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Vorticity wave interaction, Krein collision, and exceptional points in shear flow instabilities
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We relate the model of vorticity wave interaction to Krein collision, PT -symmetry breaking, and the
formation of exceptional points in shear flow instabilities. We show that the dynamical system of coupled
vorticity waves is a pseudo-Hermitian system with nonreciprocal coupling terms. Krein signatures of the eigen-
values are illustrated as the signs of the action of the vorticity waves. Interaction between positive-action and
negative-action vorticity waves then corresponds to the Krein collision between eigenvalues with opposite Krein
signatures, the spontaneous breaking of PT symmetry, and the formation of exceptional points. The control
parameter of the PT -symmetry-breaking bifurcation is the ratio between frequency detuning and coupling
strength of the vorticity waves. The critical behavior near the exceptional points is described as a transition
between phase-locking and phase-slip dynamics of the vorticity waves. The phase-slip dynamics correspond
to nonmodal, transient growth of perturbations in the regime of unbroken PT symmetry, and the phase-slip
frequency � ∝ |k − kc|1/2 shares the same critical exponent with the phase rigidity of system eigenvectors.
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I. INTRODUCTION

The interaction of vorticity waves has been widely shown
to be a physical interpretation of Kelvin-Helmholtz instabil-
ities [1–6], and naturally provides a nonmodal approach to
study optimal growth and transient dynamics in shear instabil-
ities [7–9], as thoroughly reviewed in [10]. Instability requires
that the dispersion relations of isolated vorticity waves inter-
sect, and that the actions of the vorticity waves have opposite
signs [10]. The mechanism of instability onset is interpreted
as phase locking and mutual growth of counterpropagating
vorticity waves. The model of coupled vorticity waves can
be reframed into a minimal dynamical system [11,12], where
the onset of shear instabilities corresponds to a bifurcation of
fixed points from two neutral centers to a pair of stable and
unstable nodes [11].

On the other hand, the role of symmetries and symmetry-
breaking bifurcations in fluid dynamics has long been
recognized [13,14], and it has recently come to light
that Kelvin-Helmholtz instability is the result of sponta-
neous parity-time (PT ) symmetry breaking [15–17]. In the
framework of spectral analysis of pseudo-Hermitian, or equiv-
alently, G-Hamiltonian systems [18–22], the real eigenvalues
can be classified into three kinds with Krein signatures ±1 or
0. Krein collision refers to the process that two real eigenval-
ues with opposite Krein signatures collide and move off the
real axis, and split into complex-conjugate pairs [18]. Kelvin-
Helmholtz instability onset is then interpreted as the Krein
collision between eigenvalues [23]. These results, however,

*zbguo@pku.edu.cn

have not yet been related to the mechanism of vorticity wave
interaction.

In this work, we relate the model of vorticity wave in-
teraction to the spectral analysis of Krein collision and
PT -symmetry breaking in shear flow instabilities. We show
that the dynamical system of coupled vorticity waves is a
pseudo-Hermitian system with nonreciprocal, non-Hermitian
coupling terms. Isolated vorticity waves form the Hermi-
tian component of the system and correspond one to one
to the eigenmodes. Krein signatures of the eigenvalues are
illustrated as the signs of the action of the corresponding
vorticity waves. Phase-locking and mutual growth of coun-
terpropagating vorticity waves then correspond to the Krein
collision between eigenvalues with opposite Krein signatures,
the spontaneous breaking of PT symmetry, and the for-
mation of exceptional points. The control parameter of the
PT -symmetry-breaking bifurcation is shown to be the ra-
tio between frequency detuning and coupling strength of the
vorticity waves. The analysis of PT -symmetry breaking in
shear flow instabilities is thus closely related to other systems
extensively studied in non-Hermitian optics or photonics, such
as coupled cavities or waveguides [24,25].

The most striking feature of non-Hermitian systems is
the existence of exceptional points (EPs) [14,24–26]. EPs
are spectral singularities on the complex eigenvalue plane
where both the real and imaginary parts of the eigenval-
ues are identical, and where the eigenvectors also coalesce.
The eigenvectors are extremely nonorthogonal near an EP,
so that when a system operates around the EP, it becomes
highly sensitive to perturbations of the system [24–26]. The
transient dynamics such as power oscillations and amplifica-
tions near the EP are actively investigated in the context of
non-Hermitian optics and photonics [27–29]. In this work,
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we adopt the model of vorticity wave interaction to describe
the critical behavior and transient dynamics near the EPs
in shear flow instabilities. In particular, we demonstrate that
the transition of phase dynamics from a phase-slip state to
a phase-locking state [30,31] corresponds to the spontaneous
breaking of PT symmetry across the EP. The phase-slip dy-
namics near the EP are highly nonuniform in time and lead
to nonmodal, transient growth of perturbations [32–35] in the
regime of unbroken PT symmetry. The phase-slip frequency
� ∝ |k − kc|1/2 shares the same critical exponent with the
phase rigidity of eigenvectors, which measures the nonorthog-
onality of system eigenvectors near the EP.

This work is organized as follows. In Sec. II, we review
the model of vorticity wave interaction and recast the model
into a pseudo-Hermitian dynamical system. In Sec. III, we
relate the wave interaction mechanism to the stability theory
of pseudo-Hermitian systems and demonstrate how the inter-
action between positive-action and negative-action vorticity
waves corresponds to the Krein collision between eigenvalues
with opposite Krein signatures. In Sec. IV, we adopt the
model of vorticity wave interaction to explain the role of PT -
symmetry breaking and demonstrate the formation of EPs in
shear flow instabilities, and describe the critical behavior and
transient dynamics near the EPs. We summarize and discuss
our results in Sec. V.

