1v
2
th

(
κ − 3

2

)
]−(κ+1)

, (31)

where k1 := m1v
2
1/2 is the kinetic energy of the particle with

i = 1. In the next section, we will arrive at the kappa form for
p1(k1) using a single requirement on the dependence between

the kinetic energy k1 of a particle and the kinetic energy K of
its surrounding environment.

IV. DERIVATION OF THE KAPPA DISTRIBUTION

In the following analysis, we will be considering a group
of n � N particles as a subsystem, regarding only their kinetic
energy. Without loss of generality we can take the first particle
as a test particle with kinetic energy k1, and the remaining
n − 1 particles as its environment with kinetic energy

K :=
n∑

i=2

miv
2
i

2
. (32)

Then, the energy K of the subsystem is directly K := k1 +
K . Recalling that the density of states of kinetic energy for a
group of n particles is given by

�n(K) :=
∫

dv1 . . . dvnδ

(
K −

n∑
i=1

miv
2
i

2

)
= Wn K 3n

2 −1,

(33)

where we have defined the constants

Wn := (2π )
3n
2 M− 3

2

�
(

3n
2

) (34)

and M := ∏n
i=1 mi, the partition function associated to �n is

its Laplace transform,

Zn(β; M ) =
∫ ∞

0
dK�n(K) exp(−βK) = Wnβ

− 3n
2 �

(
3n

2

)

= (2π )
3n
2 M− 3

2 β− 3n
2 , (35)

which contains the single-particle partition function Z1(β; m)
as a particular case with n = 1 and M = m,

Z1(β; m) =
(√

2π

m

)3

β− 3
2 . (36)

Now we will show that only one condition is sufficient to
obtain the kappa distribution for a single particle in a plasma,
namely that the most probable kinetic energy k∗ of the test
particle given the kinetic energy K of its (n − 1)-particle
environment is linear in K . In more precise terms, we require
that

k∗ := argmaxk1
P(k1|K, S) = γn + αnK, (37)

where the parameters γn and αn are functions of n. In order to
show that Eq. (37) leads to the kappa distribution, let us first
compute the joint distribution P(k1, K|S) of test particle plus
environment, which is given by

P(k1, K|S) =
〈
δ

(
k1 − m1v

2
1

2

)
δ

(
K −

n∑
i=2

miv
2
i

2

)〉
S

=
∫

dv1 . . . dvn pn

(
n∑

i=1

miv
2
i

2

)
δ

(
k1 − m1v

2
1

2

)

× δ

(
K −

n∑
i=2

miv
2
i

2

)

065207-4



KAPPA DISTRIBUTION FROM PARTICLE CORRELATIONS … PHYSICAL REVIEW E 108, 065207 (2023)

= pn(k1 + K )

[ ∫
dv1δ

(
k1 − m1v

2
1

2

)]

×
[∫

dv2 . . . dvnδ

(
K −

n∑
i=2

miv
2
i

2

)]
, (38)

and that by using the definition of �n in Eq. (33) becomes

P(k1, K|S) = pn(k1 + K )�1(k1)�n−1(K ). (39)

The conditional distribution P(k1|K, S) appearing in
Eq. (37) can then be obtained as

P(k1|K, S) = P(k1, K|S)

P(K|S)
= pn(k1 + K )�1(k1)

pn−1(K )
, (40)

where a factor �n−1(K ) has been canceled, and the single-
particle density of states �1(k1) is readily obtained from
Eq. (33) with n = 1,

�1(k1) = 2√
π

(
2π

m

)3/2√
k1. (41)

Now, because k∗ is the argument of the maximum of
P(k1|K, S) according to Eq. (37), it follows that k∗ is the
solution of the extremum equation

0 =
[

∂

∂k1
ln P(k1|K, S)

]
k1=k∗

, (42)

and by replacing Eq. (40) and Eq. (41) we obtain

β
(n)
F (k∗ + K ) = 1

2k∗ , (43)

where β
(n)
F is the fundamental inverse temperature of the group

of n particles, defined by

β
(n)
F (K) := − ∂

∂K ln pn(K). (44)

