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Statistics of inhomogeneous turbulence in large-scale quasigeostrophic dynamics
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A remarkable feature of two-dimensional turbulence is the transfer of energy from small to large scales. This
process can result in the self-organization of the flow into large, coherent structures due to energy condensation
at the largest scales. We investigate the formation of this condensate in a quasigeostropic flow in the limit of
small Rossby deformation radius, namely the large-scale quasigeostrophic model. In this model potential energy
is transferred up-scale while kinetic energy is transferred down-scale in a direct cascade. We focus on a jet mean
flow and carry out a thorough investigation of the second-order statistics for this flow, combining a quasilinear
analytical approach with direct numerical simulations. We show that the quasilinear approach applies in regions
where jets are strong and is able to capture all second-order correlators in that region, including those related to
the kinetic energy. This is a consequence of the blocking of the direct cascade by the mean flow in jet regions,
suppressing fluctuation-fluctuation interactions. The suppression of the direct cascade is demonstrated using a
local coarse-graining approach allowing us to measure space dependent interscale kinetic energy fluxes, which
we show are concentrated in between jets in our simulations. We comment on the possibility of a similar direct
cascade arrest in other two-dimensional flows, arguing that it is a special feature of flows in which the fluid
element interactions are local in space.

DOI: 10.1103/PhysRevE.108.065102

I. INTRODUCTION

Multiscale, nonlinear interactions are one of the defining
properties of turbulent flows, posing a considerable challenge
both for theoretical understanding and numerical modeling. In
particular, they imply that the flow at large scales is coupled to
smaller scale fluctuations, and that, for instance, the structure
of the large-scale flow depends on the transport of momentum
and the dissipation of energy by such small scales. For statis-
tically homogeneous and isotropic flows such interactions are,
to leading order, well captured within phenomenological theo-
ries, though many theoretical questions remain open and there
are very few results which can be obtained from first princi-
ples, e.g., Refs. [1,2]. However, most real flows break such
symmetries at large enough scales, either because of external
fields such as gravity or a magnetic field, due to the effect of
rotation, or the existence of boundaries. In such flows, often
the key question is to characterize the large-scale mean flow.
In turn, this requires the prediction of energy and momen-
tum transfers due to turbulent fluctuations, across scales and
spatially. Generally, this is a challenging task, requiring ad
hoc assumptions. However, there is growing evidence that the
nonlinear interactions in the presence of a strong mean flow
may in fact be easier to treat than those in a homogeneous and
isotropic flow (see, e.g., Ref. [3] for a review). This has been
particularly evident in two-dimensional (2D) and quasi-2D
flows, where dimensionality imposes strong constraints upon
the nature of multiscale interactions.
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Two-dimensional flows exhibit a remarkable tendency to
spontaneously self-organize into a coherent mean flow when
excited at small scales. The mechanism behind this self-
organization is an inverse transfer of a quadratic invariant
(e.g., energy) from small to large scales, in a process called
the inverse cascade [4–6]. The inverse cascade arises due to
the existence of a second inviscid invariant of the dynamics,
which is simultaneously transferred to small scales in a so-
called direct cascade. In a finite system this inverse transfer
results in the accumulation of energy at the largest avail-
able length scale, forming a system-size coherent mean flow
termed a condensate [4,7–9]. In this condensate regime, the
direct interactions between the mean flow and turbulence can
dominate over local-in-scale interactions. Indeed, theoretical
ideas and numerical methods which do not explicitly resolve
the fluctuation-fluctuation interactions have been shown to be
applicable in this system (and its variants) [10–15]. Moreover,
analytical results describing both the spatial structure of the
mean flow [16–18] and the turbulent kinetic energy density
[19], were successfully derived from first-principles in this
regime.