II. THE MODEL OF VORTICITY WAVE INTERACTION

A. The general model

Consider a two-dimensional, incompressible, and inviscid
shear flow without density stratification, where the back-
ground state is a mean flow in the y direction with profile
U (x). The velocity field is v = (vx, vy) = (−∂φ/∂y, ∂φ/∂x),
where φ is the stream function, and the vorticity q = ∇ × v

of a two-dimensional flow reduces to a scalar q = ∇2φ. The
vorticity equation reads dq/dt = 0, where d/dt = ∂/∂t +
v · ∇. To analyze the stability of the shear flow, denote per-
turbations of the background state as vx = ṽx, vy = U (x) +
ṽy, q = q0 + q̃, and φ = φ0 + φ̃, where the mean vorticity
q0 = ∇2φ0 = U ′ and mean vorticity gradient q′

0 = ∂q0/∂x =
U ′′. (We use primes to denote ∂x.) Then the linearized equa-
tion of perturbed vorticity is

∂ q̃

∂t
+ U

∂ q̃

∂y
= U ′′ ∂φ̃

∂y
. (1)

Equation (1) expresses the generation of vorticity pertur-
bations by the background mean vorticity gradient, in terms
of the source term U ′′∂φ̃/∂y. If all the perturbations are as-
sumed to have normal mode form as φ̃(x, y, t ) = φ̂(x)eik(y−ct )

and q̃(x, y, t ) = q̂(x)eik(y−ct ), then the Rayleigh stability equa-
tion [10,36]

(U − c)(φ̂′′ − k2φ̂) = U ′′φ̂ (2)

is obtained for normal mode analysis of the problem.
In our work, we take the nonmodal approach [33,34] and

keep the time-dependent form of perturbations φ̃(x, y, t ) =
φ̂(x, t )eiky and q̃(x, y, t ) = q̂(x, t )eiky, with Fourier transform
in the y direction, assuming that all the perturbations are

monochromatic with certain wave number k. Then the lin-
earized initial value problem is

∂ q̂
∂t + ikU q̂ = ikU ′′φ̂, (3a)

q̂ = φ̂′′ − k2φ̂. (3b)

We note that the assumption of monochromatic pertur-
bations is adequate since any perturbations in general can
be expressed as a linear superposition of perturbations with
different wave numbers.

Equation (3b) is the Poisson equation and can be solved as

φ̂(x, t ) =
∫

G(x, x′)q̂(x′, t )dx′, (4)

where the Green function kernel G(x, x′) describes a nonlocal
φ̂ − q̂ coupling [37]. For boundary conditions φ̂(±∞) = 0,
the kernel is G(x, x′) = −e−k|x−x′ |/(2k).

For a discretized, piecewise profile of background shear
layer, neutrally stable vorticity waves are induced on each
interface of vorticity jump, and the direction of intrinsic prop-
agation is determined by the sign of the vorticity gradient [10].
In general, consider a piecewise shear layer with n interfaces,

q′
0(x) = U ′′(x) =

n∑
j=1

�q̄ jδ(x − x j ), (5)

where �q̄ j = q0(x+
j ) − q0(x−

j ) is the vorticity jump across the
interface x = x j . The vorticity perturbations thus vanish at all
locations except at the interfaces, i.e.,

q̂(x, t ) =
n∑

j=1

q j (t )δ(x − x j ). (6)

Note that we have ignored the continuous spectrum part of
the solution where initial vorticity perturbations are passively
advected by the background flow and remain stable [7]. Equa-
tion (4) is then translated into

φ̂(x, t ) = − 1

2k

n∑
j=1

q j (t )e−k|x−x j |. (7)

Let q j (t ) = Qj (t )eiθ j (t ), then Eq. (3a) can be written in
amplitude-phase form,

dQi

dt
= k�q̄i

∑
j �=i

Gi jQ j sin θi j, (8a)

dθi

dt
= −ωi + k�q̄i

∑
j �=i

Gi j
Q j

Qi
cos θi j, (8b)

where θi j = θi − θ j and Gi j = −e−k|xi−x j |/(2k). The fre-
quency of each individual mode,

ωi = kUi + �q̄i

2
, (9)

includes both the intrinsic frequency �q̄i/2 and the Doppler
shift by the in situ shear flow Ui. Equation (9) tells that each
single interface of background vorticity jump �q̄i induces
a neutrally stable vorticity wave, and the direction of phase
speed, vph = �q̄i/(2k), in the reference frame moving with
Ui, is determined by the sign of the vorticity jump.
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Equations (8a) and (8b) describes a dynamical system that
models vorticity wave interaction in a general shear layer
with multiple interfaces. The system has a canonical Hamil-
tonian representation in action-angle form [38,39], with the
Hamiltonian

H =
∑

i

ωiIi − 1

2

∑
j �=i

Gi jQiQj cos θi j = −
∑

i

Iiθ̇i, (10)

where Ii = Q2
i /(2k�q̄i ) is the action of each vorticity wave.

The canonical Hamiltonian equation follows as

∂H

∂Ii
= −θ̇i,

∂H

∂θi
= İi. (11)

B. Dynamical system and linear operators

From a mathematical point of view, the stability of shear
flows can be analyzed from the spectral theory of linear op-
erators [14]. For the model of vorticity wave interaction, the
dynamical system given by Eqs. (8a) and (8b) can be written
in linear, complex form,

q̇i = −iωiqi − i�q̄i

∑
j �=i

σi jq j, (12)

where σi j = −kGi j = e−k|xi−x j |/2 is the coupling strength be-
tween vorticity waves. The matrix form is then

q̇ = Aq, q =

⎛
⎜⎝q1

...

qn

⎞
⎟⎠, (13)

where A = −iH, and the Hamiltonian operator is

H =

⎛
⎜⎜⎜⎜⎝

ω1 �q̄1σ12 · · · �q̄1σ1n

�q̄2σ21 ω2
. . . �q̄2σ2n

...
. . .

. . .
...

�q̄nσn1 �q̄nσn2 · · · ωn

⎞
⎟⎟⎟⎟⎠. (14)

Consider a nonsingular Hermitian matrix,

G =

⎛
⎜⎜⎝

1
2k�q̄1

. . .
1

2k�q̄n

⎞
⎟⎟⎠, (15)

then the matrix

S = GH = 1

2k

⎛
⎜⎜⎜⎜⎝

ω1
�q̄1

σ12 · · · σ1n

σ21
ω2
�q̄2

. . . σ2n
...

. . .
. . .

...

