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Effect of layer thickness for the bounce of a particle settling through a density transition layer
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We study numerically a spherical particle settling through a density transition layer at moderate Reynolds
numbers Reu = 69 ∼ 259 for the upper fluid. We investigate how the transition layer thickness affects the
particle’s bouncing behavior as it crosses the interface. The previous intuitive understanding was that the
bounce occurs when the relative thickness of the transition layer, L/D, which is characterized by the ratio of
the layer thickness L to the particle diameter D, is small. Indeed, we report no bounce phenomenon for very
thick interfaces, i.e., L/D > 10 in the current parametric range. However, we argue that the bounce can also be
inhibited when L/D is too small. Upon a fixed upper layer Reynolds number Reu = 207 with varying L/D, we
examine the flow evolution of these cases. We propose that this inhibition is attributed to two mechanisms. First,
as the interface thickness decreases, the detachment of the attached lighter fluid from the upper layer occurs more
rapidly, resulting in a faster decrease in buoyancy. Second, in the case of a very thin interface (L/D = 0.5–3.0),
the residual light fluid accumulates and undergoes a secondary detachment, separating from the particle at an
angle relative to the central axis. This secondary detachment reduces the drag force and effectively prevents the
particle from experiencing a rebound motion.
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I. INTRODUCTION

In oceans and lakes, fluid is commonly stratified due to
the nonuniform distribution of temperature and salinity in
height. Objects moving vertically in such a circumstance lead
to the fluid dynamics significantly different from that in a
homogeneous fluid, such as the formation of rear vertical jets
[1–3], generation of internal waves [1,4,5], enhancement of
drag force [6,7], dragging and rupture of isopycnals [8–11].
Due to the wide applications in many environmental and engi-
neering processes, including the spread of marine pollutants,
the dispersion of spilled oil, the sedimentation of marine snow
particles, and the transportation and operation of underwater
vehicles, the interaction between vertically moving objects
and their ambient stratified fluid has attracted a certain inter-
est over the last decades. These studies have been recently
reviewed [12,13].

In three-layer stratified fluid, a settling particle tends to
distort the isopycnals and drag light fluid from the upper layer
into the stratified region, thus increasing substantially the drag
on it and decelerating it within the stratified layer [10]. At low
Reynolds numbers (Re ∼ 1–10), the enhanced drag can be
estimated by the buoyancy of a finite volume of the attached
light fluid [10]. In a continuously stratified fluid, Yick et al.
[6] proposed that a shell of fluid around the particle with the
width δ ∼ (ν/N )1/2 determines the added drag. Verso et al.
[11] modeled the transient drag as a particle passes through
a density interface by considering an initially constant wake
volume with value Vc0 ∼ 0.13Fr3/4Vp and reduces exponen-
tially after passing the interface. For extremely low Reynolds
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numbers, i.e., Re � 1, fundamental solutions considering a
point force (Stokeslet) were proposed, which demonstrate the
existence of a fundamental stratification length scale, which
is governed by a competition between buoyancy, diffusion
and viscosity [14]. It was noted that the particles as small as
O(100 μm–1 mm) can also be influenced by stratification.

At moderate Reynolds numbers (Re ∼ 100), Torres et al.
[1] found that the standing vortex occurring in a homogeneous
fluid collapses in the linearly stratified fluid, forming a strong
upward jet. This jet causes a reduction of the pressure on the
rear surface of the particle, which leads to the increase in pres-
sure drag. The jet structure was studied comprehensively by
towing a sphere vertically at constant speeds in a salt-stratified
fluid, over a wide parametric range of 30 � Re � 4000 and
0.2 � Fr � 70 [2]. According to their experiments, the wake
structures were classified into different types, including two
types of thin jets, the one with bell-shaped structure, those
with periodically generated knots, a simply meandering jet,
and a turbulent jet. The velocity distribution of the bell-shaped
jet structure was investigated numerically by Hanazaki et al.
[3] and experimentally by Okino et al. [15]. They found that
the jet length is determined by the vertical wavelength of the
internal waves, scaled as πFr/2, and the jet radius is scaled
by

√
Fr/2Re. At Fr � 0.2, the strong stratification promotes

the transition of stable jets into the turbulence regime, even at
relatively low Reynolds numbers, e.g., 10 � Re � 100 [16].

The deflected isopycnals lead to a new vorticity gener-
ation term, the so-called baroclinic torque, given as T g =
∇p × ∇( 1

ρ
) [5,13]. The baroclinic torque leads to orientation

instability in the settling of nonspherical particles, such as
elongated particles and disks [17–20]. In addition, the baro-
clinic vorticity also contributes to the drag enhancement by
elevating the shear stress at the particle’s surface. This effect
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was initially identified by Doostmohammadi et al. [5]. By
quantifying the additional drag caused by different mecha-
nisms, Zhang et al. [7] found that the vorticity field contributes
primarily to the drag enhancement, while the buoyancy of the
lighter fluid plays a secondary role. A splitting procedure was
proposed to decompose the force of a uniformly descending
particle in a linearly stratified fluid. The force is divided into
three components Fρρ , Fρu, and Fρω, corresponding respec-
tively to the additional Archimedes buoyancy, the inertial
force from the momentum flux, and the force caused by the
baroclinic vorticity. Mandel et al. [21] studied the stratifica-
tion drag acting on a rising droplet using experimental data
and found that the ratio of the stratification drag to its homo-
geneous counterpart is scaled by Fr−0.89Re−0.56, agreeing well
with the previous prediction of Fρω ∼ Fr−1Re−0.5 [7]. We note
that the enhanced drag for a droplet is relatively smaller than
that of a solid particle, due to the slip boundary on it [22].

