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Unified description over time of heterogeneous condensation with quenched disorder
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We report experimental results on breath figures (BFs) observed on substrates with quenched disorder. The
evolution of BFs is found to be primarily influenced by global parameters associated with boundary conditions.
We investigate classical statistical measures and explore topological properties using persistent homology
techniques based on a modified Vietoris-Rips complex. Our findings reveal that the evolution of the number
surface density of condensed droplets plays a crucial role in determining various condensation stages previously
considered distinct. This evolution is significantly influenced by the distribution of nucleation sites and the
individual growth law governing water droplets when coalescence does not occur. Ultimately, we demonstrate
the capability to predict coalescence events based on the topological characteristics of BFs at a given point
in time.
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I. INTRODUCTION

The evolution of systems with quenched disorder has been
regarded as difficult to deal with. Usually, the approach is
bottom-up, where the Hamiltonian of the isolated elements
is known, as well as the interaction among them. A posteriori
the quenched disorder is set up, and to solve the dynamics
one has to rely upon now well-established techniques (replica
trick, cavity method, among others) [1]. However, a holistic
approach has not been considered so far due to the limited
information it is believed to be able to retrieve.

Our model system consists of dropwise heterogeneous
condensation on a surface, which is a first-order out-
of-equilibrium phase transition. Breath figures (BFs) are
two-dimensional (2D) patterns consisting of those condensed
droplets. The surface is in a condition of supersaturation for
a vapor (in our work, water vapor), while the surrounding at-
mosphere is not. BFs begin by the nucleation of tiny droplets,
generally in places where the energy barrier for nucleation
has been lowered (by imperfections, impurities, etc.), and
evolves by the growth of the droplets by direct condensation
and coalescence [2,3]. BFs have been used extensively in the
past to recover water from atmospheric humidity for irrigation
and drinking water [2]. Also, heterogeneous condensation
has been proven an efficient method to increase heat trans-
fer [3] because the latent heat is transferred to the substrate
directly.

In this article we address two intertwined objectives. First,
to find a unified description for different regimes of the BF
dynamics, seemingly unconnected with each other, by using
the spatial distribution of nucleation sites. This would shed
light on the quenched disorder occurring naturally on surfaces
where dropwise heterogeneous condensation takes place and
its effects on the BF. We bring evidence of the connection
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between the global characteristics of the boundary conditions
and the observed dynamics. Second, to associate certain static
(spatial) topological properties with the dynamics of the sys-
tem. Our approach involves a modified concept that naturally
emphasizes the distance between droplet surfaces as a signif-
icant factor, in contrast to other conventional measures that
overlook this aspect.

BF dynamics is mainly determined by the environmental
conditions and surface properties such as wettability, rough-
ness, and heterogeneity, which play a key role in this matter.
Previous works (see for a review [3]) have shown that those
properties may alter the nucleation rate, which in turn affects
the timescales of the BF dynamics, the maximum value of
surface coverage, and the droplet size distribution. The most
common properties described in the literature include the
surface coverage ε2 (ratio of substrate’s area covered by the
droplets to the total area), the droplet number density, and
the average radius as they evolve in time, to compare the
performance of surfaces and/or environmental conditions.
Spatial heterogeneity in the surfaces has been explored con-
cerning the dimensionality of the substrate, its finite size [4],
wettability [5], hygroscopicity [6,7], drop shedding [8,9], and
contact angle pinning and hysteresis [10]. Almost all the
studies have considered ordered arrays of loci (e.g., [5,7]).
However, the most common everyday-life heterogeneity is
genuinely disordered, and related to impurities and imperfec-
tions which are intrinsic to the surfaces, or appeared later (e.g.,
dust particles).

The evolution of BFs usually displays up to six stages [2]
to which we will refer through this article: (1) Initial nucle-
ation. (2) Isolated growth by water vapor absorption, where
almost all the droplets are separated at a distance much larger
than their radii, hindering their interaction. Here the radius
of each droplet grows as t1/2 [11]. (3) As droplets continue
their growth, the interdroplet distance gets smaller, allow-
ing neighboring droplets to interact through the atmosphere.
Absorption is diminished because of the overlapping of con-
centration profiles around single droplets, and the average
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radius becomes ∝ t1/3. (4) Growth by coalescence and water
molecules absorption, where coalescence events become more
frequent and their contribution to the growth now dominates
over the absorption, leading to an average radius growth ∼t1.
Additionally, the surface coverage (proportion of the surface
covered by droplets) reaches a constant value, which means
that the droplet separation scales with the average radius of the
droplets. (5) Nucleation of new droplets. When two or more
droplets coalesce, they sweep a section of the substrate where
nucleation may start over again. If the section is large enough,
the growth of the new droplets follows the same growth be-
havior described earlier. (6) Finally, gravity effects become
relevant leading to drop deformation and/or shedding. These
regimes usually overlap or even are not present in a given sys-
tem depending on the experiment conditions [3]. For example,
droplets in stages 2 and 3 may undergo a significant number of
coalescence events, as is observed usually when the number of
droplets is plotted against time. We show that this complexity
can be simplified by unifying stages 2–4.

In general, the microscopic mechanisms behind the evo-
lution of BFs are still not well known [12] and may vary
depending on the experimental conditions. Currently, most of
the models are focused on some of the aforementioned stages
and in some aspects, as happens with the number density of
droplets [13–16] or the distribution of droplet sizes [17]. The
main models describing this fact come from the scaling of the
cluster size distribution in aggregation processes [18].

The nucleation of water droplets on substrates occurs as
a thermally activated process. On a perfectly homogeneous
surface, the nuclei appear randomly and progressively, and
quenched disorder is not present. However, the energy bar-
rier to forming viable (i.e., thermodynamically stable) water
droplets can be lowered through impurities or imperfections.
Their location may be either tailored (e.g., in the form of
lattices) or statistically random like in natural environments.