σn1 σn2 · · · ωn
�q̄n

⎞
⎟⎟⎟⎟⎠ (16)

is also Hermitian since σi j = σ ji. The Hamiltonian in Eq. (10)
can be rewritten as

H (q) = q†Sq, (17)

where q† is the conjugate transpose of q. The complex canon-
ical Hamiltonian equation has the form

q̇ = −iG−1 ∂H

∂q∗ . (18)

The system conserves two constants of motion: one is the
Hamiltonian H (q) and the other is the total wave action I (q).
Define an indefinite inner product [18,19] as

[x, y] = (Gx, y) = y†Gx, (19)

then the total wave action can be written as

I (q) =
n∑

i=1

Q2
i

2k�q̄i
= q†Gq = [q, q]. (20)

For finite-dimensional systems, a matrix H is called
pseudo-Hermitian [23,25] if H is similar to its conjugate trans-
pose H† with

H = G−1H†G, (21)

where G is a nonsingular Hermitian matrix. Also, the matrix
A = −iH is called G-Hamiltonian [18–21,23] if there exists
a nonsingular Hermitian matrix G and a Hermitian matrix
S, such that A = −iG−1S. Note that these two concepts are
equivalent by definition [23], so that it is convenient to apply
the stability theory of G-Hamiltonian matrices to pseudo-
Hermitian systems [21,22].

We have thus shown that the dynamical system of n cou-
pled vorticity waves given by Eq. (12) is a pseudo-Hermitian
system. The diagonal terms of the system are isolated vorticity
waves ωi = kUi + �q̄i/2, whereas the off-diagonal compo-
nents �q̄iσi j and �q̄ jσ ji are nonreciprocal, non-Hermitian
spatial coupling terms. Therefore, isolated vorticity waves
form the Hermitian component of the system and correspond
one to one to the eigenmodes of H.

III. KREIN SIGNATURES AND KREIN COLLISION

In this section, we demonstrate how the mechanism of
vorticity wave interaction is related to the stability theory of
pseudo-Hermitian systems. We illustrate the Krein signatures
of eigenvalues as the signs of the action of the corresponding
vorticity waves. Therefore, the stability of eigenmodes is in-
terpreted in terms of wave interaction [3,10], and the Krein
collision between eigenvalues is interpreted as the interaction
of positive-action and negative-action vorticity waves.

A. Stability of pseudo-Hermitian systems

Consider the eigensystem of a pseudo-Hermitian matrix,
Hu = Eu. The eigenvalues are symmetric with respect to the
real axis, so that the eigenspectrum contains either purely
real eigenvalues or complex-conjugate pairs. The eigenvalues
of a pseudo-Hermitian matrix H are categorized as follows
[18,21,22]:

(i) A real eigenvalue E is called definite with positive Krein
signature κ (E ) = +1, if [u, u] > 0 for any eigenvector u in
its eigensubspace. It is called definite with negative Krein
signature κ (E ) = −1, if [u, u] < 0 for any eigenvector u in
its eigensubspace.

(ii) A real eigenvalue E is called indefinite with Krein
signature κ (E ) = 0, if there exists an eigenvector u in its
eigensubspace, such that [u, u] = 0.

(iii) For a complex eigenvalue E with Im(E ) �= 0, there is
always [u, u] = 0. It is also assigned with a Krein signature
κ (E ) = ±1 when Im(E ) ≶ 0.
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FIG. 1. Examples of two-interface shear layer profiles U (x), with the dispersion relations of isolated vorticity waves ωr (k) (dashed lines)
and the real part of the corresponding eigenvalue branches Re(E ) − k (solid lines). (a) A piecewise profile that supports two copropagating
vorticity waves, with �q̄1 = 1 and �q̄2 = 0.1. (b) A piecewise profile that supports two counterpropagating vorticity waves, with �q̄1 = 1
and �q̄2 = −1. The eigenvalue branches are labeled with their Krein signatures.

We then recall the following properties of pseudo-
Hermitian matrices [18]:

Theorem 1. For a pseudo-Hermitian matrix H, if the ma-
trix G has p positive eigenvalues and q negative eigenvalues,
then H has p eigenvalues with Krein signature +1 and q
eigenvalues with Krein signature −1.

Theorem 2 (Krein-Gel’fand-Lidskii theorem). A pseudo-
Hermitian system q̇ = −iHq is strongly stable (i.e., the
stability of the system is preserved by any infinitesimal
deformation of the Hamiltonian operator H) if and only if all
eigenvalues of H are real and definite.

The proofs can be found in Ref. [18]. An immediate
corollary is that for a pseudo-Hermitian system, while vary-
ing system parameters, the only route to become unstable is
through the overlap between two definite eigenvalues with
opposite Krein signatures on the real axis, known as the Krein
collision [18–23]. The eigenvalues then move off the real axis
and split into complex-conjugate pairs, leading to instabilities.

A physical interpretation of the Krein signature is the sign
of the action of the corresponding eigenmode [21]. From
Eqs. (17) and (19), we obtain

[u, u] = H (u)

E
, (22)

which is the ratio between the Hamiltonian and eigenfre-
quency of an eigenmode. Therefore, the Krein signature is
illustrated as the sign of the action of the corresponding eigen-
mode, and the Krein collision is interpreted as the interaction
between a positive-action mode and a negative-action mode
[21].

In our system, the matrix G is closely related to the con-
served total wave action I (q) = q†Gq. Theorem 1 states that
the Krein signatures of the eigenvalues of H are decided by

the signs of �q̄i, with

n∑
i=1

κ (Ei ) =
n∑

i=1

sign(�q̄i ) = p − q. (23)

Therefore, the Krein signatures of the eigenvalues are further
illustrated as the signs of the action of the corresponding
vorticity waves. If the system contains n copropagating vortic-
ity waves with positive (negative) actions, then G is positive
(negative) definite, all eigenvalues of H have the same Krein
signature, and the system is stable. A necessary condition
for instability of the system is that the background flow pro-
file induces counterpropagating vorticity waves with opposite
signs of actions, i.e., |p − q| < n. In other words, stability of
the pseudo-Hermitian system is determined by its Hermitian
component, characterized by the signs of �q̄i. We have thus
related the stability of eigenmodes to the properties of isolated
vorticity waves.

