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Amplitude modulation and surface wave generation in a complex plasma monolayer
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The response of a two-dimensional plasma crystal to an externally imposed initial perturbation has been
explored using molecular dynamics (MD) simulations. A two-dimensional (2D) monolayer of micron-sized
charged particles (dust) is formed in the plasma environment under certain conditions. The particles interacting
via Yukawa pair potential are confined in the vertical (ẑ) direction by an external parabolic confinement potential,
which mimics the combined effect of gravity and the sheath electric field typically present in laboratory dusty
plasma experiments. An external perturbation is introduced in the medium by displacing a small central region
of particles in the vertical direction. The displaced particles start to oscillate in the vertical direction, and their
dynamics get modulated through a parametric decay process generating beats. It has also been shown that
the same motion is excited in the dynamics of unperturbed particles. A simple theoretical model is provided
to understand the origin of the beat motions of particles. Additionally, in our simulations, concentric circular
wavefronts propagating radially outward are observed on the surface of the monolayer. The physical mechanism
and parametric dependence of the observed phenomena are discussed in detail. This research sheds light on the
medium’s ability to exhibit macroscopic softness, a pivotal characteristic of soft matter, while sustaining surface
wave modes. Our findings are also relevant to other strongly coupled systems, such as colloids and classical
one-component plasmas.
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I. INTRODUCTION

Complex plasma has been proven to be a remarkable
medium to study waves [1,2], crystallization [3–6], phase
transition [7–9], cluster formation [10–12], crystal cracking
[13], lane formation [14], flow-induced excitations [15–18],
and many more. A low-power laser and standard camera
are sufficient to visualize, perturb, and capture the dynam-
ics of the medium due to its response with unique length
(of the order of millimeters) and timescales (of the order
of milliseconds). Complex plasma is a system of micron or
submicron-sized dust particles suspended in the plasma envi-
ronment. The suspended dust particles acquire large amounts
of charge, which leads to much higher Coulomb potential
energy with respect to the average thermal energy of parti-
cles. The medium exhibits from a fluid to a crystalline phase
depending upon the ratio between Coulomb potential energy
and dust thermal energy. Complex plasma is also considered
a new state of soft matter where the medium’s equilibrium
properties and dynamical response depend upon the external
conditions [19].

Complex plasma medium has been shown to sustain var-
ious waves, e.g., linear waves such as dust acoustic waves
(DAW) [1], transverse shear waves [20], and nonlinear waves
such as solitons [16,18,21] and shocks [22]. Various nonlinear
structures [23], e.g., voids [24], Mach cones [25], vortex [26],
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etc., have also been reported in a dusty plasma medium. The
first DAW was theoretically predicted by Rao et al. [27]
and experimentally realized by Barkan et al. [28] in liquid
and gaseous states. Kaw and Sen [20] predicted the new
mode called transverse shear wave using a generalized hy-
drodynamic (GHD) model in dusty plasma when the medium
is in a strongly coupled fluid state. Pramanik et al. [29]
confirmed this transverse shear wave experimentally in three-
dimensional strongly coupled dusty plasma fluid.

The research on dust lattice waves has also been run-
ning alongside [30] since the discovery of plasma crystals.
Typically, dust lattice waves are excited in the laboratory
by applying a modulating voltage to the wire near the dust
crystal [31]. Another novel technique introduced to excite
lattice waves is using the radiation pressure of a laser, which
does not perturb the plasma environment and is considered
far better than the modulated voltage technique. Nunomoura
et al. [32] used the same method to excite the in-plane trans-
verse shear wave in monolayer dusty plasma crystal. The
vertical vibrations of dust grains in sheath region also induce
low-frequency modes and are first studied theoretically by
Vladimirov et al. [33] in the 1D chain. They obtained the
dispersion relation of the off-plane motions of the particles
using the fluctuation spectra obtained from the thermal mo-
tion of the particles and found that it follows inverse-optic
dispersion characteristics. The theory in the 1D Yukawa chain
is experimentally verified by Liu et al. [34]. The knowledge
of unique dispersion characteristics is extended to 2D crystals
and same characteristics are verified in theory [35–37], sim-
ulations [38], and experiments [39–42]. Samsonov et al. [39]
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tried to find the transverse off-plane dispersion relation ex-
perimentally by applying a negative pulse to the wire placed
beneath the 2D monolayer. They used wire excitation in which
they had no control over the excitation frequency and wave
number. Amplitude modulation of dust lattice waves (DLW)
was numerically studied by Melandso [30]. A theoretical
model for the slow modulation of the DLW was reported by
Amin et al. [43] by introducing a fast and slow motion of dust
plasma as an initial condition. There are also reports on the
large amplitude oscillations in the vertical direction, which
leads to instability and phase transition [9,44].

