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Modeling flow of Carreau fluids in porous media
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Carreau fluids occur routinely in porous medium systems for a range of applications, and the dependence of
the viscosity for such fluids on the rate of strain tensor poses challenges to modeling at an averaged macroscale.
Traditional approaches for macroscale modeling such flows have relied upon experimental observations of
flows for generalized Newtonian fluids (GNFs) and a phenomenological approach referred to herein as the shift
factor. A recently developed approach based upon averaging conservation and thermodynamic equations from
the microscale for Cross model GNFs is extended to the case of Carreau fluids and shown to predict the flow
through both isotropic and anisotropic media accurately without the need for GNF-flow experiments. The model
is formulated in terms of rheological properties, a standard Newtonian resistance tensor, and a length-scale tensor,
which does require estimation. An approach based upon measures of the morphology and topology of the pore
space is developed to approximate this length-scale tensor. Thus, this work provides the missing components
needed to predict Carreau GNF macroscale flow with only rheological information for the fluid and analysis of
the pore morphology and topology independent of any fluid flow experiments. Accuracy of predictions based
upon this approach is quantified, and extension to other GNFs is straightforward.
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I. INTRODUCTION

Non-Newtonian fluids appear frequently in natural and en-
gineered systems, including geological flows [1–8], biological
flow in the body [9–14], and subsurface industrial processes
[14–24]. The prevalence and complexity of non-Newtonian
fluids has led to a proliferation of modeling approaches in the
literature [14,18,21,23,25–31], with no one approach being
universally accepted [21,26,27,31]. This complexity includes
shear rate dependence and thixotropic behavior, as well as
viscoelasticity [14,23,26,32–34], which have been observed
to be important in some porous medium systems [14,21,23–
27,31,35].

Fluids for which the dynamic viscosity depends upon the
instantaneous shear rate, temperature, and pressure but not
explicitly on time are called generalized Newtonian fluids
(GNFs), and these are often present in flows in porous medium
systems [18,23,24,26,35,36]. GNFs exhibit a stress-strain
relationship such that

τw = 2μ̂w(γ̇w )dw, (1)

where τw is the viscous stress tensor for an incompressible
fluid, μ̂w is the dynamic viscosity, which is dependent on
the shear rate γ̇w, dw is the symmetric rate of strain ten-
sor, and the subscript w indicates that these quantities apply
to the fluid phase at the microscale, also called the pore
scale [26,32,34,35,37]. GNFs exhibit complex shear profiles
in porous media that can change dramatically with flow rate,
which has complicated their modeling at both the microscale
and the macroscale, which is a continuum scale in which
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averaging is performed over a representative elementary vol-
ume consisting of many pores [14,24,26,27,31,35,36]. The
macroscale is sometimes referred to as the porous medium
continuum scale, and it is a length scale relied upon to solve
many applications of interest. The details of the pore morphol-
ogy and topology resolved at the microscale are lost at the
macroscale and replaced with extent measures such as volume
fractions and specific interfacial areas.

Typically, GNFs are simulated in porous medium systems
at the macroscale by using models developed for Newtonian
fluids and empirically fitting an effective viscosity at each flow
rate [18,21,24,27,35,36]. This approach requires fitting a shift
factor for each medium and fluid of interest. Additionally,
the calculation of the shear rate in Eq. (1) is numerically
complex [38–40] and has led to computational methods that
either rely on simplified analogs, such as pore network models
[21,23,24,24–26,29,30,41–44], or are incapable of simulating
realistically sized systems [36]. An ideal macroscale model
for GNFs would be able to simulate flow through a medium
using known properties of the medium and rheological char-
acteristics of the fluid, without the need to run experiments for
each GNF and medium of interest.

Among GNFs, Cross [18,27,29,30,35,36] and Carreau
[14,21,24,26–28,31] model fluids are two of the most preva-
lent, especially in subsurface processes such as hydraulic
fracturing. A macroscale model has been proposed for Cross
model fluids that does not require observed data for every
GNF of interest [35]; however, such a model has not been
formulated for Carreau fluids, and the Cross model approach
relies upon the determination of a length-scale tensor that may
not be easily accessible. Extension of this model to Carreau
fluids as well as a method of estimating the length-scale tensor
based on properties of the medium are important open issues.
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The goal of this work is to develop and validate a
macroscale model for Carreau fluids flowing in single-fluid
porous medium systems. The specific objectives are (1) to
develop a macroscale model for Carreau fluids that relies
upon only rheological characterization of fluid properties
and accessible porous medium properties, (2) to validate the
macroscale model for a variety of porous medium systems and
fluid properties, and (3) to develop an approach to estimate the
length-scale tensor used in macroscale modeling of GNFs.

II. BACKGROUND

A. Microscale modeling of Carreau fluids

Carreau model fluids exhibit a viscosity-shear rate depen-
dence given by

μ̂w(γ̇w ) = μ̂∞ + (μ̂0 − μ̂∞)[1 + (λ̂γ̇w )2]
n−1

2 , (2)

where μ̂∞ is the viscosity as the shear rate approaches infinity,
μ̂0 is the viscosity at zero shear rate, λ̂ is a relaxation time, and
n is a non-Newtonian power index [26,34]. The shear rate is

γ̇w =
√

2dw:dw, (3)

and the rate of strain tensor, dw, is [34,37]

dw = 1
2 [∇vw + (∇vw )T], (4)

where vw is the microscale fluid velocity vector.
It is often the case that simplified rheological models are

selected instead of the Carreau model, such as rheological
power laws within constrained shear rate cases, or power
law with cutoff (PLCO) approaches [45], which are both
often restricted to shear-thinning fluids. However, rheological
power laws have been found to poorly model real systems
that span a wide range of shear rates [46–48], and PLCO
approaches do not accurately model the rheology of fluids
that are transitioning from a Newtonian plateau to power-law
behavior, and vice versa. To ensure that models are accurate
across the full range of shear rates that are expected in many
porous medium systems, four-parameter rheological models
deserve consideration. The shear rates of concern for a given
system are in turn related to the range of flow rates exhibited.