B. Krein signatures of eigenvalue branches

1. The two-level system

In general, a two-level system is the building block of the
dynamical system of n vorticity waves. Therefore, we first
consider a flow profile with two interfaces, as shown in Fig. 1,
to illustrate our main results. The flow profile is nondimen-
sionalized with the characteristic scale length L∗ = �x/2 and
characteristic velocity V∗ = �U/2, where �x = x2 − x1 and
�U = U (x2) − U (x1). The two-level vorticity wave system is

q̇ = −iHq, q =
(

q1

q2

)
, (24)
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(a) (b) (c)

FIG. 2. Graphical interpretation of the Krein signatures in Fig. 1(b), with two eigenvalue branches of the pencil L at (a) k = 0.4,
(b) k = kc � 0.64, and (c) k = 0.8. The zeros of the eigenvalue branches correspond to purely real eigenvalues of H.

the Hamiltonian operator is

H =
(

ω1 �q̄1σ

�q̄2σ ω2

)
(25)

with σ12 = σ21 ≡ σ , and the eigenvalue relation is

(E − ω1)(E − ω2) = �q̄1�q̄2σ
2 ≡ ε. (26)

When ε → 0, the solutions are just isolated vorticity
waves, ω1,2(k). When ε �= 0, the solutions are eigenvalue
branches,

E1,2 = ω1 + ω2

2
± 1

2

√
(ω1 − ω2)2 + 4ε. (27)

The stability of the eigenmodes is decided by

G =
(

1
2k�q̄1

0

0 1
2k�q̄2

)
. (28)

When �q̄1 and �q̄2 have the same sign, ε > 0 and the pro-
file supports two copropagating vorticity waves, as shown
in Fig. 1(a). The operator H remains quasi-Hermitian [25]
and the eigenvalues E1,2 are real with the same Krein signa-
tures, so that there is no Krein collision. The two eigenvalue
branches E1,2(k) approach each other near the intersection
point without crossing, only with their corresponding vor-
ticity waves exchanged from ω1(ω2) to ω2(ω1) [3]. When
�q̄1 and �q̄2 have opposite signs, ε < 0 and the profile sup-
ports two counterpropagating vorticity waves, as shown in
Fig. 1(b). The operator H is non-Hermitian and the eigen-
values have opposite Krein signatures. The Krein collision
then corresponds to the interaction between positive-action
and negative-action vorticity waves. The two eigenval-
ues become complex conjugates when (ω1 − ω2)2 + 4ε <

0, i.e., k < kc � 0.64, characteristic of Kelvin-Helmholtz
instabilities.

Therefore, the well-known Rayleigh’s condition [36] for
instability is equivalent to the condition of opposite Krein sig-
natures, which requires the flow profile to have an inflection
point. In terms of wave interaction, the flow profile is required
to support counterpropagating vorticity waves [10]. Note that
this condition is not sufficient for Kelvin-Helmholtz instabili-
ties. The Fjørtoft’s condition [36] requires that U ′′(U − Us) <

0 somewhere within the flow domain, where Us = U (xs) and
xs is the inflection point. In terms of wave interaction, this con-
dition requires that the dispersion relations ω1(k) and ω2(k)
intersect when k > 0. The details are referred to Ref. [10].

The Krein collision can also be illustrated from a graph-
ical interpretation of the Krein signatures [40]. Consider a
Hermitian linear pencil L = S − EG, and solve the eigen-
value problem

L(E )u(E ) = (S − EG)u(E ) = ν(E )u(E ), (29)

parameterized by E ∈ R, where ν = ν(E ) is called an eigen-
value branch of L. The intersection points of ν(E ) with the
ν = 0 axis then correspond to real eigenvalues of H. Differ-
entiate Eq. (29) at E = Ei with ν(Ei ) = 0; we then obtain

(S − EiG)u′(Ei ) = ν ′(Ei )u(Ei ) + Gu(Ei ). (30)

Taking the inner product with u(Ei ) then gives

ν ′(Ei )(u, u) = −(Gu, u), (31)

so that

κ (Ei ) = −sign[ν ′(Ei )]. (32)

Therefore, we can determine the Krein signatures of the real
eigenvalues of H simply by the sign of the slope of ν(E ) at the
intersection points. For the system shown in Fig. 1(b), we plot
ν(E ) for specific choices of the parameter k in Fig. 2. When
k > kc, there are two intersection points with opposite signs
of the slope, corresponding to two real eigenvalues of H that
are definite with opposite Krein signatures, and the system is
stable. When k → kc, the pair of intersection points overlap,
which is the Krein collision. When k < kc, the branches ν(E )
have no zeros and the system is unstable.

2. The three-level system

In general, the stability of the n × n pseudo-Hermitian
system given by Eq. (12) is determined by the signs of actions
of the n vorticity waves. The coupling strength σi j decays
exponentially with the distance between interfaces, so that
the dominant off-diagonal terms are the coupling between
neighboring vorticity waves. Therefore, Krein collisions be-
tween any of the adjacent eigenvalues can be approximately
illustrated as the interaction between neighboring vorticity
waves.

As a concrete example, consider the stability of three-
interface piecewise profiles, as shown in Fig. 3. The profiles
are nondimensionalized similarly to Fig. 1. The Hamiltonian
operator of the dynamical system is

H =

⎛
⎜⎝

ω1 �q̄1σ1 �q̄1σ2

�q̄2σ1 ω2 �q̄2σ1

�q̄3σ2 �q̄3σ1 ω3

⎞
⎟⎠, (33)
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FIG. 3. Examples of three-interface piecewise profiles U (x), the dispersion relations of isolated vorticity waves, ωr (k) (dashed lines), and
the real part of the corresponding eigenvalue branches, Re(E ) − k (solid lines). (a) A piecewise profile that supports three copropagating
vorticity waves, with �q̄1 = 1/2, �q̄2 = 3/2, and �q̄3 = 1/2. (b) A symmetric jet profile that supports three counterpropagating vorticity
waves, with �q̄1 = 2, �q̄2 = −2, and �q̄3 = 2. (c) An asymmetric jet profile with �q̄1 = 2, �q̄2 = −3/2, and �q̄3 = 3/2. The eigenvalue
branches are labeled with their Krein signatures.

with σ12 = σ23 ≡ σ1 = e−2k/2 and σ13 ≡ σ2 = e−4k/2.
When �q̄1,2,3 have the same sign, the profile supports three

copropagating vorticity waves, as shown in Fig. 3(a). The
eigenvalues E1,2,3 are all definite with the same Krein signa-
ture, so that there is no Krein collision, and the eigenvalue
branches approach each other without crossing. When �q̄2

have opposite signs with �q̄1,3, the profile supports coun-
terpropagating vorticity waves. For the symmetric jet profile
shown in Fig. 3(b), two Krein collisions are observed between
the pair of eigenvalues of E1,2 with opposite Krein signatures.
Note that the vorticity waves ω1 and ω3 stand on an equal
footing, so that the interaction between ω2, ω1 coincide with
the interaction between ω2, ω3. Therefore, one of the eigen-
values E3 remains neutrally stable, which corresponds to the
varicose mode [10,36]. For the asymmetric jet profile shown
in Fig. 3(c), there are two unstable ranges of parameters, cor-
responding to four Krein collisions. The eigenvalue branches
ν(E ) of the Hermitian pencil L are plotted in Fig. 4 and the
Krein signatures in Fig. 3(c) are labeled accordingly.