In the present work, we have investigated the vertical
dynamics of particles in an externally perturbed crystalline
monolayer using Molecular Dynamics (MD) simulations.
This study is mainly devoted to the characteristics response
and its parametric dependence of a 2D plasma crystal to an
externally imposed perturbation. Unlike the previous studies,
we introduced the external perturbation only within a small
region of a large crystalline structure. The motivation of our
work is to capture the process of the energy transport mech-
anism from the initially perturbed region to the undisturbed
region of the monolayer. In particular, we investigate how the
initially disturbed particles respond to external perturbation,
how this information spreads to the region far away from
the initially perturbed area, and what processes govern the
dynamics of particles. The external perturbation is introduced
by displacing the small region of particles at the center of
the monolayer in the downward (−ẑ) direction. This method
can be easily realized in the laboratory, e.g., by focusing a
laser pulse perpendicular to the plane of a complex plasma
monolayer. Recently, in our previous work [9], we used a
similar technique and showed a first-order phase transition in
the 2D dust crystal induced by parametric decay instability
above a threshold value of initial displacement. In the present
work, we introduce a small initial displacement to the particles
so that the medium remains in the crystalline state. We have
studied the dynamics of the perturbed as well as unperturbed
particles by tracking the single-particle trajectories. It has
been found that the amplitude of initially displaced particles
modulates via a parametric decay process and generates beats
motion. A similar motion is also observed in the dynam-
ics of unperturbed particles. The parametric decay process
has been observed in many other aspects of plasma physics,
inertial [45] and magnetic confinement fusion [46], and laser-
plasma interactions [47]. In our study, we have identified the
dependence of the parametric decay process on different sys-
tem parameters, such as confinement potential, perturbation
radius, dust density in the 2D monolayer, and dust-neutral
collision frequency. We have also observed that the beat mo-
tion of the particles initiates a collective response generating
circular transverse wavefronts called surface waves, which
propagate radially outwards from the center of the mono-
layer. The atomistic picture of the wave reveals a mixture of
longitudinal and transverse motion of particles similar to the
surface wave in different media. The dispersion analysis of
the surface wave has also been carried out and found that it
follows the same dispersion characteristics as the theoretically
predicted transverse shear wave. A simple theoretical model
is also provided in support of our simulation results. In our
simulations, we have not considered the ion motions in the

vertical direction, which may affect the dispersion properties
of the surface wave modes observed in our study.

The whole paper is divided into different sections. In
Sec. II, MD simulation details are described. In Sec. III A,
the amplitude modulation process on the perturbed region in
response to the external perturbation is discussed. The depen-
dence of amplitude modulation phenomena on various system
parameters, e.g., confinement frequency, dust density, and ra-
dius of the externally perturbed region, is described in various
subsections. In Sec. III B, the effect of dust-neutral collisions
on the phenomena observed in our study has been discussed.
Section III C provides a theoretical model supporting our sim-
ulation observations. The collective response of the medium
to the external perturbation is described in Sec. III D. At last,
all the results from simulation and modeling are summarised
in Sec. IV.

II. SIMULATION DETAILS

In this work, three-dimensional (3D) molecular dynamics
(MD) simulations have been performed using an open-source
massively parallel classical MD code LAMMPS [48]. Ini-
tially, ten thousand charged point particles (dust grains)
interacting with each other via Yukawa pair potential have
been distributed randomly inside a rectangular simulation
box. In our simulation, we have considered periodic bound-
ary conditions in all three directions. In our study, we have
considered the charge (Q) and mass (md ) of the dust grains
to be Q = −1000e and md = 1.0 × 10−13 kg, respectively.
Here, e represents the magnitude of an electronic charge. In
the vertical (ẑ) direction, a parabolic electrostatic potential
Vext = (mdω

2
v/2Q)(z − Lz/2)2 has been applied, which pro-

vides the vertical confinement of charged dust particles. Here,
Lz represents the length of the simulation box along ẑ. The
parameter ωv defines the angular frequency at which the par-
ticles would oscillate in the external parabolic potential if they
do not interact with each other. The equation of motion of any
ith particle can be expressed as

md
d2ri

dt2
= −Q

N−1∑
j=1

∇U (ri, j ) − Q∇Vext, (1)

where ri and r j are the positions of the ith and jth particles
at a particular time, respectively, and U (ri, j ) = (Q/4πε0|r j −
ri|) exp (−|r j − ri|/λD) represents Yukawa pair potential be-
tween ith and jth particle. Here, N represents the total number
of particles.