The interest in two-dimensional flows is not limited to the
theoretical understanding of turbulent interactions, as many
flows in nature become effectively two-dimensional and thus
exhibit a similar phenomenology. This occurs when the fluid
motion is constrained in one of the directions either because
the fluid is contained within a thin layer, is stratified, or is
rapidly rotating [20–23]. Astrophysical and large-scale geo-
physical flows often have one or more of these properties,
with rotation playing a particularly important role in con-
straining the motion, called the geostrophic regime [24,25]. A
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minimal model for the flow in this regime, capturing the main
features of the large-scale dynamics and serving as an im-
portant theoretical tool, is the shallow water quasigeostrophic
equation (SWQG). In SWQG, there is a typical scale which
determines the range of interactions between fluid elements,
called the Rossby deformation radius. The special cases
within which the condensate had been studied in detail so far
are two-dimensional incompressible Navier-Stokes (2DNS)
with the β effect (differential rotation) [11,12,14,26,27], or
2DNS without differential rotation [16,18,19]. Both these
cases capture dynamics at scales much smaller than the de-
formation radius, so that interactions span the entire domain.

Here we consider the opposite limit, where interactions
are local—the so-called large-scale quasigeostrophic (LQG)
equation [28]. This model captures the long-time dynamics at
scales much larger than the deformation radius. It contains two
inviscidly conserved quantities: the potential energy, trans-
ferred to large scales, and the kinetic energy, which cascades
to small scales in a direct cascade. The main question we in-
vestigate is what type of condensate does this system support,
and how does the locality of interactions affect the properties
of turbulent fluctuations and their interaction with the mean
flow?

We begin by reviewing the derivation of the LQG equa-
tion from SWQG and discuss the conditions necessary for
the emergence of a condensate in this system. Building upon
our results for the mean flow of an LQG jet-type conden-
sate [29], we fully characterize the two-point second-order
statistics, combining analytical derivations and results from
direct numerical simulations. Turning to the direct cascade
and the kinetic energy balance, we show that in the presence
of a mean flow it includes a spatial flux of fluctuating kinetic
energy. Such a flux is absent in 2D Navier-Stokes, and seems
to be related to the locality of interactions in LQG. Using our
analytical results for the second-order statistics, we show that
this flux carries most of the kinetic energy away from regions
of strong mean flow, effectively arresting the direct cascade
there. We confirm the in-homogeneity of the direct cascade
induced by the mean flow by examining the flux of energy
between scales within a smooth filtering approach [30]. In
particular, we consider the local interscale flux of kinetic
energy and potential energy for the LQG system. Measuring
this flux in simulations, we demonstrate that the flux of kinetic
energy to small scales is indeed locally suppressed in regions
where the jets are strong, an effect so strong it is evident under
short-time averaging.

This work also serves as the companion to the paper [29].
Here we provide detailed derivations and discussions of some
of the results stated in Ref. [29] alongside new results and
analysis not contained in Ref. [29].

II. FRAMEWORK

The LQG equation can be derived as a limit of the shallow
water quasigeostrophic equation which is given by [25]

∂t q + v · ∇q = ∂t q + J (ψ, q) = 0; q = (∇2 − L−2
d

)
ψ,

(1)

where q is the potential vorticity, ψ is the stream-fucntion
which is related to the fluid velocity via v = ẑ × ∇ψ , ω =
∇2ψ = (∇ × v) · ẑ is the vorticity, and J (ψ, q) is the Jacobian
operator defined as J (ψ, q) = ∂xψ∂yq − ∂yψ∂xq = εi j∂iψ∂ jq
with εi j the 2D Levi-Civita symbol. This equation describes
the dynamics of a rapidly rotating homogeneous fluid layer,
wherein the pressure gradient force due to fluctuations of the
free surface is balanced by the Coriolis force (the so-called
geostrophic balance). The stream function both determines
the velocity and is proportional to the surface height pertur-
bations of the fluid layer. The scale Ld is called the Rossby
deformation radius and sets the range of influence of a surface
perturbation on its surroundings. When Ld/L → ∞, where L
is a characteristic scale for the domain size, surface pertur-
bations have a long-range influence on the fluid, and their
equilibration is fast compared to the rotation period, giving
an incompressible 2D fluid. The opposite limit Ld/L → 0
corresponds to a very rapidly rotating fluid, where the effect
of surface perturbations is strictly local. In this limit, the
long-time dynamics are given by the LQG equation [28]

