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Dynamics of a silicone oil drop submerged in a stratified ethanol-water bath
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We analyze numerically the Marangoni flow around an immiscible droplet submerged in a stably stratified
mixture of ethanol and water. The linear stability analysis shows that the base flow undergoes a supercritical
Hopf bifurcation that leads to oscillations. The theoretical prediction for the critical droplet radius is consistent
with previous experimental results. Ethanol diffusion in water is critical in the flow stability for both low and high
droplet viscosity. Direct numerical simulations of the nonlinear oscillatory flow show that the frequency of those
oscillations approximately equals that of the critical eigenmode. The nonlinear convective term of the ethanol
diffusive-convective transport equation fixes the amplitude of the droplet oscillations. The viscous dissipation
associated with the Marangoni flow inside the droplet considerably reduces the oscillation.
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I. INTRODUCTION

A concentration or temperature gradient applied to an
interface can induce Marangoni steady convection. This
convection can suffer from instability, which leads to an
oscillatory motion in many problems [1–3]. Marangoni in-
stabilities have great relevance for many technological areas,
including coating techniques [1], liquid microextraction [4],
and crystal growth [3,5], among others.

Multicomponent fluids are commonly found in nature and
technological applications [6]. The concentration gradients
of the components produce not only density gradients but
also variations of the surface tension over the interfaces with
immiscible fluids. The resulting solutal Marangoni stress (in-
terfacial elasticity) competes with buoyancy to drive the flow
around those interfaces, giving rise to intriguing and counter-
intuitive phenomena, such as the self-propulsion of biological
populations [7,8] and active droplets [9,10]. The dynamics of
these droplets have been a major focus of earlier studies and
illustrate the rich physicochemical hydrodynamics arising in
relevant technological fields such as food processing [11].

The flow around an immiscible droplet submerged in a
stably stratified mixture of ethanol and water (Fig. 1) is a
paradigmatic example of the phenomena described above.
In this case, the variation of the interfacial tension over the
interface gives rise to a solutal Marangoni stress, which pulls
the liquid downward. This effect generates a viscous force
acting against gravity that levitates the droplet. The droplet is
expected to reach a steady vertical position where the droplet
weight is balanced by the buoyancy and viscosity force ex-
erted by the outer fluid. However, when the droplet radius
exceeds a certain critical value, the stratification triggers an
oscillatory instability of the Marangoni flow, producing the
continuous bouncing of the droplet [12–14].

The mechanism responsible for the instability is the fol-
lowing. The Marangoni convection homogenizes the ethanol

concentration field around the droplet. The ethanol diffused
from the outer bath tries to restore that field (Fig. 1). For
droplet radii larger than the critical value, diffusion cannot
compensate for the effect of the Marangoni convection, and
the concentration field close to the droplet softens. Then, the
Marangoni flow weakens and becomes unstable [14].

Li et al. [13] conducted the linear stability analysis of
the flow described above, assuming Stokes flow and a van-
ishing capillary number (rigid droplet). The outer viscosity
was considered constant, the effect of gravity was modeled
with the Boussinesq approximation, and the imposed far-field
ethanol concentration was a linear function of the height.
Their simulations showed that the system undergoes a Hopf
bifurcation at the critical condition. The instability threshold
was comparable to that obtained from the experiments.

In this work, we revisit this numerical problem, removing
all the above approximations (constant outer viscosity, the
Boussinesq approximation, the creeping flow limit, and the
rigid droplet approximation). We conduct the linear stability
analysis to determine the critical conditions for the oscilla-
tory instability and perform direct numerical simulations to
examine the nonlinear time-dependent response of the system.
The stability analysis allows us to examine the influence of
parameters not considered so far (for instance, the diffusion
coefficient). The characteristics of the nonlinear oscillations
following the instability are studied from the direct numerical
simulations. We explore the parameter space spanned by the
droplet radius and viscosity.