Initially, the system of charged particles has been relaxed
to a thermal equilibrium state with a desired value of tem-
perature T = 300 K. A Nose-Hoover thermostat [49–51] is
used for this purpose. For our chosen values of system pa-
rameters, particles in thermal equilibrium form a crystalline
monolayer in the x-y plane levitating at a height z = Lz/2.
Later, the thermostat is disconnected, and the system is al-
lowed to evolve in a microcanonical ensemble where the total
number of particles (N), system volume (V), and total energy
(E) remain conserved. Under this condition, we have imposed
a perturbation to the medium, i.e., monolayer, by displacing
a few particles over a distance d along the −ẑ direction, as
illustrated by the schematic in Fig. 1. It is to be noticed that
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FIG. 1. The schematic of the simulation setup is shown. A
parabolic potential (Vext) with a minimum at the location z = Lz/2
is externally applied in the vertical direction (ẑ). In equilibrium,
charged microparticles interacting via Yukawa pair potential form
a monolayer levitating at a height z = Lz/2 under the effect of Vext.
Then, the particles located within a radius R around the center of
this monolayer are displaced vertically (−ẑ direction) by a distance
d from their equilibrium positions.

only the particles which were initially located within a small
circular region of radius R around the center of the monolayer
have been displaced.

In our study, the plasma Debye length providing the screen-
ing in the pair interactions between particles is chosen to
be λD = 5 × 10−3 m. We have considered the initial dis-
placement to be d = λD in all the cases. However, nd , ωv ,
and R have been varied in our simulation, which will be
discussed in Sec. III. We have chosen a particular value of
nd = n0 = 1 × 106 m−2 as a reference and has been used for
normalization purposes. The 2D dust plasma frequency asso-
ciated with n0 is given by ωn =

√
Q2/2πε0md a3 = 22.63 s−1.

Here, a = (πn0)−1/2 represents the average interparticle dis-
tance in the 2D monolayer. In our study, the length and
timescales are normalized by λD and ω−1

n , respectively. The
velocity of the particles is normalized by the thermal velocity
vth = √

kBT/md , where kB represents the Boltzmann constant.
The simulation time step is considered to be dt = 0.001ω−1

n ,
which is small enough to track the fastest dynamics of parti-
cles.

III. RESULTS AND DISCUSSION

Initially, randomly distributed charged microparticles in-
teracting via screened Coulomb pair potential is allowed to
relax under the influence of an externally applied parabolic
potential. The final equilibrium state depends on the sys-
tem parameters, i.e., dust charge Q, dust density nd , plasma
Debye length λD, and parabolic confinement potential charac-
terized by ωv . For our chosen values of simulation parameters,
charged dust particles relax to an equilibrium state, forming
a monolayer plasma crystal. This crystalline monolayer levi-
tates inside the simulation box at a certain height of z = Lz/2,
i.e., at the location of the minima of the external parabolic
potential well, as illustrated by the schematic in Fig. 1. Then,

we displaced a few particles within a radius R around the
center of this monolayer by a distance d along the vertical
direction (−ẑ) to impose a disturbance in the medium. This
has also been illustrated by the schematic in Fig. 1. We have
analyzed various features of our observation as a consequence
of this external perturbation in the medium and presented
them in the following subsections.

A. Amplitude modulation via parametric decay process

The initially displaced particles exhibit vertical oscillatory
motion around the x-y plane of the monolayer under the
influence of the parabolic potential well. If the particles do
not interact with each other, they will oscillate with a cer-
tain frequency determined by the restoring force associated
with the external parabolic potential, i.e., ωv . In that case,
the amplitude of their oscillatory motions will also remain
constant, determined by the initial displacement d . However,
the dynamics of each particle are strongly coupled with each
other via screened Coulomb pair potential. The pair interac-
tion strength is determined by particle density (nd ) and plasma
Debye length (λD). It has been observed that the amplitude of
vertical oscillations does not remain constant but gets modi-
fied periodically with time. Thus, instead of oscillating with
a constant frequency and amplitude, a train of pulses (beats)
with different frequencies appears in the oscillatory motions
of the particles. This is a clear signature of amplitude modu-
lation of the initially induced vertical oscillatory motion. It is
worth mentioning that when we displace the entire crystalline
plane vertically from its equilibrium position, all the particles
oscillate with constant frequency ωv and amplitude d . Thus,
the amplitude modulation observed in our study occurs due to
the finite boundary (R) of the initial perturbation. To analyze
these co-related dynamics in more detail, we chose a single
particle initially located at the center of the monolayer and
tracked its dynamics with time. In the following subsections,
we have depicted the time history of the dynamics of this
particle for different cases with the changing values of system
parameters, e.g., confinement frequency (ωv), dust density
(nd ), and the radius of the initially perturbed region (R).