Figures 1 and 3 illustrate the fact that the eigenmodes of H
correspond one to one to the isolated vorticity waves, and the
eigenvalue branches are infinitely close to isolated vorticity
waves in the weak-coupling limit. In this limit, σi j → 0 and

the off-diagonal, non-Hermitian terms of H can be ignored.
Then we have

νi(E ) = ωi − E

2k�q̄i
, (34)

and the Krein signatures

κi(E ) = −sign[ν ′
i (E )] = sign(�q̄i ) (35)

are just the signs of the action of corresponding vorticity
waves, as guaranteed by Theorem 1. We also conclude that
when the control parameter k is varied across the intersection
point of ωi(k) and ω j (k), the eigenvalue branches Ei, j (k) will
exchange their corresponding vorticity waves [3], so that the
Krein signatures of Ei, j (k) will also exchange.

IV. PT -SYMMETRY BREAKING
AND EXCEPTIONAL POINTS

Krein collision of eigenvalues is intimately related to
symmetry-breaking bifurcations and the formation of EPs
in pseudo-Hermitian systems [21–23,41]. In this section, we
demonstrate that the model of vorticity wave interaction pro-
vides a clear physical description of PT -symmetry breaking

FIG. 4. Graphical interpretation of the Krein signatures in Fig. 3(c), with three eigenvalue branches of the pencil L at (a) k = 0.4,
(b) k = 0.8, (c) k = 1.2, (d) k = 1.5, and (e) k = 1.8. The zeros of the eigenvalue branches correspond to purely real eigenvalues of E.
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and the formation of EPs in Kelvin-Helmholtz instabilities.
We also describe the critical behavior around the EPs from
the phase dynamics of vorticity waves.

A. Krein collision, PT -symmetry breaking,
and formation of exceptional points

We first show that the dynamical system of coupled vor-
ticity waves is PT symmetric. For the system of n vorticity
waves, the parity operator P and the time-reversal operator T
acting on vorticity perturbations q are

P =

⎛
⎜⎝−1

. . .

−1

⎞
⎟⎠ and T = K, (36)

satisfying P2 = T 2 = In×n, where K is the complex-
conjugate operator and I the identity operator. The parity
operator P defined here performs a reflection about the x axis.
One can readily see that the Hamiltonian operator H is PT
symmetric, i.e., PT H − HPT = 0. The following theorem
relates the concepts of pseudo-Hermiticity and PT symmetry:

Theorem 3. For a finite-dimensional system, a PT -
symmetric Hamiltonian operator H is necessarily pseudo-
Hermitian.

The proof can be found in Ref. [23]. It follows that
PT -symmetric operators constitute a subclass of pseudo-
Hermitian operators [25].

In general, a linear operator system can yield solutions with
less symmetry than its governing equations [13,14]. Consider
the eigensystem of a PT -symmetric operator Hui = Eiui.
When all eigenvalues Ei are real, we obtain

HPT ui = E∗
i PT ui = EiPT ui, (37)

so that ui is also an eigenvector of the joint operator PT ,
and the PT symmetry is unbroken. When Ei becomes com-
plex, then ui is no longer an eigenvector of PT , and the
PT symmetry is broken. The boundaries that separate the
parameter space of broken and unbroken PT symmetry
are called EPs, where the real eigenvalues are degenerate and
the corresponding eigenvectors coalesce [26].

In terms of pseudo-Hermiticity, the only route to the spon-
taneous breaking of PT symmetry and formation of EPs is
through the Krein collision between eigenvalues [22]. Denote
the eigenvectors of H† as H†vi = E∗

i vi, then the biorthogonal
relation [25] gives

v†
i u j = δi j . (38)

When all eigenvalues Ei are real and nondegenerate, com-
bined with H†Gui = EiGui, we have Gui = cvi and

[ui, ui] = u†
i Gui = cv†

i ui = c, (39)

where c is a nonzero real constant. Therefore, all eigenvalues
of H are definite and belong to class (i), with Krein signatures
κ (Ei ) = ±1.

When the control parameter is varied so that the eigenvalue
Ei is degenerate, there are two possibilities. If the degeneracy
is between two eigenvalues with the same Krein signature, it
forms a diabolic point (DP), where the eigenvectors remain
complete and orthogonal [25]. The eigenvalue Ei then remains

real and definite. If the degeneracy is between two eigenvalues
with opposite Krein signatures, it forms an EP where the
eigenvectors also coalesce and become identical. At an EP,
the geometric multiplicity of Ei is less than its algebraic mul-
tiplicity, and there exists an eigenvector such that [ui, ui] = 0
[19,22], so that Ei is indefinite and belongs to class (ii), with
Krein signature κ (Ei ) = 0.

Krein collision between two eigenvalues with opposite
Krein signatures then corresponds to the formation of EPs, the
emergence of complex eigenvalues, and the breaking of PT
symmetry. When Ei becomes complex, we denote Ej = E∗

i
and obtain Gu j = cvi, so that

[u j, u j] = u†
jGu j = cv†

i u j = 0. (40)

Therefore, the complex eigenvalue Ei belong to class (iii).
We thus conclude that in PT -symmetric systems, the

mechanism of PT -symmetry breaking and the formation of
EPs is through Krein collision between definite eigenvalues
with opposite Krein signatures [22,23]. When the control
parameter is varied across the EP, the system undergoes a
PT -symmetry-breaking bifurcation [24].

B. Dynamical system of two counterpropagating vorticity waves

We now illustrate these results within the dynamical sys-
tem of two counterpropagating vorticity waves. For the flow
profile shown in Fig. 1(b), the dispersion relations of iso-
lated vorticity waves are ω1 = −k + 1/2, ω2 = k − 1/2, and
the coupling coefficient is σ = e−2k/2. Denote the frequency
mismatch �ω = ω1 − ω2 = 1 − 2k, then the eigenvalues of
H are

E1,2 = ± 1
2

√
�ω2 − 4σ 2, (41)

and the eigenvectors

u1,2 =
(

−�ω
2σ

∓
√

�ω2−4σ 2

2σ

1

)
. (42)

Denote the discriminant of the characteristic polynomial of
H as

D = �ω2 − 4σ 2 = (2k − 1)2 − e−4k . (43)

For k > kc, D > 0 and the eigenvalues E1,2 are real and def-
inite with opposite Krein signatures. The eigenvectors u1,2

are also eigenvectors of PT , with PT u = −u∗ = −u, so
that the system has unbroken PT symmetry. For 0 < k < kc,
D < 0 and H has a pair of complex-conjugate eigenvalues
E1,2 = −iσ sin θ12. The eigenvectors u1,2 = (eiθ12 1)T are no
longer eigenvectors of PT , so that PT symmetry is broken.