In addition to simplified rheological models, GNFs have
often been modeled at the microscale using simplified geo-
metric approximations, such as a bundle of capillary tubes
or other pore-network models [21,23–26,29,30,41–44]. While
these models have proven computationally efficient, they
do not accurately represent the complex morphology and
topology of many porous media, making them suboptimal
[49–51]. Lattice Boltzmann methods (LBMs) have been used
to model GNFs at the microscale [52–56], and a three-
dimensional LBM has been used to simulate Cross model
fluids but not Carreau model fluids [36]. OpenFOAM, an
open-source simulation toolkit, has also been used to sim-
ulate GNFs at the microscale, including Carreau model
fluids [14,18,36]. Microscale simulations are often carried
out to inform macroscale models based on a shift-factor
approach to enable the simulation of systems at lengths
scales that are not accessible with microscale simulation alone
[18,21,27,36,57–60].

B. Shift-factor approach

The shift-factor approach, although this terminology is
not universally used to describe this method, has been the
predominant approach used for macroscale modeling of
GNFs in porous medium systems. The shift factor is based
on applying Darcy’s law to non-Newtonian fluids, as well
as Newtonian fluids by introducing an effective viscosity
[18,21,24,25,27,35,36,42,43,61–66]. Darcy’s law can be writ-
ten for a Newtonian fluid as

qw = − k̂
w

μ̂w
·(∇pw − ρwgw ), (5)

where qw is the volumetric flux for the system, often called the
Darcy velocity, k̂

w
is the intrinsic permeability tensor, μ̂w is

the macroscale dynamic viscosity of the fluid, pw is the fluid
pressure, ρw is the fluid density, gw is the gravitational ac-
celeration vector, superscripts indicate macroscale quantities,
and double overbars indicate a quantity that is defined as a
specific average of microscale quantities [37,67–72]. For the
shift-factor approach, μ̂w in Eq. (5) is replaced by an effective
viscosity, μw

eff, which is calculated using an effective shear
rate, γ̇ w

eff, defined for an isotropic system by

γ̇ w
eff = α̂

qw√
εw k̂w

, (6)

where α̂ is the shift factor, qw is the magnitude of the Darcy
velocity, εw is the porosity of the system, and k̂w is the
isotropic intrinsic permeability. Eq. (6) is a dimensionally
consistent scaling ansatz that relates the effective shear rate
to the volumetric flux and medium properties.

The shift-factor approach is typically used for isotropic
systems [18,21,24,27,36], with few anisotropic examples in
the literature [57–60]. There is disagreement in the literature
whether the shift factor depends upon the fluid or not [35,36].
The shift-factor approach requires fitting α̂ for simulation
or experimental flow data for each GNF of interest flowing
through the medium of interest after Newtonian characteri-
zation of k̂w [35]. This is more complicated than the way that
Newtonian fluid flow is modeled, which is often approximated
based on surrogate measures of the pore morphology and
topology to predict k̂w and Darcy’s law [67,68]. Additionally,
many porous media are anisotropic, making them inappropri-
ate for the shift factor approach as it has been typically written
[18,21,24,27,36].

C. Averaging theory approach

Thermodynamically constrained averaging theory (TCAT)
is a hierarchical model building approach that uses microscale
conservation and thermodynamic principles to develop closed
models at a variety of length scales that can involve fluid
flow, species and energy transport, and reactions [37,70,73].
TCAT modeling hierarchies have been developed and ap-
plied to many phenomena that occur in porous medium
systems, including single-fluid flow [37,69,74–76], two-fluid
flow [37,77–79], tumor growth [80–82], and single GNF
flow porous medium systems [35], as well as sediment
transport [83].

065106-2



MODELING FLOW OF CARREAU FLUIDS IN POROUS … PHYSICAL REVIEW E 108, 065106 (2023)

Bowers and Miller [35] used TCAT to derive a macroscale
model for the flow of a single-phase Cross model fluid through
porous media. This model was capable of simulating flow
of Cross model fluids in porous media without needing to
calculate a shift factor so long as a characteristic length-scale
tensor, L̂

w
, was accessible. L̂

w
was calculated from

−〈2μ̂wdw·nw〉�ws,�ws = L̂
w·R̂w·vw, (7)

where nw is the surface normal of the w phase, R̂
w

is a
symmetric second-rank resistance tensor, vw is the density
weighted average velocity, and 〈〉�ws,�ws

is an averaging op-
erator evaluated over the fluid-solid, orws, interface [35,37].
The general form of the averaging operator is described in the
literature and accommodates many different types of averages
arising in the theory. The subscripts specify the regions of
integration and normalization, respectively. An independent
expression involving R̂

w
is available based upon an entropy

inequality that ensures agreement with the second law of
thermodynamics. For a Newtonian fluid, R̂

w
may be related

to k̂
w

by [35, Eq. (41)]

k̂
w

μ̂w
= εw

2
(R̂

w
)−1, (8)

providing a connection between the TCAT analysis and
Darcy’s law.