The present work considers substrates with quenched dis-
order induced by a coating on a glass surface. By quenched
disorder, we refer to a static, disordered distribution of nu-
cleation sites on the substrate. These nucleation sites do not
relax at the relevant times of the experiment. We ensure
the quenched disorder by also conducting the experiments
at supersaturation level lower than the critical level for con-
densation in places outside the nucleation sites. While a few
studies have focused on disorder, they had different objectives
and approaches than ours. In one study [19], the authors
reported experimental results of condensation on substrates
coated similarly to ours, but their focus was mainly on the
coalescence-dominated regime, and they did not vary the
density of nucleation sites. In another study [9], the authors
focused on water collection using different roughness sub-
strates obtained by sandblasting, which increased the number
of nucleation sites without significantly changing the macro-
scopic contact angles. As a result, coalescence events were
more frequent, and the volume of collected water increased.

It is known that relevant mesoscopic information about
systems can be obtained by using persistent homology (PH)
techniques [20], which highlight topological structures that
persist across a range of spatial scales. These methods have
been previously used to explore the degree of compaction
in granular systems [21] and to identify structural features

in colloids that cannot be distinguished using classical tech-
niques [22], among many other applications. To use PH tools,
a set of objects and a filtration parameter must be defined to
construct a filtration of simplicial complexes that represent the
configurational states (see Sec. III).

In this article we investigate the evolution of dropwise
condensation patterns on surfaces with quench disorder and
different densities of randomly distributed nucleation sites
while keeping all other experimental conditions constant. In
Sec. II we describe the experimental setup and procedures.
In Sec. III we introduce the persistent homology techniques.
In the following sections, we present the results, discussion,
and conclusions of the study.

II. EXPERIMENTS

To experimentally study the evolution of BFs, we use a
condensation chamber consisting of a cylindrical polymethyl
methacrylate container that encloses a Peltier device where
the substrate is placed. The Peltier rests on a copper heat
exchanger with water recirculation coming from a refrigerated
water bath. The chamber is connected with two opposed air
entrances that inject humid filtered air (with a relative humid-
ity of about 70% at 21 ◦C, corresponding to Tdew = 15.3 ◦C).
The conditions are set to promote heterogeneous condensation
on the substrate. The air is streamed at a constant total flow
rate of 140 ml/min, while the temperature is controlled by the
Peltier device that keeps the substrate at a constant tempera-
ture Ts = 10 ◦C (for which the humidity level is supersaturated
at a 1.42 value, smaller than the value to have condensation on
the measured macroscopic contact angles; see [3] and Supple-
mental Material [23]). The BF is observed through an optical
window with a reflection optical microscope attached to a
complementary metal oxide semiconductor (CMOS) camera.
A region of interest in the center of the substrate is focused.

The substrates are glass slides, either bare or coated, of
25 mm × 30 mm which are cleaned, coated (if it applies), and
characterized individually for each experiment. The cleaning
procedure consists of the following steps: the substrates are
rinsed with acetone, ethanol, and ultra-pure water. Next, an
RCA SC-1 cleaning process is undertaken: they are immersed
in a basic piranha (5:3:1 ultra-pure water, H2O2 33%, and am-
monia 25%) for 40 min at 60 ◦C. Then the substrates are rinsed
with ultra-pure water and immersed in ultra-pure water for
5 h before the coating process, for which we used a solution
of OTS (octadecyltrichlorosilane) in HMDSO (hexamethyld-
isiloxane) which leaves on the surface some impurities that
promote nucleation [19]. Their number density depends on
the concentration and the time the surface is submerged into
the solution. We employed concentrations between 5% (v/v)
and 10% (v/v) of OTS in HMDSO and waited for time in-
tervals of 5–10 min. The coating solution is prepared and
vigorously stirred before carefully placing the dry slide inside.
The substrate is then extracted from the solution, excess liquid
is removed, and the glass is dried in a stove at 60 ◦C for
30 min. The substrate is later stored in a clean container for
24 h. Finally, on the usable coated substrates we measured
the macroscopic contact angles θa and θr of the surface with
ultra-pure water. These values, the coating time, and con-
centration c for all the samples are shown in Table 1 of the
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(b)(a)

(d)(c)

FIG. 1. Substrates before the experiment. (a) Bare substrate
(none) and coated substrates with (b) low, (c) intermediate, and
(d) high nucleation site densities. HFOV (horizontal field of view):
(a) 1.104 mm and (b)–(d) 0.220 mm. Dark spots and clusters are
visible in [(b)–(d)], while optical artifacts from the objectives and
the microscope can be observed in all the images and are removed in
the analysis. Generally, these artifacts are present in all the images
observed at the same magnification (regardless of the substrate), and
they appear unfocused.

Supplemental Material [23]. All the substrates referred to in
this study were used once, even though there is no appreciable
aging on the coating after one experiment over the range of
several days. We compare the results from the bare substrate
with those from various coating densities, quantified by their
initial number surface density ρ0 of nuclei. From now on, the
number surface density will be called density.

The contact angles mainly affect the volume coefficient
of a droplet γ . This coefficient is defined as the ratio of the
droplet volume to its apparent radius cubed. The apparent
radius is the radius of the projected droplet onto the substrate.
In the case of a spherical cap-shaped droplet, γ depends on
the contact angle θ . If the droplet is perfectly hemispherical,
γ = 2π/3. If 180◦ � θ � 90◦: γ = π

3 (2 − 3 cos θ + cos3 θ )
[2], and if 0◦ < θ � 90◦: γ = π (1−cos θ )(2+cos θ )

3(1+cos θ ) sin θ
.