The boundary of this change is marked by the EP at k = kc,
where D = 0 and E1,2, u1,2 are identical. As shown in Fig. 5,
the EP is a saddle point in the complex E − k space, and
the onset of Kelvin-Helmholtz instability is via bifurcation
through the EP.

The control parameter of this PT -symmetry-breaking bi-
furcation can be illustrated from spatial coupling of vorticity
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FIG. 5. The eigenvalues E1(k) (red) and E2(k) (blue) in the com-
plex [Re(E ), Im(E ), k] space. The saddle-node exceptional point
locates at k = kc.

waves. Consider the amplitude-phase form [8,11] of the dy-
namical system,

Q̇1 = −σQ2 sin θ12, Q̇2 = −σQ1 sin θ12, (44a)

θ̇1 = −ω1 − σ
Q2

Q1
cos θ12, θ̇2 = −ω2 + σ

Q1

Q2
cos θ12.

(44b)

Let R12 = Q1/Q2, and rewrite the dynamical system as

Ṙ12 = σ
(
R2

12 − 1
)

sin θ12, (45a)

θ̇12 = −�ω − σ

(
R12 + 1

R12

)
cos θ12. (45b)

The fixed points of the system require either

sin θ12 = 0, R12 + 1

R12
= �ω

σ cos θ12
, (46)

where the two vorticity waves remain neutrally stable, or

R12 = 1, cos θ12 = −�ω

2σ
, (47)

where the two vorticity waves are phase locked. The control
parameter of the bifurcation of fixed points is then the ratio
between frequency detuning and coupling strength of the vor-
ticity waves,

μ = −�ω

2σ
= (2k − 1)e2k . (48)

Note that μ is a monotonously increasing function of k when
k � 0, so that the parameter space for PT -symmetry breaking
and instability onset −1 < μ < 1 is equivalent to 0 < k <

kc � 0.64, as shown in Fig. 6.
Therefore, the onset of Kelvin-Helmholtz instability cor-

responds to the bifurcation of fixed points from two neutral
centers to a pair of stable and unstable nodes [11]. Note that
the fixed points are equivalent to the normal mode solutions
u1e−iE1t and u2e−iE2t . When k > kc, the system has two neu-
trally stable fixed points, and neither eigenmode is dominant.
When 0 < k < kc, the phase locking of two vorticity waves
corresponds to a pair of stable and unstable fixed points,
depending on the sign of sin θ12. The −π < θ12 < 0 fixed
point corresponds to the unstable eigenmode, which leads to

FIG. 6. Parameter space of the two vorticity wave system and
bifurcation of fixed points with the control parameter k. The black
vertical dashed line is the critical k = kc � 0.64. When k � kc, the
system has two neutrally stable fixed points, located at θ12 = 0, with
unbroken PT symmetry. When 0 < k < kc, the system has a pair
of stable (solid red line, −π < θ12 < 0) and unstable (dashed red
line, 0 < θ12 < π ) fixed points, and PT symmetry is spontaneously
broken.

the mutual growth of vorticity waves, and naturally dominates
in long-term dynamics. This fixed point is thus stable as a
dynamical sink of phase plane trajectories. The 0 < θ12 < π

fixed point corresponds to the stable eigenmode, which leads
to the mutual damping of initial perturbations. This fixed point
is thus unstable as a source of phase plane trajectories [11].

In general, we have shown that the control parameter of
the PT -symmetry-breaking bifurcation is the ratio μ = −�ω

2σ
,

which measures the competition between frequency detun-
ing and coupling strength of vorticity waves. This parameter
increases monotonously with k, which is the nondimension-
alized wave number of perturbations. When the coupling
strength dominates over phase detuning, the parameter space
0 < k < kc corresponds to phase-locking and mutual growth
of vorticity waves. When the coupling is weak compared to
the phase detuning, the parameter space k > kc corresponds
to neutrally stable vorticity waves. The physical meaning of k
is the wavelength of vorticity waves compared to the distance
between the vorticity jump interfaces [10]. When k�x � 1,
the distance between adjacent vorticity waves is too large
compared to their wavelength, so that the waves do not feel
each other’s presence as if they were isolated.

It is interesting to compare the results above to the PT -
symmetry analysis in Ref. [16], where velocity perturbations
are used as the field variable. It is shown in [16] that when
the system is stable with unbroken PT symmetry, the phase
difference between v̂x(x, t ) and v̂y(x, t ) is locked to π/2, and
when the system is unstable with broken PT symmetry, the
phase difference becomes arbitrary and spatially dependent.
In our work, using vorticity perturbations as the field variable,
we show that when the system is unstable, both eigenmodes
are phase locked to −π < θ12 < 0, and the normal mode
solution

φ̂(x, t ) = −
(

eiθ12 e−k|x+1| + e−k|x−1|

2k

)
e−σ sin θ12t (49)

has a rather complicated mode structure. Therefore, v̂x =
−ikφ̂ and v̂y = φ̂′ are phase locked in time, but with an
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arbitrary and spatially dependent phase difference. When
the system is stable with unbroken PT symmetry, both
eigenmodes are phase locked to θ12 = 0, so that θ1 = θ2 ≡
θ (t ) and φ̂(x, t ) = |φ̂(x)|ei[θ (t )+π]. Therefore, v̂x = −ikφ̂ and
v̂y = φ̂′ are phase locked to π/2, which is consistent with
Ref. [16].

However, we emphasize that when the PT symmetry is
unbroken, both eigenmodes are neutrally stable and neither
is dominant, so that the physical solution q(t ) does not con-
verge to any of the normal modes. The nonorthogonality of
eigenvectors near the EP then leads to transient phase-slip
dynamics, which is an intriguing feature of the EP and beyond
the scope of [16].