Internal wave is another characteristic flow structure in a
stratified fluid. For a particle moving vertically in a linearly
stratified fluid, the far-field internal wave pattern can be pre-
dicted by a linear theory, proposed by Mowbray and Rarity
[4], which has been validated by recent numerical and ex-
perimental studies [5,15]. The propagation of internal waves
transfers momentum away from the source, i.e., the particle,
and leads to an extra drag, referred to as wave resistance.
However, the wave resistance is found to be significantly
smaller than the inertial and viscous drags, unless when the
stratification is strong (Fr � 3) or as the Reynolds number is
high [Re � O(103)] [23].

The enhanced drag caused by the stratification effects de-
lays the settling of the particle and yields a minimal velocity
much lower than the local terminal velocity [9–11]. We be-
lieve that the ascending flows might be responsible for an
intriguing bounce behavior of the particle settling through a
density transition layer, in which the particle motion switches
from falling to rising [24]. This phenomenon is surprisingly
unique, since it occurs in the vicinity of a stratified den-
sity profile, in the complete absence of surface tension. It is
easy to understand that the occurrence of bounce depends
strongly on the relative density of the particle to its ambient
fluid. In the previous experiments, the particles of different
densities were tested, with only the lightest particle, whose
density is very close to the bottom layer fluid, found to reverse
its direction of motion [24]. Doostmohammadi and Ardekani
[17] reported that an elongated particle levitates temporarily
at a relatively high density jump between the top and bottom
fluid layers.

More recently, Camassa et al. [25] conducted experiments
of density triplets to ascertain the critical particle density at
which the particle arrests, with given upper and lower density.
They also performed a theoretical calculation exploring how
the potential energy of the system under assumptions of po-
tential flow provides a criterion predicting the critical sphere
density for arrestment. Their theoretical prediction aligns
closely with the experiments. It reveals that the available
potential energy increases as the layer thickness decreases,
suggesting that the critical particle density increases as the
interface thickness decreases and approaches an upper bound
for infinitely thin interfaces. Consequently, it can be inferred
that the thicker transition layers are less capable of arresting

FIG. 1. The schematic of the numerical setup.

the particle. This trend has also been revealed in a linearly
stratified fluid, in which the motions of particles and droplets
were found to be altered from oscillation to unidirectional
settling as the Froude number is increased, or equivalently by
increasing the interface thickness if both the top and bottom
layer densities are fixed [5,26].

From a contrasting perspective, it is intuitively postu-
lated that a particle settling through a thin transition layer
would exhibit a greater propensity for bouncing. To ascer-
tain the veracity of this assertion, the present investigation
employs numerical simulations. Particular emphasis is placed
on examining the parameter ranges wherein distinct in-
stances of bouncing can be observed. These include moderate
Reynolds numbers for the upper-layer fluid, a comparably
lower Reynolds number for the lower-layer fluid, and a parti-
cle with a slightly greater density than that of the lower-layer
fluid.

The rest of this paper is organized as follows. The numeri-
cal method is briefly described in Sec. II. Numerical validation
is demonstrated in Sec. III. The main results and discussions
are presented in Sec. IV. We draw the conclusions in Sec. V.

II. NUMERICAL METHOD

We study the gravitational settling of a spherical particle
through a density interface, or a density transition layer, as
illustrated in Fig. 1. The particle has a diameter D and a
density ρp. The density interface has a thickness L, which is
defined as the density transition region covering 98% of the
density difference between the upper and lower layers. The
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undisturbed density profile is specified as

ρ = ρu + ρl

2
+ ρu − ρl

2
erf(αz), (1)

where ρu and ρl are, respectively, the upper- and lower-layer
fluid density, z is the vertical position, with z = 0 correspond-
ing to the middle of the density transition layer, α is a scaling
factor, determining the thickness of the interface, and erf(x) =
2
π

∫ x
0 e−t2

dt is the error function.
The stratified fluid flow is governed by time-dependent

incompressible Navier-Stokes equations. The continuity and
the momentum equations are given as

∇ · u = 0, (2)

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p + μ∇2u + ρg, (3)

where u is the velocity, p is the pressure, t is the transient time,
μ is the dynamic viscosity and g is the gravitational accelera-
tion, which has a nonzero component at z direction. Note that
z is positive downward (Fig. 1). A transport equation for the
solution of density field is introduced, expressed as

