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H-theorem and boundary conditions for two-temperature model:
Application to wave propagation and heat transfer in polyatomic gases
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Polyatomic gases find numerous applications across various scientific and technological fields, necessitating
a quantitative understanding of their behavior in nonequilibrium conditions. In this study, we investigate the
behavior of rarefied polyatomic gases, particularly focusing on heat transfer and sound propagation phenomena.
By utilizing a two-temperature model, we establish constitutive equations for internal and translational heat
fluxes based on the second law of thermodynamics. A novel reduced two-temperature model is proposed, which
accurately describes the system’s behavior while reducing computational complexity. Additionally, we develop
phenomenological boundary conditions adhering to the second law, enabling the simulation of gas-surface
interactions. The phenomenological coefficients in the constitutive equations and boundary conditions are
determined by comparison with relevant literature. Our computational analysis includes conductive heat transfer
between parallel plates, examination of sound wave behavior, and exploration of spontaneous Rayleigh-Brillouin
scattering. The results provide valuable insights into the dynamics of polyatomic gases, contributing to various
technological applications involving heat transfer and sound propagation.
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I. INTRODUCTION

Polyatomic gases have a plethora of applications that span
across various fields of science and technology, ranging from
aeronautics and astronautics to plasma physics and energy
production. Understanding these phenomena in a quantitative
and reliable manner is essential, as they present stimulating
yet challenging scientific problems that garner significant re-
search interest. Moreover, this understanding extends beyond
gas flows, as demonstrated by the blue color of the sky and the
red appearance of the moon during a lunar eclipse. These phe-
nomena are attributed to Rayleigh scattering, occurring when
particles in the atmosphere are smaller than the wavelength
of light [1]. Nitrogen and oxygen molecules, abundant in the
Earth’s atmosphere, play a major role in Rayleigh scattering.
Investigating these scattering processes not only enhances our
understanding of various atmospheric behaviors but also sheds
light on optical phenomena influencing our environment.

The intricate molecular structures found in polyatomic
gases have a significant impact on the scattering of light and
the resulting color observed. When designing gas sensors
to detect and measure these types of gases effectively, it is
essential to consider the strong nonequilibrium effects. This
includes considering the limit of a large Knudsen number,
Kn, which is determined by the ratio of the mean free path
(λ) in the gas to a characteristic length scale (L) of the flow.
Additionally, it is important to consider a large Weissenberg
number [2], which relates to the relaxation time that character-
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izes the rate at which perturbations in the gas decay in relation
to the characteristic time scale of the system, such as the
inverse frequency of light or the sound wave. In particular, in
polyatomic gases, another mechanism responsible for devia-
tion from equilibrium is the finite rate of relaxation of internal
degrees of freedom with random translational energy, which
leads to a large ratio of bulk viscosity to shear viscosity. While
the classical Navier-Stokes-Fourier (NSF) equations are ap-
plicable when the ratio of bulk viscosity to shear viscosity
is small, gases such as CH4, CO2, and H2 exhibit signifi-
cantly large ratios [3,4], rendering the one-temperature model
is inadequate [5]. In such cases, the two-temperature model
becomes essential for accurately capturing the system’s be-
havior [6–8].

In recent literature, several sets of equations for the two-
temperature model have been proposed and studied. Notably,
the two-temperature Navier-Stokes equations derived from
an ellipsoidal Bhatnagar-Gross-Krook (ES-BGK) model for a
polyatomic gas have been studied [9]. These investigations fo-
cus on regimes where the bulk viscosity significantly exceeds
the shear viscosity and are based on a discrete structure of
internal energy levels [5,10]. In the current study, we concen-
trate on determining the nonequilibrium distribution function
using the maximum entropy principle [11] and establishing
the second law of thermodynamics for the two-temperature
model. The phenomenological coefficients are determined by
comparing different collision models found in the literature.

In the field of nonequilibrium thermodynamics, various
approaches exist to determine the behavior of a system
near equilibrium. One approach is linear irreversible thermo-
dynamics (LIT) [12], which assumes local thermodynamic
equilibrium and derives constitutive laws for the stress tensor
and heat flux based on the second law of thermodynamics.

2470-0045/2023/108(6)/065103(19) 065103-1 ©2023 American Physical Society

https://orcid.org/0009-0005-9206-6430
https://orcid.org/0000-0002-5241-7102
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.108.065103&domain=pdf&date_stamp=2023-12-07
https://doi.org/10.1103/PhysRevE.108.065103
https://www.bits-pilani.ac.in/pilani/anirudhrana/profile


ANIL KUMAR AND ANIRUDH SINGH RANA PHYSICAL REVIEW E 108, 065103 (2023)

However, rational extended thermodynamics (RET) relaxes
the requirement of local thermodynamic equilibrium by in-
troducing the Clausius-Duhem equation as a specific form of
entropy balance law [13]. Despite their differing postulates,
RET [7,14] and LIT, two thermodynamic approaches, yield
equivalent constitutive equations for simple fluids, including
those governing local thermodynamic equilibrium [13,15].
An important feature of both approaches is that the entropy
generation rate is expressed as the sum of products of thermo-
dynamic forces and thermodynamic fluxes. The formulation
begins by establishing an extended Gibbs equation and apply-
ing the second law of thermodynamics to ensure a positive
entropy generation rate.

While thermodynamics, including both rational and ex-
tended versions, is commonly employed to investigate
these phenomena, the molecular dynamics or kinetic ap-
proach [16–18] provides deeper insights, although it comes
with the drawback of large computational costs. As a re-
sult, in many cases, it becomes desirable to utilize simpler
macroscopical models, known as extended hydrodynamics
models, which prove highly valuable for engineering pur-
poses. Rahimi and Struchtrup [19] have developed a kinetic
model and a high-order macroscopic model to accurately
represent rarefied polyatomic gas flows at moderate Knudsen
numbers. The kinetic model extends the Shakov model (S-
model) [20,21] and accurately captures the dynamics of higher
moments. Through the order of magnitude method [22,23],
optimized moment definitions and scaled Grad’s 36-moment
equations are obtained. The first order yields a modified
version of the Navier-Stokes-Fourier equations, while the
third-order results in a set of 19 regularized partial differential
equations (R19). Aoki et al. [9] investigated a polyatomic
gas with slow relaxation of internal modes and derived the
Navier-Stokes equations with two temperatures (translational
and internal temperatures) based on the ellipsoidal-statistical
(ES) model of the Boltzmann equation proposed by Andries
et al. [24]. The derivation was carried out using the Chapman-
Enskog procedure. Djordjić et al. [25] developed collision
kernel models and used the nonlinear Boltzmann collision
operator for polyatomic gases to derive explicit expressions
for transport coefficients, including shear and bulk viscosities
and thermal conductivity. These coefficients depend on the
parameters of the collision kernel. Marques and Kremer [26]
proposed a hydrodynamical model that incorporates a relax-
ation equation for dynamic pressure into the conventional
hydrodynamic equations based on the field equations of a
polyatomic gas consisting of rough spherical molecules [27].

In this article, we first establish the second law for the
two-temperature model by deriving the extended Gibbs equa-
tion from the maximum entropy distribution, incorporating
six field variables, namely, density, momentum, translational
temperature, and internal temperature. Furthermore, we de-
rive constitutive equations for internal heat flux (qtr

k ) and
translational heat flux (qin

k ) based on the second law. Ad-
ditionally, drawing inspiration from the order of magnitude
technique [22,23], we reformulate the internal and transla-
tional heat fluxes as the summation of the total heat flux
(qk) and additional heat flux (Qk), with the magnitude of Qk

being larger than that of the total heat flux [19]. Thus, to
achieve the desired accuracy for the first order, we determine

the phenomenological coefficients such that the impact of the
additional heat flux vanishes. This approach is referred to
as the “reduced two-temperature model,” where the relevant
field variables include mass momentum and two temperatures,
while the constitutive relationships are established for stress
and the total heat flux. To assess the validity and scope of the
two-temperature model equation, we examine its performance
in analyzing time-dependent phenomena such as sound prop-
agation and light scattering in dilute polyatomic gases. By
comparing our theoretical predictions to experimental data,
including acoustic measurements in nitrogen and oxygen by
Greenspan [28], and the extended hydrodynamic theory of
Hammond and Wiggins [29] in methane, we demonstrate that
the proposed model equation effectively describes the acoustic
properties and light-scattering spectrum of dilute polyatomic
gases.

Boundary conditions play a crucial role in gas dynamics
simulations as they define the behavior of the fluid at the
boundaries, describing how the gas interacts with solid sur-
faces. This includes various phenomena, such as momentum
and heat transfer, chemical reactions, and phase change. The
selection of suitable boundary conditions significantly im-
pacts the accuracy and reliability of simulation outcomes. In
this study, our objective is to derive phenomenological bound-
ary conditions (PBCs) specifically for the two-temperature
model applied to polyatomic gases.