∂τψ + vω · ∇ψ = ∂τψ + J (ω,ψ )

= f + α∇2ψ − ν(−∇2)pψ, (2)

with vω = ẑ × ∇ω and we have included forcing f and dissi-
pation, with α the friction coefficient (corresponding to linear
drag on velocity v) and ν the (hyper) viscosity.

This advection equation is similar to 2DNS but with the
roles of the vorticity and the stream function reversed. Here
the vorticity acts as the “effective stream function,” and the
stream function is advected by an effective velocity vω =
ẑ × ∇ω. The integral invariants of Eq. (2) without forcing
and dissipation are the kinetic energy Z = 1

2

∫
(∇ψ )2d2x =

1
2

∫ |v|2d2x and all moments of ψ , in particular the potential
energy E = 1

2

∫
ψ2d2x. The existence of the two quadratic

invariants results in the inverse cascade of E and a direct
cascade of Z [31].

Let us briefly comment on the conditions for the LQG lim-
iting dynamics to be consistent, a more complete discussion
can be found in the Appendix A. The SWQG equation is
derived from the rotating shallow water equations in the limit
of a small Rossby number, Ro = U/(
L) with U a typical ve-
locity scale, and 
 the fluid rotation rate. The derivation also
requires that Ro(L/Ld )2 ∼ o(1) so that height perturbations
are small compared to the mean fluid thickness. The limit
Ld/L → 0 which we take to obtain LQG is consistent with
this assumption provided that Ld/L ∼ Roβ with 0 < β < 1/2,
under which condition LQG can be derived as a limit of
SWQG. We remark that traditionally SWQG is derived as-
suming Ld/L ∼ O(1) rather than Ld/L ∼ Roβ . However, we
show in Appendix A that LQG can be directly derived from
the rotating shallow water equations in the latter limit, that
requires rescaling time by τ = t (Ld/L)2 ∝ tRo2β and expand-
ing the height field in powers of Ron+2β (instead of Ron like
the velocity). Thus, the forced LQG equation should be able
to capture the large-scale dynamics of SWQG with a small but
finite Ld with a forcing scale which is larger than Ld [31]. Note
that there is evidence that the inviscid equation eventually
develops motions on smaller scales, so the LQG equation may
become inadequate [32].
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We wish to explore the LQG system (2) in the condensation
regime, where the potential energy condenses at the largest
available scale. This requires that the rate of energy removal
at the box scale is much slower than the transfer rate by
the inverse cascade. The inverse cascade rate (eddy-turnover
time) can be found using dimensional analysis, requiring that
this rate depends only on the scale and the potential energy
injection rate ε = 〈ψ f 〉 [31]. We have [ε] ∼ [ψ2]/t ∼ l8/t3,
so that the rate of the inverse cascade of E at scale l is τE (l ) ∼
ε−1/3l8/3. Similarly, the rate of the direct cascade of Z at scale
l is τZ (l ) ∼ η−1/3l2, where η = 〈∇ψ∇ f 〉 is the kinetic energy
injection rate. Assuming the forcing acts in a narrow band of
scales around l f , the injection rates can be simply related by
η ≈ ε/l2

f . Note that the eddy turnover time decreases with the
scale much faster than in 2DNS, with a factor of l2 between
the two. This limits the available resolution for simulations
and thus also the separation of scales between the forcing and
box scale.