II. GOVERNING EQUATIONS

We consider the configuration sketched in Fig. 2. A sili-
cone oil droplet of (constant) density ρ (i), viscosity μ(i), and
volume V is submerged in a large bath containing an ethanol-
water mixture. The ethanol-water mixture is linearly stratified
under the action of gravity g. Specifically, the ethanol mass
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FIG. 1. A sketch of the levitating drop. Deeper orange indicates
higher water concentration. The ring around the droplet represents
the kinematic boundary layer set by the Marangoni flow indicated
by the black arrows. The ethanol concentration inside this layer
increases and is homogenized by the Marangoni convection. The
blue arrows represent the diffusion of ethanol from the surrounding
mixture toward the boundary layer.

fraction Ye (0 � Ye � 1) increases linearly with the vertical
coordinate Z . The ethanol-water density ρ (o), viscosity μ(o),
and diffusion coefficient De are known functions of Ye. The
interfacial tension γ also depends on the ethanol mass fraction
Ye [15]. The variation of ethanol concentration over the droplet
surface produces an inhomogeneous surface tension, which
drives the Marangoni flow both inside and outside the droplet.

For a given droplet radius Rd = [3/(4π )V ]1/3, the droplet
is expected to reach a stationary vertical position at which the
droplet weight is balanced by buoyancy and the viscous force
caused by the Marangoni flow. This flow becomes unstable
when Rd exceeds a critical value, and the droplet oscillates
around the equilibrium position. We solve the steady hydro-
dynamic equations to find the droplet equilibrium position
and conduct the linear stability analysis of the corresponding
base flow to determine the critical radius. The time integration
of the nonlinear equations allows us to describe the droplet
oscillatory behavior following the linear instability.

The hydrodynamic equations are solved in a cylindrical
frame of reference (r, z) solidly moving with the droplet’s
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FIG. 2. Sketch of the computational domain. The black semicir-
cumference represents the outer boundary of the numerical domain,
which solidly moves with the droplet.

lowest point (see Fig. 2). In this frame of reference, the ax-
isymmetric Navier-Stokes equations are

∂ρ ( j)

∂t
+ ∇ · (ρ ( j)v( j) ) = 0, (1)

ρ ( j) Dv( j)

Dt
= −ρ ( j)

(
g + d2h

dt2

)
ez + ∇ · σ ( j), (2)

where t is the time, v( j) = u( j)er + w( j)ez is the velocity field,
the superscripts j = i and o refer to the inner and outer phases,
respectively, and D/Dt is the material derivative. In addition,
h(t ) = Z − z is the droplet vertical position (see Fig. 2),

σ ( j) = −p( j)I + μ( j)[∇v( j) + (∇v( j) )T ] (3)

is the stress tensor, p( j) is the hydrostatic pressure, and I is
the identity matrix. The ethanol mass fraction Ye is calculated
from the convection-diffusion equation

DYe

Dt
= 1

ρ (o)
∇ · (ρ (o)De∇Ye). (4)

The above hydrodynamic equations are solved with the
following boundary conditions. The kinematic compatibility
condition reads

∂ f

∂t
+ v( j) · ∇ f = 0, (5)

where f (ri, t ) = 0 determines the interface position ri. The
velocity field must be continuous across the interface, i.e.,
v(i) = v(o). We also impose the balance of normal and tangen-
tial stresses at the interface:

en · (σ (o) − σ (i) ) · en = γ κ, et · (σ (o) − σ (i) ) · en = ∂γ

∂s
,

(6)

where en and et are the unit vectors normal and tangential to
the interface, respectively, κ is the interface curvature, and s
is the meridional arc length. The interfacial tension variation
along the droplet surface is calculated as

∂γ

∂s
= dγ

dYe

∂Ye

∂s
. (7)

Equation (4) is solved by imposing no diffusive flow of
ethanol across the interface, i.e., ∇Ye · en = 0.

The outer liquid is at rest, and the ethanol concentration
Ye(Z ) obeys the prescribed linear relationship Ye = 0.229 +
52.58 Z (Z measured in meters) at the outer boundary r2 +
(z − Rd )2 = R2

o shown in Fig. 2. Due to the small values of the
capillary number (the viscous stress in terms of the capillary
pressure), the droplet hardly deforms. In fact, our simulations
show negligible deformations with respect to the spherical
shape. For this reason, the above expression corresponds to
a sphere concentric with the droplet and solidly moves with
it (see Fig. 2). The droplet’s lowest point is chosen as the
origin of the frame of reference, which implies that u(o) =
0 and w(o) = −dh/dt at all the points of the outer bound-
ary (see Fig. 2). The regularity conditions u( j) = ∂w( j)/∂r =
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∂ p( j)/∂r = ∂Ye/∂r = 0 are considered at the symmetry axis
r = 0.