It was also shown that

| − 〈2μ̂wdw·nw〉�ws,�ws | = μ̂w
effγ̇

w
eff, (9)

linking an effective viscosity and shear rate to averaged mi-
croscale quantities [35].

Eq. (7) may be used to calculate L̂
w

for a Newtonian fluid
and applied to model GNFs when microscale simulation data
are available [35]. Because L̂

w
was found to be a property of

the medium, we posit that this tensor can be approximated
based upon surrogate measures of the morphology and topol-
ogy of the pore structure. If this is so, a GNF-flow model
can be developed and applied using only standard Newtonian
characterization of a medium and the rheological properties of
the fluid.

III. MACROSCALE MODEL

A. Formulation approach

The purpose of this section is to formulate a macroscale
model based upon averaging from the microscale and thermo-
dynamically constrained closure relations that are consistent
with the second law of thermodynamics [37,70,73]. This
approach provides a connection between the microscale
and macroscale that results in a precise description of all
macroscale quantities and enables the use of microscale
simulations to evaluate approximations made to close the
macroscale model. The phenomenon of concern is single fluid
flow of a Carreau fluid through a porous medium system
represented at the macroscale. The TCAT approach will be
used to derive a Carreau model for flow through a porous
medium of focus in this work.

A model that incorporates GNF rheology may be derived
by applying secondary restrictions specific to our use case

to the general TCAT model hierarchy for single-fluid flow
through porous media available in the literature [37]. The sec-
ondary restrictions applied here are the same as those applied
in [35]: (1) the system is isothermal; (2) both phases are of a
constant composition in space and time with no mass transfer;
(3) the interface between the fluid and solid phase is massless;
(4) the solid phase is immobile and incompressible, with a
constant volume fraction in space and time; (5) the fluid flow
is in the Stokes regime and inertial terms in the momentum
equation are unimportant; and (6) the fluid is incompressible,
of constant density at the microscale and macroscale, and
with a viscosity that depends only upon the instantaneous
shear rate, i.e., a GNF without temperature or pressure effects.
The sections that follow summarize the components of the
proposed model.

B. Conservation equations

A macroscale model for the restricted single-fluid phase
system of concern includes a conservation of mass equation of
the form [37, Eq. (6.73)]

∂ (εwρw )

∂t
+ ∇·(εwρwvw ) = 0, (10)

and a conservation of momentum equation that can be written
as [37, Eq. (6.92)]

∂ (εwρwvw )

∂t
+ ∇·(εwρwvwvw ) − ∇·(εwtw )

− εwρwgw −
s→w

T = 0, (11)

where t is time, tw is the stress tensor, and
s→w

T is the rate of
momentum density transfer from the solid phase to the fluid
phase. Producing a solvable model based on Eqs. (10) and (11)

requires closure approximations for tw and
s→w

T , which must
be consistent with the second law of thermodynamics. This
consistency condition is expressed as a simplified entropy
inequality [37, Eq. (9.63)].

C. Closure approximations

The simplified entropy inequality can be used to deduce a
zero-order approximation for the stress tensor, which can be
written as [35, Eq. (19)]

tw = −pwI, (12)

where I is the identity tensor. Eq. (12) can be interpreted as
an approximation that the macroscale stress tensor is inviscid,
which follows from the dominant role of the interphase trans-
fer of momentum between the fluid phase and the surface of
the solid phase internal to the domain, which is represented

separately and denoted
s→w

T [35,37].

An approximation is also needed for
s→w

T , which may
be deduced from a first-order, conjugate flux-force approxi-
mation based upon the simplified entropy inequality as [35,
Eq. (20)]

εw∇pw − εwρw∇(μw + ψw ) − εwρwgw −
s→w

T = R̂
w·vw,

(13)
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where μw is the chemical potential, and ψw is the gravita-
tional potential.

For the GNF of focus in this work, it is useful to equate R̂
w

to the fluid viscosity and the known dependence on the rate
of strain tensor. Because the macroscale equations have been
derived by averaging from the microscale, the averaged defi-

nition of
s→w

T can be substituted into Eq. (13), simplifications
can be made based on secondary restrictions, and the desired
relationship deduced as [35, Eq. (28)]

εws〈ρwψwnw〉�ws,�ws + εws〈pwnw〉�ws,�ws

− εws〈2μ̂wdw·nw〉�ws,�ws = R̂
w·vw, (14)

where εws is the specific interfacial area of the ws interface
between the solid and fluid phases.

D. Carreau fluid resistance tensor

The purpose of this section is to formulate an expression
for R̂

w
for the case of a Carreau GNF. Inspired by the success

in modeling Cross model fluids at the macroscale [35], we
posit a functional form for R̂

w
that is similar to the microscale

Carreau model for viscosity given by Eq. (2), which may be
written as

R̂w
ii (qw

i ) = R̂w
ii ∞ + (

R̂w
ii 0 − R̂w

ii ∞
)[

1 + (

̂iq

w
i

)2] n−1
2 , (15)

where R̂w
ii ∞ is the Newtonian resistance at the infinite shear

rate viscosity, R̂w
ii 0 is the Newtonian resistance at the zero

shear rate viscosity, 
̂i is a constant related to λ̂, i’s are
indexes specifying a vector or tensor component, and R̂

w
is

assumed to be diagonal as a result of the principal directions
of the medium being oriented with the Cartesian coordinate
directions. R̂w

ii ∞ and R̂w
ii 0 may be calculated from Eq. (8),

where the viscosity is replaced by the corresponding Newto-
nian viscosity limits from the Carreau fluid model.