The dissipation rates due to the drag and viscous terms
are τα (l ) ∼ α−1l2 and τν (l ) ∼ ν−1l2p, respectively. Assuming
p � 2 (integer), the former will serve as the large-scale dissi-
pation mechanism arresting the inverse cascade of E while
the latter as the small-scale dissipation arresting the direct
cascade of Z . For the potential energy to condense at the
box scale, L, requires δ ≡ τE (L)/τα (L) = α(L2/ε)1/3 � 1.
Note that δ grows with the scale, i.e., that the ratio between
the nonlinear timescale and the dissipative timescale grows
with the length scale (like in 2DNS with linear friction,
factors of l2 appearing in both timescales canceling out to
give the same ratio). Additionally, in order for a significant
fraction of the (potential) energy to be transferred to large
scales, we require that at the forcing scale the dissipation rate
τν (l f ) is low compared to the nonlinear transfer rate, resulting
in the requirement Re ≡ τν (l f )/τE (l f ) = l2p−8/3

f ε1/3/ν � 1.
The kinetic energy cascade is arrested at the Kolmogorov
scale lν where the inverse cascade rate and the viscous dis-
sipation rate are comparable, resulting in lν ∼ (ν3/ε)1/(6p−8).
We can then estimate the potential energy dissipation at small
scales: assuming a constant kinetic energy flux down to the
Kolmogorov scale, the energy-dissipation rate is given by
εν = l2

ν η, where η = ε/l2
f is the injected kinetic energy. Thus,

we get εν = (lν/l f )2ε. This implies that the ratio between the
dissipated energy and the energy transferred to large scales is
εν/εα = εν/(ε − εν ) = l2

ν /(l2
f − l2

ν ) ≈ l2
ν /l2

f which is indeed
small in the limit of a large Re number. The sharpness of
the small-scale cutoff is determined by p, higher values will
increase the kinetic energy removal rate at scales l < lν (and
decrease the removal rate for l > lν) resulting in a sharper
cutoff of the spectrum at lν .

We perform direct numerical simulations (DNS) of the
LQG Eq. (2) using the Dedalus framework [33]. The
pseudospectral method is implemented using the 3/2 dealias-
ing rule and time stepping using a third-order, four-stage
DIRK/ERK method. We focus on a jet-type LQG condensate,
which simplifies the analysis in the following. In a doubly
periodic domain such a condensate emerges if the symmetry
between the x and y directions is broken [34,35]. Note that
such jets differ from those which emerge due to differential
rotation (β-plane turbulence [36]), which is absent here. We

TABLE I. Parameters of the DNS runs. All runs are performed
with hyperviscosity p = 7 on a 64 × 128 grid. The forcing wave
number is k f , the drag coefficient α, viscosity ν, potential energy
injection rate ε, the ratio of large-eddy turnover time and dissipa-
tion timescales is δ = αε−1/3L2/3, the ratio of viscous and forcing
timescales is Re = l2p−8/3

f ε1/3/ν, and TL is the simulation time in
units of large-eddy turnover time τL = ε−1/3L8/3.

k f 103 α 1019ν 104ε δ 10−13Re TL

A 13 2.0 7.30 2.44 0.109 2.26 872.9
B 13 1.0 7.30 2.42 0.055 2.25 1031.7
C 13 0.5 7.30 2.42 0.027 2.25 1122.8
D 13 1.0 7.30 1.04 0.072 1.70 185.0
E 13 1.0 0.50 2.59 0.053 33.64 176.0
F 10 2.0 10.00 1.35 0.133 26.47 191.6
G 10 1.0 10.00 1.37 0.066 26.60 155.1
H 10 0.5 10.00 1.36 0.033 26.54 252.7
I 15 1.0 7.30 2.48 0.054 0.45 327.9
J 15 2.0 0.50 2.71 0.105 6.75 300.2
K 15 1.0 0.50 2.74 0.052 6.77 206.6

therefore use a doubly periodic box of dimensions L ≡ Ly =
2Lx = 2π . The spatial resolution is taken to be 64 × 128,
which is relatively low, restricted by the rapid decrease of the
eddy-turnover time with decreasing scale in LQG. We use a
white-in-time forcing which is localized in Fourier space at
a wavenumber k f = 2π/l f = (10, 13, 15) (forcing in an an-
nulus of width 2dk = 2 with a constant amplitude A = 10−3

