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Unified treatment of mean-field dynamo and angular-momentum transport in magnetorotational
instability-driven turbulence
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Magnetorotational instability–driven (MRI-driven) turbulence and dynamo phenomena are analyzed using
direct statistical simulations. Our approach begins by developing a unified mean-field model that combines
the traditionally decoupled problems of the large-scale dynamo and angular momentum transport in accretion
disks. The model consists of a hierarchical set of equations, capturing up to the second-order correlators, while
a statistical closure approximation is employed to model the three-point correlators. We highlight the web of
interactions that connect different components of stress tensors—Maxwell, Reynolds, and Faraday—through
shear, rotation, correlators associated with mean fields, and nonlinear terms. We determine the dominant
interactions crucial for the development and sustenance of MRI turbulence. Our general mean-field model
for the MRI-driven system allows for a self-consistent construction of the electromotive force, inclusive of
inhomogeneities and anisotropies. Within the realm of large-scale magnetic field dynamo, we identify two key
mechanisms—the rotation-shear-current effect and the rotation-shear-vorticity effect—that are responsible for
generating the radial and vertical magnetic fields, respectively. We provide the explicit (nonperturbative) form of
the transport coefficients associated with each of these dynamo effects. Notably, both of these mechanisms rely
on the intrinsic presence of large-scale vorticity dynamo within MRI turbulence.
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I. INTRODUCTION

The origin of angular momentum transport is a central
problem in accretion disk theory. It is now widely accepted
that magnetorotational instability (MRI) [1] is responsible
for generating turbulent motions and facilitating the outward
transport of angular momentum in accretion disks. For MRI
to manifest, the disk must possess sufficient ionization levels
to allow for effective coupling with magnetic field lines. In its
original form, it appears as a linear instability in differentially
rotating flows threaded by vertical magnetic fields. However,
a purely toroidal field is also capable of initiating an instability
[2]. The MRI continues to operate in the nonlinear regime and
eventually leads to a fully nonlinear, turbulent state [3].

In general, MRI-driven magnetohydrodynamic (MHD) tur-
bulence requires sufficiently coherent magnetic fields for
sustenance [4]. For a given initial magnetic field config-
uration, the MRI can be initiated locally, but it has the
opportunity to dissipate the large-scale fields via the gen-
erated turbulence, which then affects the ability of MRI to
further sustain the turbulence. To perpetuate the turbulent
motions, one needs to regenerate and sustain large-scale mag-
netic fields against dissipation through a dynamo mechanism
[5–8]. Since the discovery of MRI, numerous direct numerical
simulations (DNSs), both local [3,9–12] and global [13–18],
have confirmed the sustenance of MRI turbulence along
with the coexistence of large-scale magnetic fields. These
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studies have demonstrated that turbulent angular momentum
transport is primarily driven by the correlated magnetic fluc-
tuations (Maxwell stress) rather than their kinetic counterpart
(Reynolds stress).

Various physically motivated models have been developed
to describe the mechanism of angular momentum transport
in accretion disks. Notably, Kato and Yoshizawa [19] and
Ogilvie [20] derived a set of closed dynamical equations de-
scribing the evolution of the mean Reynolds and Maxwell
stress tensors in a rotating shear flow, assuming the absence
of any mean magnetic fields. For the MRI to be operative,
Pessah, Chan, and Psaltis [21] developed a local model for the
dynamical evolution of the Reynolds and Maxwell tensors in a
differentially rotating flow, threaded by a mean vertical mag-
netic field. All of these models successfully capture the initial
exponential growth and subsequent saturation of the Reynolds
and Maxwell stresses. However, an important limitation of
these models is the assumption that the Faraday tensor, de-
noted F̄i j ≡ 〈uib j〉, vanishes, thereby resulting in the absence
of mean magnetic field generation. Here, u and b represent the
fluctuating components of velocity and magnetic field, respec-
tively. While these studies represent valuable foundations for
understanding the MRI mechanism, particularly the angular
momentum transport phenomena, they fall short of capturing
the practical aspects of MRI-driven turbulence, primarily due
to the neglect of large-scale dynamos.

In principle, large-scale magnetic fields are expected to
emerge through the stretching and twisting of field lines
by small-scale turbulence. A commonly adopted framework
to study large-scale dynamos is mean-field electrodynam-
ics [22–24]. Within this framework, the evolution of mean
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magnetic fields is described in terms of transport coefficients
derived from statistically averaged properties of small-scale
velocity and magnetic fields. A prominent mechanism respon-
sible for the amplification of large-scale magnetic fields is
known as the α-effect [22,23,25], where the small-scale turbu-
lence generates an electromotive force (EMF, represented by
Ē) that is directly proportional to large-scale magnetic fields,
Ēi = αi j B̄ j . For the α effect to operate effectively, the tur-
bulence must break statistical symmetry in some way, either
through the presence of a net helicity or through stratification
and rotation. An important part of the dynamo mechanism is
the � effect, which arises from the presence of large-scale
velocity shear commonly found in astrophysical systems un-
der the influence of gravitational forces. In the � effect, shear
stretches the mean magnetic fields, facilitating their ampli-
fication and evolution. Specifically, the � effect converts a
radial field component into a toroidal one. However, one of
the most challenging aspects of mean-field theory is to close
the dynamo cycle through the sustained generation of poloidal
fields (both radial and vertical components) by mechanisms
that require a detailed understanding. In this context, the
traditional α effect has demonstrated great success in flows
that lack reflectional symmetry, and its existence has been
well established through numerical simulations of helically
forced turbulence. While stratified shearing-box simulations
of MRI-driven turbulence also show some support for an α-�
dynamo, it is possible that a different mechanism is more
fundamental to the evolution of large-scale magnetic fields in
accretion disks [10,12,26,27].

In fact, studies conducted on unstratified, zero-net flux
simulations of MRI turbulence have revealed the presence
of large-scale dynamo action in the absence of an α ef-
fect [10,12,27]. Moreover, in different contexts, it has been
demonstrated that the combined effects of shear and turbulent
rotating convection can give rise to large-scale dynamo action,
where the driving mechanism is different from the classical α

effect [28]. In the context of the shear dynamo, Yousef et al.
[29] showed that forced small-scale nonhelical turbulence in
nonrotating linear shear flows can lead to the exponential
growth of large-scale magnetic fields. These findings highlight
the importance of considering alternative dynamo mecha-
nisms beyond the traditional α effect in systems characterized
by shear and turbulence, providing insights into the diverse
range of processes contributing to the generation and amplifi-
cation of large-scale magnetic fields.

The underlying process of dynamo generation is multi-
faceted, as several potential mechanisms have been proposed
to explain the generation of large-scale fields without a net
α effect. One such possibility is the “stochastic α effect” in
turbulent flows, where the mean α coefficients are zero. In this
approach, sufficiently strong fluctuations of α in interaction
with shear can lead to the growth of mean magnetic fields
[30–35]. Another explanation lies in the “shear-current effect”
[36,37] and the “magnetic shear-current effect” [38], emerg-
ing from the off-diagonal turbulent resistivity in the presence
of large-scale velocity shear. In the case of the magnetic shear-
current effect, magnetic fluctuations arising from small-scale
dynamo action can generate large-scale magnetic fields. A
third possibility is the “cross-helicity effect” [39–42]. This
mechanism involves augmenting the induction equation for

the mean magnetic field with an inhomogeneous term pro-
portional to the product of cross-helicity and mean vorticity.
The interplay of cross-helicity and vorticity provides an addi-
tional avenue for the generation and evolution of large-scale
magnetic fields. It has to be noted that the stochastic α effect
and the original shear-current effect are kinematic in nature
and the MRI-driven dynamo is expected to be intrinsically
nonlinear. But also in all of the above-mentioned mechanisms,
the role of rotation has not been considered actively. In dif-
ferentially rotating turbulent flows, an EMF proportional to
� × (∇ × B) can drive dynamo action, referred to as the
� × J or Rädler effect [23,43].

In theoretical investigations of the MRI-driven system, it
was found that turbulence is not required for large-scale dy-
namo action [11] and the non-normality in the system allows
for self-coupling of nonaxisymmetric modes [44,45] leading
to a nontrivial electromotive force on a quasilinear analysis
[46]. More recently, a calculation of the triple correlation term
in the small scale magnetic helicity equation has indicated the
possibility of helicity fluxes leading to localization of helic-
ity in space (rather than spectrally) and large-scale vorticity
features prominently in the arising new helicity flux [47].

Thus far, the mean-field dynamo and angular momentum
transport problems have been approached independently in
a decoupled manner. The mean-field dynamo theory has tra-
ditionally disregarded the transport dynamics, while angular
momentum transport theory has overlooked the evolution of
large-scale magnetic fields [48,49]. However, the large-scale
behavior of velocity and magnetic fields depends on the in-
teraction at smaller scales. Moreover, it is crucial to account
for the back reaction of the large-scale dynamics on the small-
scale environments. This inherent complexity renders both the
problems highly nonlinear and poses a substantial challenge in
formulating a comprehensive coupled theory for MRI-driven
MHD turbulence.

Another route to investigating the dynamo problem in
the MRI-driven system (in both stratified and unstratified
domains) is via the measurement of turbulent transport co-
efficients in the mean-field theory [10,18,26,50–52]. However,
many of these studies use mean-field models based on ho-
mogeneous and isotropic small-scale turbulence, which is
not justified for an MRI-driven system. Others that use a
more general mean-field model, employ methods for inversion
which are either unsuitable for nonlinear systems or set some
of the coefficients to zero which is somewhat questionable
or have to deal with complexity of correlated noise, non-
locality, degeneracies, overconstraining, etc. By using direct
statistical simulations with a general model, we have been
able to overcome most of these issues and are able to directly
determine the terms and transport coefficients (and their exact
expressions) central to MRI dynamo action.

In this paper, we construct a unified mean-field model that
combines dynamo and transport phenomena self-consistently,
and perform direct statistical simulations (DSS) in a zero
net-flux unstratified shearing box. Our methodology begins
by developing a mean-field model that consists of a hier-
archical set of equations, capturing up to the second-order
cumulants. To close these hierarchical equations, we express
the third-order cumulants in terms of second-order cumulants
using the CE2.5 statistical closure model, which lies between
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the second-order (CE2) and third-order cumulant expansion
(CE3) methods [53]. We also apply the two-scale approach
[54] to model second-order correlators involving the spatial
gradient of a fluctuating field. The general nature of our
model allows us to capture the effects of inhomogeneities and
anisotropies in the system. Furthermore, it has been useful to
determine directly the dominant terms and effects responsible
for dynamo and transport in tandem. This path allows us to
explore the possibilities of developing subgrid models which
can be used in global simulations and possibly also in gen-
eral relativistic MHD simulations of accretion disks aimed
towards understanding data from the Event Horizon Telescope
[55]. To numerically solve this model consisting of coupled
equations for the mean-field and stress tensors, we develop a
special module within the PENCIL CODE [56] framework.

Our unified mean-field model addresses two key chal-
lenges: (a) disentangling the diverse physical processes
involved in sustaining MRI turbulence and dynamo activity
in accretion disks, and (b) identifying the dominant mecha-
nisms responsible for generating large-scale magnetic fields.
We present a comprehensive framework that elucidates the
intricate network of interactions connecting different mean
fields and stress components through shear, rotation, corre-
lators associated with mean fields, and nonlinear terms. By
studying the induction equation, we investigate the role of
different EMFs in the evolution of large-scale magnetic fields.
Our DSS results demonstrate good agreement with those ob-
tained from DNS [7,11]. Specifically, the radial EMF has a
resistive effect, reducing the energy of the azimuthal field.
The azimuthal EMF, Ēy, generates a radial field, which, in
turn, drives the azimuthal field through the � effect. Notably,
Ēy is also responsible for generating the vertical magnetic
field. Next, with our model, we construct the EMF for an
MRI-driven system. We find that the constructed EMF is a
linear combination of not only the usual terms proportional
to mean magnetic fields and the gradient of mean magnetic
fields, but also the gradient of mean velocity fields, and a
nonlinear term. Thus, our EMF is not just an ansatz but an
expression that naturally arises out of our model. The propor-
tionality coefficients depend on shear, rotation, and statistical
correlators associated with fluctuating fields. In our search
for large-scale magnetic field dynamo, we identify two cru-
cial mechanisms—the “rotation-shear-current effect” and the
“rotation-shear-vorticity effect”—which are responsible for
generating the radial and vertical magnetic fields, respectively.
Remarkably, both of these mechanisms rely on the presence of
large-scale velocity dynamo in the self-sustaining MRI-driven
turbulence.

The paper is organized as follows: In Sec. II, we present
our unified mean-field model for MRI-driven turbulence and
dynamo. Section II A discusses the requirements of a high-
order closure model and provides a statistical closure model
to facilitate our analysis. The numerical simulation setup
is described in Sec. II B. In Sec. III, we present the re-
sults obtained from the simulations. Section III A focuses
on phenomena associated with the outward transport of an-
gular momentum and the interplay of various Maxwell and
Reynolds stresses. The role of large-scale magnetic fields in
turbulent transport is also highlighted. Section III B addresses
the large-scale dynamo associated with magnetic fields.

Different planar-averaged large-scale fields are distinguished,
and the role of various terms in generating mean magnetic
fields is analyzed using planar-averaged induction equations.
The construction of the EMF for an MRI-driven system is
discussed in Sec. III C, followed by a detailed analysis of
the dynamo mechanisms responsible for generating radial and
vertical large-scale magnetic fields in Secs. III D and III E,
respectively. In Sec. IV, we discuss our newly discovered dy-
namo mechanisms, namely, the rotation-shear-current effect
and the rotation-shear-vorticity effect and provide a com-
prehensive discussion comparing them with existing dynamo
mechanisms. Finally, the paper concludes with a summary in
Sec. V.