∂ρ

∂t
+ u · ∇ρ = κ∇2ρ, (4)

where κ is defined as κ = ν/Pr. Corresponding to the salinity-
induced stratification in water, we fix the Prandtl number at
Pr = 700, with the kinematic viscosity of the fluid ν = 1.38 ×
10−6m2/s and diffusivity κ = 1.97 × 10−9m2/s. The Boussi-
nesq approximation is applied to account for the stratification
effect, where the density variation enters the momentum
equation only through the buoyancy term. Division by the
reference density in (3) yields

∂u
∂t

+ u · ∇u = − 1

ρ0
∇p + ρ

ρ0
g + ν∇2u, (5)

where ν = μ/ρ0 is the kinematic viscosity. Normalizing the
lengths, velocities, time, pressure, and density by D, U , D/U ,
ρ0U 2, and (ρl − ρu)D/L respectively, the governing equa-
tions can be expressed in nondimensional forms as follows:

∇ · u′ = 0, (6)

∂ρ ′

∂t ′ + u′ · ∇ρ ′ = Pr−1Re−1∇2ρ ′, (7)

∂u′

∂t ′ + u′ · ∇u′ = −∇p′ − Fr−2ρ ′ez + Re−1∇2u′. (8)

The governing equations are solved by a code based on
the finite volume method [27]. The convection terms are
discretized using the second-order upwind scheme, and the
central differences scheme is used for the Laplacian terms.
The time discretization scheme is the second-order implicit
Euler. The pressure-velocity coupling is obtained using the
pressure implicit with splitting of operators (PISO) scheme.
At the particle surface, the velocity boundary condition is set
as moving-wall velocity, and zero-gradient boundary condi-
tions are set for the pressure and density. The top boundary
has a fixed pressure p = 0 and density ρ = ρu. The den-
sity at the bottom boundary is fixed to be ρ = ρl . For other
boundaries, a fixed-flux condition is adopted for the pressure,

FIG. 2. The computational domain, with a region encompassing
the particle marked for mesh refinement.

and a zero-gradient condition is specified for the velocity
and density. The considered Reynolds numbers in the present
work are in the range 29 � Re � 259, which allows the usage
of axisymmetry assumption. As reported previously that in a
homogeneous fluid, the flow past a sphere is axisymmetric at
Re < 200 [28]. While, in a stratified fluid, the axisymmetric
flow structure can retain at a Reynolds number up to 356 [5].

The vertical motion of the particle is determined by the
total force acting on it using Newton’s second law:

ρp
1

6
πD3 d2z

dt2
= Fz, (9)

where Fz is the vertical force on the particle, i.e., the grav-
ity subtracting the hydrodynamic force. We solve (9) using
the Newmark method [29]. The whole computational domain
moves along with the particle, avoiding the problem of mesh
deformation, as we adopted in our previous study [30].

III. NUMERICAL VALIDATION

A. Mesh resolution test

In our numerical simulations, we employ axisymmetric
assumption, rendering the geometry of our numerical model
two dimensional, with the computational domain depicted in
Fig. 2. The mesh is refined within a square region of length
10D that encompasses the particle. Within this refined region,
the mesh cell thickness increases at a fixed ratio from the
particle’s surface to the boundary. Our mesh-moving strategy
requires the entire domain to move rigidly with the particle,
causing the position of the density interface to vary relative
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TABLE I. Detailed information of five different mesh resolutions
used for the resolution test.

Mesh No. First layer thickness Total cell number

#1 0.0037D 92680
#2 0.0028D 166125
#3 0.0019D 374821
#4 0.0016D 537435
#5 0.0014D 664500

to the mesh. To minimize numerical diffusion of the density
interface, the cell height in the z direction remains constant
outside the refined region.

To validate the mesh resolution, we conduct tests us-
ing five different mesh configurations for the case with the
thinnest density interface L/D = 0.5 and the highest upper
Reynolds number Reu = 259, which corresponds to the most
pronounced stratification within our defined parameter range.
The mesh details are presented in Table I. According to prior
studies, the momentum and density boundary layer thickness
can be estimated, respectively, by the following expressions
[31]:

lm ∼ O

(
D√
Re

)
(10)

and

ld ∼ O

(
D√
RePr

)
. (11)

With Pr = 700 and Reu = 259, these equations yield a mini-
mum boundary thickness of lm ∼ 0.0621D and ld ∼ 0.0023D
in our simulation, which aligns with our results. Figure 3
illustrates the differences in settling velocities between vari-
ous mesh resolutions. We observe that the variations in these
profiles become little as the first layer thickness is less than
0.0023D, i.e., for the meshes #3, #4, and #5. Specifically, the
difference in total velocity variation between mesh #5 and #4

FIG. 3. Comparison of the settling velocities among different
mesh resolutions at L/D = 0.5 and Reu = 259.

FIG. 4. A close-up view of the solved density field and the de-
tailed cell distributions of mesh #5. This snapshot corresponds to the
instant t ′ = 9.23 at L/D = 0.5 and Reu = 259.

is less than 0.3%. We understand that it is not necessary to
further increase the mesh resolution. In fact, when the minimal
velocity serves as the criterion for identifying the rebound,
even mesh #3 produces satisfactory results. Figure 4 provides
a close-up view of the solved density field using mesh #5,
confirming its capability to capture small structures around
the particle surface, as well as the stretched thin tail along
the central axis. Consequently, mesh #5 with 664 500 cells is
chosen for the subsequent work.