To establish these PBCs, we employ an entropy balance
integrated around the interface between the solid and gas.
The PBCs are developed as empirical rules to ensure a pos-
itive entropy inequality at the boundary and to represent
the entropy generation at the boundary using these rela-
tions. These PBCs can be employed to solve boundary value
problems. In a recent work by [30], the authors proposed
phenomenological boundary conditions for the linearized R13
equation using the second law of thermodynamics. They
evaluated the phenomenological coefficients by comparing
slip/jump and thermal creep coefficients with the linearized
Boltzmann equation for different accommodation coefficients.
Similarly, in a set of phenomenological boundary conditions
was proposed for a coupled constitutive relation [31,32].
These conditions were designed to uphold the second law of
thermodynamics, a fundamental principle in physics govern-
ing the behavior of energy and heat.

Kosuge et al. [33] developed slip boundary conditions for
the two-temperature system with a polyatomic gas, utilizing
the ES model and incorporating the Maxwell-type diffuse-
specular reflection condition on the boundary. Rahimi and
Struchtrup [19] introduced a kinetic boundary condition that
incorporates the concept of two distinct exchanging processes:
translational and internal. They utilize this condition to derive
appropriate macroscopic boundary conditions.

For both the two-temperature model and the reduced
two-temperature model, this article establishes a set of wall
boundary conditions adhering to the second law of thermo-
dynamics. The phenomenological coefficients appearing in
the boundary conditions are calculated by comparing them
with kinetic theory in the asymptotic limit of small dynamic
temperature (ϑ) [19].

This study analyzes conductive heat transfer in rar-
efied polyatomic gases confined between parallel plates.

065103-2



H -THEOREM AND BOUNDARY CONDITIONS FOR TWO- … PHYSICAL REVIEW E 108, 065103 (2023)

Furthermore, we examine the behavior of sound waves in
rarefied polyatomic gases, with a specific focus on nitrogen
and hydrogen gases. Additionally, we explore the occurrence
of spontaneous Rayleigh-Brillouin scattering. The exact in-
vestigation of the Rayleigh-Brillouin spectral line shape is of
practical importance as it provides valuable information about
the velocity, density, and temperature of gas samples when
illuminated. Heat transfer configurations play a critical role in
various technological applications, including vacuum pressure
gauges [34], vacuum solar collectors [35], multilayer insu-
lation blankets used in space and cryogenic equipment [36],
as well as micro heat exchangers and microsensors [37,38].
Furthermore, these configurations serve as standard setups for
determining important properties such as the thermal conduc-
tivity of gases [39], temperature jump coefficient [40], and
energy accommodation at different surface temperatures [41].
These evaluations involve a combination of modeling and
experimental measurements [42,43].

The remaining sections of the paper are organized as fol-
lows: In Sec. II, we establish the definitions of moments
and derive the conservation laws and extended balance equa-
tions from the Boltzmann equation. In Sec. III, we focus on
determining the nonequilibrium distribution function by ap-
plying the maximum entropy principle and proving the second
law of thermodynamics. Additionally, we derive constitutive
relations for the two-temperature model and determine the
values of phenomenological coefficients. Subsequently, we
discuss linearized and dimensionless equations and introduce
a reduced model in Secs. IV and V, respectively. In Sec. VI,
we conduct a linear stability analysis for different values
of phenomenological coefficients. Furthermore, we analyze
sound wave propagation in Sec. VII and explore the problems
of spontaneous Rayleigh-Brillouin scattering in Sec. VIII.
Determining the appropriate wall boundary conditions for
the two-temperature model using the second law of thermo-
dynamics is addressed Sec. IX. We validate the above wall
boundary conditions through an investigation of the funda-
mental problem of heat transfer between two parallel plates
in Sec. X. Finally, in Sec. XI, we present our concluding
remarks.

II. MOMENT SYSTEM

The Boltzmann equation provides a kinetic description
of polyatomic gases via the one-body distribution function
f (t, x, c, I ) which can be formally written as [7]

∂ f

∂t
+ ck

∂ f

∂xk
+ Fk

∂ f

∂ck
= S [ f , f ]. (1)

The distribution function f (t, x, c, I ) describes the state of the
gas molecules having three translational degrees of freedom
and internal degrees of freedom, where t ∈ R+ is the time, x ∈
R3 is the spatial position, c ∈ R3 is the molecular translational
velocity, Fk is the field of the external forces, e.g., gravity,
and I denotes the specific energy of a gas molecule due to
internal modes with I ∈ R+. The right-hand side of Eq. (1) is
known as the collision operator, which represents the rate of
change in f due to binary collisions. The collision operator in
Eq. (1) involves complex integrals whose actual form depends
on the detailed nature of the intermolecular interactions. Fur-

thermore, the binary collision operator S have five collision
invariants: mass, three components of momentum, and energy,
given by

ψ = m

{
1, ci,

C2

2
+ I

}
, (2)

i.e.,
∫

S ψdcdI = 0.
The macroscopic variables, namely local density ρ, mo-

mentum density ρvi, and internal energy u, can be defined as
the moment of the distribution function as

ρ = m
∫

f dcdI, ρvi = m
∫

f cidcdI, (3)

ρu = m
∫

f

(
C2

2
+ I

)
dcdI, (4)

where m is the molecular mass, and C = c − v is the peculiar
velocity with respect to the macroscopic velocity v (or vi in
tensorial notation). The differential velocity vector dc im-
plies integration over all three components of velocity space.
Furthermore, the internal energy u can be divided into the
translational part utr and the part due to the internal degrees
of freedom uin, as

ρutr := 3

2
ρθ tr = m

∫
f

C2

2
dcdI, (5)

ρuin := δ

2
ρθ in = m

∫
f IdcdI . (6)

Here, superscripts “tr” and “in” denote the translational and
internal parts, while the parameter δ is the number of internal
degrees of freedom. Conventionally, we define the transla-
tional temperature θ tr and the internal temperature θ in in
energy units. As a result, the thermodynamic temperature θ

(defined as θ := RT ; R being the gas constant) can be ex-
pressed as follows:

3 + δ

2
θ = 3

2
θ tr + δ

2
θ in. (7)

When the system is in equilibrium, the three temperatures
are equal: θ tr = θ in = θ . However, in a nonequilibrium state,
these temperatures can differ. To quantify the nonequilibrium
part of the temperature, we introduce the dynamic temperature
denoted as ϑ = θ tr − θ . In this context, the dynamic pressure
in the gas can be expressed as 	 = ρϑ .

The pressure tensor pi j is defined as follows:

pi j = m
∫

f CiCjdcdI, (8)

so that its trace pkk = 3ρθ tr. Furthermore, the pressure tensor
is expressed in terms of its trace and traceless part as

pi j = (p + 	)δi j + σ〈i j〉, (9)

where δi j is the Kronecker δ function, the angular brackets
around indices represent the symmetric and traceless part of a
tensor, p is the equilibrium pressure, σi j is the viscous stress
tensor, and 	 is the dynamic pressure (or nonequilibrium
pressure). We can further define the translational heat flux and
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internal heat flux as

qin
k := m

∫
f ICkdcdI, (10)

qtr
k := m

∫
f

C2

2
CkdcdI. (11)

Furthermore, the total heat flux qk and the heat flux difference
Qk are introduced as moments of the distribution functions.
They are defined as follows:

qk := m
∫

f

(
C2

2
+ I

)
CkdcdI = qtr

k + qin
k , (12)

Qk := qtr
k − 5θ + 3ϑ

δθ − 3ϑ
qin

k . (13)

The idea behind selecting a particular expression for Qk was
motivated by the order-of-magnitude approach proposed by
Rahimi and Struchtrup [19]. This approach revealed that the
magnitude of this term can be approximated as O(Kn1+α ),
where α is a magnification parameter falling within the range
of 0 to 1. Furthermore, opting for a specific combination of qtr

k
and qin

k in a linear fashion results in a convenient expression
for the entropy flux, which will be further discussed in Sec. III.

A. The conservation laws and extended balance equations

The conservation laws are obtained from the Boltzmann
equation (1), by multiplying it with the collision invariants (2)
and integrating, to get

Dρ

Dt
+ ρ

∂vk

∂xk
= 0, (14a)

ρ
Dvi

Dt
+ ∂ pik

∂xk
= 0, (14b)

ρ
D 3+δ

2 θ

Dt
+ pik

∂vi

∂xk
+ ∂qk

∂xk
= 0. (14c)

Here, D
Dt = ∂

∂t + vk
∂

∂xk
is the convective time derivative.