II. MODEL

We adopt the local shearing box model to investigate MRI
turbulence and dynamo in a three-dimensional, zero net-flux
configuration, employing novel DSS methods. To simplify the
analysis, we assume an isothermal, unstratified, and weakly
compressible fluid. The DSS method has proven to be a
valuable computational technique and has shown promis-
ing results. However, applying the DSS method to study
self-sustaining MRI-driven turbulence presents a significant
challenge compared with forced turbulence, primarily due
to the complexity of turbulent flows. The presence of an
unlimited number of statistical properties that cannot be di-
rectly calculated from first principles complicates the analysis.
Furthermore, a closure model is necessary to handle the high-
order nonlinear terms of the statistically averaged equations.
Our investigation begins with a statistical averaging approach
applied to the standard MHD equations, which describe the
mean flow and flow statistics in an accretion disk. First, we
write down the standard MHD equations in a shearing back-
ground in the rotating frame, as given by

DA
Dt

= −SAyx̂ + U × B − ημ0J, (1)

DU
Dt

= −(U · ∇)U − SUxŷ − 1

ρ
∇P + 1

ρ
J × B − 2� × U

+ 1

ρ
∇ · 2νρS, (2)

Dln ρ

Dt
= −(U · ∇) ln ρ − ∇ · U . (3)

Here, D/Dt ≡ ∂/∂t − q�x∂/∂y includes the advective trans-
port by a uniform shear flow, U0 = −q�xŷ. � = �ẑ
is the background rotational velocity. The constant q ≡
−d ln �/d ln R; for a Keplerian disk q = 3/2. The magnetic
field B is related to the magnetic vector potential A by B =
∇ × A, and J = ∇ × B/μ0 is the current density, where μ0

is the vacuum permeability. The constraint ∇ · B = 0 is en-
forced by solving the evolution equation for A [5,57]. The
other quantities have their usual meanings: U is the velocity,
P the pressure, ρ the density, η the magnetic diffusivity, ν the
microscopic viscosity, and Si j = 1

2 (U i, j + U j,i − 2
3δi j∇ · U )

the rate of strain tensor. We use an isothermal equation of state
P = ρc2

s , characterized by a constant sound speed cs.
In the conventional mean-field theory, one solves the

Reynolds averaged equations. We thus consider a Reynolds
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decomposition of the dynamical flow variables, expressing
them as the sum of a mean component (denoted by overbars)
and a fluctuating component (represented by small letters):
U = Ū + u, A = Ā + a, and so on. It satisfies the Reynolds
averaging rules, i.e., ā = 0, ¯̄A = Ā. Here, we consider the
ensemble averaging to derive the cumulant equations. For
weakly compressible fluids, where the density remains ap-
proximately constant, the mean-field equations in ensemble
averaging can be written as

Dt Āi = S̄A
i + εi jkŪ j B̄k + Ēi − ηJ̄i, (4)

DtŪi = −Ūj∂ jŪi + S̄U
i − 2εi jk� jŪk − 1

ρ
∂iP̄

+ 1

ρ
εi jk J̄ j B̄k + 1

ρ
∂ j (M̄i j − R̄i j ) − 1

2ρ
∂iM̄ + ν∂ j jŪi,

(5)

Dln ρ

Dt
= −(Ū · ∇) ln ρ − ∇ · Ū . (6)

Here, S̄A = (−SĀy, 0, 0), and S̄U = (0,−SŪx, 0). Ēi = 〈u ×
b〉i = εi jk F̄jk is the mean electromotive force. Mi j = bib j/μ0,
Ri j = ρuiu j , and Fi j = uib j are the Maxwell, Reynolds, and
Faraday tensors, respectively. The effect of turbulence on the
mean-field evolution is captured through the mean stress ten-
sors M̄i j , R̄i j , and F̄i j . We require knowledge of the evolution
of such stress tensors to close the mean-field equations (4)
and (5).

By subtracting the ensemble-averaged equation from the
total equation, we derive the evolution equations for the fluc-
tuating velocity and magnetic fields:

Dt ui = −Ūj∂ jui − u j∂ jŪi − 2εi jk� juk

+ 1

μ0ρ
(B̄ j∂ jbi + b j∂ j B̄i ) − 1

ρ
∂i


′

+ 1

ρ
∂ j (Mi j − Ri j − M̄i j + R̄i j ) + ν∂ j jui, (7)

Dt bi = B̄ j∂ jui + b j∂ jŪi − Ūj∂ jbi − u j∂ j B̄i

+ ∂ j (Fi j − Fji − F̄i j + F̄ji ) + η∂ j jbi. (8)

We combine different fluctuating equations and apply
Reynolds average rule to construct the governing equa-
tions for the M̄i j , R̄i j , and F̄i j . The resulting equations for the
mean Maxwell, Reynolds, and Faraday tensors are, respec-
tively,

Dt M̄i j + Ūk∂kM̄i j − M̄ik∂kŪj − M̄ jk∂kŪi + S̄M
i j

+ 1

μ0
(F̄ki∂kB̄ j + F̄k j∂kB̄i )

= 1

μ0

[
B̄k〈bi∂ku j + b j∂kui〉 + T̄ M

i j +η〈bi∂kkb j + b j∂kkbi〉
]
,

(9)

Dt R̄i j + Ūk∂kR̄i j + R̄ik∂kŪj + R̄ jk∂kŪi + S̄R
i j

+ 2ε jkl�kR̄il + 2εikl�kR̄ jl − 1

μ0
(F̄ik∂kB̄ j + F̄jk∂kB̄i )

= −〈ui∂ j

′ + u j∂i


′〉 + 1

μ0
[B̄k〈ui∂kb j + u j∂kbi〉] + T̄ R

i j

+ ρν〈ui∂kku j + u j∂kkui〉, (10)

Dt F̄i j + Ūk∂kF̄i j − F̄ik∂kŪj + F̄k j∂kŪi + 2εikl�kF̄l j

+ S̄F
i j − 1

ρ
(M̄ jk∂kB̄i − R̄ik∂kB̄ j )

= − 1

ρ
〈b j∂i


′〉 + B̄k〈ui∂ku j〉 + B̄k

μ0ρ
〈b j∂kbi〉 + T̄ F

i j

+ η〈ui∂kkb j〉 + ν〈b j∂kkui〉. (11)

The left-hand side of these equations describes the linear dy-
namics of the respective stress tensors. The terms S̄M

i j , S̄R
i j , and

S̄F
i j represent how the Maxwell, Reynolds, and Faraday tensors

are ‘stretched’ by the gradients of the background shear flow,
U0, respectively. They are expressed as S̄M

i j = −M̄ik∂kŪ 0
j −

M̄ jk∂kŪ 0
i , S̄R

i j = R̄ik∂kŪ 0
j + R̄ jk∂kŪ 0

i , and S̄F
i j = −F̄ik∂kŪ 0

j +
F̄k j∂kŪ 0

i . Note that different stress tensors interact with the
background velocity gradient in distinct ways. The terms T̄ M

i j ,
T̄ R

i j , and T̄ F
i j represent the nonlinear three-point terms that

appear in the evolution equations for the Maxwell, Reynolds,
and Faraday tensors, respectively. Mathematically, they are
given by

T̄ M
i j = 〈bibk∂ku j + b jbk∂kui − uk∂kMi j〉, (12a)

T̄ R
i j = 〈uibk∂kb j + u jbk∂kbi − uk∂kRi j〉, (12b)

T̄ F
i j = 〈uibk∂ku j + b jbk∂kbi − uk∂kFi j〉. (12c)

The right-hand side of the stress equations (9)–(11) poses
significant challenges due to the presence of four distinct types
of terms. These terms include (a) the triple correlation of
fluctuating quantities, (b) second-order correlations involving
the spatial gradient of a fluctuating field, (c) pressure-strain
correlators in the evaluation equations for R̄i j and F̄i j , and
(d ) terms associated with the microscopic diffusion process.
It is essential to develop closure models for each of these
challenging terms to make progress in our analysis.

A. The closure model

In the framework of a cumulant hierarchy, the expansion
of the MHD equations (1)–(2) results in an infinite set of
coupled partial differential equations. Due to the quadratic
nonlinearities present in the standard MHD equations, the
first-order cumulant equations for the coherent components
[Eqs. (4) and (5)] involve terms that are second order, such
as the Maxwell, Reynolds, and Faraday tensors. Similarly,
the second-order cumulant equations [Eqs. (9)–(11)] contain
terms up to third order, and so on. Therefore, in order to make
progress in the analysis, it is necessary to select an appropriate
statistical closure that truncates the cumulant expansion at the
lowest feasible order.

Among the well-studied formalisms in DSS, the truncation
of the cumulant hierarchy at second order (CE2) stands out
as a simple yet effective approach [58]. In CE2, all statistics
of order greater than two are zero. This truncation scheme
selectively preserves the mean-eddy interactions in the eddy
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(or fluctuation) equations and the eddy-eddy interactions in
the mean equations, while disregarding the eddy-eddy interac-
tions in the eddy equations. Consequently, CE2 is considered
to be weakly nonlinear or quasilinear. From a theoretical
perspective, CE2 can be interpreted as the exact solution of
a linear model driven by stochastic forces. This method has
been successfully applied to study MRI turbulence and dy-
namo in the zero net-flux unstratified shearing box [59]. In
this approach, the mean fields are assumed to depend solely
on the vertical coordinate, thereby simplifying the system
representation. The nonlinearity that is neglected in CE2 is
approximated by incorporating white-in-time driving noise,
allowing for the exploration of essential aspects of MRI tur-
bulence and dynamo effects.

The third-order cumulant expansion (CE3) includes the
eddy-eddy interactions in the eddy equations. However, ex-
tending the analysis to third order and beyond presents
technical challenges in deriving and solving the DSS system
because it involves numerous interactions. To address this
complexity, a simplified model called the CE2.5 approxima-
tion has been proposed as a practical alternative. The CE2.5
approximation makes several key assumptions to simplify
the analysis. First, it sets all time derivatives for the third
cumulants to zero, assuming that the third cumulant evolves
more rapidly compared with the first and second cumulants.
Second, the CE2.5 approximation neglects all terms in the
equations for the third cumulant that involve the first-order
cumulants. Finally, the fourth-order cumulants are replaced
by an eddy-damping parameter or a diffusion process.

In our statistical closure model for the three-point in-
teractions, we employ an approach inspired by the CE2.5
approximation. The nonlinear three-point terms [Eqs. (12a)–
(12c)] can be expressed as (see Appendix B):

T̄ M
i j = 1

L

[
2c1

√
M̄R̄i j − 2c2

√
M̄M̄i j − 2c3

√
R̄M̄i j

− c4

√
F̄ (F̄i j + F̄ji )

]
, (13a)

T̄ R
i j = 1

L

[
2c2

√
M̄M̄i j − 2c1

√
M̄R̄i j − 2c5

√
R̄R̄i j

− c4

√
F̄ (F̄i j + F̄ji ) − c6

√
R̄

(
R̄i j − 1

3
R̄δi j

)]
, (13b)

T̄ F
i j = 1

L

[
2c7

√
M̄F̄ji − 2c8

√
M̄F̄i j

− 2c9

√
R̄F̄i j − c10

√
F̄ (M̄i j + R̄i j )

− c11

2

√
F̄

(
F̄i j + F̄ji − 2

3
F̄δi j

)]
, (13c)

where, c1, . . . , c11 are positive dimensionless constants of
the order of unity, and L represents a vertical characteris-
tic length (such as the disk thickness or the height of the
simulation box). Throughout our computations, we have set
c1 = · · · = c11 = 1. The quantities M̄ and R̄ denote the traces
of the Maxwell and Reynolds tensors, respectively, while
F̄ = (F̄ 2

xx + F̄ 2
yy + F̄ 2

zz )1/2. It is important to highlight that the
last term in the T̄ R

i j equation [Eq. (13b)], involving the con-

stant c6, and the last term in the T̄ F
i j equation [Eq. (13c)],

involving the constant c11, correspond to the isotropization
terms arising from the pressure-strain nonlinearity [19,20,60].
The pressure-strain correlation is a third-order quantity, ap-
pearing in Eqs. (10) and (11), and necessitates a nondeductive
closure. Henceforth, we incorporate them into the three-point
correlators T̄i j . Furthermore, various other terms arising from
the three-point correlators have significant implications. The
terms c3, c5, and c9 correspond to the turbulent dissipation
of the Maxwell, Reynolds, and Faraday tensors, respectively.
The terms c1 and c2 represent the interaction between the
Maxwell and Reynolds stresses. In terms of energy trans-
fer, the net rate of transfer from turbulent kinetic energy to
magnetic energy can be expressed as L−1

√
M̄(c1R̄ − c2M̄ ).

The sign of this expression determines whether the kinetic or
magnetic energy dominates the energy transfer process. Simi-
larly, the terms c7 and c8 describe the interaction between the
Faraday tensor and its transpose. Finally, the Faraday tensor
interacts with the Maxwell and Reynolds stresses via c4 and
c10 terms.

In addition to the three-point correlators, the right-hand
side of the stress equations [Eqs. (9)–(11)] contains terms that
are directly proportional to B̄. These proportionality coeffi-
cients correspond to second-order correlators involving the
spatial gradient of a fluctuating field. To proceed with our
analysis, it is necessary to close these terms. To accomplish
this, we employ a two-scale approach [54] to determine the
second-order correlators associated with the spatial gradient.
These correlators can be expressed as (see Appendix C)

B̄m〈ui∂mbj〉 = −Tr(B̄)l−1F̄i j + 1
2 (B̄ · ∇)F̄i j, (14a)

B̄m〈u j∂mbi〉 = −Tr(B̄)l−1F̄ji + 1
2 (B̄ · ∇)F̄ji, (14b)

B̄m〈bi∂muj〉 = Tr(B̄)l−1F̄ji + 1
2 (B̄ · ∇)F̄ji, (14c)

B̄m〈b j∂mui〉 = Tr(B̄)l−1F̄i j + 1
2 (B̄ · ∇)F̄i j, (14d)

B̄m〈ui∂muj〉 = −Tr(B̄)l−1R̄i j + 1
2 (B̄ · ∇)R̄i j, (14e)

B̄m〈b j∂mbi〉 = Tr(B̄)l−1M̄i j + 1
2 (B̄ · ∇)M̄i j . (14f)

Note that Eqs. (14e) and (14f) hold for i �= j. Here, we intro-
duce the inverse of length scale as l−1 = s[�/(B̄2/μ0ρ )1/2],
where s is a constant. In our computations, we have set s =
0.25, as physical solutions are obtained for s < 0.3. However,
further studies are required to determine a unique value of
s based on DNS results. Similarly, we utilize the two-scale
approach to determine terms associated with the microscopic
diffusion process present in the stress equations [Eqs. (9)–
(11)].

B. Simulation setup

We have developed a special module within the framework
of the PENCIL CODE [56], which is a high-order (sixth order
in space and third order in time) finite-difference code, to
numerically solve the model described by Eqs. (4)–(6), and
(9)–(11). This model consists of a set of 28 coupled partial
differential equations, involving variables such as Āi, Ūi, ρ,
M̄i j , R̄i j , and F̄i j . The numerical simulations are performed
on a Cartesian grid with dimensions Nx × Ny × Nz, and a
size of Lx, Ly, and Lz along the three Cartesian directions.