1. Dependence on confinement potential

We performed a series of simulations for changing values
of ωv with a fixed dust density nd = 1.0n0 and perturbation ra-
dius R = 5λD to investigate the effect of external confinement
potential on the amplitude modulation phenomena observed in
our study. As stated earlier, we tracked a perturbed particle ini-
tially located at the center of the monolayer in each case. The
time evolution of ẑ component of velocity (vz) of the tracked
particle is shown in Fig. 2 for three different simulation runs
with changing values of ωv . In all three cases, vz oscillates
with time, and a train of pulses or beats appears in the time
profile of vz. It is also seen that the amplitudes of the beats are
different in different cases and decay with time. Moreover,
the beat frequency and the decay rate of the beat amplitude
decrease as we increase the value of ωv .

To analyze the properties of these beats, we have evaluated
the Fourier spectra from the time series data of vz and vzm

of the tracked particle. Here, vzm represents the peak values
of vz(t ), and thus, the Fourier spectra of vzm(t ) will give the
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FIG. 2. Time evolution of ẑ component of velocity vz of a par-
ticle, initially located at the center of the monolayer and displaced
vertically, is shown for three different cases with the changing values
of ωv . Here, for these three cases, the values of ωv are chosen to
be (a) ωv = 1.3ωn, (b) ωv = 2.2ωn, and (c) ωv = 3.1ωn. In these
simulations, dust density and radius of initial perturbation are kept
fixed at nd = 1.0n0 and R = 5λD, respectively.

information of the beat frequency. The Fourier spectra of vz

and vzm are shown in Figs. 3(a) and 3(b), respectively, for
three simulation runs with different values of ωv . The Fourier
spectra of vz(t ) for the cases of ωv = 1.3ωpd and 3.1ωpd

are also shown in the zoomed scales in Figs. 3(c) and 3(d),
respectively. From Figs. 3(a), 3(c), and 3(d), it is clearly seen
that in all three cases, instead of a single peak (at ω = ωv),
Fourier spectra of vz(t ) exhibit two distinctly separated peaks
appearing as a sideband of the corresponding value of ωv .
However, the separation of these two peaks decreases (i.e.,
the sideband comes closer to the ω = ωv) with the increase
of ωv . Figure 3(b) illustrates that in each case, a single peak
representing the beat frequency appears in the Fourier spectra
of Vzm(t ). It is also seen that the beat frequency decreases with
the increase of ωv and has the same value as the difference
between two peaks (sideband) appearing in the corresponding
Fourier spectra of vz(t ). This indicates that a parametric decay
instability occurs, which is responsible for the generation of
sideband in the vertical oscillatory motions of the initially
perturbed particles. Consequently, a train of pulses appears as
a form of amplitude modulation initiated due to the interfer-
ence of these sideband frequencies. The fundamental origin of
this parametric process and its dependence on ωv will also be
discussed later in this section.

2. Dependence on dust density

We have also carried out simulations with changing values
of dust density (nd ) in the 2D monolayer with a fixed confine-
ment frequency ωv = 1.3ωn and perturbation radius R = 5λD.
In Figs. 4(a)–4(c), we have shown the time evolution of vz of
the tracked particle for three different values of nd . Here also,
we have seen that beats appear in the time profile of vz. It has

FIG. 3. Fourier spectra of vz(t ) are shown in subplot (a) for three different cases with ωv = 1.3ωn, 2.2ωn, and 3.1ωn with a fixed dust
density nd = 1.0n0 and perturbation radius R = 5λD. The corresponding Fourier spectra of vzm(t ) [peak values of vz(t )] are illustrated in
subplot (b). Fourier spectra of vz(t ) for ωv = 1.3ωn, 3.1ωn are also depicted in the zoomed scales in subplot (c) and (d), respectively.
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FIG. 4. The time series data of vz(t ) of a particle initially located
at the center of the monolayer are shown for three different cases
with changing values of dust density (a) nd = 0.75n0, (b) nd = 1.0n0,
and (c) nd = 1.25n0 with a fixed confinement potential frequency
ωv = 1.3ωn and perturbation radius R = 5λD.

been observed that the beat frequency and decay rate of the
beat amplitude increase with an increase of nd .