The droplet volume must be specified through the follow-
ing equation:

V = π

∫ s f

0
F 2

(
1 + F 2

z

)−1/2
ds, (8)

where s f is the arc length corresponding to the droplet’s upper
point, and F (z) is the distance between a surface element and
the symmetry axis. Since we chose the droplet’s lowest point
as the origin of the frame of reference, w(o) = 0 at this point.
This condition allows us to calculate the droplet’s vertical
position h0 in the steady base flow whose linear stability is
analyzed.

We considered droplets of silicone oils with different vis-
cosities surrounded by a stratified mixture of ethanol and
water. The droplet density is ρ (i) = 966 kg/m3. The consti-
tutive laws {ρ (o)(Ye), μ(o)(Ye), γ (Ye)} are obtained by fitting
ninth-degree polynomials to the experimental data reported by
Li et al. [14], while the data of Seydel et al. [16] is used for the
diffusion coefficient De(Ye) [15]. The fitting perfectly matches
the experimental data for the surface tension. Accurate values
of both γ and d�/dYe are obtained from this fitting. There-
fore, the driving Marangoni stress is calculated accurately. We
assume that the interfacial tension γ (Ye) do not significantly
depend on the droplet viscosity.

It must be noted that a rigorous dimensional analysis
leads to the definition of a large number of dimension-
less parameters, including, for instance, the ratio between
the characteristic viscosities; the ratio between characteristic
densities; the Marangoni, Rayleigh, Reynolds, and capillary
numbers (mentioned below); and all the parameters involved
in the constitutive laws {ρ (o)(Ye), μ(o)(Ye), γ (Ye)}, which de-
pend on the functions used to fit the experimental data. For
this reason, we avoid listing all the dimensionless parameters
and used dimensional variables to present our results.

The steady solution of the nonlinear equations is calculated
using the Newton-Raphson technique. The linear stability of
this solution is determined by calculating the axisymmetric
eigenmodes. To this end, we assume the temporal dependence

� ( j) = �
( j)
0 + δ� ( j) e−iωt + c.c., (9)

(ri, zi ) = (ri0, zi0) + (δri, δzi ) e−iωt + c.c., (10)

h = h0 + δh e−iωt + c.c., (11)

where � ( j)(r, z) represents the unknowns {v( j), p( j),Ye}, and
�

( j)
0 (r, z) and δ� ( j)(r, z) stand for the corresponding base

flow (steady) solution and the spatial dependence of the eigen-
mode, respectively. In addition, (ri, zi ) denotes the interface
position, (ri0, zi0) denotes the interface position in the base
flow, and (δri, δzi ) is the perturbation. In the linear stabil-
ity analysis, one assumes that |δ� ( j)| � |� ( j)|, |δri| � ri,
|δzi| � |zi|, and |δh| � h. Finally, ω = ωr + iωi is the eigen-
frequency characterizing the perturbation evolution. If the
growth rate ω∗

i of the dominant mode (i.e., that with the largest
ωi) is positive, then the base flow is asymptotically unstable
under small-amplitude perturbations [17]. The flow is stable
otherwise. It must be pointed out that since Z = z + h, Z at the
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FIG. 3. Droplet vertical position h(t ) as a function of time for
100-cSt silicone oil droplets with different radii.

outer boundary must be perturbed. Therefore, the ethanol con-
centration Ye(Z ) and the mixture properties {ρ (o)(Ye), μ(o)(Ye),
De(Ye), γ (Ye)} evaluated at the outer boundary must be per-
turbed as well.

We use the numerical method proposed by Herrada and
Montanero [18] to calculate the steady solution and the linear
eigenmodes. Details of the mapping and spatial discretization
are given in the Appendix. Assuming the temporal depen-
dence of the perturbations in Eqs. (9)–(11), we arrive at
the discretized linear system of equations of the generalized
eigenvalue problem. The elements of the Jacobian corre-
sponding to that system of equations are symbolic functions
calculated by the symbolic package of MATLAB before run-
ning the simulation. The eigenvalues are numerically found
with the MATLAB function EIGS. In the transient simulations,
the temporal derivatives are discretized using second-order
backward difference with a constant time step. The resulting
system of nonlinear algebraic equations is solved using the
Newton-Raphson method. The outer radius of the computa-
tional domain is Ro = 30 Rd .