We also get the balance equations for the translational tem-
perature and internal temperature as follows:

ρ
3

2

Dθ tr

Dt
+ pik

∂vi

∂xk
+ ∂qtr

k

∂xk
= P0,0, (15)

ρ
δ

2

Dθ in

Dt
+ ∂qin

k

∂xk
= P0,1. (16)

The production terms P0,0 and P0,1 are obtained from the
Bolzmann collision operator, which entails that

P0,0 := m
∫

S
C2

2
dcdI, and P0,1 := m

∫
S IdcdI ,

therefore P0,0 = −P0,1, since C2

2 + I is collision invariant.
Further, the balance law for dynamic temperature is written as

3ρ

2

Dϑ

Dt
+ δ

3 + δ
pik

∂vi

∂xk
− 3

3 + δ

∂qk

∂xk
+ ∂qtr

k

∂xk
= P0,0. (17)

In terms of total heat and heat difference flux, the last equa-
tion can also be written as

3ρ

2

Dϑ

Dt
+ δ

3 + δ
pik

∂vi

∂xk
+ 2

5 + δ

(
δ

3 + δ
+ 3

2

ϑ

θ

)
∂qk

∂xk

+ 3

5 + δ
qk

∂

∂xk

(
ϑ

θ

)
+ δ

5 + δ

(
1 − 3

δ

ϑ

θ

)
∂Qk

∂xk

− 3

5 + δ
Qk

∂

∂xk

(
ϑ

θ

)
= P0,0. (18)

The governing equations (14) and (15) describe flow behavior
but require additional closure models to relate unknown fluxes
{σi j, qtr

k , qin
k } to known quantities {ρ, vi, θ

tr, θ in}.

III. SECOND LAW OF THERMODYNAMICS

This section focuses on obtaining the nonequilibrium dis-
tribution function f6 by applying the maximum entropy
principle. Additionally, the second law of thermodynamics is
proven, and constitutive relations are derived. The constitu-
tive relations are functional relations between the dependent
fields {σi j, qtr

k , qin
k } and the independent fields {ρ, vi, θ

tr, θ in}
that is we expressed independent field variables as functional
relations of dependent field variables.

The second law of thermodynamics asserts that a physical
system in equilibrium has maximal entropy among all states
with the same energy. The second law of thermodynamics,
which we now introduce in the form of the entropy principle.
The entropy principle will always be exploited for supply-free
bodies, i.e., there are no body forces and no radiation, nor
is there a supply of entropy. There exists a specific entropy
of the gas s, the nonconvective entropy flux hk , and entropy
production density

∑
, which obey a balance law.

The entropy density is defined by the relation

ρs = −kb

∫
f ln

f

f0
dCdI, (19)

and the entropy law

ρ
Ds

Dt
+ ∂hk

∂xk
= �, (20)

where kb is the Boltzmann constant, � the entropy production
and f0 = I ( δ

2 −1). The second law of thermodynamics requires
entropy production density nonnegative, i.e., � � 0. Now,
any process satisfying the second law represents a so-called
physically admissible process. The density of entropy produc-
tion is nonnegative for all thermodynamic processes, i.e., for
all solutions of the field equations. Thus, the entropy inequal-
ity (� � 0) holds for all thermodynamic processes. First of
all, we determine the phase density f6 that maximizes the en-
tropy density ρs under the constraints of fixed mass density ρ,
momentum density ρvi and internal energy density ρu (both
parts). After that, we introduce it into the expressions (19) to
obtain the entropy density.

Theorem 1. The maximum entropy distribution
function which maximizes the entropy (19) under the
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constraints (3), (5), and ( 6) takes the following form [44]:

f6 = ρ

m

1

(2πθ tr )3/2 e− C2

2θtr

︸ ︷︷ ︸
Maxwellian

1

γ
(

δ
2

) 1

I

(
I

θ in

)δ/2

e− I
θ in

︸ ︷︷ ︸
Gamma

.

Proof. See Appendix. �
Therefore, the entropy density for the six-moment system

is given by the relation

ρs=−kb

∫
f6 ln

(
f6

f0

)
dcdI = ρ

{
3

2
ln θ tr + δ

2
ln θ in − ln ρ

}
.

(21)
Moreover, The extended Gibbs’ relation is given by

ρds = 3

2θ tr
ρdθ tr + δ

2θ in
ρdθ in − dρ. (22)

The proof for Eqs. (21) and (22) is simple and straight-
forward. Gibbs’ relation can be obtained by differentiating
equation (21). Now, using the extended Gibbs equation (22),
the time rate of change of the entropy of a material element is
given as

ρ
Ds

Dt
= 3

2θ tr
ρ

Dθ tr

Dt
+ δ

2θ in
ρ

Dθ in

Dt
− Dρ

Dt
. (23)

Using Eqs. (14a), (15), and (16) in Eq. (23), we get

ρ
Ds

Dt
+ ∂

( qtr
k

θ tr + qin
k

θ in

)
∂xk

= − 1

θ tr
σik

∂vi

∂xk
+ qtr

k

∂
(

1
θ tr

)
∂xk

+qin
k

∂
(

1
θ in

)
∂xk

+
(

1

θ in
− 1

θ tr

)
P0,1. (24)

Comparing the above equation with the entropy law (20), we
identify the nonconvective entropy flux hk as follows:

hk = qtr
k

θ tr
+ qin

k

θ in
. (25)

Clearly, when the system is in equilibrium (θ tr = θ in = θ ), the
three temperatures are equal, and the above expression simpli-
fies to the classical entropy flux expression, i.e., hk = qk/θ .

By introducing the variables qk , Qk , θ , and ϑ , Eq. (25) can
be rewritten as follows:

hk = qk

θ
− 2

5 + δ

ϑ

θ (θ + ϑ )
qk − 3 + δ

5 + δ

ϑ

θ (θ + ϑ )
Qk . (26)

Indeed, in Eq. (13), we have introduced Qk so that entropy flux
can be conveniently decomposed into three components. The
first contribution to the entropy flux is classical, the second
one stems from coupled constitutive relations [45], whereas
the last is the contribution of higher order. Furthermore, via
order of magnitude analysis, it can be shown that the first
term is of the order O(Kn1) the second term is of the order
O(Kn1+α ), and the third term is of the order O(Kn1+2α ).

Again, comparing Eq. (20) with the entropy law (20), we
get the entropy production rate, as

� = − 1

θ tr
σik

∂vi

∂xk
− 1

θ tr2 qtr
k

∂θ tr

∂xk
− 1

θ in2 qin
k

∂θ in

∂xk

+
(

1

θ in
− 1

θ tr

)
P0,1, (27)

which is in the bilinear form for flux and gradients. The
second law of thermodynamics requires that the entropy pro-
duction rate must be positive, i.e., � � 0. To ensure the
positivity of the entropy production rate �, it is sufficient to
assume relations of the form

σik = −2μ
∂v〈i
∂xk〉

, (28a)

qtr
k = −ζ11

1

θ tr2

∂θ tr

∂xk
− ζ12

1

θ in2

∂θ in

∂xk
, and (28b)

qin
k = −ζ12

1

θ tr2

∂θ tr

∂xk
− ζ22

1

θ in2

∂θ in

∂xk
, (28c)

where μ � 0 is viscosity of the gas and the matrices

η =
[
ζ11 ζ12

ζ12 ζ22

]
(29)

is a symmetric nonnegative definite matrix.
One can express the total heat flux (qk) and the heat differ-

ence (Qk), using Eqs. (28b) and (28c),

qk = −
[

ζ11 + ζ12

(θ + ϑ )2
+ (ζ12 + ζ22)δ2

(δθ − 3ϑ )2

]
∂θ

∂xk
−

[
ζ11 + ζ12

(θ + ϑ )2
− 3(ζ12 + ζ22)δ

(δθ − 3ϑ )2

]
∂ϑ

∂xk
, and (30)

Qk = −
[

ζ11

(θ + ϑ )2
− ζ22(5θ + 3ϑ )δ2

(δθ − 3ϑ )3
− ζ12{−δ2(θ + ϑ )2 + δθ (5θ + 3ϑ ) − 3ϑ (5θ + 3ϑ )}

(θ + ϑ )2(δθ − 3ϑ )2

]
∂θ

∂xk

−
[

ζ11

(θ + ϑ )2
+ 3ζ22(5θ + 3ϑ )δ

(δθ − 3ϑ )3
− ζ12{8δθ2 + 3(−5 + 3δ)θϑ + 3(−3 + δ)ϑ2}

(θ + ϑ )2(δθ − 3ϑ )2

]
∂ϑ

∂xk
. (31)

Furthermore, one can show that the last term in Eq. (25) is positive, if we take P0,1 to be proportional to ϑ , as

[
1

θ in
− 1

θ tr

]
P0,1 =

[
θ tr − θ in

θ trθ in

]
ρϑ

τint
= ρ

τint

[
θ tr − θ in

θ trθ in

]
(θ tr − θ ) = ρδ

τint(3 + δ)

[
(θ tr − θ in)2

θ trθ in

]
� 0, (32)

where τint > 0 is the relaxation time for ϑ . This completes the proof of H-theorem (second law of thermodynamics) for the
two-temperature model.