B. Validation of the Boussinesq approximation

To evaluate the validity of the Boussinesq approxima-
tion, we perform a series of numerical simulations wherein
the Boussinesq approximation is not employed. Here, we
present the results obtained at L/D = 0.5 and Reu = 259, in
which the mesh resolutions have been tested. By comparing
the results obtained using the Boussinesq approximation to
those obtained without it, wherein the original equation (3)
is solved, we observe a negligible quantitative disparity. The
discrepancy in minimum velocities amounts to less than 1%,
as illustrated in Fig. 5. The difference in flow structure in-
duced by the Boussinesq approximation can be identified by
comparing the baroclinic torque distribution, as depicted in
Fig. 6. The original baroclinic torque T g = ∇p × ∇( 1

ρ
) (the

left half in each panel) can be simplified as T g = 1
ρ0

∇ρ × g
(the right half in each panel) under the Boussinesq approxima-
tion [13]. A marginal deviation is evident only in the remote
wake region, without exerting any significant influence on the
settling dynamics of the particle.
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FIG. 5. The comparison of the evolution of the settling velocity
with and without using the Boussinesq approximation, at L/D = 0.5
and Reu = 259. Note that both cases are simulated using mesh #5
with 664500 cells.

C. Comparing with experimental results

The numerical method has been validated in our previous
studies for a stratified flow past a cylinder [33] and a pitching
foil [34,35]. Here, we validate the results for the gravitational
settling of a particle in both homogeneous and stratified fluids.
For a homogeneous fluid, the transient velocity of a settling
particle with a terminal settling Reynolds number Re = 41 is
compared with the experimental measurements by Mordant
and Pinton [32]. As shown in Fig. 7, the development of
the simulated velocity agrees well with the measured data by
Mordant and Pinton [32]. The difference in terminal velocities

FIG. 6. The comparison of the baroclinic torque fields with (the
right half in each panel) and without (the left half in each panel) using
the Boussinesq approximation, at L/D = 0.5 and Reu = 259.

FIG. 7. Comparison with the experimental study [32] in the
velocity profiles of a particle settling in a homogeneous fluid at
Re = 41.

between the two results is less than 4%, indicating an accurate
prediction by the present numerical solver.

Additionally, we have conducted experiments to validate
the numerical method for stratified fluid. More details about
the experimental setup can be found in Ref. [36]. A particle
with a diameter D = 10.121 mm and a density ρp = 1126.36
kg/m3 is released from a homogeneous layer with a density
ρu = 1119.42 kg/m3. After a period of time, the particle
settles into a lower layer with a density ρu = 1125.90 kg/m3,
after passing through a density interface of thickness 2.78 cm.
The particle experiences a bouncing motion in the lower layer
after it passes the density interface. We set the simulation
according to these properties in the experiment, except that
a uniform viscosity is used for the whole domain in the sim-
ulation, while in the experiment the lower-layer fluid has a
viscosity slightly higher than the upper fluid. The comparison
of velocity profiles is presented in Fig. 8. The discrepancy
between the two profiles stems from a slight variance in the
lower-layer Reynolds numbers. The bouncing behavior is well
captured in the simulation. The smaller bouncing distance in
simulation is possibly caused by the smaller viscosity of fluid
in the lower layer. The comparison of flow structure in the
wake between simulations and experiments is presented in
Fig. 9, suggesting a good agreement for the transient process
of the dragging and rupture of upper fluid.

IV. RESULTS

We consider a particle settling across a density inter-
face from an upper light fluid layer to a lower dense fluid
layer. The characterizing parameters include the upper-layer
Reynolds number Reu = UuD/ν, the lower-layer Reynolds
number Rel = UlD/ν, and the Froude number Fr = Uu/ND,
where Uu and Ul are, respectively, the terminal velocities in
the upper and lower homogeneous fluids, ν is the kinematic
viscosity of the fluid, D is the particle diameter, N is the

065108-5



SHUHONG WANG, JIADONG WANG, AND JIAN DENG PHYSICAL REVIEW E 108, 065108 (2023)

FIG. 8. Comparison with the experimental study [33] in the ve-
locity profiles of a particle settling through a density interface with
thickness L/D = 2.8. The nondimensional parameters are Reu =
198, Rel = 20 for experiment and Reu = 198, Rel = 26 for simu-
lation (using mesh #5).

Brunt-Väisälä frequency defined as

N =
√

g

ρ0

ρl − ρu

L
, (12)

where ρ0 = (ρu + ρl )/2 is the reference density, L is the
thickness of the density transition layer, covering 98% of the
density variation.