It is worth noting that, when the coalescence events are
statistically not dominant, droplet growth is mostly dominated
by moisture absorption, so θ = θa and γ are essentially con-
stant in each experiment. When two droplets coalesce, the
contact line in the farthest points recedes, and in the contact
point, advances. Thus, in the times when there is a significant
increment of coalescence events, the receding angle plays an
important role and, in consequence, θ varies between (θr, θa)
even for a specific droplet at a given time. Then γ may change
along time, but the contact angle may be approximated as
the mean angle θm = (θa + θr )/2 [9]. The experiment on an
uncoated substrate (named “none”) shows stronger deviations,
associated with a lower receding contact angle and relatively
high contact angle hysteresis, implying that the assumption of
a spherical cap may not be applicable throughout the experi-
ment [10].

Before the experiment begins, an initial micrograph of the
substrate is taken. Figure 1 shows these images for each of the

(a1) (a2) (a3)

(b1) (b2) (b3)

(c1) (c2) (c3)

(d1) (d2) (d3)

FIG. 2. Snapshots of the BF evolution for all substrates: (a) none,
(b) low, (c) intermediate, and (d) high, at three different times: 1,
180 s; 2, 402 s; and 3, 900 s (a3, 901 s). All the condensation patterns
were obtained under the same experimental conditions. HFOV is
0.22 mm (for panel a, cropped to 0.22 mm).

cases: three coated samples labeled according to the density
of active nucleation points (low, intermediate, and high) and
an uncoated sample (none) for comparison. Right after, the
inflow of humid air is activated and the Peltier is switched on.
This time is set as the origin (t = 0) of the experiment, and
snapshots of the evolving breath figures on the substrates are
taken regularly. The experimental conditions in the condensa-
tion chamber are observed to be stationary about 3 min after
the beginning of the experiment. Thus, in this work we focus
on the dynamics occurring between this point (t = 3 min) and
around 40 to 60 min (depending on the substrate), while also
avoiding the intense regime of nucleation at very short times.
The latter will be considered in future works.

Figure 2 shows the droplet pattern at 180, 402, and 900 s
for each of the four substrates. Within the same time interval,
it is observed that the droplets grow faster on substrates with
lower density. As known [12], V ∼ √

F�p, where V is a
droplet condensed volume, F is the air flux, and �p is the
difference between the partial water vapor pressure of the air
and the saturation pressure at the substrate temperature. It is
worth noting that all our experiments had the same values of
air flux and saturation, leading to the same constant rate of
increase of the total condensed volume per unit area, h, in the
stationary state, for all substrates.

Many of the imperfections or impurities on the substrate
may act as nucleation sites, although with our experimental
setup, we are not able to determine whether all of them do
so or not. We observe that imperfections may give rise to
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tiny droplets at any time, although most of the nucleation
events occur in the first 3 min of the experiment (which
are not considered in this work) or at long times when new
droplets appear [3]. The reduction of the energy barrier in each
imperfection is distinct due to geometrical or composition
factors, and some of those imperfections may remain dormant
throughout the experiment, because of neighboring imperfec-
tions that act as humidity sinks, thus favoring condensation on
themselves [24], rather than in the surroundings. Moreover,
on some nucleation sites, water droplets grow and eventually
stop growing while they are small, and they do not become
part of the “main” breath figures’ evolution for the rest of
the experiment [compare the backgrounds of Fig. 2(c1) to
Fig. 2(c3) with Fig. 1(c)]. We do not consider these droplets
since they do not appreciably evolve during the BF dynamics.
This is also due to the (modified) local humidity profile [25]
around them. In less common cases, some water droplets grow
and, after some time, evaporate. Thus, there is a complex
interaction between the sites themselves, the breath figure, and
the environment. This is statistically relevant at short times
when even growing droplets remain small. However, we do
not take this regime into account because we focus on the
experiment at times greater than 3 min after starting it, as
already mentioned.

Snapshot image processing is implemented in Python rou-
tines to detect the droplets in the images. In each snapshot
the centers and radii (of the projection on the substrate) of
all the drops are estimated. In cases where the droplets were
elongated (which occurred especially after coalescence in the
none case, because the receding contact angle in this surface
was low), it was used an equivalent radius

√
ab, where a

and b are the semiaxes of the fitting ellipse. Based on this
geometrical information, macroscopic quantities can be cal-
culated such as the droplet number surface density ρ (number
of droplets to the total surface area), the average droplet
radius 〈r〉, and the droplet surface coverage ε2. These vari-
ables are commonly used to characterize the BF evolution.
We also obtain information about mesoscales related to the
randomness, structure, and topology of the system. The code
being used is homemade and is based on several open-source
libraries.

Further details of the experimental setup, procedure, and
analysis of results are given in the Supplemental Material [23]
and in previous works by the authors (e.g., [19]).

III. PERSISTENT HOMOLOGY

The droplets from a BF on a substrate at a given time can be
considered as the nodes of a simple graph, where two droplets
are linked if their interdistance is smaller than or equal to
a given value, named the filtration parameter δ. In such a
planar graph, we can identify n-dimensional simplices (where
n goes from 0 to 2, corresponding to points, line segments, and
triangles). If the induced subgraph by (any) three given nodes
is complete, then a 2D simplex is defined for them. In that
case, the graph would correspond to a simplicial complex K ,
called theVietoris-Rips complex (VRC). A simplicial complex
(or simply, complex) is a set of simplices with the following
properties: every face of a simplex of the complex is in the
complex, and the nonempty intersection of two simplices in

FIG. 3. Invented filtration to illustrate that a relevant hole persists
in a long range of filtration parameters. The filtration parameter δ is
depicted in blue and is the threshold distance that allows the creation
of links (and triangles) in the complex.

the complex is a face of both. These complexes can be gen-
eralized to abstract spaces where the points or nodes are not
necessarily defined in Rn, and the filtration parameter is not
compared to a distance to define the links of the complex.