065103-5



ANIL KUMAR AND ANIRUDH SINGH RANA PHYSICAL REVIEW E 108, 065103 (2023)

A. Determination of phenomenological coefficients

In this section, we find the value of arbitrary nonnegative
coefficients μ, ζ11, ζ22, ζ12 and production terms P0,1 via
comparison with different models from literature. The values
for these phenomenological coefficients and production terms
may vary with different collision models. Here, we consider
four models which give different values.

1. Comparison with Marques and Kremer [26] for δ = 3 (Model 1)

Marques and Kremer [26] introduced a hydrodynamical
model that includes a relaxation equation for the dynamic
pressure, which is the nonequilibrium component of the pres-
sure, in addition to the conventional hydrodynamic equations.
We compare proposed model balance equations and constitu-
tive relations with hydrodynamical model [26] equations; we
get nonnegative coefficients and production terms as

μ = 15

8a2

(
kbθm

π

)1/2 (κ + 1)2

(13κ + 6)
, (33a)

ζ11 = 15μ(6 + 25κ + 38κ2 + 26κ3)

24 + 150κ + 202κ2 + 204κ3
, (33b)

ζ12 = 15κ (6 + 13κ )μ

24 + 150κ + 202κ2 + 204κ3
, (33c)

ζ22 = 9(24 + 154κ + 221κ2)μ

10(12 + 75κ + 101κ2 + 102κ3)
, (33d)

P0,1 = δρ

(3 + δ)τint
(θ tr − θ in), (33e)

where μ is the shear viscosity, ζ11 the thermal conductivity for
the translational temperature, ζ22 the thermal conductivity for
the internal temperature,

1

τint
= 32

3
a2 ρ

m

√
πθ

κ

(1 + κ )2 , (34)

is the relaxation frequency of the dynamic pressure, a and κ =
4I

ma2 are the diameter and the dimensionless moment of inertia
of the spherical molecule respectively [46]. The range of κ ∈
[0, 2/3], with 0 denoting no mass distribution on the surface
of the molecule and 2/3 denoting uniform mass distribution.

2. Comparison with Aoki et al. [9] (Model 2)

Aoki et al. [9] developed the Navier-Stokes equations for
a polyatomic gas that exhibits slow relaxation of its internal
modes, using the ellipsoidal-statistical model of the Boltz-
mann equation proposed by Andries et al. [24]. This model
considers two temperatures, translational and internal, and
Aoki et al. used the Chapman-Enskog method to derive the
equations. On comparing the balance equations and constitu-
tive relations of the proposed model with the equations of the
Aoki et al. model, we find the nonnegative coefficients and
production terms as

μ = 1

1 − ν

θ tr

2Ac(T )
, (35a)

ζ11 = 5μ

2

(θ tr )3

Ac(T )
, (35b)

ζ12 = 0, (35c)

ζ22 = δμ

2

(θ in)2θ tr

Ac(T )
, (35d)

P0,1 = 3δ

2(3 + δ)
θ1Ac(T )ρ2(θ tr − θ in), (35e)

where ν ∈ [− 1
2 , 1), θ1 ∈ (0, 1] are the constants that adjust the

Prandtl number and the bulk viscosity. In addition, Ac(T ) is a
function of T such that ρAc(T ) is the collision frequency of
the gas molecules.

3. Comparison with Djordjić et al. [25] (Model 3)

The macroscopic system of 17-moment equations was
derived by Djordjić et al. [25] from the Boltzmann equa-
tion after proposing a collision kernel for polyatomic gases
with continuous internal energy. These equations were then
used to calculate important transport properties, including
shear viscosity, Prandtl number, and the ratio of bulk to shear
viscosities. After that, the proposed collision kernel was then
employed to compute these transport properties in the poly-
tropic regime for various polyatomic gases. By examining
the balance equations and constitutive relations of the pro-
posed model and comparing them to those of the reduced
17-moment system, we identified both the production terms
and nonnegative coefficients as

μ = p

P0
σ

, (36a)

ζ11 = 5μ(θ tr )2

2

P0
s(

P0
q P0

s − P1
q P1

s

) , (36b)

ζ12 = −δμ(θ in)2

2

P1
q(

P0
q P0

s − P1
q P1

s

) , (36c)

ζ21 = −5μ(θ tr )2

2

P1
s(

P0
q P0

s − P1
q P1

s

) , (36d)

ζ22 = δμ(θ in )2

2

P0
q(

P0
q P0

s − P1
q P1

s

) , (36e)

P0,1 = 3δρ

2(3 + δ)
(θ tr − θ in)P0

	, (36f)

where P0
q , P1

q , P0
s , P1

s , P0
	, and P0

σ are constants that have dif-
ferent values for different gases. These constants can be
directly computed using the Mathematica code in Ref. [47].
The phenomenological coefficients ζ12 and ζ21 are found to be
equal value in the linearized constitutive relations for various
gases when considering constant P0

q , P1
q , P0

s , P1
s , P0

	 and P0
σ

values in Eqs. (36c) and (36d).

4. Comparison with Rahimi and Struchtrup [19] (Model 4)

By comparing the balance equations and constitutive rela-
tions of our proposed model with the high-order macroscopic
model developed by Rahimi and Struchtrup [19], we identify

ζ11 = 5λ
5+δ

(θ tr )2

ζ22 = δλ
5+δ

(θ in)2

and ζ12 = 0

⎫⎪⎬
⎪⎭, (37)
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where λ is the thermal conductivity of the gas. Note that in this
comparisons, the viscosity μ corresponds to the same value as
ours, and the production term P0,1 is defined as in Eq. (36f).

IV. LINEARIZED AND DIMENSIONLESS EQUATIONS

This section considers dimensionless and linearized equa-
tions by introducing small perturbations from their values in a
reference rest state characterized by a constant pressure p0 and
a constant temperature θ0. The relationships between the field
variables and their dimensionless deviations (denoted with hat
symbols) from the reference rest state are expressed as

p = p0(1 + p̂),

θ = θ0(1 + θ̂ ),

vi =
√

θ0v̂i, σi j = p0σ̂i j,

qi = p0

√
θ0q̂i and xi = Lx̂i, (38)

where L is a characteristic length scale. The linearized conser-
vation laws and balance equations are given by

∂ρ̂

∂ t̂
+ ∂ v̂i

∂ x̂i
= 0, (39a)

∂ v̂i

∂ t̂
+ ∂ρ̂

∂ x̂i
+ ∂θ̂ tr

∂ x̂i
+ ∂σ̂i j

∂ x̂ j
= 0, (39b)

3 + δ

2

∂θ̂

∂ t̂
+ ∂ v̂i

∂ x̂i
+ ∂ q̂i

∂ x̂i
= 0, (39c)

3

2

∂θ̂ tr

∂ t̂
+ ∂ v̂i

∂ x̂i
+ ∂ q̂tr

i

∂ x̂i
= P0,0, (39d)

δ

2

∂θ̂ in

∂ t̂
+ ∂ q̂in

i

∂ x̂i
= P0,1, (39e)

and the linearized stress, translational, and internal heat fluxes
are specified as

σ̂i j = −2Kn
∂ v̂〈i
∂ x̂ j〉

, (40a)

q̂tr
i = −ζ11

∂θ̂ tr

∂ x̂i
− ζ12

∂θ̂ in

∂ x̂i
, and (40b)

q̂in
i = −ζ21

∂θ̂ tr

∂ x̂i
− ζ22

∂θ̂ in

∂ x̂i
. (40c)

Next, we linearized the total heat flux qk and heat flux differ-
ence Qk ,

q̂i = − (ζ11+2ζ12 + ζ22)
∂θ̂

∂ x̂i

−
(

(ζ11 + ζ12) − 3

δ
(ζ12 + ζ22)

)
∂ϑ̂

∂ x̂i
, (41)

and

Q̂i = −
(

(ζ11 − 5

δ
ζ12) + (ζ12 − 5

δ
ζ22)

)
∂θ̂

∂ x̂i

−
(

(ζ11 − 5

δ
ζ12) − 3

δ
(ζ12 − 5

δ
ζ22)

)
∂ϑ̂

∂ x̂i
. (42)

In Eq. (40), the Knudsen number appears as the scaled vis-
cosity Kn = μ0

√
θ0/(p0L). Henceforward, we removed the

hat symbols for better reliability, and all the variables are in
dimensionless forms unless otherwise stated.