065201-5



TUSHAR MONDAL AND PALLAVI BHAT PHYSICAL REVIEW E 108, 065201 (2023)

For our simulations, we have employed an aspect ratio of
(Lx : Ly : Lz ) = (L : L : L), with a resolution of 2563. The
boundary conditions are periodic in the azimuthal (y) and
vertical (z) directions, while being shearing-periodic in the
radial (x) direction. In the code, all quantities are expressed
in dimensionless units, where length is scaled by L, velocity
by the isothermal sound speed cs, density by the initial value
ρ0, magnetic field by (μ0ρ0c2

s )1/2, and so on. For convenience,
we have set the reference values as L = ρ0 = cs = μ0 = 1.

The mean velocity field is initialized with Gaussian ran-
dom noise, with an amplitude of 10−4. Similarly, the initial
conditions for the stress tensors, namely the Maxwell stress,
Reynolds stress, and Faraday stress, are also set as Gaussian
random noise with an amplitude of 10−4, except for the di-
agonal components of the Maxwell and Reynolds stresses. To
preserve the positive definiteness of M̄ii and R̄ii, we initialize
these stress components with positive random noise of ampli-
tude 10−4.

The setup we have adopted is similar to the one used in
Ref. [11]. The initial magnetic field configuration is given
by B̄ = B̄0 sin(kxx)ẑ, which can be written in terms of the
vector potential as Ā = Ā0 cos(kxx)ŷ, so that the magni-
tude of the magnetic field is related to the vector potential
through |B̄0| = kxĀ0, where kx = 2π/Lx. We choose a rota-
tion rate of � = 1 and Ā0 = 0.005, resulting in kmax/k1 =√

15/16(�/ŪA,0)/k1 ≈ 5. Here, ŪA,0 = B̄0/
√

μ0ρ0 repre-
sents the initial Alfven velocity, kmax corresponds to the wave
number associated with the maximum growth rate predicted
by linear MRI analysis, and k1 = 2π/L is the wave number
associated with the box size L. These choices ensure that the
most unstable mode of the MRI, kmax, is well resolved by
the numerical grid. Additionally, the initial conditions satisfy
the condition for the onset of MRI, namely, β > 1, where
β = 2μ0P/B̄2

0 is the ratio of thermal to magnetic pressure.
In our case, β 	 1014 for the maximum values of the initial
magnetic field. With these parameters, the resulting steady-
state turbulence driven by the MRI exhibits a characteristic
root mean square velocity of Ūrms ∼ 0.1cs. Consequently,
the Mach number remains of the order of 0.1, ensuring that
compressibility effects are negligible. The fluid and magnetic
Reynolds number are defined as Re ≡ ŪrmsL/ν and Rm ≡
ŪrmsL/η, respectively, where ν and η represent the micro-
scopic viscosity and resistivity. In our study, we utilize values
of ν = 3.2 × 10−4 and η = 8.0 × 10−5, yielding a magnetic
Reynolds number of Rm = 1250 and a magnetic Prandtl num-
ber of Pm ≡ Rm/Re = 4.

III. RESULTS

We discuss the results from our fiducial statistical simu-
lation of the local shearing box MRI system. We provide an
exposition on the problems of turbulent transport and turbu-
lent large-scale dynamo in different sections below. In each
section, we first provide the time evolution of the relevant
quantities. Then we set out to investigate the sources and
sinks involved in the evolution of the transport terms or the
large-scale fields. We show how the terms in the statistical
equations compare with each other allowing us to deduce the
dominant effects. In this manner, we establish connections
between the mean fields and the cumulants.

In the fiducial simulation used to draw inferences from, the
linear stage is up to t/Torb ≈ 5. The total length of the sim-
ulation is about t/Torb ≈ 150, which includes cyclic patterns
in the evolution of the mean fields and cumulants. However,
in this work, we do not address the cyclic behavior as we
focus on uncovering the main effects responsible for driving
the MRI transport and dynamo.

A. Turbulent angular momentum transport

We consider the problem of turbulent transport first to
demonstrate that the results from our statistical simulations
display the standard behavior that agree with the theory or
direct numerical simulations of MRI turbulence. In the latter
part of this section, we present our findings related to the
generation of the Reynolds and Maxwell stresses, previously
unexplained. It is worth noting that existing local models
that address the generation process of these stresses have
either neglected mean magnetic fields [19,20] or considered
only constant vertical magnetic fields [21], thereby disregard-
ing several significant interactions. Consider the evolution
of volume-averaged components of the Maxwell (M̄i j ) and
Reynolds (R̄i j ) tensors in the left and right panels of Fig. 1,
respectively. The xy components of the stress tensors are
mainly responsible for the (radially) outward angular momen-
tum transport. For the matter in accretion disks to accrete,
i.e., to lose angular momentum, the sign of the mean total
stress W̄xy = R̄xy − M̄xy must be positive. This can be inferred
straightforwardly from the radial component of the angu-
lar momentum flux, −∂ j (R̄y j − M̄y j ), in Eq. (5) with i = y
and j = x. From the Fig. 1, we see that the components of
Maxwell and Reynolds stresses responsible for the outward
angular momentum transport are always negative and positive,
respectively, i.e., M̄xy < 0 and R̄xy > 0. This naturally leads
to a net (radially) outward angular momentum flux mediated
by total positive mean stress, W̄xy = R̄xy − M̄xy > 0. Further-
more, the dominant contribution to the total stress arises from
the correlated magnetic fluctuations, rather than from their
kinetic counterpart, i.e., −M̄xy > R̄xy, as expected. Note that
the vertically outward angular momentum transport through
W̄yz = R̄yz − M̄yz is smaller.

In Fig. 1, we also highlight the turbulent energy densi-
ties along three directions. The diagonal components (xx,
yy, and zz) of the Maxwell and Reynolds stresses indicate
the turbulent magnetic and kinetic energy densities with a
multiplication factor of two, respectively. The total turbulent
energy is (M̄ + R̄)/2, where M̄ = M̄ii and R̄ = R̄ii are the
traces of the Maxwell and Reynolds tensors, respectively. As
expected, the turbulent magnetic energy dominates over the
kinetic counterpart. In the magnetic counterpart of the total
energy, the azimuthal component is the most significant one
followed by the radial and vertical contributions, i.e., M̄yy >

M̄xx > M̄zz. In the kinetic counterpart of the total energy, the
radial component is the most dominant one followed by the
azimuthal and vertical contributions, i.e., R̄xx > R̄yy > R̄zz. All
of these features are in agreement with existing local models
[19,20,61,62]. Thus, we are reassured that our statistical simu-
lations are reliable to use for investigations related to turbulent
transport.

065201-6



UNIFIED TREATMENT OF MEAN-FIELD DYNAMO AND … PHYSICAL REVIEW E 108, 065201 (2023)

FIG. 1. Time-evolution of the volume-averaged Maxwell (left panel) and Reynolds tensors (right panel). The xx, xy, xz, yy, yz, and zz
components are distinguished by dashed blue, solid red, dotted brown, dash-dotted green, dashed olive, and dotted orange lines, respectively.

Next, we describe the generation mechanism of different
components of stress tensors to understand the turbulent trans-
port in more detail. Below we provide the comprehensive web
by which the stress components connect to each other through
(i) shear, (ii) rotation, (iii) mean fields, (iv) other small-scale
correlators, and/or (v) nonlinear three-point terms. In Fig. 2,
we plot the volume-averaged terms that appeared in the equa-
tions for Maxwell [Eq. (9)] and Reynolds [Eq. (10)] stresses.
In next few paragraphs, we compare the amplitude and phase
of the various terms in these equations to work out the chain
of production leading to efficient turbulent transport.

Those readers who are interested in the final summary im-
mediately can skip to the last paragraph in this section and/or
to a summary schematic in Fig. 4.

To understand the process of outward angular momentum
transport, we examine the time evolutions for the xx, xy,
and yy components of stress tensors. This is because the xy

components of stress tensors are directly connected to the xx
and yy components of stress tensors via shear and/or rotation
(more specifically, Coriolis force appears in the Reynolds
stress equations). Since M̄xx is positive throughout the evo-
lution, the positive term in ∂t M̄xx acts as a source, whereas the
negative term behaves like a sink. The same is true for all the
stress tensors, which are positive throughout their evolution.
For negative M̄xy, the roles of different terms are opposite: the
positive term in ∂t M̄xy acts as a sink, whereas the negative term
behaves like a source.

Figures 2(a)–2(c) are for the Maxwell stress: M̄xx, M̄xy,
and M̄yy, respectively. In the evolution of the latter two, M̄xy

and M̄yy, the shear terms (solid blue line) act as the dominant
source term, whereas the nonlinear three-point terms (dashed
red line) act as the sink. Here, the “stretching” of the positive
stress component M̄xx via the shear produces M̄xy at a rate
of −q�. This renders M̄xy negative. Similarly, shear acts on

FIG. 2. Time-evolution of individual terms appeared in the volume-averaged equations for Maxwell stress (upper panels) and Reynolds
stress (lower panels) to explain the turbulent angular momentum transport problem. Different panels correspond to different stress components:
upper panels (a) M̄xx , (b) M̄xy, (c) M̄yy and lower panels (d) R̄xx , (e) R̄xy, (f) R̄yy.
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FIG. 3. The time-evolution of specific terms, which are proportional to the mean magnetic fields and the gradient of mean magnetic fields,
is observed in the volume-averaged equations for M̄xx (left panel) and R̄yy (right panel), respectively. These terms are analyzed to explain
the interconnection between the turbulent angular momentum transport and mean-field dynamo. This analysis serves as a continuation of the
findings presented in Fig. 2.

M̄xy to produce the positive stress component M̄yy at a rate
of −2q�. There is no shear term in the time evolution of M̄xx.
Thus, it is evident that the turbulent transport via −M̄xy cannot
work with Keplerian shear alone—M̄xx component is needed
for Keplerian shear to act on. The generation mechanism of
M̄xx is critically important here. For M̄xx, the dominant source
term is B̄k〈bx∂kux〉 (dash-dotted green line) with k = y (left
panel of Fig. 3). The nonlinear three-point term (dashed red
line) acts as the dominant sink. The other two subdominant
terms, one proportional to ∂kŪx (dotted olive line) and the
other proportional to ∂kB̄x (dotted magenta line), behave like
a source and a sink, respectively.

Figures 2(d)–2(f) correspond to the Reynolds stress: R̄xx,
R̄xy, and R̄yy, respectively. For Reynolds stress, shear acts

FIG. 4. A schematic representation of the MRI-driven turbulent
angular momentum transport. Different arrow colors correspond to
the paths by which the stress components connect to each other
through shear, rotation, mean fields, other small-scale correlators,
and nonlinear three-point interactions. Note that we have highlighted
only the dominant source terms.

similarly as in the case of Maxwell stress but with an opposite
sign. In addition, the Coriolis force plays a significant role
in the evolution of Reynolds stresses. The “stretching” of the
positive stress component R̄xx produces R̄xy via shear at a rate
of q�. However, Coriolis force makes the positive stresses,
R̄xx and R̄yy, act oppositely in the evolution of R̄xy with the
same weighting factor of 2�. Since q < 2, the combined
effects of shear and Coriolis force make the term with R̄xx

(dash-dotted cyan line) behave as a sink in the evolution of
R̄xy. The nonlinear three-point term (dashed red line) acts as a
sink here as well. Hence, the term with R̄yy is the only source
term (solid blue line) in the R̄xy evolution via the Coriolis
force. This finding is illustrated in Fig. 2(e). In Fig. 2(d),
for R̄xx, the source term is 4�R̄xy (solid blue line) arising
through the Coriolis force, whereas the nonlinear three-point
term (dashed red line) acts as a sink.

Finally in Fig. 2(f), we see that the shear acting on R̄xy

produces R̄yy at a rate of 2q�. However, the term with R̄xy,
overall, acts as a sink in the evolution of R̄yy. Since q < 2, the
combined effects of shear and Coriolis force make the term
with R̄xy behave as a sink (solid blue line). Consequently, the
question that arises is how is R̄yy generated. We find that the
most dominant source terms in the R̄yy evolution are the non-
linear three-point term (dashed red line), the term associated
with the gradient of the azimuthal magnetic fields, 2F̄yk∂kB̄y

(dotted magenta line) with k = x (right panel of Fig. 3). The
other two subdominant terms, one proportional to B̄k (dash-
dotted green line) and the other proportional to ∂kŪy (dotted
olive line), behave like a source and a sink, respectively.

The overall findings associated with the turbulent transport
are summarized schematically in Fig. 4. We remind the reader
that we are able to delineate this chain of production because
of the structure of our model being used in this statistical
simulation which helps in making the connections directly
between mean fields and the cumulants. The stretching of
M̄xx via shear produces M̄xy, whose stretching by shear
further produces M̄yy. The large-scale field (here, B̄y) acts
in conjunction with 〈bx∂kux〉 to generate M̄xx (this can be
interpreted essentially as tangling of the mean magnetic
field leading to the generation of small-scale fields). For
the Reynolds stress, the Coriolis force is responsible for
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FIG. 5. Time-evolution of volume averaged large-scale fields
B̄rms (solid red curve) and Ūrms (dashed blue curve) are shown. The
zoomed-in part indicates the initial growth to the early saturation
phase.

generating R̄xx from R̄xy, and R̄xy from R̄yy. The outcome of
nonlinear interactions between M̄yy and R̄yy via the three-point
term is the formation of R̄yy from M̄yy. The other dominant
source term for R̄yy is the term proportional to the radial
gradient of the mean azimuthal magnetic field. Hence,
turbulent transport is not possible without large-scale fields,
i.e., the mean-field dynamo mechanism is necessary.

B. Large-scale dynamo

We begin by presenting the overall evolution of the relevant
quantities, namely the mean magnetic and velocity fields,
both as volume averages (of the energy) and planar averages.
Then we compare the evolution of the different terms in
the dynamical equations for the planar-averaged large-scale
magnetic fields, to determine which components of the EMF
are important for the MRI large-scale dynamo. Thereafter, we
specify how we can recover a general expression for the y
and z components of the EMF from our model equations in
Sec. III C. We find that a given component of the EMF is a
linear combination of terms proportional to mean magnetic
fields, the gradient of mean magnetic fields, the gradient of
mean velocity fields, and a nonlinear term. With expressions
for the EMFs in hand, we set out to investigate the contribution
of the various terms to determine the dominant dynamo ef-
fects. To do so, we first examine volume-averages of the terms
in time windows from both linear and nonlinear regimes, to
get a global picture. Next, we examine the planar average
of various terms to study the behavior locally in space. In
the latter analysis, we uncover a more sophisticated behavior
of the large-scale dynamo. But overall, we find both types
of analysis lead to the same conclusions. The EMF analysis
for radial large-scale field generation is in Sec. III D and for
vertical large-scale field generation is in Sec. III E.