To capture the parametric process involved behind the
formation of the beat in the vertical oscillatory motion of
particles, we have evaluated Fourier spectra of vz(t ) and vzm(t )
as before for different values of nd . From Fig. 5(a), it is seen
that instead of a single peak at ω = ωv , Fourier spectra of
vz(t ) in each case reveal broad spectra with two distinctly
separated peaks. It is also seen that the separation between
these two peaks increases with the increase of nd . Fourier
spectra of vzm(t ) shown in Fig. 5(b) demonstrate that beat has
a particular frequency which increases with the increase of
nd . Here also, it is seen that in each case, the beat frequency
has the same value as the difference between two peaks that
appeared in the corresponding Fourier spectra of vz(t ). Thus,
in these cases also, parametric decay instability is responsible
for the generation of sidebands in the vertical oscillations of
the particles.

3. Dependence on perturbation radius

As mentioned earlier, the amplitude modulation phenom-
ena initiate only when the initial perturbed region’s size is
less than that of the monolayer. When the entire monolayer
is perturbed, the whole plane exhibits sinusoidal oscillation
around the equilibrium height, i.e., z = Lz/2, without forming
any beat or train of pulses in the particle’s motion. However, to
study the effect of the perturbation area, we have performed
a few simulations with changing values of radius (R) of the
initially perturbed region. The time evolution of vz(t ) and the
corresponding Fourier spectra of a tracked particle initially
located at the center of the monolayer has been shown in
Fig. 6 for three different values of R. It has been observed that
the modulated amplitude becomes higher for higher values of
R, as can be seen from Figs. 6(a)–6(c). It is also seen that
for higher values of R, modulation occurs at a later time.
This is a consequence of the fact that amplitude modulation
initiates at the boundary of the perturbed and unperturbed
regions. Thus, for higher values of R, it takes longer times
to reach the information at the center of the monolayer where
the chosen particle is located. However, the beat frequency
does not change with the radius (R) of the perturbed region, as
clearly depicted in Fig. 6(d).

The effect of initial displacement (d) on the properties of
the medium has been reported in an earlier study where we
have shown that crystalline monolayer melts through a first-
order phase transition above a threshold value of d [9]. In that
study, it has also been shown that this threshold value of d
for which the phase transition occurs depends upon the value
of R.

Let us now summarize all the results so far that have
been presented and understand the fundamental origin be-
hind the amplitude modulation phenomena observed in our
study. As we impose an external perturbation by displacing
a few particles initially located in the monolayer’s central
regime, they oscillate vertically under parabolic confinement
potential. However, the dynamics of particles are strongly
coupled with each other via pair interactions. As a result, a
shear stress is generated between the neighboring particles,
which triggers a nonlinear parametric process. Consequently,
sidebands develop (Figs. 3 and 5) in the frequency spectra

FIG. 5. Fourier spectra obtained from the time series data of vz(t ) and vzm(t ) (peak values of vz) for three different cases with changing
values of 2D dust density nd = 0.75n0, 1.0n0, and 1.25n0 are shown in subplots (a) and (b), respectively. In these simulations, the confinement
potential frequency and perturbation radius are fixed at ωv = 1.3ωn and R = 5λD, respectively.
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FIG. 6. Time evolution of vz(t ) for three different simulation runs with (a) R = 5λD, (b) R = 10λD, and (c) R = 15λD. In subplot (d), the
corresponding Fourier spectra of vz(t ) have been shown. In these simulations, the confinement frequency and particle density are kept fixed at
ωv = 1.3ωn and nd = 1.0n0, respectively.

of vertical oscillatory motions of the particles. Therefore,
amplitude modulation occurs, and beats are generated through
the interference of these sidebands. It is important to note
that beat is formed not only in the dynamics of perturbed
particles but also in the initially undisturbed region of the
crystalline plane, as will be discussed in Sec. III D. The beat
amplitude erodes in time as the kinetic energy of the per-
turbed particles is transported and distributed in the whole
crystalline plane. With the increase of parabolic confinement
frequency (ωv), the amplitude of the oscillating velocity (i.e.,
kinetic energy) of perturbed particles increases. This causes
the effective interaction between the neighboring particles to
be less efficient and reduces the shear stress. As a result,
beat frequency and beat amplitude decay rate decrease with
the increase of ωv . This has been depicted in Fig. 7(a) and
also can be seen from Figs. 2 and 3. However, the average
interparticle separation decreases as we increase the particle
density (nd ) in the 2D monolayer. As a result, effective pair
interaction strength between neighboring particles increases.
Consequently, the nonlinearity in the parametric process re-

FIG. 7. The variation of beat amplitude decay rate (γ ) and beat
frequency (δω) as a function of (a) confinement frequency ωv with
a fixed nd = 1.0n0 and (b) particle density nd in the 2D monolayer
with a fixed ωv = 1.3ωn. The perturbation radius was kept fixed at
R = 5λD for all the cases.

sponsible for the amplitude modulation increases. Therefore,
beat frequency and beat amplitude decay rate increases with
nd . This is clearly illustrated in Fig. 7(b) and also shown in
Figs. 4 and 5.