V. REDUCED MODEL

In this section, we have introduced a reduced model
derived from the present two-temperature model. In this sim-
plified model, we assume that the heat fluxes (represented by
Qk) are negligible. This assumption entails setting the coeffi-
cients of the gradients of θ and ϑ equal to zero in Eq. (31). By
doing so, we solve for ζ12 and ζ22 in terms of ζ11, and resulting
in the following relationships between the phenomenological
coefficients,

ζ12 = δθ − 3ϑ

5θ + 3ϑ
ζ11 and ζ22 = (δθ − 3ϑ )2

(5θ + 3ϑ )2
ζ11. (43)

Now, we write linearized reduced model equations in six field
variable mass density ρ, velocity vi, temperature θ , and the
dynamic temperature ϑ as

∂ρ

∂t
+ ∂vi

∂xi
= 0, (44a)

∂vi

∂t
+ ∂ρ

∂xi
+ ∂θ

∂xi
+ ∂ϑ

∂xi
+ ∂σi j

∂x j
= 0, and (44b)

3 + δ

2

∂θ

∂t
+ ∂vi

∂xi
+ ∂qi

∂xi
= 0, (44c)

and the linearized balance equation of dynamic temperature,
stress, and total heat fluxes are specified as

3

2

Dϑ

Dt
+ δ

3 + δ

∂vi

∂xk
+ 2δ

(3 + δ)(5 + δ)

∂qk

∂xk
= P0,0. (45)

σi j = −2μ
∂v〈i
∂x j〉

and qk = −λ
∂θ

∂xk
− 2λ

5 + δ

∂ϑ

∂xk
, (46)

where λ = (5+δ)2

25 ζ11 is thermal conductivity of gases.

VI. LINEAR STABILITY ANALYSIS

In this section, we examine both temporal and spatial
stability analyses of the two temperature models derived in
Sec. II with different coefficients given in Secs. 2.3.2 and
2.3.3. Now we consider a one-dimensional process (in the
x direction) without any external forces and assume a plane
wave solution of the form

� = �a exp[i(ωt − kx)] (47)

for Eqs. (39) and (40), where � = {ρ, vx, θ
tr, θ in}T , �a is a

vector containing the complex amplitudes of the respective
waves, and ω and k are the dimensionless frequency and the
wave number, respectively. Substitution of the plane wave so-
lution (47) into Eqs. (39) and (40) gives a system of algebraic
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equations A� = 0, where

A(ω, k) =

⎡
⎢⎢⎢⎢⎣

iω −ik 0 0
−ik 4k2μ

3 + iω −ik 0

0 −ik 3δP0
	

2(3+δ) + k2ζ11 + 3
2 iω − 3δP0

	

2(3+δ) + k2ζ12

0 0 − 3δP0
	

2(3+δ) + k2ζ21
3δP0

	

2(3+δ) + k2ζ22 + δ
2 iω

⎤
⎥⎥⎥⎥⎦. (48)

This matrix is for the model 3 coefficients; in the same way,
we will be driving for the other model’s coefficients. The
analogous dispersion relation found when the determinate of
A(ω, k) is zero is the relation between ω and k for nontrivial
solutions. For temporal stability, a disturbance is considered
in space; consequently, the wave number k is assumed to be
real while the frequency ω = ωr (k) + iωi(k) can be complex.
The phase velocity vph and damping α of the corresponding
waves are given by

vph = ωr (k)

k
and α = ωi(k).

The stability of equations may be tested in two ways: tempo-
ral stability and spatial stability. Temporal stability requires
damping, and thus ωi(k) � 0. If, however, ωi(k) � 0, then a
little disturbance in space will blow up in time. If a disturbance
in time at a given location is considered, then the frequency
ω is real, while the wave number is complex, k = kr (ω) +
iki(ω). Phase velocity vph and damping α of the corresponding
waves are given by

vph = ω

kr (ω)
, and α = −ki(ω).

For a wave traveling in positive x direction (kr > 0), the
damping must be negative, while for a wave traveling in
negative x direction (kr < 0), the damping must be positive
(ki > 0).

We check how stable it is against small changes in fre-
quency ω. As we’ve seen, stability needs different signs of
the real and imaginary parts of k(ω). So, if k(ω) is plotted in
the complex plane with ω as the parameter, the curves should
not touch the upper right or lower left quadrants. Figures 1–5
(up) illustrate the solutions for the six-moment system, and
we can see that all modes are inside the requisite stability
field, indicating that none of the solutions violate the stability
condition. In Figs. 1–5 (up) we analyze the stability against
a disturbance of a specific wavelength, denoted by the wave
number k. The figures show the damping coefficient α is
positive for all k, and it follows that the six-moment system
is stable. The two-temperature model equations are stable for
all frequencies, as well as they are stable for disturbances
of any wavelength. We can additionally show that the two-
temperature model is stable for other gases (N2, O2, H2, CO2)
as well.

VII. SOUND WAVE PROPAGATION

Wave propagation phenomena provide a valuable means to
assess the validity of nonequilibrium thermodynamics theo-
ries. In this section, we focus on the study of plane harmonic
waves and aim to compare the theoretical predictions of the

dispersion relation with experimental data. To ensure a more
manageable analysis, we restrict our investigation to the one-
dimensional spatial problem. To investigate the propagation
in the x direction of high-frequency sound waves having an
angular frequency and complex wave number k = kr + iki

we write the plane wave solution of the form equation (47)
and obtain a dispersion relation which is already discussed in

FIG. 1. Stability analysis of the two-temperature model for CH4

gas with Model 1 coefficients: panel (up) spatial stability and panel
(down) temporal stability. In panel (up) black, red, or blue dashed
lines represent different modes corresponding to the parameter ω.
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FIG. 2. Stability analysis of the two-temperature model for CH4

gas with Model 2 coefficients: panel (up) spatial stability and panel
(down) temporal stability. In panel (up) black, red, or blue dashed
lines represent different modes corresponding to the parameter ω.

Sec.VI. The dispersion relation permits the calculation of the
phase velocity vph and of the attenuation coefficient α in terms
of the frequency ω:

vph = ω

kr (ω)
, and α = −ki(ω).

A. Comparison with experimental data

The dispersion relation obtained from det(A) = 0, in par-
ticular, the phase velocity vph, attenuation factor α and the
speed of sound as the functions of the frequency ω are
compared with the acoustic measurements of Greenspan in
nitrogen (N2) and oxygen (O2) gases [28]. These sound prop-
agation measurements were made at a temperature of 300 K
in a 11 MHz double-crystal interferometer for different values
of the gas pressure.

FIG. 3. Stability analysis of the two-temperature model for CH4

gas with Model 3 coefficients: panel (up) spatial stability and panel
(down) temporal stability. In panel (up) black, red, or blue dashed
lines represent different modes corresponding to the parameter ω.

In Figs. 6–8 the attenuation factor αc0/ω, the recipro-
cal speed ratio c0/vph, and speed of sound (vph − c0)/c0

are shown on a double logarithmic scale as a function of
the nonequilibrium parameter p/μω, which is the ratio of
collision frequency in gas and frequency of the sound, for
nitrogen and oxygen. The solid lines represent the theoret-
ical sound propagation results derived from our theory and
NSF (cyan line), while the red square box is the experimen-
tal data of Greenspan for sound waves. From the analysis
of Figs. 6–8, it can be observed that in the low-frequency
range (p/μω � 1), both our theories and the classical Navier-
Stokes-Fourier (NSF) theory exhibit excellent agreement with
experimental data for sound propagation. This agreement
indicates that in near-equilibrium regime, our theory and
the NSF theory yield comparable results. However, as the
nonequilibrium parameter decreases and we move into a tran-
sition regime (1 < p/μω < 10), our theory shows improved
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FIG. 4. Stability analysis of the two-temperature model for CH4

gas with Model 4 coefficients: panel (up) spatial stability and panel
(down) temporal stability. In panel (up) black, red, or blue dashed
lines represent different modes corresponding to the parameter ω.

performance compared to the classical NSF theory. Further-
more, in the high-frequency region (p/μω < 1), our theory
consistently outperforms the classical NSF theory, as evident
from Figs. 6–8.

VIII. SPONTANEOUS RAYLEIGH-BRILLOUIN
SCATTERING

Spontaneous Rayleigh–Brillouin scattering (SRBs) in
gases originates from instantaneous density fluctuation. A
plane polarised light with the following parameters: intensity
I0, angular frequency ω0, wave vector k0, and polarization
n0 impacts a fluid with the following dielectric constant ε0.
The light’s intensity, angular frequency ωs, wave vector ks,
and polarization ns, which was detected at distance d from
scattered volume a detector by the fluid’s scattering at angle θ

FIG. 5. Stability analysis of the two-temperature model for CH4

gas with reduced model coefficients: panel (up) spatial stability and
panel (down) temporal stability. In panel (up) black, red, green, or
blue dashed lines represent different modes corresponding to the
parameter ω.

is given by

I (K, ω, d ) = I0
(ω0)4

16π2d2c4
(n0 · ns)2S(K, ω), (49)

where c is the speed of light in a vacuum, ω = ω0 − ωs the
shift in angular frequency and in a very close approximation,
the wave vector K of the fluctuation being observed is the
momentum transfer between the incident wave vector k0, the
scattered wave vector ks and S(K, ω) is dynamic structure
factor. The magnitude of K is then approximately equal to
|K| = |k0 − ks| = 2|k0|sin(θ/2).