A BF at a certain time, with a given filtration parameter, is,
thus, a simplicial complex. A filtration is an ordered sequence
of simplicial complexes with the inclusion relation. With the
previous definitions, if δa � δb ⇒ K (δa) ⊆ K (δb). Also in a
complex, it is possible to define the group of chains at each
dimension s that corresponds to any linear combination of s-
dimension simplices (here with coefficients in Z2), the group
of cycles (chains with null boundary), and the group of bound-
aries (cycles that are boundaries of a chain). The quotient
group of the set of cycles with the set of boundaries is called
the homology group Hs of the simplicial complex at a given
dimension s. In this framework, the basis of the homology
group corresponds to the different linearly independent holes
(i.e., cycles that are not boundaries). The dimension of such a
group is called the Betti number βs of the complex at the given
dimension s. Thus, β0 is the number of connected components
of the complex and β1 is the number of independent holes
(cycles of the VRC that are not triangles).

When a filtration is defined, we can characterize the per-
sistence of the homology, i.e., the “length” in the filtration
parameter space of the aforementioned topological features.
Formally, for all dimension s, K (δa) ⊆ K (δb) induces a linear
map Hs[K (δa)] 
→ Hs[K (δb)]. In this way, we can identify
each feature along the filtration and set its birth filtration
parameter value, in addition to its death value, which allows
us to build the persistence diagram and the barcode (among
other representations), where the latter represents the intervals
at which all features live. The longest living features are the
most relevant in the corresponding filtration (Fig. 3).

In the systems mentioned above [21,22], the nodes (parti-
cles) are finite spheres, monodisperse in size, that provide a
characteristic length of the system which leads to a minimum
filtration parameter to connect the particles in the graph. Also,
note that their particle size is constant in time. This length
allows us to obtain dimensionless quantities, in such a way
that the system is comparable at different times.

In our system we are interested to correlate the persistent
homology of a fixed time snapshot of the condensing droplets
with future coalescence events. For that reason we replaced
the Euclidean distance between the centers with the distance
between drop borders when comparing with the filtration pa-
rameter values to define the complexes, in a sort of modified
Vietoris-Rips complex (MVRC). The most evident effect of
this paradigm change is that the β0 and β1 are shifted to lower
filtration parameter values (Fig. 4).
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FIG. 4. Betti numbers for dimensions 0 (number of connected
components; dashed lines) and 1 (number of loops, excluding trian-
gles; solid lines) at t = 180 s, comparing the high case where the
Vietoris-Rips complex is obtained through the centers of the droplets
(light [orange] lines) or their borders (modified Vietoris-Rips com-
plex; black lines) vs filtration parameter.

We verified that the MVRC filtration is stable under
small perturbations for the bottleneck distance [26] (data not
shown). Further details of the method used are explained in
the following sections.

IV. RESULTS AND DISCUSSION

First, we check whether the assumption of having complete
spatial randomness (CSR) in the nucleation sites is a good
approximation in our experiments. CSR corresponds to a Pois-
son point process [27–29]. In Fig. 5 we plot the Ripley-Besag
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FIG. 5. L function for the measured droplets centers at the first
time considered (180 s, circles) for the uncoated substrate. The solid
line corresponds to a simulation of 103 realizations of a Poisson point
process with the same number of points as in the experiment. The
dashed lines are the boundaries of a 95% confidence interval for
complete spatial randomness. The inset shows the same information,
but for the high case.

L function for the uncoated substrate. We observe that at short-
length scales, the distribution of the nucleation sites where
droplets emerge is more dispersed than one completely ran-
dom (solid line [simulated data] and dashed lines [estimated
boundaries for the 95% confidence interval]). This is due to
the coalescence of neighboring droplets at the beginning of
the experiment that depletes the closest droplets. Preliminary
measurements at earlier times show a better agreement. The
Ripley-Besag functions for the coated substrates behave qual-
itatively like the uncoated (none case). For the purpose of
comparison, a plot representing the high case is located in
an inset enclosed within the figure. Consequently, we con-
sider the distribution of nucleation sites as a homogeneous
and isotropic point Poisson process. It’s important to note
that even in a perfect CSR finite structure, the L function is
negative due to edge effects [30].

Stage 1 (nucleation) occurs at the beginning of the ex-
periment (t � 180 s). Nucleation events happen in the static
nucleation sites, where the energy barrier to nucleate is low.
Thus, in this work, the change in the number of droplets only
comes from coalescence events until new droplets emerge at
much longer times (see the Supplemental Material [23]). In
stages 2 and 3, the coalescence events do not dominate over
the growth by condensation. However, they are not negligible
(see below).

The active nucleation sites define an initial density (ρ0) on
a substrate of area S. In a circle of radius �, the mean number
of nuclei is ρ0π�2. Thus, on average, a droplet of radius �

has undergone ρ0π�2 − 1 coalescence events. For a given
droplet, modeled as its projection circle to the substrate, an
infinitesimal change in its area triggers coalescence events,
and the local density decreases proportionally to ρ0d (π�2).
For the complete system, with density ρ,

dρ = −ρπρ0d (�2) ⇒ ρ

ρ0
= e−ρ0π�2

, (1)

where the right-hand side of the last equation is the comple-
mentary cumulative distribution function of the distance from
the center of a given randomly chosen droplet to its nearest
neighbor for a complete spatial random process [30]. In other
words, it is the probability that a drop has no neighbors at
distances smaller than � or, from a physics perspective, that
it has not coalesced.

The individual growth of drops under different conditions
and assumptions usually leads to differential equations with
solutions related to power laws. In general, a good ap-
proximation is: ri(t ) = (rα

i0
+ Dt )

1
α [3]. In our experimental

conditions, the system can be approached as being equiva-
lent to the growth of a film [3,11] leading to a value α = 3.
We measured the growth of individual droplets. In the none
case, we took 14 among the most long-lived (i.e., without
coalescence), and we obtained a value α = 2.9 ± 0.3. For the
other cases, the high initial density makes coalescence events
more frequent and the interaction between droplets higher.
The evolution of the least interacting droplets is compatible
with this value of α.