III. RESULTS

We solve the hydrodynamic equations to find the droplet
equilibrium position and the steady Marangoni flow sustain-
ing it. Then, we conduct the linear stability analysis of this
flow. We also integrate the transient nonlinear equations to
study the droplet oscillations around the unstable equilibrium
position. We explore the parameter space spanned by the
droplet radius Rd and viscosity μ(i).

Figure 3 illustrates the phenomenon analyzed in this work.
It shows the vertical position h(t ) of the droplet bottom as a
function of time for 100-cSt silicone oil droplets with different
radii. In the subcritical case Rd = 70 µm, the droplet falls
until it levitates steadily, sustained by the Marangoni flow
against the apparent droplet weight. In contrast, the supercriti-
cal droplets with Rd � 80 µm oscillate periodically due to the
instability of the Marangoni flow. The oscillation frequency
slightly increases with the droplet radius. We will analyze in
more detail the droplet oscillation at the end of this section.
Now, we focus on the instability triggering that oscillation.
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FIG. 4. Ethanol mass fraction Ye (left) and streamlines (right) for
{Rd = 39 µm, μ(i) = 5 cSt} and {Rd = 80 µm, μ(i) = 100 cSt}. The
maximum velocity is 0.423 mm/s and 0.321 mm/s for μ(i) = 5 and
100 cSt, respectively.

Figures 4 shows the approximately marginally stable
(ω∗

i � 0) base flows calculated for μ(i) = 5 and 100 cSt. The
gradient of surface tension produces Marangoni stresses that
drive the liquids on the two sides of the interface from top
to bottom. The viscous stress exerted by the outer phase
results in an upward force that collaborates with the hydro-
static pressure force to compensate for the droplet weight.
The Marangoni flow convects ethanol from the upper to the
lower layers reducing the ethanol concentration gradient on
the interface. Diffusion tries to restore the imposed far-field
concentration gradient. The left-hand sides of the images in
Fig. 4 show the result of the competition between ethanol
convection and diffusion.

The increase of the droplet viscosity slows down the
Marangoni flow. To compensate for this effect, the critical
droplet radius increases from 39 µm to 80 µm, and the equilib-
rium position displaces downward, where the buoyancy force
increases. The maximum outer flow velocity takes a larger
value for μ(i) = 5 cSt, even though the difference between the
ethanol concentrations at the north and south poles is higher
for μ(i) = 100 cSt.

Figure 5 shows the spectrum of eigenvalues characterizing
the stability of the two base flows described above. The cases
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i
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FIG. 5. Spectrum of eigenvalues for {Rd = 39 µm, μ(i) = 5 cSt}
(black squares) and {Rd = 80 µm, μ(i) = 100 cSt} (red circles). The
figure shows the eigenvalues with ωi > −0.05 s−1 and ωr > 0. The
arrows indicate the eigenvalue of the critical eigenmode.

μ(i) = 5 and 100 cSt correspond to a stable flow and an unsta-
ble flow. In the former case, ωi < 0 for all the eigenmodes. In
the latter case, one eigenmode has ωi > 0. This eigenmode is
responsible for the instability. The instability is caused by an
oscillatory (ωr �= 0) critical eigenmode. Therefore, the base
flow undergoes a supercritical Hopf bifurcation, leading to the
oscillations shown in Fig. 3. As shown below, the frequency of
these nonlinear oscillations approximately equals that of the
critical eigenmode. The results for the intermediate viscosities
are qualitatively the same as those shown in Fig. 5 for μ(i) = 5
and 100 cSt.

There are significant differences between the dominant
eigenmodes for μ(i) = 5 and 100 cSt (Fig. 6). The disparity
between the inner and outer viscosities in the case μ(i) =
100 cSt increases the magnitude of the outer velocity field
perturbation with respect to that in the inner phase. The maxi-
mum velocity field perturbation displaces toward the droplet’s
bottom when the inner viscosity increases. This significantly
alters how ethanol transport is perturbed, as observed on the
left-hand sides of the images in Fig. 6.