The hydrodynamic equations are straightforward due to
the one-dimensional, linearized, and boundary conditions-
free character, and thus enable analytical solutions for the
Rayleigh-Brillouin-scattering problem [26,48]. The Knudsen
number (Kn), which is defined as the ratio of the mean free
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FIG. 6. Schematics for nitrogen (up) and oxygen (down), depict-
ing the attenuation factor αc0/ω as a function of the rarefaction
parameter p/μω at a temperature of 300 K. The predictions of
our theory using various coefficients and the Navier-Stokes-Fourier
(NSF) theory are compared with experimental data obtained by
Greenspan [28].

path of gas molecules to the characteristic length scale (L) of
the system, known as the scattering wavelength 2π/K, is used
to describe the spectrum of scattered light. The linearized and
one-dimensional form of our system is

∂ρ̂

∂ t̂
+ ∂ v̂

∂ x̂
= δ(t̂ ), (50a)

∂ v̂

∂ t̂
+ ∂ρ̂

∂ x̂
+ ∂θ̂ tr

∂ x̂
+ ∂σ̂

∂ x̂
= 0, (50b)

3

2

∂θ̂ tr

∂ t̂
+ ∂ v̂

∂ x̂
+ ∂ q̂tr

∂ x̂
= P0,0, (50c)

δ

2

∂θ̂ in

∂ t̂
+ ∂ q̂in

∂ x̂
= P0,1, (50d)

FIG. 7. Schematics for nitrogen (up) and oxygen (down), depict-
ing the reciprocal speed ratio c0/vph as a function of the rarefaction
parameter p/μω at a temperature of 300 K. The predictions of
our theory using various coefficients and the Navier-Stokes-Fourier
(NSF) theory are compared with experimental data obtained by
Greenspan [28].

and constitutive equations

σ̂ = −4

3
Kn

∂ v̂

∂ x̂
, (51a)

q̂in = −ζ12
∂θ̂ tr

∂ x̂
− ζ22

∂θ̂ in

∂ x̂
, and (51b)

q̂tr = −ζ11
∂θ̂ tr

∂ x̂
− ζ12

∂θ̂ in

∂ x̂
. (51c)

Equations (50) and (51) are transferred into the following
matrix form by using the Laplace transform for the temporal
variable t and the Fourier transform for the spatial variable x
in the spontaneous SRB [26]:

⎡
⎢⎢⎢⎢⎣

−iω 2π i 0 0

2π i −(
iω − 8π i

3 Kn
)

2π i 0

0 2π i − 3
2 iω + 4π2ζ11 4π2ζ12

0 0 4π2ζ12 − δ
3 iω + 4π2ζ22

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

ρ̂

v̂

θ̂ tr

θ̂ in

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

1

0

P0,0

P0,1

⎤
⎥⎥⎥⎥⎦, (52)
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FIG. 8. Schematics for nitrogen (up) and oxygen (down), depict-
ing speed of sound (vph − c0 )/c0 as a function of the rarefaction
parameter p/μω at a temperature of 300 K. The predictions of
our theory using various coefficients and the Navier-Stokes-Fourier
(NSF) theory are compared with experimental data obtained by
Greenspan [28].

where ω is the angular frequency. For the spectrum of the
density fluctuations, ρ̂, we solve the non-homogeneous matrix
equations (52) and obtain the spontaneous Rayleigh–Brillouin
scattering.

A. Results

In this section, analytic results for the light-scattering spec-
trum are derived for methane (CH4) and compared with the
predictions of the extended hydrodynamic theory of Ham-
mond and Wiggins [49], which are entirely consistent with
empirical data. To apply the two-temperature model to the re-
sults obtained in the previous section, certain conditions must
be satisfied by the polyatomic gas. These conditions include
spherical symmetry of the gas molecules and a specific heat
capacity ratio close to 4/3. Methane at ordinary temperatures
approximately meets these requirements. By solving the non-
homogeneous matrix equations (52) for the spectrum of the
density fluctuations ρ̂, we obtain the SRB spectra. An SRB
spectrum typically consists of a central Rayleigh peak and two
Brillouin side peaks at equidistant from the central Rayleigh

peak. These Brillouin side peaks are located at
√

γ

2 , where γ

is the ratio of heat capacity. In the typical spectra of the SRBs,

FIG. 9. The scattered light spectrum from CH4 for y = 18.27 and
spectrum has been normalized at the Rayleigh peak.

one can identify the contributions from the central Rayleigh
peak and the Brillouin side peaks.

We show the scattered light spectrum from CH4 gas (293 K
and 1.013 bar) for different values of y, which is a measure of
the ratio of the wavelength of the observed fluctuation with
the collision mean free path

y = 1√
2

(
kbT0

m

)1/2
ρ0

μ0K
, (53)

with the reduced frequency x is given by

x =
√

2

3

ω

v0K
, (54)

here v0 =
√

4
3 RT0 is the adiabatic speed of sound [26]. In

Figs. 9–11, we compare the light-scattering results obtained
from our two-temperature model equation with the predictions
of the extended hydrodynamic theory proposed by Hammond
and Wiggins [49]. The comparisons are made for three dif-
ferent values of parameter “y,” specifically 18.27, 4.46, and
2.70. Figures display the spectral predictions of the two-
temperature model represented by solid and dashed lines,
while the solid line (cyan color) represents the NSF model.

FIG. 10. The scattered light spectrum from CH4 for y = 4.46 and
spectrum has been normalized at the Rayleigh peak.
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FIG. 11. The scattered light spectrum from CH4 for y = 2.70 and
spectrum has been normalized at the Rayleigh peak.

Additionally, the red square symbols represent the spec-
tral prediction of the extended hydrodynamic theory, which,
according to Hammond and Wiggins, exhibits excellent agree-
ment with the experimental data (the curves are normalized at
the zero frequency shift), and the diamond represents the pre-
diction of the translational hydrodynamic theory from Desai
and Kapral [50].

From Figs. 9–11, we can conclude that our two-
temperature model equation accurately describes the
Rayleigh-Brillouin spectrum in polyatomic ideal gases
with rotational energy. Moreover, it demonstrates a smooth
and precise transition between the hydrodynamic and kinetic
regimes. This ability to provide a seamless connection
between these two regimes enhances the model’s capability
to capture the behavior of the gas across a wide range of
conditions.

Upon analyzing the results presented in Figs. 9–11, we
observe that the reduced model provides favorable outcomes
for y = 18.27 and y = 4.46 but exhibits slight discrepancies
for y = 2.70. In contrast, the NSF approach fails to accu-
rately predict the scattered light’s spectrum from methane
for y = 4.46 and y = 2.70. Based on these comparisons, we
can conclude that the two-temperature model proposed in this
work is well-suited for analyzing light-scattering experiments
from methane.

It is important to note that the two-temperature model
equation, as presented in this study, does not account for
the vibrational degrees of freedom of the molecules, unlike
the extended hydrodynamic model of Hammond and Wig-
gins [49]. Despite this limitation, the two-temperature model
shows promise in providing valuable insights and predictions
for light-scattering phenomena in polyatomic ideal gases with
rotational energy, as demonstrated by its agreement with the
extended hydrodynamic theory in certain cases.

Next, we have also compared the theoretical predictions
of the two-temperature model with the molecular simulation
method, specifically, molecular dynamics (MD), which com-
pletely agrees with direct simulation Monte Carlo [18]. This
comparison allowed us to calculate the spontaneous Rayleigh-
Brillouin-scattering spectra for gases such as N2 and O2.
These methods were achieved under an approximately fixed

FIG. 12. The scattered light spectrum from N2 for y = 1.725 and
spectrum has been normalized at the Rayleigh peak.

pressure P0 = 3 bar, temperature T0 ≈ 298 K, and wavelength
of the laser is L = 285 nm. As thermodynamic parameters, we
have utilized μ = 1.776 × 10−5 Pa s and μb/μ = 0.59 for N2

gas, as well as μ = 1.7825 × 10−5 Pa s and μb/μ = 0.54 for
O2 gas, both at a temperature of T0 = 298 K, as reported in
Ref. [51]. Note that in this comparison, the frequency has been
normalized using the values of 1.55012 GHz and 1.5509 GHz
for N2 gas and for O2 gas, respectively.

In Figs. 12 and 13, we present a comparison of the
spectra of spontaneous Rayleigh-Brillouin scattering (RBS)
derived from both the two-temperature model and the Navier-
Stokes-Fourier (NSF) theories with molecular dynamics. The
theoretical predictions have been normalized to a value of 1 at
x = 0. As depicted in Figs. 12 and 13, it is evident that the
two-temperature model theory exhibits superior agreement
with molecular dynamics when compared to the NSF theory.