and a random phase). We use hyperviscosity with p = 7 and
ν = (0.5, 7.3, 10) × 10−19 and take α = (0.5, 1, 2) × 10−3.
Simulation parameters are chosen such that a significant frac-
tion of the (potential) energy is transferred to large scales
Re � 1 and such that potential energy condenses at large
scales δ � 1. Each simulation is run until the system reaches
a statistically steady state, and statistics are then gathered over
many large-scale turnover-times τE (L). The full list of simu-
lations performed is presented in Table I and the choice of the
temporal and spatial resolutions are discussed in Appendix C.

The resulting condensate, with two alternating jets along
the short side (x direction) of the domain, is shown in Fig. 1.
Between the jets, there are two small vortices, similarly to
what was found in 2DNS [35], possibly due to instabilities
of the mean flow. In the jet region, the flow is statistically
homogeneous in x. Small magnitude oscillations along the
y direction of the jet amplitude can also be seen in Fig. 1.
In steady state, no significant drift of the profile is observed
over time, so the mean profile is simply determined from the
average of the snapshots without shift. After averaging, we set
the axis such that the mean velocity is zero on the y = 0 line
with U > 0 above it and U < 0 below it.

To obtain a statistical description of the steady-state LQG
jet condensate we decompose the flow into the mean � =
〈ψ〉 and fluctuations ψ ′ = ψ − � focusing on the jet region,
where the flow is statistically homogeneous in x, and the mean
flow depends on y only. The mean flow ∂y� ≡ −U (y) and
the mass flux 〈vω′

y ψ ′〉 can be obtained from the mass flux
balance [average of Eq. (2)] and the potential energy balance,
neglecting kinetic energy dissipation for the fluctuations and
cubic-in-fluctuations terms. The latter assumes that nonlinear
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(a) (b)

FIG. 1. LQG jet condensate, showing the velocity v = ẑ × ∇ψ

snapshot (a) and mean over time (b). The color corresponds to the
velocity magnitude (Simulation B).

interactions are dominated by mean-flow-turbulence interac-
tions at the relevant scales and is also known as the quasilinear
approximation; see Ref. [3] for a review. The derivation and
the comparison to DNS are presented in Ref. [29], and here
we only cite the resulting leading-order solution,

∂y� = −U = ±
√

ε

α
, (3)〈

ψ ′vω′
y

〉 = ±√
εα. (4)

In agreement with Eq. (3), the simulated mean velocity U (y) is
indeed constant in the region where the jets are strong, rapidly
switching sign in a thin transition region between the jets, as
can be seen in Fig. 1(b).

III. SECOND-ORDER STATISTICS: TWO-POINT
CORRELATION FUNCTIONS

A. Analytical results

Given an expression for the mean flow, we are now in a
position to go further in the perturbation theory and consider
the full second-order (single-time) statistics. It is sufficient
to consider the two-point correlation function 〈ψ ′

1ψ
′
2〉 ≡

〈ψ ′(r1)ψ ′(r2)〉 where ri = (xi, yi ), from which other single
and two-point second-order correlation functions can be sub-
sequently derived. To obtain an expression for 〈ψ ′

1ψ
′
2〉, we will

use that in a statistically steady state,

0 = ∂τ 〈ψ ′
1ψ

′
2〉 =

∑
i �= j

〈ψ ′
j∂τψ

′
i 〉. (5)