In our simulations, we fix the densities of the lower-layer
fluid and the particle, with a density ratio of ηl = ρl/ρp =
0.9997, which yields Rel = 29. Four upper density ratios
are considered, varying from ηu = ρu/ρp = 0.9938–0.9991,
resulting in Reu = 259 ∼ 69. For each combination of upper

FIG. 9. Comparison with the experimental study [33] in the
transient flow structure between experiment (a)–(c) and simulation
(d)–(f) of a particle settling through a density interface with thickness
L/D = 2.8. The nondimensional parameters are Reu = 198, Rel =
20 for experiment and Reu = 198, Rel = 26 for simulation.

FIG. 10. The variation of nondimensional minimal velocity with
the interface thickness for four different upper layer Reynolds num-
bers Reu = 259, 207, 147, and 69.

and lower density ratios, the interface thickness is varied in
the range of L/D = 0.5 ∼ 10. Due to an error-function-type
density transition layer we considered, the variation of L/D
simultaneously changes the Froude number, resulting in a
range of 0.86 � Fr � 4.66. The transient time is counted from
the instant when the centroid of the particle moves to the
middle of the density interface (z = 0), and normalized by
τ = D/Uu. For each simulation, the particle is set to settle
in the upper layer for 10s before reaching the upper bound
of the density interface, to ensure that a steady-state velocity
is reached. It is important to mention that all simulations are
performed using mesh #5 with 664 500 cells, of which the
resolution has been tested in Sec. III A.

A. Settling dynamics of the particle

First, we investigate the effects of interface thickness on the
temporal bouncing behavior of the settling particle. Figure 10
shows the variation of the minimum velocity of the particle,
normalized by its terminal velocity in the homogeneous lower
layer, over the interface thickness at the range of L/D = 0.5 ∼
10. A negative value of Umin/Ul represents the occurrence
of bouncing behavior, and the positive Umin/Ul corresponds
to a unidirectional settling. We examine four different up-
per density ratios ηu = 0.9938, 0.9956, 0.9973, and 0.9991,
corresponding to Reu = 259, 207, 147, and 69, respectively.
Clearly, the minimal velocity increases with decreasing upper
Reynolds number (equivalently the increasing upper density
ratio). At a low upper Reynolds number, Reu = 69, the min-
imal velocity is approximately constant and positive despite
the variation of L/D. While at the highest upper Reynolds
number, Reu = 259, the minimal velocities are negative for
all interface thicknesses, suggesting the occurrence of bounce.
The restraining effect by the density interface on the settling
particle is significant. The minimal velocity is approximately
60% of the lower-layer terminal velocity, even for the case
of Reu = 69 with the slightest influence. The interface thick-
ness also plays an important role in determining the particle
behavior. As the thickness increases from L/D = 0.5–10, the
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FIG. 11. The velocity profiles of particle settling through differ-
ent interface thicknesses at Reu = 207.

minimal velocity shows a nonmonotonic trend with a global
minimum reached around L/D = 5.0, where the particle is
most likely to bounce. As the interface becomes thinner or
thicker, the particle tends to settle unidirectionally.

We note that the interface thickness enters the governing
equation from the Froude number. The second term of the
nondimensional momentum equation (8) can be written as

−Fr−2ρ ′ez = U 2ρ0

Dg(ρl − ρu)

L

D
ρ ′ez. (13)

The nonmonotonic trend of the particle behavior also reveals
the effects of the Froude number.

In Fig. 10, we pay special attention to Reu = 207, where
the particle behaves differently as the interface thickness
varies. The particle bounces for 2 � L/D � 8, while it settles
unidirectionally for L/D � 1 and L/D � 9. We plot the veloc-
ity profiles in Fig. 11. The velocity is initially constant in the
upper layer, and decreases rapidly after the particle enters the
interface. The minimal velocity is reached at z/D = 2.5 ∼ 5
depending on the interface thickness. Finally, after the de-
celeration, the particle recovers slowly to the lower terminal
velocity. As expected, a thinner interface leads to a steeper
decline of the velocity, especially after the particle passes
the middle of the interface (z/D = 0). However, this trend
breaks as the particle descends to approximately z/D = 2.5.
The settling velocity at the thin interfaces L/D = 0.5 and 2.0
gradually exceeds that of L/D = 5.0 and reaches a higher
minimal velocity. Moreover, the velocity profile of L/D = 0.5
and L/D = 2.0 almost overlaps at the interface region, al-
though their interface thicknesses differ remarkably.

In addition, we plot the time-dependent acceleration of the
particle at L/D = 0.5, 5.0, and 10.0 in Fig. 12 for Reu = 207.
Note that t ′ = 0 corresponds to the instant when the particle
is crossing the middle of the transition layer. Clearly, the
presence of the density interface increases significantly the
drag on the particle. For the thinner interface, i.e., L/D = 0.5,
the deceleration is stronger and meanwhile it decays faster.
At the beginning and end of the settling, the thicker interface
provides a stronger deceleration.

FIG. 12. Time evolution of the (a) acceleration and (b) velocity
of particle at different interface thicknesses at Reu = 207. Here, the
time has been scaled by τ = D/Uu the particle acceleration has been
scaled by the gravity acceleration g.