The unknown coefficients 
̂i must be computed. Because
of the posited similarity in scaling of μ̂w and R̂

w
, a reference

point is chosen such that

μ̂r =
√

μ̂0μ̂∞ (16)

and

R̂w
iir =

√
R̂w

ii0R̂w
ii∞, (17)

where the subscript r denotes the reference point. Because the
scaling between the Newtonian limits in Eqs. (2) and (15) is
due to the quantities within brackets in each equation, we may
equate these quantities at the reference velocity and solve for

̂i giving


̂i = λ̂γ̇r

qw
ir

, (18)

where γ̇r is the reference shear rate at which μ̂r occurs, which
can be computed from Eq. (2). To solve for 
̂i, qw

ir must be
determined, which can be accomplished using Eqs. (7) and
(9), recalling that

qw
i = εwvw

i , (19)

evaluating for the reference conditions in each direction
giving

qw
ir = εw

√
μ̂0μ̂∞γ̇r

L̂w
ii

√
R̂w

ii 0R̂w
ii ∞

. (20)

Substituting Eq. (20) into Eq. (18) gives


̂i =
λ̂L̂w

ii

√
R̂w

0 iiR̂w∞ii

εw
√

μ̂0μ̂∞
. (21)

Eqs. (15) and (21) may be used to calculate a resistance
for Carreau model fluids without the need to carry out experi-
ments or simulations beyond those needed to compute R̂

w
and

L̂
w

, which are accessible for a Newtonian fluid. Estimation
of these two tensors from surrogate measures of the system
properties could further reduce the data burdens needed to
model GNF flow through porous medium systems.

E. Carreau fluid resistance profile

The Carreau fluid resistance model profile transitions be-
tween constant Newtonian limits at both low and high values
of the shear rate, which follows from the functional form
given by Eq. (15). To evaluate the flow rate range over which
significant deviation from Newtonian behavior is expected,
Eq. (15) can be differentiated with respect to qw

i yielding

∂R̂w
ii

∂qw
i

= (
R̂w

ii 0 − R̂w
ii ∞

)

̂2

i (n − 1)qw
i

[
1 +

(

̂iq

w
i

)2
] n−3

2

.

(22)
Evaluating Eq. (22) as a function of qw

i provides a measure of
the deviation from Newtonian behavior. At the limits of low
and high shear rates, this equation tends toward zero, while
markedly nonzero over the transition region between these
two limits.

IV. METHODS

A. Overview

Section III advanced a macroscale model for the flow of a
Carreau fluid through a porous medium system. This model
was based upon a posited scaling behavior and an extension
to a previously validated macroscale model for Cross model
fluids. The existing validated Cross model [35] and the posited
Carreau GNF macroscale model both include a length-scale
tensor L̂

w
that must be determined. Because the macroscale

model is based upon averaging microscale equations to the
macroscale, all macroscale quantities are described in terms
of averages of microscale quantities, which provides opportu-
nities for model evaluation and validation. To take advantage
of these opportunities, microscale simulations of a range of
systems were relied upon to evaluate and validate the pro-
posed model, and to advance an approach to estimate the
needed parameters. The range of media and fluid properties,
microscale computational approach, model evaluation and
validation methods, and parameter estimation approach used
are summarized in turn in the sections that follow.
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TABLE I. Carreau model fluid parameters.

Parameter Fluid 1 Fluid 2 Fluid 3 Fluid 4

μ̂0 (Pa s) 1.0 × 100 1.0 × 101 1.0 × 100 1.0 × 100

μ̂∞ (Pa s) 1.0 × 10−2 1.0 × 10−2 1.0 × 10−2 1.0 × 10−2

λ̂ (s) 1.0 × 104 1.0 × 104 1.0 × 105 1.0 × 104

n 7.0 × 10−1 7.0 × 10−1 7.0 × 10−1 5.0 × 10−1

ρw (kg/m3) 1.0 × 103 1.0 × 103 1.0 × 103 1.0 × 103

B. System properties

Several different porous medium systems were selected
for model validation and parameter estimation as summa-
rized in Table II. The media considered were a body-centered
cubic array of spheres (BCC), a body-centered array of el-
lipsoids (BCE), random sphere packs consisting of 25 and
1000 spheres, and random ellipsoid packs. The BCC system
was selected as a unit test, being simple enough to simulate
at high resolution, while generating flow paths that are more
complex than what is seen in a capillary system. The BCE
system provides an anisotropic unit test similar to the BCC
system and was generated by stretching the BCC system until
a target ellipsoid aspect ratio of 2 was reached. The 1000
random sphere systems were used to evaluate results gener-
ated from the small random sphere packs. The random sphere
packs were made up of nonoverlapping spheres whose radii
were log-normally distributed, generated using an available
method [84].