We consider that all droplets nucleate at time t = 0 from
very small clusters of water molecules (the critical radius of
nucleation for our experimental conditions is ∼3 nm; see the
Supplemental Material [23]). At the first time of observation
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FIG. 6. Dimensionless density of droplets as a function of di-
mensionless time, for the four studied cases. Although the substrates
are quite different, their densities follow a single stretched exponen-
tial curve. The inset shows the raw data.

(180 s), coalescence events are relatively few, and conse-
quently, all nucleated droplets have a very similar size whose
radii can be approximated by (Dt )1/α .

Then, a coalescence event between two droplets occurs
when the distance between them becomes 2(Dt )1/α , where
D (see Sec. 6.1.2 of [3]) is proportional to (γ ρ0)−1 [at least
when α = 3, then D ≡ C(γ ρ0)−1], where γ is the volume
coefficient of a droplet which for a spherical cap-shaped one
depends only on the contact angle θ . Thus, γi ≡ Vi/r3

i (i
subindex refers to an individual droplet’s volume and mea-
sured radius, respectively). For short times, when coalescence
events are not dominant, γ is the same for all BF droplets.
However, it depends on the substrate.

If we plug it into Eq. (1), we obtain

ρ/ρ0 = e−ρ0π4(Dt )2/α = e−ρ
1−2/α

0 π4(Ct/γ )2/α

, (2)

which is a stretched exponential in t , for α > 2.
Equation (2) can be expressed as

ρ/ρ0 = e−(t/τ )2/α

, (3)

where τ = γ (4π )−α/2C−1ρ
1−α/2
0 .

At short times, Eq. (3) is a good approximation for droplets
whose centers are distributed by a homogeneous isotropic
point Poisson process (CSR). For the rest of the article, we
will consider α = 3.

In the inset of Fig. 6, we plot the density ρ as a function
of time. We fit the data, at short times, with the stretched
exponential function ρ = ρ0e−(t/τ )2/3

, which allows us to find
for each condition a characteristic time τ and an initial density
ρ0. The main figure shows the values of the inset, rescaled
with ρ0 and τ leading to a good collapse of all data to a single
curve, even at longer times.

τ/γ fits with a power law vs ρ0,

τ/γ = 6ρ−0.55
0 , (4)

with a 95% confidence interval for the exponent
(−0.68,−0.42) and for the coefficient (5, 7). The expected

exponent if α = 3 is −1/2. Here we observe a decrease in
the characteristic time as initial density increases, due to
the enhanced coalescence between closer droplets (see the
Supplemental Material [23] for more details). The initial
density is consistent with the apparent number of nucleation
sites.

Beysens and Knobler [31] stated that the condensed vol-
ume depends on the humid air flux and the difference in
the partial water vapor pressure of the air and the saturation
pressure at the substrate temperature. In general, the charac-
teristic time [Eq. (4)] depends on the air flux and pressure
differences (through the coefficient of the equation) and on the
density. Since all our experiments had the same values of air
flux (von Neumann boundary conditions) and saturation, the
total condensed volume per unit area, h, in the stationary state
should increase at the same constant rate for all the substrates.
Accordingly, the fewer the number of accessible sites, the
greater the amount of moisture available to be absorbed by
every single droplet.

The condensed volume per unit area h can also be obtained
as follows:

h ≡

N∑
i=1

Vi

S
=

γ

N∑
i=1

r3
i

S
= γ N〈r3〉

S
= γ ρ〈r3〉, (5)

where S is the substrate’s area of observation, the index i refers
to the individual droplets, ri is the apparent (i.e. measured)
radius of droplet i, and γ is an r3-weighted average of the
volume coefficient γi.

Since the conditions in the condensation chamber are sta-
tionary for all the considered times (t � 180s), then h ∼ t .
If we write Eq. (5) in dimensionless form, γ cancels out,
and 〈r3〉ρ3/2

0 ∼ t+e(t+ )2/3
, where t+ ≡ t/τ is the dimensionless

time. Our experimental results follow this behavior. In Fig. 7
the average radii of droplets are plotted against the dimension-
less time. There we can observe two distinguished regimes:
for short times, the curves seem to follow a power law with
exponent 0.5, while at longer times the curves follow a pro-
portionality trend. All the curves collapse into a single one,
except for very late dimensionless times, where new droplets
nucleate and grow. Thus, we conclude that our characteristic
densities ρ0 and times τ are well chosen.

The fit in the figure assumes that the trend of 〈r3〉 with
time is the same as 〈r〉3. This happens if and only if the radius
density distribution scales with 〈r〉, and its time dependence
is only through 〈r〉. The assumption is only approximate and
further research is encouraged. Then we fit the data with
〈r〉ρ1/2

0 = A(t+e(t+ )2/3
)

1
3 , where A = 0.41 is the fitting con-

stant. We do not consider points related to new nucleations at
long times (t > 9τ ). The power law with exponent μ0 = 1/3
[2,11,12,31] at short times is not observed, because the studied
period starts in the crossover from μ0 = 1/3 to the next stage.
If we extend the fit to even shorter times, the model predicts
the 1/3 exponent asymptotic behavior. For longer times, a
power law with exponent μ = 3μ0 was expected [2,12,31].

We see that, despite that the model is justified only at short
times, it happens to fit well over the whole range of data,
only starting to fail when the appearance of new nucleations
is apparent (stage 5).

065107-6



UNIFIED DESCRIPTION OVER TIME OF … PHYSICAL REVIEW E 108, 065107 (2023)

FIG. 7. Dimensionless average radius vs dimensionless time t+

for the used substrates. All cases collapse on a single curve except
for long dimensionless times, where new droplets have emerged. The
dashed-dotted line is proportional to t , and the curved (black) solid
line is a fit to a stretched exponential related function (see text and
legend). The (orange) dashed line is its approximation for t+ � 1.
The experimental points approach asymptotically this power law.
The boxes define dimensionless times where topological properties
will be compared among the different cases. Inset: Original dimen-
sional average radii.