B. Flow structure and wake pattern

In this section, we detail the nontrivial flow structures
as the particle settles across the interfaces with different
thicknesses. The transient flow fields at different instants cor-
responding to the vertical dashed lines in Fig. 12 are shown
in Figs. 13–15. The velocities of the particle are noted in
these figures. Initially, the interface is deformed by the pen-
etrating particle. A drift of light fluid from the upper layer
is attached at the rear of the particle [see Figs. 13–15, panel
(c)]. The dragged light fluid quickly detaches from the particle
and restores to the upper layer under the buoyancy effect
[so-called the first detachment, see Figs. 13–15, panel (d)].
For a thinner interface, the light fluid is dragged deeper rel-
ative to the interface. For example, as seen in Fig. 13(c) for
L/D = 0.5, the drift fluid is dragged into the lower layer far
below the interface before it detaches. In contrast, for the
thicker interfaces, L/D = 5.0 and 10.0, the detachment nearly
completes before the particle leaves the transition layer, as
seen in Figs. 14(e) and 15(e), where an additional small, but
non-negligible, amount of upper fluid remains attached on the
rear surface of the particle, which has also been observed
in the previous experiments [24,33]. For L/D = 0.5, a
distinct, small roll-up structure manifests around the parti-
cle surface after the initial detachment [refer to Fig. 13(h)].
This phenomenon is referred to as the secondary detachment,
characterized by the separation of the boundary layer flow
and the detachment of the still-present lighter fluid. Notably,
this roll-up structure is absent at L/D = 5.0 and L/D = 10.0.
Evidently, the process of secondary detachment is influenced
by the thickness of the interface, as depicted in Fig. 16. For
L/D � 3.0, the remaining lighter fluid detaches at an angle
from the central axis. As the interface thickness increases,
the detachment point gradually shifts towards the rear stag-
nation point. At intermediate interface thicknesses, such as
L/D = 4.0 and L/D = 5.0, the detached fluid converges but
ascends towards the upper layer along the central axis. In the
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FIG. 13. A sequence of images, showing the settling of a particle passing through a density transition layer with thickness L/D = 0.5 at
Reu = 207. For each panel, the left half shows the contours of the density field, and the right half shows that of the vertical velocity component.
The interface bounds are marked by two dashed lines.

case of a thicker interface, such as L/D = 10.0, the remaining
lighter fluid returns to the upper layer continuously without
accumulating at the particle surface.

The detachment process can be characterized by tracking
the movement of the attachment point of the drifting fluid.
Its position is represented by the separation angle, defined as
the angle between the rear stagnation point and the separation
point (refer to the inset of Fig. 17). The quantified results are
presented in Fig. 17. Consistent with the detachment progres-
sion of the caudal fluid, the separation angle diminishes over
time for all interface thicknesses.

For the thinner interface, the angle decreases more rapidly,
indicative of a swifter detachment owing to the larger buoy-
ancy force experienced by the trailing fluid. We observe that,
for intermediate interface thicknesses, the separation angle
exhibits a nonmonotonic behavior and reaches a local maxi-
mum (see L/D = 5.0 and 7.0 in Fig. 17). This local maximum
is correlated with the accumulation of the remaining lighter
fluid, as depicted in Fig. 16(f). The temporal variation of the
secondary detachment angle for L/D � 3.0 is illustrated in
Fig. 18. The remaining lighter fluid detaches from approxi-
mately θd ≈ 50◦ and moves towards the rear stagnation point.
However, it does not reach the central axis during the entire

detachment process, thus not affecting the monotonic trend
of θa.

Examining the velocity fields, we find an upward flow, in
an opposite direction to the particle, of the entrained fluid,
initially observed at the edge of the drift [see the deep blue
region of Fig. 13(c)], which spreads quickly to the central axis
[see Fig. 13(d)]. This upward jet originates from the potential
energy, generated as the entrained fluid suddenly becomes less
dense than the surrounding fluid the particle is moving in. This
potential energy tends to be restored by the entrained fluid
moving back into the top layer, which necessarily, through
viscous coupling, exerts an additional upward force upon
the particle. Another notable difference is in the perturbed
interface after completing the first detachment, i.e., from t ′ =
11.40 [see panel (f) in Figs. 13–15]. For the thinnest interface,
L/D = 0.5, a splash phenomenon is spotted, resembling that
which occurs for an object dropping on a water surface. The
interface restores quiet after the perturbation propagates far
away in the form of interval waves. Instead, for L/D = 5.0
and 10.0, a vortex ring forms around the upper bound of the
transition layer, as presented in Fig. 19. We note that in a
similar parametric range, such a caudal jet flow has also been
observed in a linearly stratified fluid, with variations of the
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FIG. 14. A sequence of images, showing the settling of a particle passing through a density transition layer with thickness L/D = 5.0 at
Reu = 207. For each panel, the left half shows the contours of the density field, and the right half shows that of the vertical velocity component.
The interface bounds are marked by two dashed lines.

relevant flow structures reported [2]. However, they did not
report the vortex ring.