1. Volume averaged large-scale or mean-field energies

Consider the evolution of volume-averaged large-scale
magnetic and velocity fields. Figure 5 shows the time evo-
lution of the root-mean-square (rms) velocity (Ūrms) and

FIG. 6. Time-evolution of volume averaged large-scale kinetic
and magnetic energy densities (multiplied by two) are shown in the
upper and lower panels, respectively. The energy associated with the
x, y, and z components are distinguished by dashed red, solid cyan,
and dotted yellow lines, respectively. The brown dash-dotted lines
refer to the total energy densities.

magnetic (B̄rms) fields. We find that the MRI-driven turbulence
hosts both the large-scale dynamo of velocity and magnetic
fields. The amplitude of B̄rms dominates over that of Ūrms

throughout the entire duration of our longest simulation run,
spanning approximately 150 orbits. The zoomed-in view of
the initial growth to the early saturation phase of the large-
scale fields is also depicted in Fig. 5. The initial growth phase
of both fields is observed up to a time of t/Torb ≈ 5.5. Fol-
lowing this initial growth phase, the fields settle into a steady
state, indicating the saturation regime.

Next, we consider the volume averaged energy density as-
sociated with large-scale velocity and magnetic fields, 1

2 〈ρŪ 2〉
and 1

2 〈B̄2〉, respectively. Figure 6 shows the time evolution
of the large-scale kinetic (upper panel) and magnetic (lower
panel) energy densities with a multiplication factor of two.
Figure 6 also demonstrates the contribution from the three
components of the fields. Important to note is that the large-
scale magnetic energy dominates over the kinetic energy,
indicating that the MRI dynamo in accretion disks is char-
acterized by superequipartition of magnetic energy relative
to kinetic energy. Most of the contribution to the large-scale
magnetic energy arises from the toroidal mean magnetic field
B̄y, while the radial and vertical components of the mean mag-
netic field are of similar magnitude. In large-scale velocity
fields, all three components share almost similar magnitudes.
Below we explore the generation mechanism of different
large-scale magnetic field components extensively. It may be
interesting in future work to examine the generation process
of Ū (i.e., the vorticity dynamo) in more detail.

2. Planar averaged large-scale or mean fields

To understand the behavior of the mean fields locally
in space, we perform planar averages. We consider three
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FIG. 7. The time evolution of planar-averaged root-mean-square
large-scale magnetic fields is shown. The planar averages are per-
formed along three different planes, x-y, y-z, and x-z, denoted by
the solid, dashed, and dotted lines, respectively. Additionally, we
perform further averaging of the root-mean-square field over the
remaining third direction.

different planar averages, x-y, y-z, and x-z averaging, to de-
termine the mean magnetic fields B̄(z) or 〈B〉(x,y), B̄(x) or
〈B〉(y,z), and B̄(y) or 〈B〉(x,z), respectively. In the x-y-averaged
case, the generated field components are B̄x(z) and B̄y(z),
where B̄z(z) vanishes to maintain the divergence-free con-
dition. Similarly, B̄x(x) in y-z averaging and B̄y(y) in x-z
averaging are zero. In Fig. 7, we present the time evolution of
the root-mean-square planar-averaged fields. To obtain these
quantities, we first square the planar-averaged fields. Then we
perform further averaging over the remaining third direction
and then take the square root. The most prominent large-scale
field observed is B̄y (solid orange line), resulting from the x-y
averaging. Notably, in the saturation regime, the rms value of
B̄y is around four times greater than that of B̄x (solid blue line).
The y-z averaging reveals significant B̄y as well, represented
by the dashed green line. The y-z-averaged B̄z (dashed red
line) at the beginning of the growth phase reflects the initial
condition B̄z = B0 sin(kxx). During the saturation stage, the
y-z-averaged fields show that |B̄y| is approximately one order
stronger compared with |B̄z|. Conversely, when applying the
x-z averaging (represented by the dotted lines), the resulting
mean fields B̄x and B̄z do not exhibit a dynamo growth and
further decay to small values. The weakness of x-z-averaged
fields renders the MRI-generated large-scale fields largely
axisymmetric. We then shift our focus to the most-studied
large-scale magnetic fields B̄x(z) and B̄y(z), obtained from x-y
averaging. Figure 8 illustrates their temporal evolution along
the abscissa and spatial variation along the ordinate, with the
color scale representing the field strengths. We identify three
distinct stages in this evolution: (a) the initial growth phase
extending up to t/Torb ≈ 5.5, (b) the intermediate or initial
saturation phase from t/Torb ≈ 5.5 to t/Torb ≈ 25, and (c) the

FIG. 8. The x-y-averaged magnetic fields, B̄x (z) and B̄y(z), are
shown on the top and bottom panels, respectively.

fully nonlinear saturation phase after t/Torb � 25. Notably, the
appearance of short dynamo cycles during the intermediate
phase indicates a quasilinear nature of the dynamo.

To understand the MRI dynamo mechanism, we require
both x-y and y-z averaging (given the significant mean fields
arising from both of these planar averages). Here, we present
the time evolution of the mean-field equations in both kinds
of averaging. The mean-field equations in x-y averaging are
given by

∂t B̄x = −∂zĒy − Ūz∂zB̄x + B̄z∂zŪx, (15a)

∂t B̄y = −q�B̄x + ∂zĒx − Ūz∂zB̄y + B̄z∂zŪy. (15b)

The mean-field equations in y-z averaging are given by

∂t B̄y = −∂xĒz − Ūx∂xB̄y + B̄x∂xŪy, (16a)

∂t B̄z = ∂xĒy − Ūx∂xB̄z + B̄x∂xŪz. (16b)

Here, the main contributions arise from the shear term
(−q�B̄x ), the advection term (Ū · ∇B̄), the stretching term
(B̄ · ∇Ū ), and the different components of the EMF: Ēx =
(F̄yz − F̄zy), Ēy = (F̄zx − F̄xz ), and Ēz = (F̄xy − F̄yx ). The shear
term only appears on the x-y-averaged azimuthal field evolu-
tion equation. It will not operate in the y-z-averaged azimuthal
field equation because of the divergence-free magnetic field
condition, i.e., 〈Bx〉(y,z) 	 0. To study the contribution of each
term to the evolution of the mean magnetic fields, we multiply
B̄i on both sides of the ∂t B̄i equations. The resultant individual
terms of equations in Bi∂t Bi are shown in Figs. 9 and 10.
Here, we use three different terminologies to describe the role
of each term: the “source” term has positive contributions
throughout, the “sink” term contributes negatively, and the
“dual” term can be either positive or negative with time. In
Fig. 9, we examine the behavior of the individual terms in
Eqs. (15) and (16) in time, for both x-y (top panels) and
y-z averaging (bottom panels). These terms are evaluated at
z = −0.15 (top panels) and at x = −0.15 (bottom panels),
for x-y and y-z averaging, respectively. For all the cases, the
corresponding advection and stretching terms are negligible.
The x-y-averaged mean field B̄x(z) (top-left panel of Fig. 9)
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FIG. 9. The top two panels show the terms from x-y-averaged mean-field equation for B̄x (z) and B̄y(z) on left and right, respectively. The
bottom two panels show the terms from y-z-averaged mean-field equation for B̄y(x) and B̄z(x) on left and right, respectively. These are evaluated
at z = −0.15 (top panels) and at x = −0.15 (bottom panels), for x-y and y-z averaging, respectively. To understand the contribution of each
term to the evolution of mean magnetic fields, we multiply B̄i on both sides of the ∂t B̄i equations. The solid blue curve is for the time derivative
of the mean field, the dashed black curve is for the corresponding EMF term, the red dash-dotted curve is for the shear term (−q�B̄x ), and the
green dotted and orange dash-dotted lines are, respectively, for the advection and stretching terms involving mean fields.

fully arises from the vertical variation of the azimuthal EMF
Ēy. On the other hand, the field B̄y(z) (top-right panel of
Fig. 9) results from a combination of the shear term and the
vertical variation of the radial EMF Ēx. The shear term acts
as a source (traditionally, known as the � effect), whereas the
radial EMF has a sink effect. In the y-z-averaged analysis, both
B̄y(x) and B̄z(x) arise due to their respective EMF terms in the
induction equation: B̄y(x) arises from the radial variation of
Ēz (bottom-left panel of Fig. 9), whereas B̄z(x) arises from the
radial variation of Ēy (bottom-right panel of Fig. 9). The sharp
decay of B̄z(x) at the beginning indicates the destruction of the
initial field configuration B̄z = B0 sin(kxx).

Next we examine the behavior of the terms in Eqs. (15)
and (16) locally in space instead. In Figs. 10 and 11, we show
the individual terms in Eqs. (15) and (16), for both x-y (top
panels) and y-z averaging (bottom panels) as function of z
and x, respectively. Figure 10 corresponds to the MRI growth
phase, evaluated at t/Torb ≈ 5, and Fig. 11 corresponds to the
fully nonlinear saturation regime, evaluated at t/Torb ≈ 97.
We use the same line style and color for individual terms
as that in Fig. 9. The overall conclusions remain the same
as discussed in the previous paragraph. The azimuthal EMF
Ēy generates the field B̄x(z) (top-left panel of Fig. 10), which
in turn drives B̄y(z) (top-right panel of Fig. 10) through the

� effect. The radial EMF Ēx has a sink effect, reducing the
energy of B̄y(z). In the nonlinear regime, the radial EMF is
seen to dominate over the shear term at the given instance in
time, and hence the field B̄y(z) decays at that instant (top-right
panel of Fig. 11). In y-z averaging, both B̄y(x) (bottom-left
panel of Figs. 10 and 11) and B̄z(x) (bottom-right panel of
Figs. 10 and 11) arise due to their respective EMF terms in
the induction equation. The contribution from the advection
and stretching terms involving only mean fields are negligible
for all the cases. Thus, we find that the behavior of all the
terms [in Eqs. (15) and (16)] locally in time is consistent with
that locally in space.

In summary, the EMFs Ēy and Ēz play significant roles in
dynamo, whereas Ēx acts like a sink on B̄y(z). To find the
solution to the MRI dynamo problem, we have to formulate
the key components of the EMF: Ēy and Ēz.

C. Construction of electromotive force

In traditional mean-field dynamo theory, the turbulent elec-
tromotive force (EMF) is commonly expressed as a linear
combination of the mean magnetic field and its derivatives:

Ēi = αi j B̄ j + βi jk B̄ j,k, (17)
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FIG. 10. The top two panels show the terms from x-y-averaged mean-field equation for B̄x (z) and B̄y(z) on left and right, respectively. The
bottom two panels show the terms from the y-z-averaged mean-field equation for B̄y(x) and B̄z(x) on the left and right, respectively. These are
evaluated at t/Torb ≈ 5. To understand the contribution of each term to the evolution of mean magnetic fields, we multiply B̄i on both sides of
the ∂t B̄i equations. The solid blue curve is for the time derivative of the mean field, the dashed black curve is for the corresponding EMF term,
the red dash-dotted curve is for the shear term (−q�B̄x ), and the green dotted and orange dash-dotted lines are, respectively, for the advection
and stretching terms involving mean fields.

where the tensor components αi j and βi jk are known as
turbulent transport coefficients. However, this assumption of
expansion solely with respect to the mean magnetic field
may not be sufficient [63], as the form of the EMF directly
emerges from the assumption of Ū = 0, disregarding the in-
fluence of mean velocity fields. In the context of MRI-driven
turbulence, both the large-scale vorticity dynamo and the
large-scale magnetic field dynamo are integral components of
the overall turbulent behavior [11]. Therefore, in constructing
the EMF, it is essential to account for the effects of mean
velocity fields alongside the mean magnetic field. Another
challenge in mean-field dynamo theory is determining the nu-
merous unknown transport coefficients involved in the mean
EMF. Extracting data from simulations, specifically B̄ and

Ē , allows for the estimation of these coefficients. However,
measurement results often suffer from high levels of noise. To
improve the signal and reduce the noise, certain coefficients
are typically assumed to be negligible [10,18,38]. However,
the appropriateness of such fitting assumptions has been a
subject of debate [50].

To overcome both limitations, we propose an approach that
constructs the key components of the EMF in a self-consistent
manner without making any assumptions. We utilize the inter-
action terms arising from the Coriolis force and background
shear in the evolution equations for the Faraday tensors to
construct the EMF. More detailed information can be found
in Appendix A. Specifically, the azimuthal EMF, Ēy, can be
expressed as

Ēy = −1

q(2 − q)�

[{−qDt F̄yz + (2 − q)Dt F̄zy
} + {

qF̄yk + (2 − q)F̄ky
}
∂kŪz − {

qF̄kz + (2 − q)F̄zk
}
∂kŪy

+ 1

ρ

{
qM̄zk + (2 − q)R̄zk

}
∂kB̄y − 1

ρ

{
qR̄yk + (2 − q)M̄yk

}
∂kB̄z

+ B̄k

{
q

(
〈uy∂kuz〉 + 〈bz∂kby〉

μ0ρ

)
− (2 − q)

(
〈uz∂kuy〉 + 〈by∂kbz〉

μ0ρ

)}
+ T̄y

]
. (18)
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FIG. 11. The top two panels show the terms from the x-y-averaged mean-field equation for B̄x (z) and B̄y(z) on the left and right, respectively.
The bottom two panels show the terms from the y-z-averaged mean-field equation for B̄y(x) and B̄z(x) on the left and right, respectively. These
are evaluated at t/Torb ≈ 97. To understand the contribution of each term to the evolution of mean magnetic fields, we multiply B̄i on both sides
of the ∂t B̄i equations. The line style and color for each term is the same, as shown in Fig. 10.