The evolution equation for the fluctuations ∂τψ
′
i = ∂τ (ψ −

�) is obtained by subtracting the average of Eq. (2) from
Eq. (2), giving

∂τψ
′ = −vω · ∇ψ + ∂y

〈
vω′

y ψ ′〉
+ f + α∇2ψ ′ − ν(−∇2)pψ ′, (6)

where we have used that V ω
y ≡ ∂x〈ω〉 = 0 (due to homogene-

ity in x). Evaluating the derivative at point ri, multiplying by

ψ ′
j and averaging gives

〈ψ ′
j∂τψ

′
i 〉 = −〈ψ ′

jv
ω
i · ∇ψi〉 + 〈 fiψ

′
j〉

+ α〈ψ ′
j∇2ψ ′

i 〉 − ν〈ψ ′
j (−∇2)pψ ′

i 〉, (7)

where vω
i ≡ vω(ri ). Note that no summation over i is implied

here. The cubic term reads〈
ψ ′

jv
ω
i · ∇ψi

〉 = ∂y�i
〈
ψ ′

jv
ω′
y (ri )

〉
+ V ω

x (ri )〈ψ ′
j∂xψ

′
i 〉 + 〈

ψ ′
jv

ω′
i · ∇ψ ′

i

〉
, (8)

again using that V ω
y = 0. As the derivatives act on ri �= r j we

can take them out of the average, resulting in

〈ψ ′
j∂τψ

′
i 〉 = −{

∂y�i∇2
i ∂xi + V ω

x (ri )∂xi − α∇2
i

+ ν
( − ∇2

i

)p}〈ψ ′
jψ

′
i 〉 + 〈 fiψ

′
j〉 − ∇i · 〈

vω′
i ψ ′

jψ
′
i

〉
,

(9)

where ∇i and ∇2
i denote the gradient and Laplacian with

respect to ri, respectively. Finally using Eqs. (5) and (9) we
get∑

i=1,2

{
∂y�i∇2

i ∂xi + V ω
x (ri )∂xi − α∇2

i + ν
( − ∇2

i

)p}〈ψ ′
1ψ

′
2〉

= 2χ12 − ∇1 · 〈
vω′

1 ψ ′
1ψ

′
2

〉 − ∇2 · 〈
vω′

2 ψ ′
1ψ

′
2

〉
, (10)

where we have used that the force two-point correlation func-
tion is given by 〈 f (x1, t ) f (x2, t )〉 = 2χ12δ(t − t ′).

Having derived the general equation for the two-point
correlation function, Eq. (10), we will proceed using a per-
turbative approach. For the mean flow, we will use the
leading-order solution cited above. In the same manner as was
done for the single point correlation function, we shall neglect
the viscous dissipation term (there is no dissipative anomaly)
as well as that by linear friction, since in the condensate
regime we expect the dissipation of the fluctuations of ψ to
be a subleading effect, e.g.,

α∇2
i 〈ψ ′

1ψ
′
2〉

∂y�i∇2
i ∂xi〈ψ ′

1ψ
′
2〉

∼ α3/2

√
ε

l2 = δ3/2 l2
L

� δ3/2 � 1, (11)

where l2 � L is the length scale of the two-point function and
assuming the condensate regime with δ � 1. We will further
use the quasilinear approximation, expecting that at leading
order the cubic fluctuation terms are negligible compared to
the mean-flow-fluctuations term ∂y�i∇2

i ∂xi〈ψ ′
1ψ

′
2〉. This gives{

∂y1�1∇2
1∂x1 + ∂y2�2∇2

2∂x2

}〈ψ ′
1ψ

′
2〉 = 2χ12. (12)

Using homogeneity in the x direction (also for χ12 which
only depends on x1 − x2), i.e., that ∂x1 = −∂x2 when acting
on the two-point function, and ∂y� = √

ε/α at leading order,
simplifies the advection operator to ∇2

1∂x1 + ∇2
2∂x2 = (∂2

x1
+

∂2
y1

)∂x1 − (∂2
x1

+ ∂2
y2

)∂x1 = (∂2
y1

− ∂2
y2

)∂x1 . The equation then
reads

(
∂y1 + ∂y2

)(
∂y1 − ∂y2

)
∂x1〈ψ ′

1ψ
′
2〉 = 2

√
α

ε
χ12. (13)