We have explored the parameter space spanned by the
droplet radius Rd and viscosity μ(i). Specifically, we have
determined the critical droplet radius as a function of the
droplet viscosity. As observed in Fig. 7, the droplet viscosity
stabilizes the flow, i.e., the critical radius increases with μ(i).
The critical radii predicted by the linear stability analysis are
consistent with the values obtained experimentally [14]. For
instance, the theoretical critical radius for a 100-cSt silicone
oil is around 77 µm, while the experimental value lies in the
interval [60,80] µm [14]. We have also calculated the critical
radius for μ(i) = 100 cSt and dYe/dZ = 45 m−1. The result
is 79 µm, while the experimental value lies in the interval
[75, 90] µm. [14].

As mentioned above, diffusion plays a critical role in the
Marangoni flow because it tries to restore the imposed far-field
concentration gradient to keep the flow running. We have
explored the influence of diffusion on the stability conditions
by multiplying the diffusion coefficient De(Ye) by a constant
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FIG. 6. Real part of the eigenfunction of the ethanol mass frac-
tion Ye (left) and velocity field (right) for {Rd = 39 µm, μ(i) = 5 cSt}
and {Rd = 80 µm, μ(i) = 100 cSt}.

factor. Figures 8 and 9 show the critical droplet radius and the
maximum velocity of the marginally stable flow as a function
of the diffusion coefficient De for Y = 0. The maximum ve-
locity is reached approximately at the droplet’s equator.

For a 5-cSt silicone oil (Fig. 8), the critical radius and
the corresponding maximum velocity decrease by the factors
0.42 and 0.24, respectively, when the diffusion coefficient
decreases by 0.14. This result is consistent with the instability
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FIG. 7. Critical droplet radius Rd as a function of the droplet
viscosity.
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FIG. 8. Critical droplet radius Rd (solid symbols) and maximum
velocity vmax (open symbols) as a function of the diffusion coeffi-
cient De for Y = 0. The droplet viscosity is 5 cSt.

mechanism described by Li et al. [14]. They claimed that,
for small droplet viscosities, the instability is caused by the
inability of diffusion to restore the ethanol gradient sustaining
the flow around the droplet. Therefore, the reduction of the
diffusion coefficient is expected to cause a decrease in the
critical radius and vmax of the same order of magnitude.

For a 100-cSt silicone oil (Fig. 9), the critical radius and
the corresponding maximum velocity decrease by the factors
0.52 and 0.42, respectively, when the diffusion coefficient
decreases by 0.4. This result suggests that the instability is
caused by the limited diffusion for μ(i) = 100 cSt as well.

For the case of infinitely large solute diffusivity and zero
density gradient, the Marangoni velocity at the equator of the
drop is 1/2VM , where [19]

VM =
∣∣∣∣ dγ

dYe

∣∣∣∣dYe

dZ

Rd

μ(i) + μ(o)
. (12)

The quantities |dγ /dYe| and μ(o) can be evaluated, for in-
stance, at the droplet equator. Using VM as the characteristic
velocity, one defines the Marangoni number Ma = VMRd/De.
The problem is also described in terms of the Rayleigh
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FIG. 9. Critical droplet radius Rd (solid symbols) and maximum
velocity vmax (open symbols) as a function of the diffusion coeffi-
cient De for Y = 0. The droplet viscosity is 100 cSt.
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number Ra = gR4
d/(μ(o)De)|dρ (o)/dZ|. The stability limit can

be expressed as

f (Ma, Ra; {P}) = 0, (13)

where {P} represents the rest of dimensionless numbers char-
acterizing the problem.

Li et al. [13] explored the parameter space spanned by
the concentration gradient dYe/dZ and the drop radius Rd .
They concluded that, for a sufficiently small droplet viscosity,
the instability is caused by the limited diffusion of ethanol
around the droplet. In this case, the instability criterion is
Ma/Ra1/2 > c1, and c1 is a constant.

Li et al. [14] extended their previous analysis by consid-
ering silicone oil droplets of different viscosities (20 cSt, 50
cSt, and 100 cSt). They concluded that, for a sufficiently large
droplet viscosity, the flow becomes unstable because the vis-
cous force next to the droplet cannot overcome its buoyancy.
This led the authors to the instability criterion Ra/Ma > c2,
where c2 is another constant.

Our analysis explored the parameter space spanned by the
droplet viscosity μ(i) and the drop radius Rd . This exploration
differs from that conducted by Li et al. [14]. Therefore, the
dimensionless numbers {P} are varied differently. If these
numbers play a significant role, our results cannot reproduce
the stability criterion found by Li et al. [14].