It is worth noting that the EMF consists of terms that are
proportional to (a) mean magnetic fields, (b) the gradient
of mean magnetic fields, (c) the gradient of mean velocity
fields, and (d ) nonlinear three-point terms T . The propor-
tionality coefficients depend on factors such as rotation, shear
rate, and the correlators associated with different fluctuating
fields. Similarly, the vertical component of the EMF Ēz can
be derived, and its mathematical expression is available in
Appendix A. For a comprehensive understanding, we present
the individual components of the EMF obtained from the
volume-averaged analysis, as depicted in Fig. 12. It is evident
that the EMF components Ēx and Ēy exhibit a cyclic pattern
over time, with alternating positive and negative values. In
contrast, the EMF component Ēz consistently remains nega-
tive throughout the entire duration of the analysis.

D. Generation of radial magnetic fields

We have seen that the x-y-averaged mean field B̄x(z) is
solely determined by the vertical variation of the azimuthal
EMF Ēy. The main challenge in mean-field dynamo theory
is to identify the term responsible for generating B̄x via Ēy.
In Fig. 13, we present individual terms of Ēy [Eq. (18)] in
the MRI growth to the early saturation phase. We compute
these terms at z = −0.15. To assess the contribution of each
term in the evolution of B̄x [Eq. (15a)], we multiply −B̄x on

both sides of the equation for ∂zĒy. Two crucial curves that
aid in determining whether the magnetic field is growing or
decaying with time are the EMF term, depicted as the dashed
black line with star markers, and B̄x∂t B̄x, illustrated as the
dash-dotted red line with tri-down markers. We observe that
the field B̄x(z), represented by the dotted blue line, undergoes
amplification during the growth phase (with negative growth
and in opposite phase to B̄y(z), shown as the dotted orange
line) in the range of t/Torb ≈ 5 to 5.6. Subsequently, it decays,
leading to saturation. The primary driver for the growth of B̄x

is the term proportional to ∂kB̄y (depicted by the solid gray line
with circle markers). In particular, the k = z component of this
term plays a crucial role, as illustrated in Fig. 13(b). During
the growth phase, there are two additional source terms. One
originates from the term proportional to ∂kB̄z (illustrated by
the solid blue line) with k = x [see Fig. 13(c)], while the other
arises from the term proportional to ∂kŪz (represented by the
solid green line) with k = x [Fig. 13(d)]. In the initial decay
phase (around t/Torb ≈ 5.6 to 7), the most significant role
is played by the nonlinear three-point term (depicted by the
solid olive line with triangle markers). The term proportional
to ∂kŪz with k = x [Fig. 13(d)], which previously acted as a
source during the growth phase, now acts as a sink. These
contributions collectively lead to the saturation of B̄x. Notably,
the terms proportional to B̄i are negligible in both the growth
and initial decay phases.
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FIG. 12. The time evolution of the volume-averaged EMF is
presented. The dash-dotted red, solid blue, and dashed green lines
correspond to the x, y, and z components of EMF, respectively. To
help visualization, the x component Ēx has been scaled down by a
factor of 0.3.

Next, we take time averages from t/Torb = 5 → 5.5, of all
the terms considered in the previous figure (Fig.13), in the
MRI growth phase and show their behavior locally in space.
Such a study can explain how the x-y-averaged field B̄x(z) is
generated in detail. In Fig. 14, the individual terms of ∂zĒy

vary in z, and we use the same line style and color for each
term as that in Fig. 13. We again multiply −B̄x(z) on both
sides of the ∂zĒy equation to understand the contribution of
each term to the evolution of B̄x, following Eq. (15a). We
find again that the dominant source term is the term pro-
portional to ∂kB̄y with k = z (top middle panel of Fig. 14).
Some contributions from the terms proportional to ∂kB̄z with
k = x (bottom-middle panel of Fig. 14) and ∂kŪz with k = x
(bottom-right panel of Fig. 14) also arise in the growth of
B̄x(z), but they are not acting as sources throughout z.

Next, we study the dynamo in nonlinear regime. Using
Fig. 15, we describe the mechanism by which the field B̄x(z)
grows and decays alternatively, via the vertical variation of Ēy.
We have seen that the azimuthal EMF Ēy maintains a cyclic
nature, i.e., the magnitude of Ēy can be either positive or nega-
tive at different instances of time (see, e.g., Fig. 12). Here, we
perform the x-y-averaged analysis at different times when Ēy

can be either positive or negative, to obtain an overall behavior
of both, growth and decay of B̄x(z), locally in space. In par-
ticular, we would like to know whether the terms which were
responsible for growth of the large-scale fields continue to per-
sist in the nonlinear regime. The computations are performed
at t/Torb ≈ 80 (top left), t/Torb ≈ 97 (top right), t/Torb ≈ 43
(bottom left), and t/Torb ≈ 107 (bottom right). The top two
panels of Fig. 15 correspond to the negative Ēy, whereas the
bottom two panels are for the positive Ēy. In the top-left panel
of Fig. 15, we see that the field B̄x(z) grows along z > 0. The
term proportional to ∂kŪz (solid green curve) with k = x (not
shown here) is the dominant term responsible for the growth
of B̄x(z). The other two source terms are those proportional
to ∂kB̄y (solid gray curve) with k = z (not shown here) and

∂kŪy (solid orange curve) with k = x (not shown here). The
nonlinear three-point term (solid yellow, light-green curve)
and the term proportional to ∂kB̄z (solid blue curve) with k = x
(not shown here) behave like sinks. The terms proportional to
B̄i (solid purple, brown, and pink curves for i = x, y, and z,
respectively) are negligible. In the top-right panel of Fig. 15,
the field B̄x(z) is seen to be decaying along all z. The nonlinear
three-point term plays a significant role in reducing the energy
of B̄x. The term proportional to ∂kŪy (solid orange curve) with
k = x (not shown here) acts like a sink here also. The terms
proportional to B̄ are negligible.

In the bottom two panels of Fig. 15, we see that the field
B̄x(z) grows and decays cyclically in z. In both cases, the
overall behavior of different terms remains the same as before.
Again, the term proportional to ∂kB̄y (solid gray curve) with
k = z (not shown here) acts like a source throughout the z,
whereas the terms associated with ∂kB̄z (solid blue curve)
with k = x (not shown here) and time-derivative (solid red
curve) have sink effects mostly. There are two significant
behavior in these two cases. (a) The terms proportional to
B̄i (solid purple, brown, and pink curves for i = x, y, and z,
respectively) are not negligible here, unlike previous cases.
The term proportional to B̄y (solid brown curve) appears to
follow the signal, i.e., the term B̄x∂t B̄x. On the other hand, the
term proportional to B̄x (solid purple curve) appears opposite
to the signal. (b) The nonlinear three-point term (solid olive
line) behaves like either a source or a sink. Similar to the term
proportional to B̄y (solid brown curve), the nonlinear term also
follows the pattern of B̄x∂t B̄x with much higher amplitudes.

In summary, the growth and the nonlinear saturation of the
x-y-averaged field B̄x(z) arises through the vertical variation
of the azimuthal EMF, i.e., ∂zĒy. The EMF Ēy consists of four
different types of terms proportional to the mean magnetic
fields, the gradient of mean magnetic fields, the gradient of
mean velocity fields, and nonlinear three-point terms. The
proportionality coefficients are functions of the shear rate,
rotation, and correlators associated with different fluctuating
fields. The term proportional to ∂zB̄y plays a significant role
in the growth of B̄x both in the growth and saturation regimes.
In the MRI growth regime, the term proportional to ∂xB̄z also
grows B̄x(z). The decay of B̄x is primarily due to the three-
point term, which is the reason for the nonlinear saturation of
B̄x. The roles of certain terms depend on the sign of Ēy. In the
MRI nonlinear regime, the term proportional to ∂xŪz helps in
the growth of B̄x for Ēy < 0, whereas it has a negligible sink
effect for Ēy > 0. The term proportional to B̄y is negligible for
Ēy < 0, whereas it has a dual effect (i.e., both source and sink
at the same time but at different points in space) following
the pattern of the signal, i.e., the term B̄x∂t B̄x, for Ēy > 0.
The nonlinear three-point term acts like turbulent resistivity
for Ēy < 0, whereas it has a dual effect acting as both source
and sink for Ēy > 0.

Next, we explore the term proportional to ∂zB̄y of the
EMF Ēy [see Eq. (18)] in more detail. The proportionality
coefficient carries physical insight for the B̄x(z) genera-
tion mechanism. As the coefficient is a function of shear
rate, rotation, and correlators associated with kinetic and
magnetic fluctuations (more specifically, R̄zz and M̄zz, respec-
tively), the mechanism is named the rotation-shear-current
effect.
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FIG. 13. (a) The left panels depict the terms arising from the vertical variation of the azimuthal EMF [Eq. (18)] responsible to generate
the x-y-averaged field B̄x (z) during the growth and initial saturation phase of MRI. To improve visual clarity, the numerous terms associated
with the EMF are distributed across two left panels. To assess the individual contributions of these terms to the evolution of B̄x (z), we
multiply −B̄x (z) on both sides of the ∂zĒy equation [as described by Eq. (15a)]. These are evaluated at z = −0.15. The curves represent
distinct terms: the dash-dotted red curve corresponds to B̄x∂t B̄x , the dashed black curve corresponds to the corresponding EMF term, the solid
gray curve corresponds to the term proportional to ∂kB̄y, the solid blue curve corresponds to the term proportional to ∂kB̄z, the solid orange
curve corresponds to the term proportional to ∂kŪy, the solid green curve corresponds to the term proportional to ∂kŪz, the solid olive curve
corresponds to the nonlinear three-point term, the solid red curve corresponds to the time derivative of the Faraday-tensor terms, and the solid
purple, brown, and pink curves correspond to the terms proportional to the x, y, and z components of the B̄ fields, respectively. Notably, we
have utilized markers only for the most significant curves. The middle and right panels illustrate the terms proportional to different components
of the field gradients: (b) the term proportional to ∂kB̄y, (c) the term proportional to ∂kB̄z, (d) the term proportional to ∂kŪy, and (e) the term
proportional to ∂kŪz.

FIG. 14. (a) The left panels present the terms arising from the vertical variation of the azimuthal EMF [Eq. (18)] that contribute to the
generation of the x-y-averaged field B̄x (z) in the MRI growth phase. These are obtained through time averaging from t/Torb = 5 → 5.5.
To enhance visual clarity, the numerous terms associated with the EMF are distributed across two left panels. To evaluate the individual
contributions of these terms to the evolution of B̄x (z), we multiply −B̄x (z) on both sides of the ∂zĒy equation [as described by Eq. (15a)]. The
line style and color for each term are consistent with those in Fig. 13. It is worth noting that markers are employed only for the most significant
curves. The middle and right panels illustrate the terms proportional to different components of the field gradients: (b) the term proportional to
∂kB̄y, (c) the term proportional to ∂kB̄z, (d) the term proportional to ∂kŪy, and (e) the term proportional to ∂kŪz.
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FIG. 15. The terms responsible for generating the x-y-averaged mean field B̄x (z) via the vertical variation of Ēy in the MRI nonlinear
regime. The four panels correspond to the four different instances of time: t/Torb ≈ 80 (top left), t/Torb ≈ 97 (top right), t/Torb ≈ 43 (bottom
left), and t/Torb ≈ 107 (bottom right). The azimuthal EMF, Ēy, is negative in the top two panels, whereas Ēy is positive in the bottom two
panels. The top-left and -right panels are evaluated at the given instances in time when B̄x (z) grows and decays, respectively. The bottom two
panels are a combination of both the growing and decaying phases with z. We keep the same line style and color for each term, as shown in
Fig. 13.

Rotation-shear-current effect. The dynamo mechanism
responsible for generating B̄x(z) from B̄y(z) through the
rotation-shear-current effect relies on the presence of correla-
tors M̄zz and R̄zz. Understanding the formation process of these
correlators is crucial for establishing the connections between
the dynamo process and the angular momentum transport in
the system. To investigate this, we examine the individual
terms appearing in the evolution equations for M̄zz [Eq. (9)]
and R̄zz [Eq. (10)], which are displayed in the upper panels of

Figs. 16 and 17. Specifically, Fig. 16 corresponds to the MRI
growth phase, obtained through time averaging from t/Torb =
5 → 5.5, while Fig. 17 represents the nonlinear phase, evalu-
ated at t/Torb = 20. Physically, M̄zz and R̄zz represent turbulent
magnetic and kinetic energy densities (multiplied by two) in
the vertical components of the fields, respectively. Conse-
quently, both M̄zz and R̄zz remain positive throughout. It makes
the positive term in ∂t M̄zz as a source, whereas the negative
term behaves like a sink. The same holds for the terms in ∂t R̄zz.
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FIG. 16. The generation mechanism of (a) M̄zz and (b) R̄zz during
the MRI growth phase is examined. The top panels illustrate the
contributions obtained from the x-y-averaged equations for (a) M̄zz

and (b) R̄zz. By identifying the source terms from the top panels, we
present the individual components contributing to M̄zz (bottom-left
panel) and R̄zz (bottom-right panel). The computations involve time
averaging over the interval t/Torb = 5 → 5.5.

By identifying the dominant source terms from the upper
panels of Figs. 16 and 17, we examine their components in
the lower panels of the same figures. We see that the dominant
source term for M̄zz is the stretching term, 2M̄zk∂kŪz [blue dot-
ted line in Figs. 16(a) and 17(a)] with k = x [Figs. 16(c) and
17(c)], whereas the nonlinear three-point term [red dashed line
in Figs. 16(a) and 17(a)] behaves as the dominant sink. This
behavior remains consistent in both the growth and nonlinear
phases of turbulence. Similar processes are seen for the R̄zz

evolution—the stretching term, −2R̄zk∂kŪz [blue dotted line
in Figs. 16(b) and 17(b)] with k = x [Figs. 16(d) and 17(d)],

FIG. 17. The generation mechanism of (a) M̄zz and (b) R̄zz during
the MRI nonlinear phase is examined. The top panels illustrate the
contributions obtained from the x-y-averaged equations for (a) M̄zz

and (b) R̄zz. By identifying the source terms from the top panels, we
present the individual components contributing to M̄zz (bottom-left
panel) and R̄zz (bottom-right panel). The computations are performed
at t/Torb = 20.

acts as a source, whereas the nonlinear three-point term [red
dashed line in Figs. 16(b) and 17(b)] turns out to be the sink,
as usual. Thus, the presence of a mean (vertical) velocity field
is necessary for the operation of the rotation-shear-current
effect. In other words, the mean magnetic field dynamo is
rendered inoperative without the mean velocity field dynamo.
Further exploration of the generation process of M̄xz and R̄xz

is needed for a comprehensive understanding.
In Fig. 18, we show the individual terms that appear in

the dynamical equation for M̄xz. Since M̄xz changes sign with
spatial and temporal coordinates, we multiply M̄xz on both
sides of the equation for ∂t M̄xz to understand the contribution
of each term. The resultant individual terms of equation for
M̄xz∂t M̄xz are shown in the left panel of Fig. 18. Once we iden-
tify the dominant source terms, we further demonstrate the
components of such specific source terms in the middle and
right panels of Fig. 18. We see that the dominant source terms
for M̄xz are the stretching terms: M̄xk∂kŪz and M̄zk∂kŪx (shown
in dotted light green and yellow). The most significant contri-
bution in the correlator M̄xk∂kŪz arises from k = x (middle
panel). For the correlator M̄zk∂kŪx, the dominant contribution
arises from k = z (rightmost panel). The nonlinear three-point
term and the terms associated with the spatial gradient of
mean magnetic fields act like a sink here. In summary, M̄xx

and M̄zz act in conjunction with ∂xŪz and ∂zŪx respectively to
produce M̄xz.