Changing variables to y+ = (y1 + y2)/2 and y− = (y1 −
y2)/2 = �y/2 so that ∂y+ = ∂y1 + ∂y2 and ∂y− = ∂y1 − ∂y2 , fi-
nally gives the equation for the two-point function in compact
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(a) (b) (c)

FIG. 2. The two-point correlation function 〈ψ ′
1ψ

′
2〉 as measured in DNS (Simulation B) with (a) �x = �y = 0 (b) �x = y+ = 0 and (c)

�y = y+ = 0. The region where the leading-order solution for the mean flow applies is delimited by dashed lines (Simulation B).

form

∂y+∂y−∂x1〈ψ ′
1ψ

′
2〉 = 2

√
α

ε
χ12. (14)

We now briefly outline the solution of Eq. (14), leaving the de-
tailed derivation to Appendix B. The solution will be a sum of
the particular and the homogeneous solutions of Eq. (14). We
begin with the former, first noting that the forcing correlation
function χ12 in Eq. (14) should be replaced by χ̃12,

χ̃12 = χ12 −
∫ Ly

2

− Ly
2

ds

Ly
χ12(�x, s) −

∫ Lx
2

− Lx
2

ds

Lx
χ12(s,�y), (15)

where the �x and �y independent parts (the respective kx = 0
and ky = 0 Fourier modes) are subtracted. This is necessary
as these modes do not satisfy the Fredholm alternative, so
the particular solution for them must be determined at next
order; see Appendix B. The modified equation can now be
straightforwardly integrated to obtain the particular solution.
Note that for small separations �x,�y � l f χ̃12 ≈ χ12, while
for �x,�y � l f χ̃12 � 1 so the influence of the forcing is
limited to scales �x,�y < l f ; see Appendix B.

While the forcing provides the leading-order contribution
to the odd in �x part of the correlation function, correspond-
ing to parity + time reversal symmetry breaking, the even
contribution at leading order must come from the homoge-
neous solutions to Eq. (14). Those are the zero modes of the
advection operator L1 + L2 = ∇2

1∂x1 + ∇2
2∂x2 = ∂y+∂y−∂x1 :

〈ψ ′
1ψ

′
2〉hom = C(�y,�x) + C1(y+,�x) + C2(y+,�y). (16)

The relevant form of the solution in our case is only
C(�y,�x) as we detail in Appendix B. Thus, the full solution
reads

〈ψ ′
1ψ

′
2〉 = C(�y,�x)

+ 2y+

√
α

ε

∫ �x

0
dz

∫ �y/2

0
dz′χ̃12(z, z′). (17)

Note that for the homogeneous part C(�x,�y) =
C(−�x,�y) = C(−�x,−�y), where the first equality
is a consequence of the invariance with respect to parity
(x → −x) + time reversal (t → −t) (PT) which we expect
the zero modes to have, and the second of the exchange
symmetry r1 → r2 of the two-point correlation function.
In addition, we get the prediction that for �x = 0, �y �= 0
the correlation function is independent of y+, as confirmed
in DNS Fig. 3. Our approach lacks information about the
boundary conditions to be applied and treats the differential
operator perturbatively. It is thus unclear how to determine

C(�x,�y), and it may require going to the next order in
perturbation theory, which is beyond the scope of the present
work.

As a consistency check, we can compute the mass flux
〈vω′

y ψ ′〉 directly from our result for the two-point function
(17). In particular, we directly confirm that, being an odd cor-
relator, it is determined by the inhomogeneous solution to the
two-point function equation. We shall compute 〈vω′

y (r1)ψ ′
2〉

and will subsequently merge the two points.√
ε

α

〈
vω′

y (r1)ψ ′
2

〉

= ∇2
1∂x1

[
2y+

∫ �x

0
dz

∫ �y/2

0
dz′χ̃12(z, z′)

]
+ {odd}

= ∂2
y1

[
2y+

∫ �y/2

0
dz′χ̃12(�x, z′)