We can replace k∗ in Eq. (43) in terms of K using Eq. (37)
and, after some algebra, obtain

β
(n)
F (K) = αn + 1

2(γn + αnK)
, (45)

from which we can recover the n-particle ensemble function
pn by integration,

pn(K) = pn(0) exp

(
−αn + 1

2

∫ K

0

dε

γn + αnε

)

= pn(0)

[
1 +

(
αn

γn

)
K

]− 1
2αn

− 1
2

, (46)

where pn(0) is a normalization constant to be determined. By
marginalizing K in Eq. (39) and using Eq. (17) as

P(k1|S) = p1(k1)�1(k1), (47)

we see that

p1(k1) =
∫ ∞

0
dK pn(k1 + K )�n−1(K ). (48)

Now, making use of the definite integral∫ ∞

0
dy ym[1 + r(x + y)]−c

= r−m−1B(c − m − 1, m + 1) · [1 + rx]m+1−c (49)

for x > 0, r > 0, m > −1, and c > m + 1 with B(a, b) :=∫ 1
0 dt ta−1(1 − t )b−1 the Beta function, we finally arrive at

p1(k1) = p1(0)

[
1 +

(
αn

γn

)
k1

] 3n
2 − 1

2αn
−2

. (50)

By comparing Eq. (50) and Eq. (31) we see that we have
recovered the kappa distribution for the test particle. However,
the dependence of αn and γn with n is not yet known. Because
superstatistics imposes, through Eq. (9), that

p1(k1) =
(√

m

2π

)3 ∫ ∞

0
dβP(β|S) exp(−βk1)β

3
2 , (51)

and we have already shown that P(β|S) is size independent,
then p1(k1) must also be size independent, even when αn

and γn are functions of n. This allows us to define new size-
independent parameters u and βS such that

1

u
: = 1

2
− 3n

2
+ 1

2αn
, (52a)

βS : = αn

u γn
, (52b)

and whose meaning will be revealed shortly. In terms of these
parameters, we can rewrite Eq. (50) as

p1(k1) = p1(0)[1 + (uβS )k1]−( 1
u + 3

2 ). (53)

Comparison with Eq. (31) gives the usual parameters κ and
vth of the kappa distribution for a single particle in terms of u
and βS as

κ = 1

u
+ 1

2
, (54a)

mv2
th

2
= 1

(1 − u)βS
, (54b)

and we can use these new parameters u and βS to rewrite the
fundamental inverse temperature β

(n)
F (K) in Eq. (45) as

β
(n)
F (K) =

(
1 + 3nu

2

)[
βS

1 + uβSK

]
. (55)

We see that u → 0, that is, κ → ∞ reduces β
(n)
F (K) to

the constant function equal to βS for all K, thus recovering
the canonical ensemble. Replacing Eq. (53) and Eq. (41) into
Eq. (47) we obtain the single-particle energy distribution,
which, after normalization, yields

P(k1|u, βS ) = (
√

uβS )3

B
(

3
2 , 1

u

) [1 + (uβS )k1]−( 1
u + 3

2 )
√

k1; (56)

result that fixes the normalization constant p1(0) to be

p1(0) =
(√

muβS

2π

)3
�

(
1
u + 3

2

)
�

(
1
u

) , (57)
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in full agreement with p1(0) = η−1
κ as it appears in Eq. (3).

The mean and relative variance of P(k1|u, βS ) in Eq. (56) are
given by

〈k1〉u,βS = 3

2βS (1 − u)
, (58a)

〈(δk1)2〉u,βS

〈k1〉2
u,βS

= 2 + u

3(1 − 2u)
, (58b)

and from these two equations we can, in principle, determine u
and βS from the observed statistics of k1. Note that the relative
variance in Eq. (58b) increases monotonically with u from
its value of 2/3 for u = 0. Additionally, we see that in order
to keep 〈(δk1)2〉u,βS

a nonnegative quantity, it is required that
u < 1/2, that is, the spectral index κ must be larger than 5/2.
Again, in the limit u → 0 we can confirm, using

lim
u→0

[1 + (uβS )k1]−( 1
u + 3

2 ) = exp(−βSk1),

that P(k1|u, βS ) in Eq. (56) reduces to the Maxwell-
Boltzmann distribution of single-particle energies,