Next, we analyze the generation of R̄xz(z), so we plot
the individual terms that appear in R̄xz∂t R̄xz equation in the
MRI growth and nonlinear regimes as shown in Fig. 19.
Three different panels of Fig. 19 correspond to the three
different instants of time at which the computations are per-
formed: t/Torb 	 5 (left panel), t/Torb 	 50 (middle panel),
and t/Torb 	 100 (right panel). It is difficult to identify any
specific source term for R̄xz at the initial phase from the
left panel of Fig. 19. We see that the dominant source term
for R̄xz in the nonlinear regime (middle and right panels) is
the Coriolis force term: 2�R̄yz (solid blue line). Hence, the
twisting of R̄yz via the Coriolis force produces R̄xz at a rate of
2�. The nonlinear three-point term (dashed red line) behaves
as the dominant sink for R̄xz. To complete the dynamo cycle,
we describe below how R̄yz is produced.

Finally, in Fig. 20, we perform the x-y average analysis
at three different instants of time: t/Torb 	 5 (left panel),
t/Torb 	 50 (middle panel), and t/Torb 	 100 (right panel), to
examine the generation of R̄yz. Similar to R̄xz, it is difficult to
identify any specific source term for R̄yz at the initial phase
(left panel). However, in the nonlinear regime (middle and
right panels), it is apparent that the dominant source term for
R̄yz is the term with mean magnetic field gradients (dotted
magenta line), and once again the nonlinear three-point term
(dashed red line) acts as a sink. Mathematically, the com-
plete source term for R̄yz is expressed as (F̄yk∂kB̄z + F̄zk∂kB̄y).
However, the contribution from the term F̄zk∂kB̄y is found
to be negligible. Instead, the sole contribution arises from
F̄yk∂kB̄z with k = y. This finding is illustrated in Fig. 21 for
two different times, t/Torb 	 50 (left panel) and t/Torb 	 100
(right panel).

In Fig. 22, we provide a schematic which summarizes
the chain of production leading to the rotation-shear-current
effect. At the magnetic end of the chain, the term involving
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FIG. 18. The generation mechanism of M̄xz(z) in the MRI growth phase. The left panel shows the individual terms that appeared in the
M̄xz∂t M̄xz equation. Once we identify the source terms from the left panel, we demonstrate the components of such source terms in the middle
and right panels. The computations are performed by taking time averages from t/Torb = 5 → 5.5.

azimuthal mean field, B̄y leads to eventual production of M̄zz

which is one part of the rotation-shear-current effect. At the
kinetic end of the chain, the vertical mean field is involved in
leading up to the production of R̄zz, which is the other part
of the rotation-shear-current effect. Thus, the self-sustaining
cycle of dynamo is established connecting both the azimuthal
and vertical mean magnetic fields to correlators that are re-
sponsible for the production of the radial mean magnetic field.
In this picture, the production of the vertical mean field has not
yet been delved into. We do so in the next section.

E. Generation of vertical magnetic fields

We have seen that the vertical mean-field, B̄z(x), arises in
the y-z-averaged analysis due to the radial variation of the
azimuthal EMF, ∂xĒy. Here, we discuss the terms responsible
for generating B̄z via Ēy. In the left panels of Fig. 23, we
show the individual terms of Ēy in the MRI growth to the
early saturation phase. To enhance visual clarity, we have
distributed the numerous terms of the EMF across two left
panels. The middle and right panels of Fig. 23 illustrate the
contributions from different components associated with the
terms proportional to the respective field gradients. To under-
stand the contribution of each term on the evolution of B̄z [as
described in Eq. (16b)], we multiply B̄z on both sides ∂xĒy

equation [i.e., after taking the radial gradient of Eq. (18)]. We
evaluate these terms at x = −0.15. The same color and line
style are used for each term, as indicated in Fig. 13. Notably,
we have utilized markers only for the most significant curves.

The two crucial curves that determine the growth or decay
of the magnetic field over time are the EMF term (represented
by a dashed black line with star markers) and B̄z∂t B̄z (shown as
a dash-dotted red line with tri-down markers). Positive values
of these terms indicate the growing phase of B̄z(x), while
negative values suggest a decaying phase. The dominant term
responsible for the growth of B̄z is the one proportional to ∂kŪz

(depicted by a solid green line with circle markers), where
k = x (refer to the bottom-right panel of Fig. 23). Conversely,
three terms act as sinks in the evaluation of B̄z(x): the term
proportional to ∂kB̄z (shown as a solid blue line with triangle
markers) with k = x (see top-right panel of Fig. 23), the term
proportional to ∂kŪy (illustrated by a solid orange line with
square markers) with k = x (refer to the bottom-middle panel
of Fig. 23), and the nonlinear three-point term (displayed as
a solid olive line). Consequently, these terms contribute to the
energy reduction of B̄z(x). It is worth noting that the terms
proportional to B̄i have negligible role on the evolution of
B̄z(x).

Next, we investigate the local behavior of the terms appear-
ing in the azimuthal EMF during the MRI growth phase by
taking time averages from t/torb = 5 → 5.2. Such a study can
explain how the y-z-averaged field B̄z(x) is generated locally
via the radial variation of Ēy. To understand the individual
contributions of these terms to the evolution of B̄z(x), we
again multiply B̄z(x) on both sides of the ∂xĒy equation [i.e.,
after taking the radial gradient of Eq. (18)], as described
in Eq. (16b). In the left panels of Fig. 24, we present the
variations of the individual terms of B̄z∂xĒy as a function of
x. Similar to Fig. 23, we distribute the numerous terms of the

FIG. 19. The generation mechanism of R̄xz(z) in the MRI growth and nonlinear regimes. It shows the individual terms that appeared in
R̄xz∂t R̄xz equation. The computations are performed at t/Torb 	 5 (left panel), t/Torb 	 50 (middle panel), and t/Torb 	 100 (right panel).
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FIG. 20. The generation mechanism of R̄yz(z) in the MRI growth and nonlinear regimes. It shows the individual terms that appeared in
R̄yz∂t R̄yz equation. The computations are performed at t/Torb 	 5 (left panel), t/Torb 	 50 (middle panel), and t/Torb 	 100 (right panel).

EMF across two left panels, while maintaining consistent line
styles and colors for each term. We find that the field B̄z(x)
experiences growth in the regions x 	 −0.4 → −0.25 and
x 	 0.1 → 0.3. Again, the dominant term responsible for the
growth of B̄z(x) is the one proportional to ∂kŪz (depicted by
a solid green line with circle markers), where k = x (see the
bottom-right panel of Fig. 24). Conversely, the term propor-
tional to ∂kŪy (illustrated by a solid orange line with square
markers) with k = x (refer to the bottom middle panel of Fig.
24) acts as the dominant sink term.

Finally, we investigate the dynamo mechanism underlying
the generation of y-z-averaged fields B̄z(x) in the nonlinear
regime of MRI. Our focus is to determine whether the terms
that were responsible for the growth of large-scale fields
continue to play a role in the nonlinear regime. In Fig. 25,
we perform a y-z-averaged analysis at t/torb 	 97 to examine
the behavior of individual terms in the B̄z∂xĒy equation as a
function of x. To maintain consistency, we use the same line
styles and colors for each term as indicated in Fig. 24. The
two overlapping curves in the left panel of Fig. 25, one from
the EMF term and the other from B̄z∂t B̄z, provide insights
into the growth or decay of the field B̄z(x) with respect to
x. Remarkably, the overall results remain consistent in the
nonlinear regime. The term proportional to ∂kŪz (depicted by
a solid green line with circle markers) with k = x (see the
bottom-right panel of Fig. 25) continues to be the dominant
term responsible for the growth of B̄z(x). Conversely, the
decay of B̄z(x) is primarily attributed to the term proportional
to ∂kB̄z (shown as a solid blue line with triangle markers) with
k = x (see the top-right panel of Fig. 25).

In summary, the growth and the nonlinear saturation of the
y-z-averaged field B̄z(x) are driven by the radial variation of

FIG. 21. The components of the source term, F̄yk∂kB̄z, that ap-
peared in Fig. 20 for R̄yz evaluation at t/Torb 	 50 (left panel), and
t/Torb 	 100 (right panel). The other term F̄zk∂kB̄y is negligible.

the azimuthal EMF, ∂xĒy. In particular, the term proportional
to ∂xŪz of the EMF Ēy plays a dominant role in generating
B̄z(x). The proportionality coefficient of this term depends
on the shear rate, rotation, and specific components of the
Faraday tensor, as given by [see Eq. (18)]

− 1

�

[
1

(2 − q)
F̄yx + 1

q
F̄xy

]
. (19)

We refer to this dynamo mechanism for the generation of
B̄z(x) as the rotation-shear-vorticity effect. It is important to
note that this mechanism is fundamentally distinct from the
traditional cross-helicity effect [39,42], where the turbulent
cross-helicity (defined as the cross-correlation between the
turbulent velocity and magnetic field, 〈u · b〉) serves as the
transport coefficient coupling with the large-scale vorticity.
In the rotation-shear-vorticity effect, the off-diagonal compo-
nents of the Faraday tensor, specifically F̄xy and F̄yx, play a
primary role.

IV. DISCUSSION

The primary objective of this work is to gain a better
understanding of the physical processes involved in sustain-
ing MRI turbulence and dynamo in accretion disks. Despite
many theoretical and computational studies, the fundamen-
tal principles behind these phenomena remain unclear. One
of the main reasons for this is that the mean-field dynamo
and angular momentum transport problems have traditionally
been treated independently [48,49]. The transport theory for
angular momentum has not taken into account the evolution of
large-scale magnetic fields [19–21], while the mean-field dy-
namo theory has not considered transport dynamics [24,64].
In addition, both theories have ignored the feedback from the
evolution of mean velocity fields. However, direct numerical
simulations have shown the existence of a large-scale dynamo
associated with velocity and magnetic fields simultaneously
in MRI-driven turbulence [11]. To better understand the exact
nature of these interactions, one needs to develop a unified
mean-field theory for MRI. With this aim, we construct a sin-
gle coupled model for turbulent accretion disks and perform
direct statistical simulations in a zero-net-flux unstratified
shearing box using statistical closure approximations.

Mean-field dynamo theory is a widely used framework
for examining the in situ origin of large-scale magnetic
field growth and saturation. The electromotive force, a cor-
relation between fluctuating velocity and magnetic fields, is
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FIG. 22. A schematic representation of the rotation-shear-current and the � effect to describe the generation mechanism of the x-y-averaged
fields B̄x (z) and B̄y(z), respectively. Different arrow colors correspond to the paths by which the stress components connect to each other through
shear, rotation, mean fields, and other small-scale correlators. Note that we have highlighted only the dominant source terms.

responsible for dynamo action. In mean-field theories, the
EMF is typically assumed to be a linear function of the
mean magnetic field and its spatial derivatives, with the pro-
portionality coefficients usually treated as tensors. However,
this assumption may not be sufficient to fully capture the
complex physical processes involved in magnetic field gen-
eration and sustenance. Several studies have shown that an
additional term proportional to the spatial derivative of the

mean velocity field enters the EMF equation, which can lead
to rapid growth of mean magnetic fields [63]. Similarly, when-
ever an additional term participates in the EMF equation,
the dynamics of magnetic field growth and saturation can
change dramatically. Therefore, it is crucial to properly ac-
count for the effect of all contributions in the EMF equation to
fully understand the physics of magnetic field generation and
sustenance.

FIG. 23. The left panel shows the terms from the radial variation of the azimuthal EMF [Eq. (18)] responsible to generate the y-z-averaged
field B̄z(x) in the MRI growth to initial saturation phase. These are evaluated at x = −0.15. To understand the contribution of each term to the
evolution of B̄z(x), we multiply B̄z(x) on both sides of the ∂xĒy equation [see Eq. (16b)]. The dash-dotted red curve is for B̄z∂t B̄z, the dashed
black curve is for the corresponding EMF term, the solid gray curve is for the term proportional to ∂kB̄y, the solid blue curve is for the term
proportional to ∂kB̄z, the solid orange curve is for the term proportional to ∂kŪy, the solid green curve is for the term proportional to ∂kŪz, the
solid yellow curve is for the nonlinear three-point term, and the solid purple, brown, and pink curves correspond to the terms proportional to
the x, y, and z components of B̄-fields, respectively. The middle and right panels are for the terms proportional to different components of the
field gradients: the term proportional to ∂kB̄y (top middle panel), the term proportional to ∂kB̄z (top-right panel), the term proportional to ∂kŪy

(bottom middle panel), and the term proportional to ∂kŪz (bottom-right panel).
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FIG. 24. The terms from the radial variation of the azimuthal EMF [Eq. (18)] responsible to generate the y-z-averaged field B̄z(x) in the
MRI growth phase. These are obtained through time averages from t/torb = 5 → 5.2.