To develop approximations of L̂
w

, a set of 1000 25-
sphere systems was developed that spanned a wide range
of pore structures. Simulations were carried out using ran-
domly packed spheres, packed using the same methods as
the 1000 sphere systems described above. Isotropic packings
were generated with log-normal variances in sphere radii of
0, 0.01, 0.05, 0.1, and 0.5. For each targeted radii variance,
packings were generated with porosities of 0.36, 0.38, 0.4,
0.42, and 0.44, and for each targeted porosity 20 packings
were generated, giving a total of 500 systems. The anisotropic
system packings were generated by packing an isotropic sys-
tem in a domain that was noncubic, and then stretching this
domain into a cubic domain, turning the spheres into ellip-
soids. Systems were stretched in one dimension by an amount
that would give the target aspect ratio for each ellipsoid.
Anisotropic domains were generated with aspect ratios of 2,

2.5, 3, 3.5, and 4, and for each aspect ratio packings were
generated with porosities of 0.36, 0.38, 0.4, 0.42, and 0.44,
giving a set of 500 anisotropic systems, which all consisted
of identical monodispersed particles. For both the isotropic
and anisotropic system sets, the mean radius was allowed
to change to accommodate the targeted porosity, log-normal
variance, and system dimensions, and the nondimensional in-
terpretation of the results made this scaling inconsequential. A
set of sphere packings consisting of 1000 spheres were gener-
ated to validate the model to approximate L̂

w
. These packings

were generated with a porosity of 0.4, and had log-normal
variance in sphere radii of 0, 0.01, 0.05, 0.1, 0.5, with two
systems being generated for each variance. System properties
are summarized in Table II, and example systems are shown
in Fig. 1.

All simulations consisted of single fluid flow of a New-
tonian or Carreau fluid through a porous medium. For
simulations meant to validate the macroscale model, four dif-
ferent Carreau fluids were considered, with parameters listed
in Table I. The fluids, and flow conditions, were selected
to ensure a wide range of GNF behavior while maintaining
Stokes flow. For the estimation of L̂

w
each simulation con-

sisted of a Newtonian fluid flowing through a medium with
μ̂w = 1.0 × 10−3 Pa s and ρw = 1.0 × 103 kg/m3. Carreau
model fluid flow was simulated for one 1000-sphere pack-
ing with log-normal variance of 0 in order to compare the
resistance predicted using the estimated value of L̂

w
to the

observed resistance.

C. Computational approach

Microscale simulations have been found to be a useful
tool when studying macroscale phenomena, especially when
macroscale models are directly derived from microscale mod-
els as was done here [35–37]. Microscale simulations were

TABLE II. Porous media properties.a

Parameter BCC BCE RPSI RPE RPSII

Length in x (m)b 1 × 10−3 1 × 10−3 1 × 10−5 1 × 10−5 1 × 10−5

Number of spheres/ellipsoids 2 2 25 25 1000
Porosity, εw 0.325 0.325 0.36–0.44 0.36–0.44 0.4
Log-normal mean radius (m)bc 0.433012702 × 10−3 0.433012702 × 10−3 — — —
Log-normal variance 0 0 0–0.5 0 0–0.5
Number of background cells 8 × 106 1.6 × 107 3.375 × 106 3.375 × 106 1.25 × 108

Number of systems analyzed 1 1 500 500 10

aRandomly packed spheres are RPS, randomly packed ellipsoids are RPE. RPSI is a 25 sphere system, RPSII is a 1000-sphere system.
bThe BCE system includes one dimension which is double the other two dimensions, as described in Sec. IV B.
cFor RPS and RPE systems, log-normal mean radii were allowed to vary so that other medium properties could be defined at runtime.
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FIG. 1. Porous medium systems used: (a) a BCC array of spheres; (b) a BCE array of ellipsoids; (c) random sphere packs with 25 spheres;
(d) random ellipsoid packs with 25 ellipsoids; and (e) random sphere packs with 1000 spheres. In all figures the blue box represents the domain.

used here both to validate the proposed macroscale model
as well as to develop a data set to evaluate approximations
for L̂

w
. Simulations were conducted using OpenFOAM, an

open-source modeling toolkit that has been found to be use-
ful in non-Newtonian studies [18,35,36]. Simulations were
composed of a mesh generation step, followed by a flow
simulation. At run time, averaged microscale quantities were
calculated using functions built into OpenFOAM [85].

For each system a mesh was generated at the microscale us-
ing the blockMesh and snappyHexMesh utilities that are built
into OpenFOAM [85]. All cases were meshed using near-
solid refinement to improve model accuracy at the fluid-solid
interface similarly to other studies [35,86]. All boundaries
of the system were periodic. The size of each mesh was
selected such that computational error would be insignificant.
The adequate mesh refinement was determined by simulating
a wide range of flow rates for fluid 4 through increasingly
refined systems. With each level of refinement, the hydraulic
resistance was calculated using Eq. (14), and the Richardson
extrapolation for the hydraulic resistance was calculated using
data from different refinements. For two refinement levels m1

and m2, which correspond here to cell refinement in a single
dimension, Richardson’s extrapolation may be used to give an
estimate of the numerically converged resistance, R̂

w∗, by

R̂
w∗ = (m1/m2)nR̂

w

m2
− R̂

w

m1

(m1/m2)n − 1
, (23)

where R̂
w

m2
and R̂

w

m1
are the resistances observed at refine-

ments m1 and m2 respectively, and n is the order of numerical
convergence, which is approximately second order for such
systems [87]. Once the relative error between the observed
and the extrapolated resistance was less than 1%, the system
was considered grid independent. The number of cells used in
the background mesh that achieved grid independence is listed
in Table II.