After the first detachment, the drift shrinks horizontally and
elongates vertically, reducing to a thin vertical column, or a
filament. The light fluid within the vertical column restores
slowly to the upper layer and diffuses with the ambient dense
fluid. We find that there is more upper fluid remaining within
the vertical column for the thicker interfaces, which can be
explained by the fact that the particle settles a longer distance
within the transition layer, resulting in less diffusion from the
dragged fluid to its surrounding dense fluid.

An additional observation worth noting is the presence of a
bell-shaped knot structure along the central vertical column
in Fig. 14(h) for L/D = 5.0, as well as in Fig. 15(k) for
L/D = 10.0. This bell-shaped jet structure bears resemblance
to similar structures reported in prior studies investigating lin-
ear stratified fluids through both experimental and simulation
approaches. These studies have attributed the occurrence of
such structures to the influence of internal waves [2,15].

C. Drag enhancement mechanisms

It is easy to understand that the particle exhibits no bounce
phenomenon for the very thick interfaces as we fix the density

triplets (ρu, ρl , ρp). As seen clearly from the right branch,
i.e., L/D > 5, in Fig. 10, the minimum velocity increases
as the interface becomes thicker, with a tendency to inhibit
the bounce. In other words, the stronger stratification is more
pronounced to reverse the particle’s direction of motion. How-
ever, on the other hand, the minimum velocity decreases as the
interface becomes thicker for L/D < 5, which deviates from
our intuitive understanding and requires extra explanation. In
this section, we aim to get further insight into this nontrivial
phenomenon.

The analysis of the bouncing mechanism has been
conducted in our previous study [33] through a force decom-
position procedure. This analysis reveals that the increased
drag experienced by the particle is primarily attributed to
the buoyancy effects of the attached lighter fluid during the
early stage before the first detachment. Subsequently, the spe-
cific flow structure predominantly contributes to the drag (see
Fig. 11 in Ref. [33]).

Based on the bouncing mechanism, we first compare
the effects of attached lighter fluid. We calculate the force
component, Fb, induced by the hydrostatic pressure, or the
buoyancy force induced by the nonuniformly distributed den-
sity. Figure 20 illustrates its variation for different interface
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FIG. 15. A sequence of images, showing the settling of a particle passing through a density transition layer with thickness L/D = 10.0 at
Reu = 207. For each panel, the left half shows the contours of the density field, and the right half shows that of the vertical velocity component.
The interface bounds are marked by two dashed lines.

thicknesses. For L/D = 0.5 and L/D = 5.0, it exhibits a
nonmonotonic behavior, reaching its maximum value that
surpasses the gravitational force acting on the particle. It is
crucial to note that the density of the fluid is consistently lower
than that of the particle. This peak in Fb is a consequence of
the attachment of the trailing lighter fluid, commonly known
as the drift, which imparts additional buoyancy to the parti-
cle. For thicker interface thicknesses, the buoyancy decreases
monotonously once the particle enters the interface. In con-
trast, for L/D = 0.5, Fb diminishes more rapidly, becoming
smaller than that of L/D = 5.0 at z/D = 2.2, as indicated in
Fig. 20.

The magnitude of Fb is influenced by both the volume of
the drift fluid and the density difference between the drift fluid
and its ambient fluid [6,10]. To investigate this relationship,

we plot the volume of the drift fluid, denoted as Vd , as a func-
tion of vertical position in Fig. 21. Vd is defined as the volume
enclosed by the distorted isopycnal of ρ0 = (ρu + ρl )/2, the
particle surface, and the undisturbed interface (as illustrated
in the schematic diagram in Fig. 21).

As the interface thickness decreases, a larger volume of
light fluid becomes attached to the particle. This trend is
consistent with the theoretical calculation conducted by Ca-
massa et al. [25], which reveals that the potential energy
(directly related to the drift volume Vd ) increases with decreas-
ing interface thickness. Simultaneously, the density difference
between the drift fluid and its ambient fluid increases. For
instance, at z/D = 2.0, the particle and drift fluid penetrate the
lower layer for the thin interface cases (L/D � 4.0), resulting
in a substantial density difference ρ = ρl − ρu. Conversely,
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FIG. 16. The shapes of the isopycnal of ρ0 = (ρu + ρl )/2 at the time instants t ′ = 8.55, 14.25, 17.10, 19.95, 25.65 from top to bottom.

for thicker interfaces (L/D � 5.0), the position z/D = 2.0 lies
within the density transition layer, leading to a smaller density
difference.

Consequently, at a thinner interface, the drift fluid con-
tributes more buoyancy to the particle, leading to a larger
value of Fb. The subsequent decrease in Fb is attributed to
the detachment of the drifted fluid. The detachment process
occurs more rapidly at thinner interfaces, as evidenced by the
more pronounced decrease in Vd shown in Fig. 21. Notably,
the vertical position at which Vd for L/D = 5.0 exceeds that of

FIG. 17. The variations of separation angle θa over time for dif-
ferent values of interface thickness.

L/D = 0.5 is approximately z/D = 2.2, corresponding pre-
cisely to the transition point observed for Fb in Fig. 20.