The surface number density indicates the population of
the droplet distribution, but to know how much of the sur-
face is being used in condensation we analyze the surface
coverage, ε2:

ε2 ≡
∑N

i=1 πr2
i

S
= πN〈r2〉

S
= πρ〈r2〉. (6)

The coefficient of variation (σr/〈r〉) for each case is almost
constant along time (except for long times in the high-density
case, when new nucleations take place). In the high-density
case (excluding long-times data, t > 9τ ), it is 0.37 ± 0.04,
while in the intermediate case 0.22 ± 0.02, in the low case
0.22 ± 0.04, and in the none case 0.23 ± 0.04. The fact that
the coefficient of variation is approximately constant justifies
that we use the same functional form as the basis of the fits to
all the moments. For further details, refer to the Supplemental
Material [23].

The surface coverage is plotted in Fig. 8 as a function
of dimensionless time. The solid line comes from Eq. (6)
assuming that

√
〈r2〉 follows the fit obtained in Fig. 7.

The horizontal lines in Fig. 8 correspond to the predicted
saturation values [2]:

ε2
∞ =

{
1 − θm

200 if θm � 90◦

0.55 sin2 θm if θm < 90◦ ; (7)

in this case, the average contact angle θm is used, because
when the saturation values may be reached, the number of
coalescence events are frequent and the contact line recedes
and advances in different positions of the same droplet.

It can be observed that the surface coverage increases
to a maximum value, and then eventually decreases before

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
t/τ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ε2

high
intermediate
low
none

0.41 πt exp[-(1/3)t ]

1-0.89t

FIG. 8. Surface coverage of the droplets vs dimensionless time.
The dotted line corresponds to the expected saturation values for the
case none and the dashed line for the other cases (see text). The dark
(black) solid line shows the expected values using the average radius
and the surface number density fits. This holds fairly well before new
droplets appear (stage 5) where the porosity (1 − ε2) is expected to
follow a power law with a −1/4 exponent [16]. The lighter (orange)
solid line is a fit of those points to such expected law.

reaching stage 5, where the description based on quenched
disorder is no longer valid. In the fully developed stage 5,
which has not been completely reached in our data, the poros-
ity p ≡ 1 − ε2, is expected to follow a power law with an
exponent of −1/4 [16]. Figure 8 shows that the experimental
data points are compatible with this power law, as well as with
the saturation values mentioned earlier.

Next, for each snapshot, we build a filtration with the
distance between droplets, to obtain the corresponding Betti
numbers. Space and time are made dimensionless with the
same characteristic distances and times as above (ρ−1/2

0
and τ ).

We use tools from PH to determine whether there are
topological differences beyond the effect of density on the BF
dynamics. In Fig. 9 we show the normalized Betti numbers
β

0 and β
1 at a dimensionless time of 1.01 ± 0.02, which

corresponds to a region where coalescence events are not
predominant (first box in Fig. 7). The normalization for β0

is performed with the number of droplets, and for β1 with
the number of squares (i.e., cycles other than triangles) in a
perfectly square lattice with the given number of droplets [22].
In the figure, we can observe that all initial cases (densities)
give similar values of β

0 and β
1 , which means that, statisti-

cally, the homology and the disorder structure are similar. The
maximum value of the proportion of holes lies between 0.2
and 0.3 and is approximately the same for all cases, as well as
the proportion of connected components.

It is possible to overlay the VRC onto the BF image.
Figure 10 shows the corresponding VRC for dimensionless
filtration parameters in the range of 0.78 ± 0.08 (where 0.08
is the standard deviation of the four parameters, which cor-
respond specifically to the maxima of the Betti 1 number in
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FIG. 9. Normalized Betti number for dimension 0 (dashed lines)
and 1 (solid lines) vs filtration parameter at dimensionless time 1.01.
From darkest to lightest (black, magenta, orange, yellow): high,
intermediate, low, and none experiments.

each case). It should be noted that Fig. 10(a) has a different
horizontal field of view (HFOV).

In Fig. 11 we compare the normalized Betti numbers of the
different cases at dimensionless time 2.40 ± 0.02 (a region
where coalescence events are more frequent; second box in
Fig. 7); we observe that they are similar among them too.
Compared to Fig. 9, the maximum value of the proportion
of holes (β

1) increases (up to 0.4) and their peaks become
sharper.

At later dimensionless times (e.g., Fig. 12, corresponding
to 4.07 ± 0.04; third box in Fig. 7), the Betti numbers for the
different cases differ more. This could be because the statistics

(b)(a)

(d)(c)

FIG. 10. Vietoris-Rips complexes at dimensionless time 1.01 and
dimensionless filtration parameter 0.78 ± 0.08. (a) None, (b) low,
(c) intermediate, and (d) high, where HFOV is (a) 1.104 mm and
[(b)–(d)] 0.220 mm.

0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3 3.3 3.6 3.9

δρ0
1/2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
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1
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FIG. 11. Normalized Betti number for dimension 0 (dashed
lines) and 1 (solid lines) vs filtration parameter at dimensionless time
2.40. From darkest to lightest (black, magenta, orange, yellow): high,
intermediate, low, and none experiments.

is poorer. Clearly the β
1 curves are wider and displaced to

higher dimensionless filtration parameters, when compared to
earlier times (Figs. 9 and 11).