B. Effect of dust-neutral collisions

To investigate the effect of dust-neutral collisions on the
parametric process observed in our study, we have also per-
formed Langevin dynamics simulations using the framework
of LAMMPS [48]. In these simulations, we incorporated the
frictional drag and random kicks into the dust grains by neu-
tral gas atoms. In equilibrium, the net force acting on any ith
particle at any time t can be expressed as

md
d2ri

dt2
= −Q

N−1∑
j=1

∇U (ri, j ) − Q∇Vext − νmd ṙi + ζi(t ), (2)

where ν represents the dust-neutral collision frequency and
ζi(t ) is the random force exerted by the neutral atoms on the
ith particle.

As before, we have introduced the perturbation in the sys-
tem, i.e., crystalline monolayer, by displacing a few particles
in the central regime of the monolayer along the vertical
direction. We performed a series of simulations with chang-
ing values of dust-neutral collision frequency (ν). In these
simulations, the amplitude of initial displacement (d), per-
turbation radius (R), dust density (nd ) in the 2D monolayer,
and external confinement frequency (ωv) are kept fixed at
d = 1.0λD, R = 5.0λD, nd = 1.0n0, and ωv = 2.2ωn, respec-
tively. In Figs. 8(a)–8(e), we have shown the time evolution of
vz(t ) and corresponding Fourier spectra of a tracked particle
located at the center of the monolayer obtained from four
different simulations with changing values of ν. In all cases,
beats are generated in the oscillatory motion of the particle,
and the beat amplitude decays in time. However, the decay
rate of beat amplitude is higher for higher values of ν, as
shown in Figs. 8(a)–8(d). This is expected as the presence
of dust-neutral collisions provides an additional dissipation in
the dynamics of the particles. The Fourier spectra of vz(t ) of
the tracked particle for different values of ν reveal that the
sideband appears at the same locations for all the cases, as
shown in Fig. 8(e). Thus, the beat frequency does not change
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FIG. 8. Time evolution of vz(t ) for four different simulation runs with dust-neutral collision frequency (a) ν = 0.0ωn, (b) ν = 0.01ωn,
(c) ν = 0.02ωn, and (d) ν = 0.05ωn. In subplot (e), the corresponding Fourier spectra of vz(t ) have been shown. In these simulations, the
confinement frequency, particle density, and radius of perturbation are kept fixed at ωv = 2.2ωn, nd = 1.0n0, and R = 5λD, respectively. The
initial perturbation amplitude (vertical displacement) is chosen to be d = 1.0λD for all the cases.

with ν. This signifies that dust-neutral collisions do not affect
the physical mechanism associated with the parametric decay
process observed in our study. However, for very high val-
ues of dust-neutral collisions, the strength of the parametric
process decreases. Thus, for higher values of ν, the energy
associated with the initial perturbation (i.e., d and R) should
be increased to excite the beat waves efficiently.

C. Theoretical model

We have also developed a simple theoretical model based
on the arguments given above, which support our observations
qualitatively. In our model, we have considered two parti-
cles coupled with each other via Yukawa pair interaction in
the presence of an external parabolic potential [Vext(z)]. One
particle (particle 1) is subjected to an initial displacement in
the vertical direction by a distance z1(t = 0) = −λD as in the
case of MD simulations. The other particle (particle 2) is kept
unperturbed initially. Thus, our model approximately mimics
the boundary between perturbed and unperturbed regions of
the monolayer. The schematic of the model is depicted in

FIG. 9. A schematic of the theoretical model has been shown
in subplot (a). In subplot (b), the time evolution of z coordinates
of particle 1 (z̃1) and particle 2 (z̃2) obtained from the theoretical
model have been shown by the blue dashed line and red solid line,
respectively. Here, we have considered ωv = 1.3ωn and nd = 1.0n0.

Fig. 9(a). The equations of motion of these two particles along
the vertical (ẑ) direction can be expressed as

md
d2z̃1

dt2
=−mdω

2
v z̃1 − Q2

4πε0

[
1

r2
+ 1

rλD

]
exp (−r/λD) sin θ,

(3)

md
d2z̃2

dt2
=−mdω

2
v z̃2 − Q2

4πε0

[
1

r2
+ 1

rλD

]
exp (−r/λD) sin θ,

(4)

where sin θ = (z̃1 + z̃2)/r with r =
√

a2 + (|z̃2
1 + z̃2

2|) repre-
senting the radial distance between the two particles. The
first terms of the right-hand side (RHS) of Eqs. (3) and (4)
represent the force Fext associated with the external parabolic
potential, Vext(z) = (mdω