The specific flow structure, such as baroclinic vorticity
[5,7], and the upward jet [1,33], also play a significant
role in the enhancement of drag. In Figs. 19(a) and 19(b),
we observe that the baroclinic vorticity (blue region in the
right panel) is notably stronger at L/D = 5.0 compared to
L/D = 0.5 near the rear stagnation point, which leads to
an increased shear rate and, consequently, greater stratifi-
cation drag. Additionally, we propose that the secondary

FIG. 18. The temporal variation of the secondary detachment
angle θd at different values of interface thickness.
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FIG. 19. A comparison of the vortex structure between different interface thicknesses for (a) L/D = 0.5, t ′ = 11.40, (b) L/D = 5.0,
t ′ = 14.25, (c) L/D = 10.0, t ′ = 17.10 at Reu = 207. The left half shows the contour of the density field, and the right half shows the vorticity
field. The interface bounds are noted by the yellow dashed lines.

detachment also contributes to the higher minimal velocity
at a thinner interface. On the one hand, the secondary de-
tachment reduces the extra buoyant force generated by the
lighter fluid. On the other hand, we observe that the sec-
ondary detachment suppresses the formation of a secondary
jet. In Fig. 22, we show the time-evolved vertical velocities
along the central axis for L/D = 0.5, 5.0, and 10.0. Clearly
seen is that the buoyant jet (deep blue region) emerges at a
similar time instant around t ′ = 5–10, while it persists for a
longer duration as the interface is thicker. For L/D = 5.0, a

FIG. 20. The force component, Fb, induced by the hydrostatic
pressure, normalized by its gravity, G, versus the vertical position
for different values of density thickness.

secondary jet appears after the first jet vanishes. As depicted
in Fig. 16(e), after the drift fluid detaches, the light fluid
remaining at the particle surface coalesces and rises to the
upper layer from the central axis, explaining the formation
of the secondary jet. The rear jet exerts a lifting effect on
the particle. At the same instant when the secondary jet is
formed, the particle reverses its moving direction. However, at
L/D = 0.5, the secondary jet is not detected as the remaining
fluid detaches from the particle at an angle relative to the
central axis.

FIG. 21. The drifted fluid volume Vd , normalized by the volume
of the particle Vp, versus the vertical position at different values of
interface thickness.
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FIG. 22. The temporal development of the vertical velocity Uz along the central axis for (a) L/D = 0.5, (b) L/D = 5.0, and (c) L/D =
10.0. The white blank region is where the particle is located.

V. CONCLUSIONS

We conduct numerical simulations to investigate the gravi-
tational settling of a particle through a density transition layer,
or interface, considering different interface thicknesses. The
simulations are carried out using the Boussinesq approxima-
tion, allowing us to explore the effects of interface thickness
on the bouncing behavior of the particle.

In our simulations, we keep the lower density ratio fixed
at ρl/ρp = 0.9997, resulting in a lower Reynolds number of
Rel = 29. We vary the upper density ratios from ρu/ρp =
0.9938 to 0.9991, corresponding to a range of upper Reynolds
numbers between Reu = 259 and 69. We specifically examine
interface thicknesses ranging from L/D = 0.5–10, where L
represents the interface thickness and D denotes the charac-
teristic size of the particle.

Our results reveal a nonmonotonic variation in the minimal
velocity of the particle as the interface thickness increased
from L/D = 0.5–10.0. This indicates that the bouncing mo-
tion of the particle is inhibited at both very thin and very
thick interfaces. We particularly focus on understanding the
inhibition of bouncing motion at very thin interfaces, which
contradicts the intuitive understanding that a stronger strati-
fication leads to a more pronounced velocity reduction. The
observed nonmonotonic bounce behavior, dependent on the
layer thickness, is attributed to flow instabilities that result
in the shedding of drift fluid. We notice an increase in drift
volumes as the layer thickness decreases, a trend akin to that
reported in Ref. [25], but we see that additional shedding
instabilities occur for the particle. Such instabilities were not

considered in Ref. [25], as their experiments were regulated
to L/D > 2.

We propose that this inhibition can be attributed to two un-
derlying mechanisms. First, as the interface becomes thinner,
the lighter fluid that drifts along with the particle detaches
more rapidly, resulting in a swift decrease in buoyancy. This
reduction in buoyancy hinders the bouncing motion of the
particle. Second, after the drift fluid detaches, there remains a
small but significant amount of upper fluid at the particle sur-
face. For very thin interfaces (L/D = 0.5–2.0), this remaining
lighter fluid congregates and undergoes a secondary detach-
ment from the particle. This detachment leads to a loss of light
fluid, which, on one hand, reduces the drag force caused by
buoyancy. On the other hand, the detached fluid deviates from
the central axis, contributing less to the drag induced by the
jet flow compared to cases with moderate interface thickness
(L/D ≈ 5.0). In those cases, the remaining light fluid returns
to the upper layer along the central axis, forming a secondary
jet that enhances the jet-induced drag force.

We note that the obtained conclusions are limited to the
current parametric range, for example, the lower limit we
choose for the interface thickness is L/D = 0.5, to ensure
the validity of the Boussinesq approximation. It will be of
interest to investigate on the even thinner transition layer.
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