In the BF context a coalescence event occurs at a given
time when the distance between the centers of two droplets
(di j) becomes smaller than the sum of their radii. This point
corresponds to a value of the filtration parameter δ = 0 in the
MVRC and to � = di j in a standard Vietoris-Rips complex.
If we consider all the droplets on the surface, it is possible
to relate both of these values to a quantity that is linked to
the distribution of radii in the BFs. This quantity, when made
dimensionless, should be the same regardless of the original
distribution of droplets if there is complete spatial random-
ness. Therefore, it is convenient to consider (in dimensionless

0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3 3.3 3.6 3.9

δρ0
1/2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

β 0,
1

*

high
intermediate
low
none

FIG. 12. Normalized Betti number for dimension 0 (dashed
lines) and 1 (solid lines) vs filtration parameter at dimensionless time
4.07. From darkest to lightest (black, magenta, orange, yellow): high,
intermediate, low, and none experiments.
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variables):

�+ ≡ δ+ + x〈r+〉, (8)

where x is an unknown function of t+ with expected values of
the order of 1, and 〈r+〉 is the average radius (extracted from
Fig. 7).

We obtain β
0 for all the cases and dimensionless times

(data not shown). We aim to fit all β
0 curves with Gaussian

functions displaced by x〈r+〉 to get a smooth estimation of
their spread (i.e., standard deviation):

β
0 = exp

[
− (x〈r+〉 + δ+)2 − x2〈r+〉2

2σ 2
β

0
ρ0

]
. (9)

The slope of β
0 at the origin is inversely proportional to its

variance and proportional to x:

∂β
0 (δ+; t+)

∂δ+

∣∣∣∣
δ+=0

= −x〈r+〉
σ 2

β
0
ρ0

. (10)

In this equation we can see that β0 (or β
0) can be expressed

in our system as a function of two variables (δ and t , or their
dimensionless variations).

If the number of connected components is constant, then
by the implicit function theorem:

dδ

dt
= −∂β0

∂t

(
∂β0

∂δ

)−1

. (11)

Evaluating Eq. (11) in δ = 0 and t = t0 and using that
β0(δ = 0, t = t0) = N (t0), where N (t0) is the number of BF
droplets at time t0. Then

dδ

dt

∣∣∣∣
t=t0

= − dN

dt

∣∣∣∣
t=t0

(
∂β0

∂δ

∣∣∣∣
δ=0

)−1

.

Note that the last equation relates the (spatial) topology at
a given time with the evolution of the coalescence events in
the future. If now we put the left-hand side of the equation as
a function of 〈r〉 (by using the chain rule):

dδ

d〈r〉
∣∣∣∣
〈r〉=〈r〉(t0 )

= − dN

dt

∣∣∣∣
t=t0

(
∂β0

∂δ

∣∣∣∣
δ=0

d〈r〉
dt

∣∣∣∣
t=t0

)−1

.

After that, we make all quantities dimensionless and prop-
erly scaled (e.g., β0 = Nβ

0), and remove the evaluation points
when they are obvious. That gives

dδ+

d〈r+〉 = − 1

ρ+
dρ+

dt+

(
∂β

0

∂δ+

∣∣∣∣
δ+=0

d〈r+〉
dt+

)−1

. (12)

Using Eq. (8), and taking �+ constant, we obtain

dδ+

d〈r+〉 = −x, (13)

and if we plug Eqs. (13) and (10) into Eq. (12), then

x2

σ 2
β

0
ρ0

= − 1

ρ+
dρ+

dt+

(
〈r+〉d〈r+〉

dt+

)−1

. (14)

Note that the right-hand side of Eq. (14) is a function of
t+ and that both experimental data values and the fits to the
scaling model can be used to determine a value for each t+.
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FIG. 13. Characteristic dimensionless width of Betti number for
dimension 0 vs dimensionless time. It was obtained as the standard
deviations of the Gaussian functions that fit the data self-consistently
(see text). In the inset the dimensionless filtration parameter for
which β1 is maximum is plotted against the dimensionless width
of β

0 .

Finally, we fit Eq. (9) to all β
0 curves, self-consistently with

Eq. (14).
In Fig. 13 the dimensionless width of β

0 (the standard de-

viation of the Gaussian fit, σβ
0
ρ

1
2

0 , calculated as stated above)
is shown as a function of dimensionless time. At low times
(t+ < 2), where the growth of droplets is mostly homoge-
neous due to diffusion with relatively few coalescence events,
the positions of the droplets do not change much. There-
fore, the starting point to measure distances in the MVRC
moves according to the droplet radii. Consequently, the nodes
(droplets) link at similar filtration parameters, leading to a
narrow β

0 (number of connected components). In fact, in the
region where Eq. (1) holds asymptotically, the aforementioned
standard deviation is nearly constant.

When coalescence events dominate the growth (t+ � 2),
the distances between coalescing droplets and others increase
with a linear trend, resulting in a wider β0 as dimensionless
time increases.

We also obtain all β
1 curves (data not shown). We fit them

with Gaussian functions to get a smooth estimation of their
displacement with respect to the origin, their maximum value,
and their spread (i.e., standard deviation). As the structure of
droplets is not a perfect triangular lattice, when around one
link per droplet is formed, the complex starts to have holes and
β

1 becomes bigger than 0. Consequently, the position of the
maximum of the β

1 curve behaves similarly to the width of β
0 .

In the inset of Fig. 13, the dimensionless filtration parameter
for which β1 is maximum according to a Gaussian fit is plotted
against the dimensionless width of β

0 .
In Fig. 14 the plot shows the derivative of the dimension-

less filtration parameter δ+ with respect to the average radius
〈r+〉 as a function of dimensionless time. When droplets
are very small (i.e., at very short times t+ � 1), almost all
droplets have the same size. Therefore, they grow at the same
rate, and an increase in 〈r+〉 is equivalent to a decrease of δ+
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FIG. 14. Ratio between the infinitesimal change of the di-
mensionless filtration parameter δ+ that is needed to balance an
infinitesimal increase of the average radius 〈r+〉 to keep a constant
characteristic width of β

0 , as a function of dimensionless time.

twice the variation of radii. It is expected that x [in Eq. (13)]
approaches 2 when t+ → 0+. As time increases, but still coa-
lescence events are not predominant, x rapidly decreases. This
decrease indicates that there are more neighbors made of large
drops or mixed ones than neighbors made up small droplets, as
large droplets are randomly distributed on the surface. When
coalescence events become more relevant (t+ � 2), there are
high fluctuations around a value of x ∼ 0.7. At later times,
when new droplets appear, there is a slight decrease in x.