IX. WALL BOUNDARY CONDITIONS

The incorporation of the second law of thermodynamics is
critical in determining appropriate wall boundary conditions
for gas dynamics models. It is imperative that the boundary

FIG. 13. The scattered light spectrum from O2 for y = 1.633 and
spectrum has been normalized at the Rayleigh peak.
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conditions satisfy the second law to ensure that the entropy
generation at the interface is positive.

Our approach to derive the boundary conditions is to eval-
uate the entropy generation at the interface and formulate the
boundary conditions as phenomenological laws. The entropy
generation can be computed using the entropy balance equa-
tion and integrating directly over the interface while applying
Gauss’s theorem.

The entropy production rate at the boundary �w is given
by the difference between the entropy fluxes into and out of
the surface [12], i.e.,

�w =
(

hk − qw
k

θw

)
nk . (55)

Here, nk is the unit normal pointing from the boundary into
the gas, qw

k denotes the heat flux in the wall at the interface,
and θw denotes the temperature of the wall at the interface.
Here, the wall is assumed to be a rigid Fourier heat conductor,
with the entropy flux qw

k
θw .

At the interface, the total fluxes of mass, momentum, and
energy are continuous, due to the conservation of these quan-
tities,

vknk = vw
k nk = 0, (56a)

((p + 	)δik + σik )nk = pwni, and (56b)

((p + 	)vk + σikvi + qk )nk = (
pwvw

k + qw
k

)
nk , (56c)

where all quantities with superscript w refer to wall proper-
ties, and the others refer to the gas properties. To proceed,
we combine entropy generation and continuity conditions by
eliminating the heat flux in the wall qw

k and the pressure pw,
and find, after insertion of the entropy flux (26),

�w = −
[

qk

θθw
T + 2

5 + δ

ϑ

θ (θ + ϑ )
qk

+3 + δ

5 + δ

ϑ

θ (θ + ϑ )
Qk + σik

Vi

θw

]
nk . (57)

Here, Vi = vi − vw
i is the slip velocity, with Vini = 0, and

T = θ − θw is the temperature jump. To write the entropy
generation properly as the sum of products of forces and
fluxes, it is necessary to decompose the stress tensor and
heat flux into their components in the normal and tangential
directions as [30]

qk = qnnk + q̄k , (58a)

Qk = Qnnk + Q̄k , and (58b)

σik = σnn
(

3
2 nink − 1

2δik
) + σ̄nink + σ̄nkni + σ̃ik , (58c)

where qn = qini, σnn = σ jl n jnl , and

q̄k = qk − qnni, (59a)

Q̄k = Qk − Qnni, (59b)

σ̄ni = σil nl − σnnni, and (59c)

σ̃ik = σik − σnn
(

3
2 nink − 1

2δik
) − σ̄nink − σ̄nkni, (59d)

such that q̄lnl = σ̄nlnl = σ̃ll = σ̃iknk = σ̃ikni = 0. Substitut-
ing Eqs. (58) and (59) into Eq. (57), the entropy generation

can be written as a sum of three contributions:

�w = − T

θθw

[
qn − 2

5 + δ

ϑ

(θ + ϑ )
qn − 3 + δ

5 + δ

ϑ

(θ + ϑ )
Qn

+σ̄niVi]− 1

θθw

ϑθ

(θ+ϑ )

(
2

5 + δ
qn+ 3 + δ

5 + δ
Qn

)
− Vi

θ
σ̄ni.

(60)

For a positive entropy production, we find the phenomenolog-
ical boundary conditions for the two-temperature model as

qn − 2

5 + δ

ϑ

θ + ϑ
qn − 3 + δ

5 + δ

ϑ

(θ + ϑ )
Qn + σ̄niVi

= −η11T − η12
ϑ

(θ + ϑ )
θ , (61a)

2

5 + δ
qn + 3 + δ

5 + δ
Qn = −η12T − η22

ϑ

(θ + ϑ )
θ , (61b)

σ̄ni = −�Vi. (61c)

Here, the matrices

η =
[
η11 η12

η12 η22

]
(62)

is a symmetric nonnegative definite matrix of Onsager resis-
tivity coefficients and � � 0, which can be obtained either
from experiments or from kinetic theory models, as we shall
show in next sections.

A. Comparison with Rahimi and Struchtrup [19]

The Onsager resistivity coefficients (ηi j ) appearing in the
boundary conditions Eqs. (61) are obtained from kinetic the-
ory in the asymptotic limit of small dynamic temperature
(ϑ → 0):

η11 = χ

2 − χ

(4 + δ)

2
p

√
2

πθ
+ O(min(εα, ε)), (63a)

η12 = 1

2

χ

2 − χ
p

√
2

πθ
+ O(min(εα, ε)), (63b)

η22 = χ

2 − χ

√
2

πθ
p

[
15 + 4δ

2δ

(3 + δ)

(5 + δ)
+ 1

(3 + δ)

]
(63c)

+ O(min(εα, ε)),

� = χ

2 − χ

√
2

πθ
p + O(min(εα, ε)), (63d)

where χ is the wall accommodation coefficients, specifying
the level of accommodation of the particle on the wall. Full
accommodation is specified by χ = 1 and the pure specularly
reflected particles are described by χ = 0. Solving boundary
conditions Eqs. (61) for qn and Qn and after that linearized
and we obtain

qn = −η11T −η12ϑ, (64)

Qn = −5 + δ

3 + δ

[
η12 − 2

5 + δ
η11

]
T

− 5 + δ

3 + δ

[
η22 − 2

5 + δ
η12

]
ϑ. (65)
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Now substitute the value of coefficients from Eq. (63) in
phenomenological boundary conditions (61) and linearized,
dimensionless, we get the following boundary conditions:

q̂n = − χ

2 − χ

√
2

π

(4 + δ)

2
T̂ − χ

2 − χ

√
2

π

1

2
ϑ̂ , (66a)

Q̂n = 1

2

χ

2 − χ

√
2

π
T̂ − χ

2 − χ

√
2

π

[
15 + 4δ

2δ
+ 2

(3 + δ)2

]
ϑ̂ ,

(66b)

ˆ̄σni = − χ

2 − χ

√
2

π
V̂i. (66c)

B. Reduced model boundary condition

For Reduced model boundary condition Qn = 0, i.e.,

η12 = 2

5 + δ
η11 and η22 = 4

(5 + δ)2
η11. (67)

Upon substituting the values of these coefficients from
Eq. (67) into the phenomenological boundary conditions (61),
and linearizing and dimensionless the equations, we obtain the
following boundary conditions:

q̂n = − χ

2 − χ

√
2

π

4 + δ

2
T̂ − χ

2 − χ

√
2

π

4 + δ

5 + δ
ϑ̂ , (68a)

ˆ̄σni = − χ

2 − χ

√
2

π
V̂i. (68b)

Furthermore, we compare the boundary conditions (64)
and (61c) derived in the reduced model with those established
by Jun Zhang et al. in their work [52]. Their study focused
on slip velocity and temperature jump in single-species gases,
utilizing the Cercignani-Lampis-Lord model. In this model,
the slip velocity depends only on the tangential accommo-
dation coefficient, while the temperature jump is affected
by accommodation coefficients in both the tangential and
normal directions. After comparison, obtain the following
coefficients:

η11 = 5(αp + αt )

2(10 − 3αp−2αt )

√
8

π
and � = βt

2 − βt

√
2

π
, (69)

where αt and αp represent the two accommodation co-
efficients for tangential and normal energy, respectively.
Additionally, there is the tangential momentum accommo-
dation coefficient βt , which is related to αt through the
equation αt = βt (2 − βt ).

X. HEAT TRANSFER BETWEEN TWO PARALLEL PLATES

This section focuses on the validation of our wall boundary
conditions through an investigation of a fundamental prob-
lem involving steady-state conductive heat transfer through
stationary rarefied gases confined between parallel plates. To
achieve this, we employ the two-temperature model within the
framework of rarefied gas dynamics.