P(k1|β ) =
(

2√
π

)
β

3
2 exp(−βk1)

√
k1 (59)

with β = βS . Similarly, using Eq. (17) as P(K|u, βS, n) =
pn(K)�n(K) we obtain the energy distribution for the group
of n particles as

P(K|u, βS, n) = (
√

uβS )3n

B
(

3n
2 , 1

u

) [1 + uβSK]−
(

1
u + 3n

2

)
K 3n

2 −1, (60)

and we can verify that

〈K〉u,βS = 3n

2βS (1 − u)
= n〈k1〉u,βS , (61)

hence the mean kinetic energy is an extensive quantity for all
n > 1 and for all u. By simple inspection we can also confirm
that Eq. (60) includes Eq. (56) as a particular case with n = 1
and K → k1.

We can gain further insight on the relationship between k∗
and K if we write our original requirement in Eq. (37) in terms
of u, βS, and n as

k∗(K ) = 1 + uβSK

βS ([3n − 1]u + 2)
. (62)

We readily see that the only case where k∗ is independent
of K corresponds to u = 0, that is, to the canonical ensemble
with

βS = 1

2k∗ , (63)

while for u > 0 in the thermodynamic limit we have

lim
n→∞ k∗(K ) = lim

n→∞
K

3(n − 1)
= k

3
, (64)

where we have defined k := limn→∞ K/(n − 1) as the average
kinetic energy of the environment. This is in agreement with
the mode and mean of the Maxwell-Boltzmann distribution of
energies in Eq. (59), namely

k∗(β ) = 1

2β
= 1

3
〈k1〉β. (65)

On the other hand, the joint distribution P(k1, K|u, βS ) in
Eq. (39) yields the covariance between k1 and K as

〈δk1δK〉u,βS = 9u(n − 1)

4β2
S (1 − u)2(1 − 2u)

� 0, (66)

with equality only for u = 0. We can check that this covari-
ance increases monotonically with u, and that k1 and K are
statistically independent if and only if u = 0.

V. STATISTICAL DISTRIBUTION OF INVERSE
TEMPERATURES

The superstatistical distribution of the inverse tempera-
ture β, namely P(β|u, βS ), can now be determined by using
Eq. (10) in the form

P(β|u, βS ) = f1(β )Z1(β ), (67)

with f1 = L−1{p1} the inverse Laplace transform of the
single-particle ensemble function p1 in Eq. (53). Because the
inverse Laplace transform is unique if it exists, and recalling
the Euler integral∫ ∞

0
dβ exp(−βA)βR−1 = �(R)A−R, (68)

we obtain for A = k1 + 1/(uβS ) and R = 1/u + 3/2, that

f1(β ) = p1(0)

uβS�
(

3
2 + 1

u

) exp

(
− β

uβS

)(
β

uβS

) 1
u + 1

2

. (69)

After multiplying by Z1(β ) in Eq. (36) and replacing
Eq. (57), we obtain the properly normalized probability dis-
tribution for β as

P(β|u, βS ) = 1

uβS �(1/u)
exp

(
− β

uβS

)(
β

uβS

) 1
u −1

, (70)

which is a gamma distribution with mean and variance given
by

〈β〉u,βS = βS, (71a)

〈(δβ )2〉u,βS = u(βS )2. (71b)

Here we see that βS is directly the mean superstatistical
inverse temperature, in agreement with Eq. (26) and Eq. (25),
while u is the relative variance of β, thus together with
u < 1/2 we see that we must have 0 � u < 1/2. The most
probable inverse temperature is given by

β∗
S := βS (1 − u), (72)

and it is clear that u → 0 recovers the canonical ensemble,
because

〈(δβ )2〉u,βS → 0, (73)