In Fig. 15 the maximum value of β
1 according to the Gaus-

sian fit is plotted against dimensionless time. It is possible
to observe that the Betti numbers increase abruptly as time
increases until a value of t/τ between 1 and 3 is reached.
After that, the maxima decrease with a much smaller slope.
Therefore, we can conclude that the complete spatial random-
ness existing in the nucleation sites leads to a small proportion
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FIG. 15. Normalized maximum Betti number for dimension 1 vs
dimensionless time.
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FIG. 16. Typical width of the region in the filtration parameter,
where Betti number for dimension 1 is relevant vs dimensionless
time. It was obtained as the standard deviation of the Gaussian
functions that fit the data.

of holes in the corresponding complex, which increases with
subsequent coalescence events. When coalescence events are
dominant compared to diffusion in the growth of droplets, the
proportion of holes decreases and asymptotically reaches a
value of around 0.2–0.3, which corresponds to a self-similar
structure [16].

These self-similarity effects can also be observed in
Fig. 16, where the dimensionless width of β

1 (standard de-
viation of the Gaussian fit) is shown as a function of the
dimensionless time. The curves follow a similar trend as the
dimensionless width of β

0 (Fig. 13). When new droplets ap-
pear (in the self-similar stage), the observed width seems to
have become stationary and fluctuating around a dimension-
less value of 1, which defines, together with δmax. β1 (see inset
of Fig. 13), the spatial range where holes are relevant.

V. CONCLUDING REMARKS

In conclusion, the spatial distribution of emerging droplets
determines the evolution of the condensation pattern, irrespec-
tive of the details of the interaction between droplets. With
very few assumptions, we derive a model of breath figure (BF)
evolution for short times that performs well over a long range
(up to stage 5) due to the nature of the complete spatial ran-
domness (CSR) distribution of nucleation seeds and the fact
that nucleation sites are fixed and do not relax thermodynami-
cally (quenched disorder). We assume that droplets grow from
very small nuclei that appear in a short time at the beginning
of the experiment. If this were not the case, a more complex
approach should be taken [32,33], even in the scenario where
the centers of the nuclei exhibit a CSR distribution.

Once new droplets appear (stage 5), the distribution is no
longer static, and nucleation events appear to be like sampling
with replacement from the distribution of nuclei, compared to
the case in which Eq. (1) holds. This stage may correspond to
self-similar dynamics, and the approach given in this article
must include new concepts [16]. This deviation is mostly
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related to the structural differences between complete spatial
randomness [30] and the self-similar stage. We encourage
further study of that regime (long times) from a holistic point
of view and also to confirm experimentally the validity of the
model for much shorter times, where t1/3 behavior could be
observed.

Actually, the appearance of new droplets allows a slight in-
crease in surface coverage at long dimensionless times (t+ �
1), which would otherwise decrease. This has significant
implications for applications such as water recovery, which
indicate that coated substrates are a significant improvement.
These substrates exhibit macroscopic hydrophobic behavior
(see contact angles in Table 1 of the Supplemental Material
[23]) with a high number density of hydrophilic nucleation
sites where droplet nucleation events occur. The former favors
shedding when the substrates are inclined, while the latter
decreases the characteristic times (see the Supplemental Ma-
terial [23]) of the growth dynamics. It is worth noting that
the asymptotic value of surface coverage decreases as the
macroscopic contact angle increases [2]. In applications, it
is preferred to have small contact line pinning, resulting in
increased shedding. Generally, contact angles higher than 90◦
are preferable.

These types of substrates are easier to fabricate compared
to tailored regular lattices, which may also have interesting
properties (e.g., even higher contact angles and a high number
density of nucleation sites). However, it is important to keep in
mind that the use of BFs in real-world applications has very
different boundary conditions [2]. Having a humidity reser-
voir (Dirichlet boundary condition) is more desirable than a
constant humidity flux (von Neumann boundary condition)
used here, which in turn makes the recovered water rate con-
stant at the stationary state. With our conditions, the recovered
water does not depend on the substrate.

We also compared the condensation patterns that ap-
pear on substrates with different densities of nucleation sites
using classical techniques and persistent homology. Both ap-
proaches give consistent results and are similar among the
different densities of sites when the dimensionless magnitudes
are considered. To obtain the dimensionless magnitudes, we
used the typical time and characteristic initial surface number
density obtained from stretched exponential fits coming from

the scaling model [Eq. (3)]. With those fits, we achieved very
good (to fair, depending on the magnitudes) collapse to single
curves of all the data. Thus, by varying the number of nucle-
ation sites but keeping the other experimental conditions the
same, the scaled behavior is equivalent for both macroscopic
averages and topological features.

We were able to establish a connection between the BF
topological properties at a particular time and the coalescence
events that would occur at later times. At short times, there
is a clear collapse of the data (Fig. 14) that demonstrates
this relationship. However, at long times, the collapse is less
evident, and further research is required, perhaps using other
more informative quantities of persistent homology, such as
the barcodes in different dimensions. If a universal behavior
for dδ+

d〈r+〉 at all times could be determined, it would be possible
to predict future coalescence events statistically. Otherwise,
predictions could be made only locally, and the calculation of
persistent homology would have to be performed for all times.

Finally, we have demonstrated that global boundary condi-
tions (number density of nucleation sites, air flow rate, etc.)
have a greater influence on the statistics and topology of BF
evolution than individual growth models.
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