C. Critical behavior around the exceptional point

One of the most striking features of non-Hermitian systems
is the existence of EPs. In Hermitian systems, the critical
point where the eigenvalues degenerate is a DP, where the
eigenvalues are identical but the eigenvectors remain complete
and orthogonal. At an EP, the eigenvectors also coalesce and
become identical. This nonorthogonality of eigenvectors near
the EP is a unique feature of non-Hermitian systems. The
transient dynamics around the EP is actively investigated in
the context of non-Hermitian optics and photonics, where
power oscillations or amplifications have been observed [27].
These observations are closely related to the transient growth
in fluid dynamics [35] and reveal a generic property that when
a system operates around an EP, it becomes highly sensitive
to perturbations of the system [24–26]. In this section, we
demonstrate this characteristic of EP from the perspective
of vorticity wave interaction and describe this transient be-
havior as a transition between phase-locking and phase-slip
dynamics.

Denote the left and right eigenvectors of H as 〈uL|
and |uR〉, where |uR〉 = u and 〈uL| = v†. The eigenvectors
of the non-Hermitian system are biorthonormal [25], with
〈uL

i |uR
j 〉 = δi j . A quantitative measure for the nonorthogo-

nality of the eigenvectors is the phase rigidity [26,42,43],
defined as

r = 〈uL|uR〉
〈uR|uR〉 . (50)

In Hermitian systems, the right eigenvectors are orthogonal
and the phase rigidity r = 1. In non-Hermitian systems, the
right eigenvectors of different states are skewed instead of
orthogonal, and the phase rigidity is parameter dependent,
with |r| < 1. Approaching the EP, the two eigenvectors co-
alesce and r → 0. For the system of two counterpropagating
vorticity waves,

〈
uL

1,2

∣∣ =
(

�ω

2σ
±

√
�ω2 − 4σ 2

2σ
1

)
,

and the phase rigidity

|r1,2| =

⎧⎪⎨
⎪⎩

√
1 − 4σ 2

�ω2 , k > kc√
1 − �ω2

4σ 2 , 0 < k < kc

(51)
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FIG. 7. Plot of the phase rigidity |r| as a function of k. At the
EP, r = 0 and the eigenvectors are identical. In the vicinity of the
EP, |r| ∝ |k − kc|1/2 and the eigenvectors are extremely nonorthog-
onal. When k � kc, the coupling is weak and |r| → 1. Note that at
k = 0.5, the frequency mismatch of two vorticity waves vanishes and
|r| � 1.

is plotted in Fig. 7. Expand the phase rigidity near the EP
and we obtain |r1,2| ∝ |k − kc|1/2. In the vicinity of the EP,
the phase rigidity quantifies the splitting of eigenvectors [26],
which follows a square-root dependence similar to the split-
ting of eigenvalues, δE = |E1 − E2| ∝ |k − kc|1/2.

The critical exponent s = 1/2 is associated with the critical
behavior of the vorticity wave dynamics near the EP. For an
arbitrary initial condition, the amplitude and phase dynamics
of the two vorticity waves can be obtained from the superpo-
sition of normal modes,

q(t ) = c1u1e−iE1t + c2u2e−iE2t , (52)

as shown in Fig. 8. The parameter space 0 < k < kc corre-
sponds to phase-locking dynamics and exponential growth of
initial perturbations, and the parameter space k > kc corre-
sponds to phase-slip dynamics and transient growth of initial
perturbations. When k � kc, the vorticity waves decouple and
remain neutrally stable.
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FIG. 8. The amplitude and phase dynamics of two coupled coun-
terpropagating vorticity waves, calculated from Eqs. (44a) and (44b).
The initial perturbations are random with amplitude ∼10−5. The
control parameter of the system is (a) k = 0.4, (b) k = 0.639 ∼ k−

c ,
(c) k = 0.641 ∼ k+

c , and (d) k = 1.
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FIG. 9. The critical exponent of phase-slip frequency � near
the EP is s = 1/2. The red dots are numerically calculated from
Eqs. (44a) and (44b), and the solid blue line is ∝ |k − kc|1/2.

Note that when the system crosses through the EP from k =
k+

c to k = k−
c , a transition of phase dynamics occurs from a

phase-slip state [Fig. 8(c)] to a phase-locking state [Fig. 8(b)].
The transition is captured by

θ̇12 = −�ω − 2σ cos θ12, (53)

which is obtained from Eq. (45b) in the vicinity of the EP,
where R12 → 1.

Equation (53) is the Adler equation [30,31], which contains
both phase-locking and phase-slip solutions. The phase-slip
dynamics of θ12(t ) are highly nonuniform in time in the vicin-
ity of the EP, and correspond to transient growth of the initial
perturbations [7–9] in the regime of unbroken PT symmetry.
Denote the phase-slip period T as the time required for θ12 to
jump by 2π . For most of the time in the period, the dynamical
phase θ12 is getting through the bottleneck around multiples of
2π , predicted by the neutrally stable fixed point when k > kc.
More precisely, θ12 is around 2nπ− in the first half of the
period, which corresponds to transient growth, and around
2nπ+ in the second half of the period, which corresponds to
transient decay. A phase-slip period then ends with a short
interval of 2π phase jump, so that the initial perturbations
endure periodic oscillations of nonmodal growth and decay.
When k � kc [Fig. 8(d)], the phase-slip period T → 2π/�ω

and θ1,2(t ) ∝ t , the normal modes become orthogonal, and
transient growth vanishes.

The phase-slip period T near the EP is estimated as

T =
∫ 2π

0

dθ12

−�ω − 2σ cos θ12
= 2π√

�ω2 − 4σ 2
, (54)

and the phase-slip frequency � = √
�ω2 − 4σ 2. Therefore,

the phase-slip frequency satisfies � ∝ |k − kc|1/2 near the
EP, following a square-root scaling law, as shown in Fig. 9.
The results are consistent with the square-root dependence
of the phase rigidity, showing that when the eigenvec-
tors are extremely nonorthogonal, the phase dynamics be-
come extremely nonmodal and highly nonuniform in time
accordingly. The transition of phase dynamics thus provides
a useful description of the critical behavior around the EP.