OpenFOAM flow simulations were performed using the
simpleFOAM solver, which supports Carreau fluids [85,88].
SimpleFOAM solves the incompressible mass and momentum
balance equations

∇·vw = 0, (24)

∇·(vwvw ) − ∇·τw = −∇pw + S, (25)

where S is a momentum source term. The viscous stress tensor
was calculated using Eq. (1), the rate of strain tensor was
calculated from Eq. (4), and the shear rate was calculated
from Eq. (3). The viscosity followed a Carreau model using
Eq. (2), and flow was driven by imposing a body force S.
For isotropic systems, the body force was directed in one
dimension only. For anisotropic systems, each simulation was
carried out with a body force directed in one dimension, with
separate simulations performed for flow in each of the prin-
cipal directions of the medium. The SIMPLE algorithm was
carried out by simpleFOAM, and linear systems of algebraic
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equations were solved using the geometric algebraic multigrid
(GAMG) solver [85] with a specified relative error tolerance
of 1E-8.

D. Evaluation and validation

The macroscale model proposed herein was evaluated for
a range of systems to determine its accuracy and range of
applicability. The systems evaluated were summarized in
Sec. IV B. Model evaluation was done by integrating mi-
croscale simulation results and determining R̂w

ii using Eq.
(14), L̂w

ii using Eq. (7), and k̂w
ii using Eq. (8)—all for Stokes

flow of a Newtonian fluid. These parameters, the rheological
properties of the fluids, and Eqs. (15) and (18) were used to
predict the observed Stokes flow of GNFs and compare to
values of R̂w

ii determined from microscale simulation data for
every medium, Carreau fluid, and flow condition computed by
the direct application of Eq. (14) to the simulated GNF flow
data.

E. Length-scale tensor approximation

The GNF model for a Carreau fluid includes a length-scale
tensor, L̂

w
, as shown in Eq. (21). This tensor can be computed

using Eq. (7) if microscale simulation or experimental data is
available for Stokes flow of a Newtonian fluid. Estimation of
L̂

w
based upon more readily available surrogate measures was

undertaken to evaluate the extent to which approximate meth-
ods can enable simpler application of the GNF flow model
derived. The set of candidate variables upon which to base an
approximation of L̂

w
was

V = {
εw, εws, εwsJws

w , εwsKws
w , R̂

w

0 , Sw
2

}
, (26)

where Jws
w is the mean curvature of the ws interface, Kws

w is

the Gaussian curvature of the ws interface, and Sw
2 is a vector

two-point correlation measure of the pore structure. The vari-
ables from this set denoted εw, εws, εwsJws

w , and εwsKws
w are

normalized forms of the set of Minkowski functionals known
from integral geometry to be important descriptors for sets of
positive reach, which have been shown useful for describing
the state of porous medium systems [89–93].

The two-point correlation provides the probability that two
points selected within the medium are within the same phase
as one another and is given by

Sw
2 (x1−x2) = 〈Iw(x1)Iw(x2)〉�,�, (27)

where Sw
2 is the correlation between two points, w is the

phase index, x1 and x2 are the locations of points 1 and 2,
respectively, Iw is the binary phase indicator function for the
w phase, and averaging is performed over the entire spatial
domain � [94,95]. The two-point correlation has been found
to be useful when describing the microstructure of many
materials and porous media and has been used to generate
microstructures consistent with experimentally imaged data
[94–96].

Because the two-point correlation yields a relationship be-
tween the correlation of the pore structure with separation
distance but not an exact functional form, an integral mea-
sure of the two-point correlation was defined for an isotropic

medium by

Sw
2 = 1

r̄

∫ r̄

0
Sw

2 (r) dr, (28)

where r is the distance between the primary and secondary
points of the correlation, r̄ is defined such that

r̄ = 2rs, (29)

and rs is the volume-averaged radius for all spheres compris-
ing the medium.

The anisotropic systems investigated here were generated
by transforming an isotropic system of spheres, thus the two-
point analysis follows a similar procedure to the isotropic
one, with a separate two-point analysis carried out in each
dimension, and then transformed by the same scale as the
geometry. This generates a vector

Sw
2 = [

Sw
2x, Sw

2y, Sw
2z

]
, (30)

where Sw
2x = Sw

2y, and Sw
2z is transformed by the same factor

used to scale the spherical medium into ellipsoids.
An empirical general functional equation of the form

Lw
ii = F

(
εw, Jws

w , Kws
w , Rw

ii , Sw
2i

)
(31)

was evaluated, where the overlines denote nondimensional
quantities defined as

Jws
w = Jws

w ds, (32)

Kws
w = Kws

w ds2
, (33)

Rw
ii = εw

2
μ̂w

ds2
R̂w

ii

, (34)

Lw
ii = L̂w

ii

ds
, (35)

and the Sauter mean diameter used to derive the nondimen-
sional quantities is

ds = 6
(1 − εw )

εws
, (36)

which gives the equivalent diameter of a set of spheres con-
sistent with εw and εws. As a result of nonuniqueness with the
nondimensionalization approach taken, εwn was eliminated
from the variable set. The nondimensional form of R̂

w
was

derived by writing in a form equivalent to the standard intrin-
sic permeability using Eq. (8).

The most general specific functional form evaluated was

Lw
ii = Aεwβ1 Jws

w
β2 Kws

w
β3 Rw

ii
β4 Sw

2i
β5 , (37)

where A and βn are empirical coefficients fit based upon
nonlinear regression computed based upon the 1000 different
systems simulated for Newtonian flow, and simplifications of
this general form were also investigated. The estimates for L̂

w

for each model were compared to those observed in the 10
different 1000-sphere porous medium systems to evaluate the
empirical estimates for larger scale systems.
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FIG. 2. Comparison of predicted vs observed resistance for: (a) a BCC array of spheres; (b) a random sphere packing with 25 spheres
(εw = 0.4, variance = 0.1); (c) a BCE system in the x dimension; and (d) a BCE system in the z dimension.