As shown above, the droplet oscillation (Fig. 3) results
from a supercritical Hopf bifurcation suffered by the base flow
at the droplet critical radius. The critical eigenmode grows
in amplitude until the nonlinear terms in the hydrodynamic
equations come into play, fixing the amplitude of the periodic
oscillation.

Using VM defined by Eq. (12) as the characteristic velocity,
one defines the Reynolds and capillary numbers

Re = ρ (o)VMRd/μ
(o), Ca = μ(o)VM/γ . (14)

The quantities {|dγ /dYe|, γ , ρ (o), μ(o)} can be evaluated, for
instance, as the values averaged over time at the droplet equa-
tor, while dYe/dZ is the gradient of the unperturbed (far-field)
ethanol concentration.

The Reynolds numbers corresponding to the simulations
shown in Fig. 3 are smaller than 0.014, implying that the
creeping flow approximation holds. In addition, the capillary
number takes values below 10−4, meaning the interface hardly
deforms. This suggests that the nonlinear term that limits the
oscillation amplitude is the convective term of the ethanol
diffusive-convective transport equation (4).

In a supercritical Hopf bifurcation, energy is transferred
from the base flow to feed the oscillations appearing beyond
the critical point. Part of that energy is dissipated by viscosity,
reducing the amplitude of the nonlinear oscillations. Figure 10
shows the amplitude of the droplet oscillation as a function of
the droplet radius for μ(i) = 5 and 100 cSt. The amplitude of
the low-viscosity droplet oscillation is much larger than that of
the viscous one. In fact, the amplitude increases quasilinearly
with the droplet radius for μ(i) = 5 cSt, reaching values up to
two orders of magnitude larger than the droplet radius. Con-
versely, the amplitude takes an approximately constant value
in most of the interval of Rd considered for μ(i) = 100 cSt.
This occurs because the viscous dissipation associated with

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0

20

40

60

(Rd-R
*
d)/R

*
d

(h
m

ax
-h

m
in
)/
R d

FIG. 10. Amplitude of the droplet oscillation as a function of
the droplet radius for μ(i) = 5 (solid symbols) and 100 cSt (open
symbols). Here, hmax and hmin are the maximum and minimum
values of h(t ), respectively, and R∗

d is the critical droplet radius.

the Marangoni flow inside the droplet considerably reduces
the magnitude of the oscillation.

The oscillation of the droplet position makes all the rel-
evant quantities oscillate as well. Figures 11 and 12 show
the evolution of those quantities evaluated at the droplet’s
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FIG. 11. Droplet vertical position h, velocity at the droplet’s
equator vmax, ethanol concentration Ye, diffusion coefficient De, outer
viscosity μ(o), density gradient dρ (o)/dz, and concentration gradient
dYe/dz as a function of time for μ(i) = 5 cSt and Rd = 45 µm. The
quantities Ye, De, μ(o), dρ (o)/dz, and dYe/dz are evaluated at the
droplet’s equator.
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FIG. 12. Droplet vertical position h, velocity at the droplet’s
equator vmax, ethanol concentration Ye, diffusion coefficient De, outer
viscosity μ(o), density gradient dρ (o)/dz, and concentration gradient
dYe/dz as a function of time for μ(i) = 100 cSt and Rd = 80 µm.
The quantities Ye, De, μ(o), dρ (o)/dz, and dYe/dz are evaluated at the
droplet’s equator.

equator for approximately the critical radii Rd = 45 and
80 µm corresponding to μ(i) = 5 and 100 cSt, respectively.

The oscillation for μ(i) = 5 cSt results from the superpo-
sition of several harmonics. The frequency of the dominant
one shown in Fig. 13, ω = 0.1583 rad/s, is approximately
the same as that of the critical eigenmode calculated in the
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FIG. 13. FFT (Power Spectrum Density, PSD) of the experimen-
tal values of h(t ) over the time interval [69.76,335.86] s for μ(i) = 5
cSt and Rd = 45 µm. The dashed vertical line indicates the frequency
of the dominant eigenmode, ω = 0.1552 rad/s.

stability analysis, ωr = 0.1552 rad/s. A quasisinusoidal os-
cillation is observed for μ(i) = 100 cSt. The frequency of
this quasimonochromatic oscillation, ω = 0.1105 rad/s, prac-
tically coincides with that of the linear mode responsible
for the instability, ωr = 0.1029 rad/s. The nonmonotonous
dependence of De and μ(o) on Ye [15] explains why the oscil-
lations of De and μ(o) are in antiphase for μ(i) = 5 cSt, while
the opposite occurs for μ(i) = 100 cSt.