2
v/2Q)z2. The second terms of the

RHS of these two equations represent the ẑ-component of
the force Fr associated with Yukawa pair interaction between
particles. We have solved Eqs. (3) and (4) numerically and
shown the time evolution of z̃1 and z̃2 in Fig. 9(b). As in
the case of MD simulations, it is seen that beat is formed
in the time evolution of both perturbed and unperturbed par-
ticles. We also did a parametric study using our theoretical
model, and the results are shown in Fig. 10. It is seen that
beat frequency decreases with the increase of ωv , as shown
in Figs. 10(a)–10(c). Whereas, beat frequency increases with
an increase of nd , as have been shown in Figs. 10(d)–10(f).
Here, the dependence of nd is revealed through the parameter
a = √

1/πnd representing the average interparticle distance in
the 2D crystalline plane. Thus, our simulation findings qual-
itatively agree with the numerical results obtained from the
theoretical model. However, our theoretical model does not
explain the damping of wave amplitude with time observed
in our simulations. This is because of the fact that we have
considered the dynamics of only two particles in our model,
where the imparted energy always remains preserved within
the dynamics of these two particles. In simulations, damp-
ing occurs because the external perturbation was introduced
only within a small region of the crystal, and with time, the
imparted perturbed energy transmits to the whole crystalline
plane.
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FIG. 10. Time evolution of vz(t ) of a particle obtained from the theoretical model for three different values of confinement frequency,
(a) ωv = 1.3ωn, (b) 2.2ωn, and (c) 3.1ωn with a fixed nd = 1.0n0 have been shown. The same has been illustrated for three different values of
dust density in subplots (d) nd = 0.75n0, (e) nd = 1.0n0, and (f) nd = 1.25n0 with a fixed ωv = 1.3ωn.

D. Surface wave generation

It would be interesting to look at how the rest of the
monolayer, which was initially unperturbed, responds to the
external disturbance imposed in the medium. The distributions
of vz in the x-y plane of the monolayer have been shown in
Fig. 11 for different values of ωv and nd at a particular instant
of time ωnt = 900. It is seen that in all the cases, the medium
responds collectively to the initial external perturbation. It is
seen that concentric circular wavefronts are generated in the
profile of vz around the initially perturbed region and spread
over in the x-y plane of the crystalline layer. Moreover, at a
particular instant of time, the area over which these circular
wavefronts have been spread in the monolayer depends upon
the values of ωv and nd , as can be seen from Figs. 11(a)–11(f).

FIG. 11. Distributions of vz in the xy plane of the monolayer is
shown at a particular instant of time ωnt = 900 for different cases
with the changing values of ωv and nd . In subplots (a)–(c) the values
of ωv are chosen to be ωv = 1.3ωn, 1.8ωn, and 2.2ωn, respectively
for a fixed value value of nd = 1.0n0. In subplots (d) and (e), ωv is
kept constant at ωv = 1.3ωn with the changing values of dust density
nd = 0.5n0, 0.75n0, and 1.15n0, respectively. The perturbation radius
is kept fixed at R = 5λD for all the cases.

This is the consequence of the fact that the surface wave is
generated through the formation of beat and beat frequency
changes for different values ωv and nd .

It would also be interesting to see the particle-level dy-
namics while these circular waves propagate through the
crystalline plane of the medium. For this purpose, we choose
to track a particle initially located at a radial distance r =
30λD from the center of the monolayer. It is to be noted that
in this case, the radius of the initially perturbed region is to be
R = 5λD. Thus, our chosen particle is located far away from
the initial perturbation region. The dynamics of this tracked
particle have been illustrated in Fig. 12. Time evolution of
vz of the tracked particle reveals the formation of beat, as
depicted in Fig. 12(a). Thus, the beat occurs not only in the
dynamics of initially perturbed particles but also for particles
located in the initially undisturbed region of the monolayer.
This has also been predicted from our theoretical model. It
is also seen from Fig. 12(a) that the beat appears only after
a certain time, which is the time the first wavefront takes to
reach the location of the tracked particle. The Fourier spectra
of vz(t ), shown in Fig. 12(b), reveal that the vertical motion
of the tracked particle is associated with two different fre-
quencies. It is also seen that the difference between these two
frequencies representing the beat frequency is the same as the
perturbed particles, as shown in Fig. 3(b). Thus, the circular
wavefronts propagating through the surface of the monolayer
are nothing but the beat waves that originated due to the
amplitude modulation of initial perturbation. The dynamics
of the tracked particle in the x-z plane are demonstrated in
Fig. 12(c) over the duration of a beat period. The position
of the particle in the x-z plane at different times has been
represented by the blue to red color symbols. It is seen that the
particle exhibits oscillatory motion in the x-z plane. However,
the mean position of the particle over a beat period almost
remains unchanged. This reveals that the particle’s motion
has both transverse and longitudinal components, which is a
typical characteristic of a surface wave.