V. RESULTS AND DISCUSSION

A. Macroscale model evaluation and validation

The hydraulic resistance predicted by the macroscale
model proposed in Sec. III, using parameters calculated as
described in Sec. IV D, was compared to resistances calcu-
lated from Eq. (14) for BCC, BCE, and RPSI systems with a
log-normal radii variance of 0.1. The comparison was carried
out for flow rates that ranged over 10 orders of magnitude in
the Stokes regime using the four Carreau fluids described in
Sec. IV B, and yielding values of R̂

w
that spanned nearly three

orders of magnitude as shown in Fig. 2. This figure shows the
characteristic trend in R̂

w
in which a transition region exists

between the two Newtonian limits. Eq. (22) can be used to
quantify the deviation from Newtonian behavior for any value
of qw

i . For each flow rate, L̂
w

was found to vary by less than
1% compared to the Newtonian value, thus the assumption
that L̂

w
is a constant property of the medium is valid for the

systems and fluids investigated here as the results obtained are
within the numerical accuracy of the simulations.

For each medium, the average relative error in R̂
w

for each
fluid was less than 0.5%, and the maximum relative error
observed for fluids 1–3 was 1% and the maximum relative
error for fluid 4 was 2% for each medium. For all media,
the maximum error in R̂

w
was observed when the change

in resistance from one flow rate to the next was also at its

maximum, near the inflection point in the log of the resistance
seen in Fig. 2. The low average and maximum errors in the
predicted R̂

w
for a wide variety of systems and fluids show

that the macroscale model presented herein is a valid and
useful approximation for a variety of porous medium systems
and a range of typical Carreau fluid properties. The error in the
macroscale model was most closely related to the rheology
of the fluid, and no impact was observed due to medium
properties here.

B. Parameter estimation

While the macroscale model presented in Sec. III was
validated for a variety of systems above, this model has thus
far required knowledge of microscale quantities to calculate
L̂

w
from Eq. (7) that may not be accessible in many contexts.

To investigate approaches that do not require such microscale
quantities, several statistical approximations of L̂

w
based upon

more accessible surrogate measures of the porous medium
morphology and topology were evaluated.

Statistical functions summarized in Table III were fit to
a combined isotropic and anisotropic data set consisting of
1000-sphere and ellipsoid packs. The model fits were carried
out in order of complexity, starting with a model with one
macroscale parameter, then adding additional parameters. Be-
cause it was expected that Lw and Rw would be correlated,
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TABLE III. Functions fit to porous medium data sets.

Function Fitted equation

1 Lw
ii = ARw

ii
β4

2 Lw
ii = Aεwβ1 Rw

ii
β4

3 Lw
ii = Aεwβ1 Jws

w

β2 Rw
ii

β4

4 Lw
ii = Aεwβ1 Jws

w

β2 Kws
w

β3 Rw
ii

β4

5 Lw
ii = Aεwβ1 Jws

w
β2 Kws

w
β3 Rw

ii
β4 Sw

2i
β5

each reported fit included Rw. Fits were carried out that
excluded Rw, but these fits were of poorer quality than the
candidate set shown in Table III and excluded from further
consideration. Variables were included in order of accessibil-
ity, with Rw being regularly tabulated as permeability, and Sw

2
not being tabulated frequently in the literature and requiring
microscale data of the pore structure. The parameters deter-
mined using a nonlinear least-squares approach are tabulated
in Table IV. This table includes the R2 and generalized cross-
validation (GCV) values so that the goodness of fit can be
evaluated for each fitted function. Comparison between the
observed and predicted values of Lw for select functional fits
are depicted in Fig. 3.

The R2 and GCV values shown in Table IV illustrate that
additional variables increased the goodness of fit, but that
these increases were modest past the inclusion of Rw and
εw. In particular, the two-point correlation did not increase
the goodness of fit significantly relative to the computational
burden of calculating it, at least in the form investigated here.
This is a similar conclusion to what was found in [97], where
two-point correlation was included in a machine-learning al-
gorithm designed to predict permeability. For functions 2–5 in
Table IV, the maximum error observed increased for systems
that exhibited stochastic variance compared to zero variance
media, but did not increase significantly between nonzero
variance media. The average relative error observed increased
slightly from 4.3% for zero variance media to 5.4% for media
with a variance of 0.1, increasing further to 7.7% for the media
set with the highest variance. The accuracy of the model was
dependent on the variance of the randomly packed media and
was not significantly impacted by other medium properties.

The fitted function parameters provided in Table IV allow
the calculation of L̂ for a diverse set of porous medium sys-
tems with only macroscale system knowledge. In cases where
complex microstructure data are available, the models fitted
here may be used to generate higher accuracy predictions of
L̂

w
; however, the accuracy of these predictions may not be

much greater than cases where system knowledge is limited
to εw, εws, and R̂

w
. While posited statistical approximation

accuracy based on a diverse data set is an important indicator
of a model’s usefulness, it is also important to test such ap-
proximations using systems that are of a larger size than the
small-scale systems used to derive the approximations due to
computational limitations.