Here, we identify a possibility for large-scale magnetic
field generation in unstratified MRI-driven turbulent plasmas:
the rotation-shear-current (RSC) effect. The mechanism arises
through an off-diagonal turbulent resistivity ηyx, which has a
favorable negative sign to cause mean-field dynamo action,
rather than being positive for diffusion. The basic idea is that
in the presence of shear and rotation, small-scale kinetic and
magnetic fluctuations produce ηyx in the following form [the
coefficient of ∂zB̄y in Eq. (18)]:

ηyx = − 1

ρ�

[
1

2 − q
M̄zz + 1

q
R̄zz

]
. (20)

This is the exact expression for ηyx. The respective correlators
associated with magnetic and kinetic fluctuations are M̄zz and
R̄zz, which are always positive. The factor of two arises due

to rotation via the Coriolis force. Hence, for a Keplerian
shear flow (i.e., q = 1.5), both magnetic (ηb

yx ) and kinetic
(ηu

yx ) contributions to the RSC effect have favorable negative
sign. It is important to note that the term associated with
the RSC effect is distinct from the � × J or Rädler effect
[23,43]. Also, the RSC effect differs fundamentally from the
traditional shear-current (SC) effect in which rotation is absent
[36,37]. The SC effect has been controversial, with mutual
and separate disagreements among theories and simulations.
Below we discuss various conflicts associated with the SC
effect.

The traditional SC effect is a potential nonhelical large-
scale dynamo driven by off-diagonal turbulent resistivity ηyx

in the presence of a large-scale velocity shear without any ro-
tation. A negative sign of ηyx is necessary for coherent dynamo

FIG. 25. The terms from the radial variation of the azimuthal EMF [Eq. (18)] responsible to generate the y-z-averaged field B̄z(x) in the
MRI nonlinear phase. This is evaluated at t/torb 	 97.
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action by the SC effect. However, it remains a matter of de-
bate whether the contributions from the turbulent kinetic and
magnetic parts to ηyx have a preferred sign or not, and which
one dominates. Among analytical works, those employing a
spectral-τ closure found that both ηb

yx and ηu
yx have favorable

negative signs to cause dynamo action [36,37]. In contrast, the
second-order correlation approximation [65,66] and quasilin-
ear calculations [67,68] disagreed with the existence of the
kinetic SC effect. For the magnetic shear-current (MSC) ef-
fect, the analytical calculations using second-order correlation
approximation agree with previous spectral-τ calculations
that ηb

yx has favorable negative sign, and the magnetic part
substantially dominates over the kinetic part [69]. Zhou and
Blackman [70] resolve some of these theoretical discrepancies
(at least at low to moderate Re ≈ 10) by showing that the ki-
netic contribution ηu

yx is sensitive to the kinetic energy spectral
index and can transit from positive to negative values with
increasing Re, whereas the magnetic contribution ηb

yx remains
always negative. However, numerical simulations do not fully
agree with theory and sometimes mutually contradict. There
are broadly two methods employed to determine the turbulent
transport coefficients from simulations: the test-field method
and the projection method. In kinetically forced quasilinear
simulations using projection method, it has been found that
ηu

yx is positive with only shear, and negative when a Keplerian
rotation is added [71]. Conversely, nonlinear test-field method
in MHD burgulence (i.e., ignoring the thermal pressure gra-
dient) with kinetic forcing has reported a negative ηu

yx for
the nonrotating case, but did not explore the case including
rotation [72]. For magnetic contributions, magnetically forced
quasilinear simulations using projection method found that
ηb

yx < 0 either with or without Keplerian rotation [71]. Unfor-
tunately, nonlinear test-field method in MHD burgulence with
magnetic forcing found that ηb

yx > 0 for nonrotating shearing
cases [72].

To resolve the above-mentioned discrepancies, we provide
here the exact expressions for ηyx [Eq. (20)] which describes
the role of rotation and shear parameters to the contributions
of kinetic and magnetic parts. As we have already mentioned
that for a differentially rotating Keplerian flow (as in the case
of MRI turbulence) both ηb

yx and ηu
yx have favorable nega-

tive signs to cause dynamo action. Now, in the absence of
rotation, relevant to the traditional SC effect and the MSC
effect, ηyx reduces to the form as ηyx = −(R̄zz − M̄zz )/qρ�.
We see that the kinetic contribution ηu

yx has a favorable neg-
ative sign, whereas the magnetic contribution has a wrong
sign for dynamo action. Interestingly, they will exactly cancel
each other in the limit of M̄zz ∼ R̄zz, which will make the SC
effect inoperative (i.e., ηyx 	 0). It supports the conclusions
of Ref. [72] that there is no evidence for MSC-effect-driven
dynamo in magnetically forced, nonrotating MHD burgu-
lence, but kinetic SC effect has favorable negative sign when
forced kinetically. It also explains the results associated with
nonrotating, unstratified, compressible MHD simulations with
driven turbulence using a compressible test-field method that
ηyx to be slightly negative or positive but statistically not
different than zero, concluding no evidence of coherent SC
effect [50].

In addition to forced turbulence, there is growing evidence
for the presence of the RSC effect in unstratified, zero net-flux

shearing-box simulations of MRI-driven turbulence. Both fi-
nite volume code [10] and moving mesh code [12] simulations
have observed a large-scale dynamo with a negative value of
ηyx. These findings contrast the results of Ref. [27], who used
a smooth particle hydrodynamics code and observed slightly
positive or nearly zero values of ηyx in their zero net-flux,
unstratified simulations. The discrepancy can be attributed
to the significantly weaker mean fields in their simulations,
which can impact the manifestation of the RSC effect.

Next, we delve into the mechanisms by which the corre-
lators associated with fluctuations drive the RSC effect. As
we discussed earlier, the correlators involved in the RSC ef-
fect are M̄zz and R̄zz, which correspond to the magnetic and
kinetic aspects, respectively. We have discussed how these
correlators interact with shear and rotation to produce off-
diagonal turbulent resistivity ηyx with the appropriate sign
for the large-scale dynamo. Understanding the generation of
these correlators in the context of self-sustained MRI-driven
turbulence is crucial. We uncover a significant revelation: the
presence of a large-scale vorticity dynamo is essential for their
production. Notably, the dominant contribution arises from
the mean vertical velocity fields. Moreover, at the magnetic
end of the chain, the term involving azimuthal mean magnetic
fields plays a significant role in generating M̄zz—the magnetic
part of the RSC effect, while at the kinetic end of the chain,
the term involving vertical mean magnetic fields takes charge
in producing R̄zz—the kinetic part of the RSC effect (see Fig.
22 for a more comprehensive depiction). Consequently, a self-
sustaining dynamo cycle is established, linking the azimuthal
and vertical magnetic fields to the correlators that give rise to
radial magnetic fields through the RSC effect.

Finally, we address the generation of vertical magnetic
fields arising in the y-z-averaged analysis. For a given initial
vertical field, the MRI can be initiated locally. However, in
the absence of any large-scale dynamo action, the resulting
MRI turbulence tends to disrupt the original vertical field,
potentially leading to the cessation of the MRI. While con-
siderable research on MRI dynamo mechanisms has focused
on the generation of horizontally (x-y) averaged fields, the
persistence of large-scale vertical magnetic fields in MRI-
driven turbulence remains an intriguing question. Our findings
from the y-z-averaged analysis are consistent with results from
global cylindrical MRI simulations [46] and local shearing
box simulations [11], where the large-scale fields arise en-
tirely from the EMF. In particular, the vertical mean field
is driven by the radial variation of the azimuthal EMF. By
formulating a general expression for the EMF, we have iden-
tified a dynamo mechanism responsible for the generation of
large-scale vertical magnetic fields, referred to as the rotation-
shear-vorticity effect. This mechanism critically depends on
the presence of a large-scale vorticity dynamo. Specifically,
the azimuthal EMF contains a term proportional to the radial
gradient of the vertical mean velocity field, which drives this
dynamo mechanism. The exact form of the proportionality
coefficient is given in Eq. (19). This coefficient arises from
the interaction of the xy and yx components of the Faraday
tensor with rotation and shear.

Overall, these findings open up exciting avenues for the
advancement of mean-field dynamo theory and invite further
exploration. In general, the DSS method is useful to study the
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dynamics of various astrophysical disks. For galactic disks,
the observed large-scale magnetic fields are thought to be
generated by a turbulent dynamo. This dynamo is governed by
the EMF generated by turbulence, primarily driven by super-
nova explosions within the differentially rotating interstellar
medium. So far, the most successful theory for explaining
the sustained growth of galactic magnetic fields is the α�

dynamo [73]. However, significant uncertainties persist in
estimating turbulent transport coefficients and understanding
the nonlinear saturation process. Several methods have been
employed to extract turbulent transport coefficients from local
direct numerical simulations. In the kinematic regime, both
the test-field method [74] and the singular value decomposi-
tion method [75] have shown good agreement in determining
various transport coefficients. However, when dealing with
strong fluctuations within the numerical data in the presence
of dynamically important small-scale magnetic fields due to
the fluctuation dynamo, the analysis becomes challenging,
sometimes requiring the assumption of specific coefficients
being zero. Such analyses have been restricted to the specific
components of the tensors αi j and ηi j relevant only for the α�

dynamo [76]. Consequently, significant uncertainty remains
regarding the precise mechanisms responsible for large-scale
dynamo saturation in galactic disks (see the current review
by Brandenburg and Ntormousi [77] for more details). The
DSS methods we have used and also, our approach of a self-
consistent construction of a general EMF, could hold potential
to identify the nonlinear saturation mechanisms and provide
relevant expressions for nonlinear turbulent transport coeffi-
cients essential for understanding galactic dynamos.

V. CONCLUSIONS

In this paper, we investigated the phenomena of MRI turbu-
lence and dynamo in a zero-net-flux unstratified shearing box,
employing DSS methods. Our main objective was to develop
a unified mean-field model that combines the traditionally
decoupled problems of angular momentum transport and the
large-scale dynamo in MRI-driven turbulent flows, with spe-
cific emphasis on the standard Keplerian accretion disks. We
consider the dynamics of turbulent stresses, including the
Maxwell, Reynolds, and Faraday tensors, together with the
behavior of large-scale velocity and magnetic fields, in order
to understand the sustaining mechanisms of MRI turbulence
without any external driving force. To accomplish this, we
employ various high-order closure schemes. The three-point
correlators are closed using a statistical closure model inspired
by the CE2.5 approximation, while a two-scale approach is
utilized to model second-order correlators involving the spa-
tial gradient of a fluctuating field. Our principal findings can
be summarized as follows:

(1) The outward transport of angular momentum occurs
through positive total stress, W̄xy = R̄xy − M̄xy, where M̄xy < 0
and R̄xy > 0. The dominant contribution to the total stress
arises from the correlated magnetic fluctuations, rather than
from their kinetic counterparts, i.e., −M̄xy > R̄xy, as expected.
The generation process of these stresses involves intricate
interactions involving shear, rotation, correlators associated
with mean fields, and nonlinear terms. A schematic overview
of the findings is summarized in Fig. 4. The stretching of M̄xx

through shear gives rise to M̄xy, which, is further stretched by
shear to produce M̄yy. The large-scale magnetic field, predom-
inantly B̄y acts in conjunction with the correlator 〈bx∂yux〉,
leading to the generation of M̄xx (which is essentially the
tangling of large-scale field leading to small-scale fields). Re-
garding the Reynolds stress, the Coriolis force is responsible
for generating R̄xx from R̄xy, and R̄xy from R̄yy. Interestingly,
the nonlinear interactions between M̄yy and R̄yy via three-point
terms contribute to the formation of R̄yy from M̄yy. Another
significant source term for R̄yy is the term proportional to the
radial gradient of the mean azimuthal magnetic field. There-
fore, the turbulent transport critically depends on the presence
of large-scale magnetic fields.

(2) For the large-scale magnetic field dynamo, we analyzed
the individual terms in the mean field induction equation using
both x-y and y–z averaging and determined their contributions
to the generation of mean fields. Our findings align well
with those obtained from DNS [7,11]. With x-y averaging,
the azimuthal EMF generates the radial field, which, in turn,
drives the azimuthal field through the � effect. The radial
EMF exhibits a sink effect, resulting in a decrease in the
energy of the azimuthal field. In the case of y–z averaging,
the large-scale fields originate entirely from the respective
EMF. Specifically, the azimuthal field arises from the radial
variation of the vertical EMF, while the vertical field emerges
from the radial variation of the azimuthal EMF.

(3) To identify the relevant dynamo mechanisms, we con-
structed the EMF for an MRI-driven system. The EMF is
expressed as a linear combination of terms proportional to
mean magnetic fields, the gradient of mean magnetic fields,
the gradient of mean velocity fields, and a nonlinear term.
The proportionality coefficients depend on shear, rotation, and
statistical correlators associated with fluctuating fields. Impor-
tantly, this EMF expression arises naturally from our model
rather than being an ansatz. By analyzing the general EMF
expression, we identify two crucial dynamo mechanisms—the
rotation-shear-current effect and the rotation-shear-vorticity
effect—that are responsible for generating the radial and ver-
tical magnetic fields, respectively. We have provided explicit
expressions of the corresponding turbulent transport coeffi-
cients, in the nonperturbative limit. Notably, both mechanisms
rely on the presence of large-scale vorticity dynamo. It is im-
portant to note that both the kinetic and magnetic components
of the rotation-shear-current effect have favorable signs for
driving a dynamo mechanism. A schematic overview of the
rotation-shear-current effect is presented in Fig. 22.
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APPENDIX A: THE ELECTROMOTIVE FORCE

In this section, we provide a comprehensive derivation of the electromotive force (EMF). We start by presenting the evolution
equations for all the components of the Faraday tensor:

Dt F̄xx = 2�F̄yx + (F̄xk∂kŪx − F̄kx∂kŪx ) + B̄k

[
〈ux∂kux〉 + 〈bx∂kbx〉

μ0ρ

]
+ 1

ρ
(M̄xk∂kB̄x − R̄xk∂kB̄x ) + T̄ F

xx , (A1)

Dt F̄xy = −q�F̄xx + 2�F̄yy + (F̄xk∂kŪy − F̄ky∂kŪx ) + B̄k

[
〈ux∂kuy〉 + 〈by∂kbx〉

μ0ρ

]
+ 1

ρ
(M̄yk∂kB̄x − R̄xk∂kB̄y) + T̄ F

xy , (A2)

Dt F̄xz = 2�F̄yz + (
F̄xk∂kŪz − F̄kz∂kŪx

) + B̄k

[
〈ux∂kuz〉 + 〈bz∂kbx〉

μ0ρ

]
+ 1

ρ
(M̄zk∂kB̄x − R̄xk∂kB̄z ) + T̄ F

xz , (A3)

Dt F̄yx = −(2 − q)�F̄xx + (F̄yk∂kŪx − F̄kx∂kŪy) + B̄k

[
〈uy∂kux〉 + 〈bx∂kby〉

μ0ρ

]
+ 1

ρ
(M̄xk∂kB̄y − R̄yk∂kB̄x ) + T̄ F

yx , (A4)