The dispersion property of the surface wave observed in
our study has been depicted in Fig. 13 in the ω-k plane.
The dispersion relation has been obtained by measuring the
wavelength and frequency (beat frequency, δω) of the fully
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FIG. 12. Time evolution of vz of a tracked particle located far away from the initially perturbed region (R = 5λD), i.e., (x, y) = ((xc −
30λD), yc) is shown in subplot (a). Here, (xc, yc) represents the x-y coordinate of the center of the monolayer. In subplot (b), the Fourier spectra
of vz(t ) is depicted. The trajectory of the tracked particle in the x − z plane in a chosen period of time is illustrated in subplot (c). Here, the
color symbols from blue to red represent the evolution of time. In this simulation, we have considered nd = 1.0n0 and ωv = 1.3ωn.

developed surface waves with changing values of system pa-
rameters, i.e., ωv and nd . In both cases, we have obtained
a linear dispersion relation between frequency ω and wave
number k, as shown by the blue squares marked line and
red circles marked line in Fig. 13, respectively. It is also
seen that the dispersion relation obtained from our simulations
closely matches the theoretical dispersion curve of the trans-
verse shear wave shown by the solid black line in Fig. 13.
The theoretical dispersion relation of the transverse shear
wave has been obtained from the relation, ω ≈ csk, where
cs = √

(kBT/md )� exp −(a/2λD) is the velocity of the shear
wave. Here, � = Q2/4πε0akBT represents the Coulomb cou-
pling parameter. The measured group velocity of the surface
wave observed in our simulation is csim ∼ 5.1 mm/s, which
is close to the theoretically estimated shear wave velocity,
cs ∼ 5.3 mm/s. Thus, the surface waves observed in our study
are the out-of-plane transverse shear waves generated due

FIG. 13. Dispersion relation of the transverse surface wave in
ω-k plane. The dispersion properties obtained by changing the values
of nd with a fixed ωv = 1.3ωn are shown by the red circle-marked
dashed line. The dispersion relation illustrated by a blue square-
marked dashed line is for the case where we change the values of
ωv with a fixed dust density nd = 1.0n0.

to the velocity shear stress between neighboring particles.
In our study, we have not considered the effect of ion flow
in the vertical direction typically present in a dusty plasma
experiment. The nonreciprocal interactions between particles
at different heights originating from the ion wakes affect the
transverse motions of the particles and, consequently, may
alter the dispersion property of the observed surface wave.
However, there were also experimental reports in the context
of complex plasma systems where the effect of ion flow is
insignificant [52,53].

IV. SUMMARY

In this study, we have investigated the response of a mono-
layer plasma crystal to an external perturbation under various
conditions. We have performed 3D molecular dynamics simu-
lations of a system of charged microparticles (dust) interacting
via Yukawa pair interactions. In our simulations, we have also
considered an external parabolic potential along the vertical
(ẑ) direction, which mimics the combined effect of gravity
and sheath electric field typically present in a dusty plasma
experiment. It has been shown that a 2D monolayer of charged
dust particles can be formed for a suitable choice of parabolic
confinement frequency (ωv) and dust density (nd ). We then
imposed an external perturbation in the medium by displacing
a few particles within a small circular region around the center
of the monolayer along the vertical (ẑ) direction. We have
analyzed in detail the response of the medium to this ex-
ternally imposed perturbation under various conditions, e.g.,
changing values of ωv , nd , and R. It has been shown that the
induced vertical oscillatory motion of the perturbed particles
gets modulated through a parametric decay process initiated
due to the shear stress between neighboring particles. Conse-
quently, beat generates in the dynamics of both perturbed and
initially unperturbed particles. As a result, concentric circular
wavefronts are created, which propagate through the surface
of the monolayer in the radially outward direction from the
initially perturbed region. We have shown that these surface
waves follow the dispersion relation of a transverse shear
wave. The effect of dust-neutral collisions on the parametric
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process responsible for generating surface waves has also
been demonstrated. A simple theoretical model has been
provided supporting our simulation observations. An ex-
perimental realization of our simulation findings would be
interesting. The effect of ion wakes on the phenomena ob-
served in our study would also be an interesting aspect for
future research.

The data cannot be made publicly available upon
publication because they are not available in a format
that is sufficiently accessible or reusable by other re-
searchers. The data that support the findings of this
study are available upon reasonable request from the
authors.
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