β∗
S → βS, (74)

which together imply P(β|u, βS ) → δ(β − βS ), in agreement
with the limit κ → ∞ of the kappa distribution, i.e.„ the
Maxwell-Boltzmann distribution. Furthermore, using Eq. (72)
and letting kBT ∗

S := 1/β∗
S , we can rewrite Eq. (54b) as

vth =
√

2kBT ∗
S

m
, (75)
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which agrees with Eq. (2) if we interpret the parameter T
appearing in the kappa distribution as T ∗

S of the superstatistical
description. The conditional distribution of inverse tempera-
ture given K follows from Bayes’ theorem as

P(β|K, u, βS, n) = P(β|u, βS )P(K|β )

P(K|u, βS, n)

= P(β|u, βS ) exp(−βK )

Zn−1(β ) pn−1(K )
, (76)

where we have canceled a factor �n−1(K ). This is also a
gamma distribution, written explicitly as

P(β|K, u, βS, n) = [1 + uβSK]
1
u + 3(n−1)

2

uβS�
(

1
u + 3(n−1)

2

)
× exp

(
− β

uβS
[1 + uβSK]

)(
β

uβS

) 1
u + 3(n−1)

2 −1

,

(77)

but, unlike P(β|u, βS ) in Eq. (70), this distribution is explicitly
dependent on the size n. The mean inverse temperature given
K is

〈β〉K,u,βS ,n =
(

1 + 3(n − 1)u

2

)[
βS

1 + uβSK

]
, (78)

and, by comparing with Eq. (55), we can verify that Eq. (24)
holds in the form

〈β〉K,u,βS ,n = β
(n−1)
F (K ). (79)

This means 〈β〉K,u,βS ,n also reduces to βS in the limit u → 0
with finite n, becoming independent of K . In the thermody-
namic limit, that is, when n → ∞, we have that

lim
n→∞〈β〉K,u,βS ,n = lim

n→∞
3(n − 1)

2K
= 3

2k
(80)

for u > 0. The relative variance of P(β|K, u, βS, n) is

〈(δβ )2〉K,u,βS ,n

〈β〉2
K,u,βS ,n

= 2u

2 + 3(n − 1)u
, (81)

and vanishes both in the limit u → 0 and in the ther-
modynamic limit with u > 0, unlike the relative variance
of P(β|u, βS ) which is independent of n. This last result,

combined with Eq. (80), implies that

lim
n→∞ P(β|K, u, βS, n) = δ

(
β − 3

2k

)
. (82)

We can interpret this result as the following statement: in
the thermodynamic limit, the kinetic energy of a group of par-
ticles uniquely fixes its superstatistical temperature, and this
temperature becomes exactly the fundamental temperature.

VI. SUMMARY AND DISCUSSION

We have shown that the kappa distribution for particle
velocities in a plasma can be recovered from superstatistics
plus a single assumption, namely Eq. (37), which imposes
linearity of the most probable kinetic energy k∗ of a test
particle as a function of the kinetic energy K of its envi-
ronment. Our results do not rely on the concept of entropy
or its maximization, nonadditivity, or any such concept, and
do not assume any particular distribution of temperature a
priori. Nevertheless, in such a plasma the inverse temperature
β does have a well-defined distribution, namely the gamma
distribution P(β|u, βS ) in Eq. (70).

Our result shows that the kappa distribution can arise
whenever there are kinetic energy correlations, suggesting that
it may be realized in more diverse experimental conditions
than are currently considered. Relevant new scenarios to be
explored may include laser-produced plasmas [67], Z-pinches
[68], and, in particular, plasma focus devices [69–71] where
a rich phenomenology has been observed, including dense
plasma [72], plasma shocks [73], plasma filaments [74], and
supersonic plasma jets [69–72]. The recently postulated re-
lationship between the mechanism of magnetic reconnection
and kappa distributions [75,76] suggests that this distribution
may also describe the emission of plasma foci, as mag-
netic reconnection may also be a relevant process in those
devices [77].

An open question, left for future studies, is the possibil-
ity that a similar mechanism of constraining the correlations
between observables may lead to the other two universal-
ity classes in superstatistics, namely log-normal and inverse
gamma forms for f (β ).
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