Dt F̄yy = −(2 − q)�F̄xy − q�F̄yx + (F̄yk∂kŪy − F̄ky∂kŪy) + B̄k

[
〈uy∂kuy〉 + 〈by∂kby〉

μ0ρ

]
+ 1

ρ
(M̄yk∂kB̄y − R̄yk∂kB̄y) + T̄ F

yy , (A5)

Dt F̄yz = −(2 − q)�F̄xz + (F̄yk∂kŪz − F̄kz∂kŪy) + B̄k

[
〈uy∂kuz〉 + 〈bz∂kby〉

μ0ρ

]
+ 1

ρ
(M̄zk∂kB̄y − R̄yk∂kB̄z ) + T̄ F

yz , (A6)

Dt F̄zx = (F̄zk∂kŪx − F̄kx∂kŪz ) + B̄k

[
〈uz∂kux〉 + 〈bx∂kbz〉

μ0ρ

]
+ 1

ρ
(M̄xk∂kB̄z − R̄zk∂kB̄x ) + T̄ F

zx , (A7)

Dt F̄zy = −q�F̄zx + (F̄zk∂kŪy − F̄ky∂kŪz ) + B̄k

[
〈uz∂kuy〉 + 〈by∂kbz〉

μ0ρ

]
+ 1

ρ
(M̄yk∂kB̄z − R̄zk∂kB̄y) + T̄ F

zy , (A8)

Dt F̄zz = (F̄zk∂kŪz − F̄kz∂kŪz ) + B̄k

[
〈uz∂kuz〉 + 〈bz∂kbz〉

μ0ρ

]
+ 1

ρ
(M̄zk∂kB̄z − R̄zk∂kB̄z ) + T̄ F

zz , (A9)

where we have absorbed the advection terms within the operator Dt ≡ ∂t − q�x∂y + Ūk∂k . The right-hand side of the equa-
tions consists of five different types of terms: those proportional to the gradients of the mean velocity (∂kŪi), terms proportional
to the mean magnetic field (B̄i), terms proportional to the gradients of the mean magnetic field (∂kB̄i), nonlinear three-point terms
(T̄ F

i j ), and interaction terms arising from the Coriolis force and background shear. It is worth noting that our approach deviates
from existing studies as we utilize such interaction terms to construct the EMF.

Our primary focus is on determining the azimuthal component of the EMF, denoted as Ēy = (F̄zx − F̄xz ). To derive Ēy, we
multiply Eq. (A6) by q and Eq. (A8) by (q − 2), and subsequently combine them. After conducting some algebra, we arrive at
the following equation:

qDt F̄yz + (q − 2)Dt F̄zy = q(2 − q)�(F̄zx − F̄xz ) + {qF̄yk + (2 − q)F̄ky}∂kŪz − {qF̄kz + (2 − q)F̄zk}∂kŪy

+ 1

ρ
{qM̄zk + (2 − q)R̄zk}∂kB̄y − 1

ρ
{qR̄yk + (2 − q)M̄yk}∂kB̄z

+ B̄k

{
q

(
〈uy∂kuz〉 + 〈bz∂kby〉

μ0ρ

)
− (2 − q)

(
〈uz∂kuy〉 + 〈by∂kbz〉

μ0ρ

)}
+ T̄y, (A10)

where T̄y = qT̄ F
yz − (2 − q)T̄ F

zy represents the contribution arising from the three-point terms. By further algebraic manipulation,
we obtain the expression for Ēy as follows:

(F̄zx − F̄xz ) = −1

q(2 − q)�

[
{−qDt F̄yz + (2 − q)Dt F̄zy} + {qF̄yk + (2 − q)F̄ky}∂kŪz − {qF̄kz + (2 − q)F̄zk}∂kŪy

+ 1

ρ
{qM̄zk + (2 − q)R̄zk}∂kB̄y − 1

ρ
{qR̄yk + (2 − q)M̄yk}∂kB̄z

+ B̄k

{
q

(
〈uy∂kuz〉 + 〈bz∂kby〉

μ0ρ

)
− (2 − q)

(
〈uz∂kuy〉 + 〈by∂kbz〉

μ0ρ

)}
+ T̄y

]
. (A11)

Similarly, to derive Ēz, we combine Eqs. (A1) and (A5). After conducting some algebra, we arrive at the following equation:

Ēz = (F̄xy − F̄yx )= 1

(2 − q)�

[
− (Dt F̄xx + Dt F̄yy) + (F̄xk − F̄kx )∂kŪx + (F̄yk − F̄ky)∂kŪy + 1

ρ
(M̄xk − R̄xk )∂kB̄x

+ 1

ρ
(M̄yk − R̄yk )∂kB̄y + B̄k{〈ux∂kux〉 + 〈uy∂kuy〉 + 1

μ0ρ
(〈bx∂kbx〉 + 〈by∂kby〉)} + T̄z

]
, (A12)

where T̄z = T̄ F
xx + T̄ F

yy represents the contribution arising from the three-point terms.
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APPENDIX B: THE STATISTICAL CLOSURE MODEL FOR THREE-POINT CORRELATIONS

The three-point correlation term that appeared in the evolution equation for the Maxwell stress is given by

T̄ M
i j = 〈bibk∂ku j + b jbk∂kui − uk∂k

(
bib j

)〉. (B1)

Due to the presence of several correlations between three fluctuating quantities and the involvement of spatial derivatives,
applying the CE2.5 closure model to this term becomes extremely challenging. Therefore, we adopt a similar approach to
the CE2.5 model, along with the mixing length concept, to express the three-point correlators in terms of two-point correlators.
The procedure involves the following steps:

First, we neglect terms involving mean quantities in the equations for the fluctuating velocity and magnetic fields. It is
important to note that the pressure fluctuation is also neglected in this specific analysis, and the pressure-strain nonlinearity is
treated separately. Thus, the contribution of the nonlinear terms to the generation of fluctuating velocity and magnetic fields can
be estimated as

ui 	 τ∂ j (Mi j − Ri j ) = τ (b j∂ jbi − u j∂ jui ), (B2)

and

bi 	 τ∂ j (Fi j − Fji ) = τ (b j∂ jui − u j∂ jbi ), (B3)

where τ represents the correlation timescale of the turbulence, and we consider it to be ≈1/� in the context of rotating disk
turbulence.

Second, by selectively substituting these fluctuating quantities, we express the three-point correlators in terms of four-point
terms:

T̄ M
i j = τ 〈(bm∂mui − um∂mbi )bk∂ku j + (bm∂muj − um∂mbj )bk∂kui − (bm∂mbk − um∂muk )∂k (bib j )〉. (B4)

To simplify our analysis, we introduce length scales to replace two spatial derivatives present in the fourth-order correlator.
One derivative, originally appearing in the exact expression for the three-point term [Eq. (B1)], is replaced by the length scale
L, which represents either the vertical length of the simulation box or the disk scale height, typically of the order cs/�. The
other spatial derivative arises from the fluctuating fields [Eqs. (B2) and (B3)]. To replace this derivative, we utilize a correlation
length scale that accounts for the distance an eddy can traverse during the correlation time τ ∼ 1/�. We adopt three different
correlation lengths for the gas, magnetic, and cross fields, denoted as lG ∼ √

R/�, lM ∼ √
M/�, and lF ∼ 4

√
MR/�, respectively.

By assuming approximate randomness, a fourth-order correlator can be reduced to a product of second-order terms based on
the contraction of indices with those of the derivative indices. This reduction allows us to rewrite Eq. (B4) in a simplified form,
yielding

T̄ M
i j = τ

L

[( 〈bmbm〉
lM

〈uiu j〉 − 〈umbm〉
lF

〈biu j〉
)

+
( 〈bmbm〉

lM
〈u jui〉 − 〈umbm〉

lF
〈b jui〉

)

−
( 〈bmbm〉

lM
〈bib j + b jbi〉 − 〈umum〉

lR
〈bib j + b jbi〉

)]
. (B5)

Alternatively, we can express it as

T̄ M
i j = τ

L

[
2
〈bmbm〉

lM
〈uiu j〉 − 2

〈bmbm〉
lM

〈bib j〉 + 2
〈umum〉

lR
〈bib j〉 − 〈umbm〉

lF
〈uib j + u jbi〉

]
. (B6)

Finally, we introduce positive dimensionless constants ci to account for the proportionality constant in the previous approxima-
tions. These constants are typically of the order of unity. The final expression for the nonlinear three-point term becomes

T̄ M
i j = 1

L
[2c1

√
M̄R̄i j − 2c2

√
M̄M̄i j − 2c3

√
R̄M̄i j − c4

√
F̄ (F̄i j + F̄ji )]. (B7)

Note that, in the derivation from Eqs. (B6) to (B7), the sign of the term associated with the constant c3 has been reversed based
on the physical arguments discussed in the main text. We follow similar procedures to derive closure models for the nonlinear
three-point terms T̄ R

i j and T̄ F
i j .

APPENDIX C: CLOSURE APPROXIMATION FOR SECOND-ORDER CORRELATORS INVOLVING THE SPATIAL
GRADIENT OF A FLUCTUATING FIELD: A TWO-SCALE APPROACH

In this section, we employ the two-scale approach [54] to determine the second-order correlators which involve the spatial
gradient of a fluctuating field. These terms appear on the right-hand side of the stress equations [Eqs. (9)–(11)]. Specifically, we
focus on terms such as B̄m〈ui∂muj〉, B̄m〈ui∂mbj〉, among others. To make progress in our analysis, it is necessary to find a way to
estimate or “close” these terms.
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To begin, let us derive Ȳi j = B̄m〈ui∂muj〉. We consider the correlation tensor 〈ui(x1)u j (x2)〉 of two vector fields ui and u j ,
where x1 and x2 denote two points in space but both fields are taken at the same time. By employing Fourier transformation and
the two-scale approach, we can express the correlation function as follows:

〈ui(x1)u j (x2)〉 =
∫

〈ûi(k1)û j (k2)〉 exp {i(k1·x1 + k2·x2)}d3k1d3k2

=
∫

Ri j (k, X) exp (ik·x)d3k, (C1)

where

Ri j (k, X) =
∫

〈ûi(k + K/2)û j (−k + K/2)〉 exp (iK·X)d3K,

and X = (x1 + x2)/2, x = x1 − x2, K = k1 + k2, k = (k1 − k2)/2. Here, X and K correspond to the large scales, while x and k
correspond to the small scales. We introduce the correlation tensors for velocity and magnetic fluctuations, Ri j (k, X), Mi j (k, X),
and Fi j (k, X), defined as

Ri j (k, X) = �(ûi, û j ; k, X) =
∫

〈ûi(k + K/2)û j (−k + K/2)〉 exp (iK·X)d3K, (C2)

Mi j (k, X) = �(b̂i, b̂ j ; k, X) =
∫

〈b̂i(k + K/2)b̂ j (−k + K/2)〉 exp (iK·X)d3K, (C3)

Fi j (k, X) = �(ûi, b̂ j ; k, X) =
∫

〈ûi(k + K/2)b̂ j (−k + K/2)〉 exp (iK·X)d3K. (C4)

We want to compute Ȳi j (x = 0) = ∫
Yi j (k, X)d3k. From the definition of Fourier integrals, we can write the (B̄ · ∇)u term in

Fourier space as

Ŝi(u, B̄; k) = ikp

∫
ûi(k − Q) ˆ̄Bp(Q)d3Q.

Therefore,

Yi j (k, X) =
∫

〈ûi(k + K/2)Ŝ j (u, B̄; −k + K/2)〉 exp (iK · X)d3K

= i
∫

(−kp + Kp/2)〈ûi(k + K/2)û j (−k + K/2 − Q)〉 ˆ̄Bp(Q) exp (iK · X)d3Kd3Q. (C5)

Now, we change the integration variable K into K − Q, denoted by K′. In this way, and using Qp
ˆ̄Bp = 0, we obtain

Yi j (k, X) = i
∫

(−kp + K ′
p/2)〈ûi(k + Q/2 + K′/2)û j (−k − Q/2 + K′/2) ˆ̄Bp(Q) exp[i(K′ + Q) · X]d3K ′d3Q.

Using the definition of Ri j (k, X), given in Eqs. (C2), we have

Yi j (k, X) =
∫ [

−ikpRi j (k + Q/2, X) + 1

2

(
∂Ri j (k + Q/2, X)

∂Xp

)]
ˆ̄Bp(Q) exp (iQ · X)d3Q.

The Taylor expansion (since |Q| � |k|) gives

Ri j (k + Q/2, X) 	 Ri j (k, X) + 1

2

(
∂Ri j (k, X)

∂kl

)
Ql + O(Q2).

This yields

Yi j (k, X) =
∫ [

−ikp

{
Ri j (k, X) + 1

2

(
∂Ri j (k, X)

∂kl

)
Ql

}
+ 1

2

(
∂Ri j (k, X)

∂Xp

)]
ˆ̄Bp(Q) exp (iQ · X)d3Q.

Therefore,

Yi j (k, X) 	 [−i(k · B̄) + 1
2 (B̄ · ∇)

]
Ri j (k, X) − kpRi jl (k, X)B̄p,l ,

where Ri jl = 1
2∂Ri j/∂kl , B̄i, j = ∇ j B̄i, with ∇ standing for ∂/∂X. Finally, we can write

Ȳi j (x = 0) =
∫

Yi j (k, X)d3k 	 −B̄m

∫
ikmRi j (k)d3k + 1

2
(B̄ · ∇)R̄i j . (C6)
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The calculation can be simplified by excluding B̄ from the Fourier integrals. Consider the computation of W̄i j = B̄m〈ui∂mbj〉 =
B̄mW̄i jm, where W̄i jm = 〈ui∂mbj〉. So, we have

Wi jm(k, X) = i
∫

(−km + Km/2)〈ûi(k + K/2)b̂ j (−k + K/2)〉 exp (iK · X)d3K

= −ikmFi j (k, X) + 1

2
∇mFi j (k, X).

Therefore,

W̄i j (x = 0) = B̄m

∫
Wi jm(k, X)d3k = −B̄m

∫
ikmFi j (k)d3k + 1

2
(B̄ · ∇)F̄i j . (C7)

Approximating the first term on the right-hand side of Eq. (C7) as −Tr(B̄)l−1F̄i j , with l−1 = s[�/(B̄2/μ0ρ )1/2] and s being a
constant, we arrive at

W̄i j = B̄m〈ui∂mbj〉 = −Tr(B̄)l−1F̄i j + 1
2 (B̄ · ∇)F̄i j . (C8)
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