A. Problem settings and reduced moment equations

In this study, we investigate a steady-state gas flow between
two parallel plates that are infinitely long and fixed perpendic-

FIG. 14. The schematic illustrates heat conduction, featuring
a channel with two stationary parallel walls having distinct
temperatures.

ular to the y axis at y = ±1/2 (see Fig. 14). The temperature
of the walls differs, and the flow properties and variables
solely depend on the y direction. The fluid is assumed to be
stationary in this case, and any flow caused by density changes
in an unsteady state is ignored. The two temperature model
equation (39) can be derived for one-dimensional channel
flows by omitting partial derivatives with respect to x and z.
Thus, the conservation laws are modified in this form

∂σ̂xy

∂ ŷ
= 0,

∂ρ̂

∂ ŷ
+ ∂θ̂

∂ ŷ
+ ∂ϑ̂

∂ ŷ
+ ∂σ̂yy

∂ ŷ
= 0,

and
∂ q̂y

∂ ŷ
= 0, (70)

and equations of dynamic temperature(
2δ

(3 + δ)(5 + δ)

)
∂ q̂y

∂y
+

(
δ

5 + δ

)
∂Q̂y

∂y
= P0,0. (71)

The equation of stress tensor σ̂xy, total heat flux q̂y and heat
difference Qy are

σ̂xy = −4Kn

3

∂ v̂

∂ ŷ
, (72a)

q̂y = −(ζ11 + 2ζ12 + ζ22)
∂θ̂

∂ ŷ

−
[

(ζ11 + ζ12) − 3

δ
(ζ12 + ζ22)

]
∂ϑ̂

∂ ŷ
, (72b)

Q̂y = −
[(

ζ11 − 5

δ
ζ12

)
+

(
ζ12 − 5

δ
ζ22

)]
∂θ̂

∂ ŷ

−
[(

ζ11 − 5

δ
ζ12

)
− 3

δ

(
ζ12 − 5

δ
ζ22

)]
∂ϑ̂

∂ ŷ
. (72c)

The linear system can be easily solved analytically, yield-
ing the general solution that involves seven constants to be
determined. One of the constants depends on the average
density between the plates: upon setting the range of y to be
[−1/2, 1/2] (so that L = 1), we assign the average density as∫ 1/2

−1/2
ρ̂(y) dy = 0. (73)
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FIG. 15. Comparison of density profiles for Kn numbers equal
to 0.071 (up) and 0.71 (down). Results shown are obtained from: our
theory (solid, dashed line); NSF equations (dot dashed cyan line);
DSMC method (red square box) [53].

The remaining six constants can be determined through six
boundary conditions. In the one-dimensional setting, each
boundary contributes three boundary conditions, as specified
by Eq. (66). Here, we present the boundary conditions specif-
ically for the upper wall:

q̂y = − χ

2 − χ

√
2

π

(4 + δ)

2
T̂ − χ

2 − χ

√
2

π

1

2
ϑ̂ , (74a)

Q̂y = 1

2

χ

2 − χ

√
2

π
T̂ − χ

2 − χ

√
2

π

[
15 + 4δ

2δ
+ 2

(3 + δ)2

]
ϑ̂ ,

(74b)

ˆ̄σxy = − χ

2 − χ

√
2

π
V̂2. (74c)

To apply the boundary conditions on the lower solid wall, it is
sufficient to make the following parameter replacement:

q̂y → −q̂y, Q̂y → −Q̂y, ˆ̄σxy → − ˆ̄σxy. (75)

B. Results

We compare the results of two-temperature model
with the Direct Simulation Monte Carlo (DSMC) method
data [53]. Comparison between the analytical solution of

FIG. 16. Comparison of translational temperature for Kn num-
bers equal to 0.071 (up) and 0.71 (down). Results shown are obtained
from: our theory (solid, dashed line); NSF equations (dot dashed
cyan line); DSMC method (red square box) [53].

two-temperature model and DSMC results are shown in
Figs. 15–17. Dimensionless wall temperatures are at devia-
tions of ±0.0476 from reference temperature at 350 K. We
investigate two different reference Kn numbers, 0.071 and
0.71, which represent slip and transition flow regimes, re-
spectively. Also, excited internal degrees of freedom is set to
2, the same as the DSMC simulation. Figures 15–17 clearly
demonstrates the strong agreement between the DSMC and
two-temperature model results in slip flow regimes. Fur-
thermore, in the transition regime, two-temperature model
exhibits even better agreement compared to the classical NSF
theory. For Kn = 0.071 and Kn = 0.71, we determine the
total heat flux (q̂y) to be approximately 0.025 and 0.084,
respectively. As can be seen, the agreement between the
curves of the two-temperature model solutions and the data
from the DSMC reference solutions is evident, especially
for smaller Knudsen numbers (Kn), indicating the accu-
racy and validity of two-temperature model and boundary
conditions.

XI. CONCLUSIONS

By integrating concepts from various approaches to irre-
versible thermodynamics, including LIT, RT, and RET, we
have developed an enhanced set of constitutive relations for
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FIG. 17. Comparison of internal temperature for Kn numbers
equal to 0.071 (up) and 0.71 (down). Results shown are obtained
from: our theory (solid, dashed line); NSF equations (dot dashed
cyan line); DSMC method (red square box) [53].

the stress tensor and heat flux within the framework of the
two-temperature model. The two-temperature model has been
provided with boundary conditions that ensure thermody-
namic consistency. These conditions include descriptions of
velocity slip, temperature jump, and transpiration flow at the
boundaries.

In this paper, a two-temperature model equation has been
applied to the analysis of sound propagation, light-scattering
experiments, and heat transfer between two parallel plates in
dilute polyatomic gases at room temperatures.

The comparison of our analytical solutions with acous-
tic and laser-scattering experiments conducted in nitrogen,
oxygen, carbon dioxide, and methane at room tempera-
tures demonstrates the excellent performance of the two-
temperature model equation proposed in this study. The
model proves to be highly effective in accurately describing
time-dependent phenomena in polyatomic gases, yielding sat-
isfactory agreement with experimental observations. We also
solved steady one-dimensional stationary heat conduction an-
alytically with a set of six-moment equations and compared
the results with DSMC simulations.

In this paper, we have established the linear stability of
the equations governing the two-temperature model for dis-
turbances across all wavelengths or frequencies.

In subsequent research endeavors, there is potential for
the development of second law preserving numerical tech-
niques [54] tailored for nonlinear flows. Additionally, alter-
native numerical approaches like the method of fundamental
solutions [55,56] warrant investigation. Furthermore, the ex-
pansion of the two-temperature model to encompass more
comprehensive hydrodynamic models, including CCR poly-
atomic [57] and extended moments models [19], is part of the
forthcoming agenda.
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APPENDIX

The maximum entropy distribution function which maxi-
mizes the entropy (19) under the constraints (3), (5), and (6)
takes the following form:

f6 = ρ

m

1
√

2πθtr
3 e− C2

2θtr

︸ ︷︷ ︸
Maxwellian

1

γ
(

δ
2

) 1

I

(
I

θ in

)δ/2

e− I
θ in

︸ ︷︷ ︸
Gamma

.

Proof. The proof of the theorem employs the Lagrange
multiplier method. To achieve this, we introduce a vector of
multipliers (ξ0, ξi, ξ1, ξ2) and define the corresponding func-
tional:

£[ f ] = −kb

∫
f ln

f

f0
dCdI + ξ0

{
ρ − m

∫
f dCdI

}

− ξim
∫

f CidCdI + ξ1

{
3

2
ρθ tr − m

∫
f

C2

2
dCdI

}

+ ξ2

{
δ

2
ρθ in − m

∫
f IdCdI

}
. (A1)

Taking the derivative of the functional £ with respect to f and
setting it to zero

∂£

∂ f
=−kb

(
1 + ln

f

f0

)
− ξ0m − ξimCi − mξ1

C2

2
−mξ2I =0.

Therefore, the solution of the Euler–Lagrange equation ∂£
∂ f =

0 is given by

f6 = f0 exp

(
−1 − ξ0

R
− ξi

R
Ci − ξ1

R

C2

2
− ξ2

R
I

)
. (A3)

Put the value of f6 in the constraint (3)

ρ = m
∫

e−1− ξ0
R I (δ/2−1)e− ξ1

R
C2

2 e− ξ2
R I dCdI, (A4)

ρ = me−(1+ ξ0
R )A−(δ/2)γ (δ/2)

2
√

2π
3
2

B
3
2

, (A5)

where δ > 0, B = ξ1

R > 0, and A = ξ2

R > 0.
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Put the value of f6 in the constraint (5)

3

2
ρθ tr = m

∫
e−1− ξ0

R I (δ/2−1)e− ξ1
R

C2

2 e− ξ2
R I C2

2
dCdI, (A6)

3

2
ρθ tr = me−1− ξ0

R
3
√

2π
3
2

B
5
2

A−(δ/2)γ (δ/2). (A7)

Put the value of f6 in the constraint (6),

δ

2
ρθ in = m

∫
e−1− ξ0

R I (δ/2)e− ξ1
R

C2

2 e− ξ2
R I dCdI, (A8)

δ

2
ρθ in = me−1− ξ0

R
2
√

2π
3
2

B
3
2

A−(1+ δ
2 )γ

(
1 + δ

2

)
. (A9)

Solving Eqs. (A5), (A7), and (A9) we find the value of La-
grange multiplier as follows:

e−1− ξ0
R = ρ

m

1
√

2πθ tr3

[
1

θ in

] δ
2 1

γ (δ/2)
, (A10)

ξ1 = R

θ tr
, ξi = 0, and ξ2 = R

θ in
. (A11)

Substitute these values in Eq. (A3), and we find the following
maximum entropy distribution function

f6 = ρ

m

1
√

2πθ tr3 e− C2

2θ tr
1

γ
(

δ
2

) 1

I

[
I

θ in

] δ
2

e− I
θ in . (A12)
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