The transient growth of perturbations near the EP,

Q(t )

Q(0)
= exp

[
−σ

∫ t

0
sin θ12(t )dt

]
, (55)

can also be estimated for the first half-period as

Q
(

T
2

)
Q(0)

= exp

[
−σ

∫ 1

cos θ0

d cos θ12

�ω + 2σ cos θ12

]
=

√
μ − cos θ0

μ − 1
,

(56)

where θ0 = θ12(0). The optimal amplification factor G for
transient growth is then obtained when cos θ0 = −1, as

G =
√

μ + 1

μ − 1
. (57)

We have thus recovered the optimal transient growth rate
given by Eq. (57) that is consistent with previous results
[7,8]. See the Appendix A for details. We also note that
the nonmodal, transient growth of perturbations is a generic
property at the threshold of the transition to instabilities when
the eigenvectors are nonorthogonal [33,34], not limited to the
breaking of PT symmetry.

In general, for n-vorticity wave systems, the stability of
the system is determined by the signs of actions of the
n vorticity waves, and the dominant off-diagonal coupling
terms are the coupling between neighboring vorticity waves.
When the system parameter is arbitrarily close to a second-
order EP, the difference between neighboring Ei and Ej is
arbitrarily small, so that only the two neighboring vortic-
ity waves ωi and ω j are important in close vicinity of the
EP. Therefore, a PT -symmetry-breaking bifurcation can be
approximately illustrated as a Krein collision between two
neighboring eigenvalues and the spatial coupling between two
counterpropagating waves. For adjacent vorticity waves ωi

and ω j with opposite signs of actions, the phase difference
is approximately

θ̇i j = −�ωi j + σi j (�q̄ jRi j − �q̄iR ji ) cos θi j, (58)

where only the spatial couplings between ωi and ω j are kept.
Equation (58) also forms an Adler equation near the EP,
where Ri j → const. The transition between phase-locking and
phase-slip dynamics can then be observed at the boundaries of
the Krein collisions between eigenvalues Ei and Ej . We con-
clude that the transition between phase-locking and phase-slip
dynamics and the transient growth of perturbations describe
the essential characteristics of EPs in shear flow instabilities,
and that the square-root dependence is a universal character-
istic of EPs in vorticity wave systems.

V. SUMMARY AND DISCUSSION

In this work, we relate the model of vorticity wave inter-
action to the analysis of Krein collision and PT -symmetry
breaking in shear flow instabilities. We show that the dynam-
ical system of coupled vorticity waves is a pseudo-Hermitian
system, and the eigenmodes of the system correspond one to
one to the isolated vorticity waves. The Krein signatures of
the eigenvalue branches are decided by the signs of action
of the vorticity waves. The spatial coupling of counterprop-
agating vorticity waves illustrates the Krein collision between
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eigenvalues, the spontaneous breaking of PT symmetry, and
the formation of EPs. The control parameter of PT -symmetry
breaking is shown to be the ratio between frequency detuning
and coupling strength of the vorticity waves.

Critical behavior near the EPs is described as a transi-
tion between phase-slip and phase-locking dynamics of the
vorticity waves. We show that this transition of phase dynam-
ics corresponds to the spontaneous PT -symmetry breaking
and onset of shear instabilities. In particular, the highly
nonuniform-in-time phase-slip dynamics corresponds to the
extreme nonorthogonality of eigenvectors near the EPs, mea-
sured by the phase rigidity. The phase-slip dynamics lead to
nonmodal, transient growth of perturbations near the EP in the
regime of unbroken PT symmetry. The phase-slip frequency
shares the same critical exponent 1/2 with the phase rigidity
of system eigenvectors, indicating the square-root dependence
as a universal characteristic of EPs in shear flow instabilities.

In general, we have shown that the framework of vorticity
wave interaction is naturally related to non-Hermitian physics
and PT -symmetry-breaking bifurcations. We note that the
interaction between positive-action and negative-action waves
is a generic mechanism to explain reactive instabilities in
plasmas [3,21]. Therefore, we anticipate further applications
of this framework not limited to instabilities in shear flows,
but also in magnetized plasmas, such as drift wave instabili-
ties [37,41] and magnetohydrodynamic instabilities [44–46].
It would be interesting there to label the eigenmodes driven
from various free-energy sources with their Krein signatures,
to discuss how the stability of joint modes are shaped by
the mechanism of wave interaction, and to understand how
the plasmas behave near marginal stability from analysis
of the EPs.

Note added. Recently, the authors become aware of a
relevant paper [47] that relates the Krein signatures to the
formation of EPs in pseudo-Hermitian systems.
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APPENDIX: TRANSIENT GROWTH ANALYSIS

In this Appendix, we discuss alternative approaches to
obtain the transient growth rate [7,8,28,29,32] in the regime
of unbroken PT symmetry, in comparison with the results
estimated from phase-slip dynamics.

Given initial condition q(0) = q0, the general solution of
the initial value problem is q(t ) = eAt q0, and the propagator
matrix of the dynamical system, eAt = e−iHt , can be obtained
from the superposition of normal modes,

q(t ) = c1u1e−iE1t + c2u2e−iE2t ,

q(0) = c1u1 + c2u2. (A1)

The coefficients c1, c2 are readily solved from Eq. (A1), and
one gets

eAt =
(

cos E1t − i �ω
2E1

sin E1t −i σ
E1

sin E1t

i σ
E1

sin E1t cos E1t + i �ω
2E1

sin E1t

)
,

(A2)

where E1 =
√

(�ω/2)2 − σ 2. The amplification factor of
transient growth under certain initial conditions is then

G2(t ) = (q(t ), q(t ))

(q0, q0)
= (eA†t eAt q0, q0)

(q0, q0)

= |q1(t )|2 + |q2(t )|2
|q1(0)|2 + |q2(0)|2 . (A3)

The optimal growth can be obtained either using the sin-
gular value decomposition (SVD) approach [7,32] or directly
calculating G2(t ) [28]. The SVD of eAt has the form of eAt =
U�V†, where the columns of U and V are eigenvectors of
eAt eA†t and eA†t eAt , separately. In the regime of unbroken PT
symmetry, the singular value matrix is

� =
(

g 0

0 g−1

)
, g =

√
μ − cos θ0

μ + cos θ0
, (A4)

so that the optimal growth factor is

G =
√

μ + 1

μ − 1
, (A5)

with the optimal initial condition Q1(0) = Q2(0) and cos θ0 =
−1. Direct estimation of G2(t ) also recovers the optimal initial
condition, and the transient oscillation dynamics under such
condition are given by

G2(t ) = 1 + 2

μ − 1
sin2 E1t . (A6)

The results are consistent with Eq. (57) in the main text, where
the oscillation period T = π/E1 is just the phase-slip period
estimated from Eq. (54).
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