IV. CONCLUSIONS

We studied numerically the Marangoni flow around an
immiscible droplet submerged in a stably stratified mixture of
ethanol and water. We conducted the linear stability analysis
of the steady base flow to determine the critical conditions for
the instability. The base flow undergoes a supercritical Hopf
bifurcation that leads to oscillations whose frequency approx-
imately equals that of the critical eigenmode. The numerical
predictions for the critical droplet radius were consistent with
previous experimental results. We conclude that diffusion is
critical in stabilizing the Marangoni flow around both low-
and high-viscosity droplets.

The simulations of the nonlinear transient hydrodynamic
equations show that the oscillation for the lowest droplet
viscosity results from the superposition of several harmon-
ics. However, a quasisinusoidal oscillation is observed in the
high-viscosity case. Both inertia and droplet deformation are
negligible, which indicates that the convective term of the
ethanol diffusive-convective transport equation sets the ampli-
tude of the droplet oscillations. The viscous energy dissipation
produced by the Marangoni flow inside the droplet consider-
ably reduces the oscillation amplitude.

The conclusions of the present analysis can be easily gen-
eralized to other systems, provided that a vertically stratified
liquid generates sufficiently intense Marangoni stress on the
droplet surface. The results are expected to be similar to those
of thermal Marangoni flows. For instance, the Marangoni
convection produced by a temperature gradient and sustain-
ing a bubble submerged in water can suffer from a similar
oscillatory instability. Both the linear stability analysis and
direct numerical simulations allow one to gain insight into the
processes affecting these problems. The possibility of select-
ing the values of the governing parameters (e.g., the diffusion
coefficient) arbitrarily enables one to determine their role in
the instability, something almost impossible experimentally.
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APPENDIX: MAPPING AND SPATIAL DISCRETIZATION

The inner spatial domain occupied by the droplet is
mapped onto a rectangular domain by means of a nonsingular
mapping

r = f (i)(s, η(i), t ), z = g(i)(s, η(i), t ), (A1)
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FIG. 14. Computational subdomains and grids for the original
and mapped variables. The green (magenta) lines represent the oil
(water-ethanol) mesh in the real space (right panel) and in the com-
putational domain (left panel).

where [0 � s � 1] and [0 � η(i),� 1] are the normalized arc
length and mapped radial coordinates, respectively. The shape
functions f (i) and g(i) are obtained as a part of the solution
by using a quasielliptic transformation [20]. Some additional
boundary conditions for these shape functions are needed to
close the problem [21].

The interface is located at η(i) = 1. Therefore, its paramet-
ric representation, rs = F (s, t ) and zs = G(s, t ), verifies the
equations

f (i)(s, 1, t ) = F (s, t ), g(i)(s, 1, t ) = G(s, t ). (A2)

Here, rs and zs are the cylindrical coordinates of an interface
point in the real space. The functions F and G are obtained by

imposing the kinematic compatibility condition (5)

(
u(i) − ∂F

∂t

)
∂G

∂s
−

(
w(i) − ∂G

∂t

)
∂F

∂s
= 0, (A3)

and the equation

∂F

∂s

∂2F

∂s2
+ ∂G

∂s

∂2G

∂s2
= 0, (A4)

which guarantees a uniform distribution of the points along
the arc length s.

At the axis η(i) = 0, the following equations are satisfied

f (i)(s, 0, t ) = 0,
∂2g(i)

∂2s
(s, 0, t ) = 0. (A5)

The outer spatial domain occupied by the ethanol-water
mixture is also analytically mapped onto a rectangular domain
in the form

r = F (s, t ) + (Ro − F (s, t ))η(o), z = G(s, t ), (A6)

where [0 � η(o,� 1] is the mapped radial coordinate.
All the derivatives appearing in the governing equations are

expressed in terms of t and the spatial coordinates (s, η) result-
ing from the mapping. These equations are discretized in the
η-direction with n(i)

η = 11 and n(o)
η = 61 Chebyshev spectral

collocation points [22] in the inner and outer regions, respec-
tively. We use fourth-order finite differences with ns = 121
equally spaced points to discretize the s direction (Fig. 14).
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