C. Statistical function evaluation

To evaluate the statistical function approximations pro-
posed in Sec. V B, a set of simulations were carried out for
random packings of 1000 spheres each, with macroscale prop-
erties that vary as described in Sec. IV B. These simulations
were carried out so that the efficacy of the statistical models of
L̂

w
could be evaluated for larger scale systems than those used

to derive the approximations. For each medium, simulations
were carried out for a single Newtonian fluid flowing through
the system, and the L̂

w
was calculated for each system using

Eq. (7). This L̂
w

was compared to the L̂
w

predicted using
the statistical approximations and their fitted parameters from
Tables III and IV, respectively. As an additional validation,
one 1000-sphere medium was selected for which a set of
simulations were carried out for each fluid described in Table I
for a large range of flow rates. The observed resistance from
these GNF simulations were compared to the predicted resis-
tances calculated using the analytical resistance model with
the statistically predicted L̂

w
.

The average and maximum errors in L̂
w

as predicted by
statistical approximations relative to the observed values are
tabulated in Table V for several different model functions
and porous media. It was found that function 1, which used
only hydraulic resistance, was not as accurate as the other
functional forms. All the statistical functions were effective
at predicting L̂

w
for most media, with relatively large errors

when predicting L̂
w

for porous media with the highest vari-
ance in the model set. Comparing Tables V and IV, it may
be noted that inclusion of curvatures did not significantly
increase accuracy compared to the fitted data set, but these
quantities significantly increased the accuracy of predicting
L̂

w
for the 1000-sphere systems, justifying their inclusion

when available. Due to the computational burden of calcu-
lating the two-point correlation relative to the increase in
accuracy in the fitted data set, function 5 was not included
in 1000-sphere evaluation.

The purpose of investigating models for predicting L̂
w

from macroscale quantities is to be able to model flow of non-
Newtonian fluids in systems where the microscale averages
used in Eq. (7) are not accessible. To evaluate the efficacy of

TABLE IV. Parameter values for functions fit to the combined isotropic and anisotropic media set.

Function R2 GCV A β1 β2 β3 β4 β5

1 0.709 6.46 × 10−3 3.788 0 0 0 0.5567 0
2 0.916 2.07 × 10−3 1.108 −2.824 0 0 0.7679 0
3 0.921 1.98 × 10−3 1.151 −2.892 −0.2392 0 0.7776 0
4 0.923 1.98 × 10−3 1.141 −2.893 −0.2364 0.01414 0.7792 0
5 0.925 1.94 × 10−3 1.099 −2.774 −0.2682 0.02626 0.7639 −0.0403
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FIG. 3. Comparison of predicted vs observed values for Lw resulting from nonlinear least squares applied using (a) Function 2 and
(b) Function 5.

the statistical approximations when they are applied to such
systems, the maximum errors in R̂

w
calculated from Eq. (15)

using the predicted L̂
w

value relative to the observed R̂
w

are
shown in Table V for all GNFs flowing through a monodis-
perse, 1000-sphere porous medium. The average relative error
in resistance was also tabulated. Additionally, a comparison
between the resistance calculated from microscale simulations
and the resistance calculated from Eq. (15) using L̂

w
calcu-

lated from using function 2 is presented in Fig. 4.
It has been shown here that it is possible to calculate R̂

w

analytically from Eq. (15) using parameters that are calcu-
lated from the statistical approximation proposed in Sec. V B,
without the need to carry out costly microscale simulations
or experiments. By calculating L̂

w
with one of the statistical

FIG. 4. Comparison of observed resistance and resistance calcu-
lated from Eq. (15) using L̂

w
predicted from model function 2.

approximations from Table III, using model parameters from
Table IV, the non-Newtonian resistances of several Carreau
model fluids were predicted with an average error of about
1.5% over a range of flow rates that span about 10 orders
of magnitude. In particular, statistical function 2 was found
to perform very well using only macroscale system parame-
ters that are nearly universally available for porous medium
systems. This model may be easily applied to many porous
medium systems. As additional computational results become
available, further improvements in these results are expected.
For example, media with a wider range of porosity would
extend the support of the statistical approximations and ap-
plicability of the model. It is significant, however, that the
flow of a Carreau fluid can be predicted to within roughly
the numerical error of the simulations using only a Newtonian
characterization of the media and the rheologic properties of
a Carreau fluid.

VI. SUMMARY AND CONCLUSIONS

A theoretical development that was recently applied to
model the flow of Cross model fluids through porous media
[35] was extended and applied to Carreau model fluids, an-
other commonly encountered class of GNF. The accuracy of
the posited model was found to be roughly within the bounds
of error in the numerical approximations computed for a set
of 1000 isotropic and anisotropic porous medium systems.

The Carreau GNF model for flow through a porous
medium includes a length-scale tensor L̂

w
, which has pre-

viously been computed based upon microscale simulations
of Newtonian flow through a porous medium. To extend the
applicability of this work, statistical approximations of L̂

w

TABLE V. Model error when using statistically fitted functions to predict flow in 1000 sphere (RPSII) system set.

Function Average error % in L̂
w

Maximum error % in L̂
w

Average error % in R̂
w

Maximum error % in R̂
w

1 5.60 12.3 1.53 5.57
2 7.69 14.0 1.28 4.80
3 4.07 7.89 1.35 5.12
4 3.79 7.09 1.40 5.28
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based upon readily available surrogate measures of the pore
morphology and topology were posited and evaluated. Results
show that the resistance for Carreau flow through a range of
media can be predicted a priori without microscale simulation
data within 2%.

The prediction of L̂
w

also enables the approximation of
Cross-model flows, and potentially other GNF systems, with-
out microscale simulations or experiments.
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