]
+ {odd}

= χ̃12(�x,�y) + {odd}, (18)

where {odd} denotes terms odd in �y and �x which will van-
ish when we take the single point limit �x,�y → 0. Note that
the zero mode indeed produces only odd contributions in �x
(since C(�x,�y) is even under x1 → −x1 while in Eq. (18)
there is an odd derivative with respect to this variable), which
do not contribute. Taking the limit �x,�y → 0, χ̃12 → ε, up
to the contribution to the energy injection rate from modes
with kx = 0 and ky = 0, assumed to be O(l f /L). We thus get
the expected result of 〈vω′

y ψ ′〉 = √
αε.

B. Simulation results for the two-point correlation function

We now present results from DNS for the two-point func-
tion 〈ψ ′

1ψ
′
2〉(�y,�x, y+). Note that a priori the correlation

function also depends on x+ (or x1), but taking into account
statistical homogeneity in the x direction, we also average over
x+ (in addition to time). Using the fact that both jet regions are
statistically identical, we compute the two-point function for
each of them and average the two to obtain better statistics.
In Fig. 2(a) we present the variance 〈ψ ′2〉 as a function of y
normalized by its value at y = 0 at the center of the jet. The
jet region, where the leading-order solution for the mean flow
(3) applies, is defined by |∂yU |/

√
ε/αL2 < 1 and is delimited

by dashed lines, and we expect that 〈ψ ′2〉 = C(0, 0) in this
region. The large peaks in the variance 〈ψ ′2〉 outside the jet
region are related to the vortices in between the jets. While
they are coherent structures with a large amplitude, which
we would normally associate with a mean flow, since they
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(a) (b)

FIG. 3. The variation of the two-point function with y+ with:
(a) �x = 0 and (b) �y = 0 (Simulation B).

freely move across the domain they contribute to the fluctu-
ations in our averaging procedure. In Fig. 2(b) we present the
normalized correlation function 〈ψ ′

1ψ
′
2〉(�y,�x = 0, y+ =

0)/〈ψ ′2〉(y = 0), showing how ψ correlations decay with �y
when the separation between the points is taken symmetrically
around a jets center. In Fig. 2(c) we present the normalized
correlation function 〈ψ ′

1ψ
′
2〉(�y = 0,�x, y+ = 0)/〈ψ ′2〉(y =

0), showing the correlations in the x direction for points at
the center of the jet y1 = y2 = 0. In Fig. 3 we show that the
shape of these correlations is to leading order independent
of y+ in the jet region, presenting 〈ψ ′

1ψ
′
2〉(�y,�x = 0, y+)

and 〈ψ ′
1ψ

′
2〉(0,�x, y). Note that according to Eq. (17) setting

y+ = 0 or �x = 0 or �y = 0, as we do in Fig. 2, allows us
to probe only the zero mode C(�x,�y) since the inhomoge-
neous contribution vanishes.

In the upper panel of Fig. 4 we present the structure of the
correlation function as a function of �x and �y at a few fixed
y+. According to Eq. (17) the zero modes C(�x,�y) can be
observed by setting y+ = 0, as presented in the center panel in
Fig. 4. Qualitatively, from Fig. 4 it appears that the zero mode
is symmetric with respect to reflection of �x, as expected.
To quantify this we decompose the two-point function into its
even and odd parts with respect to �x (and separately �y) the
decomposition given by

G�z even = G(�z, ...) + G(−�z, ...)

2
, (19)

G�z odd = G(�z, ...) − G(−�z, ...)

2
. (20)

To quantify the symmetry of the zero mode we compute
the relative power:

R�z[G] =
√ ∫∫

d2xG2
�z odd∫∫

d2xG2
�z even

, (21)

at y+ = 0. For all simulations considered we get that
R�x[〈ψ ′

1ψ
′
2〉] � 1 (as well as R�y[〈ψ ′

1ψ
′
2〉] � 1) at y+ = 0

(and in fact for any y+ inside the jet region). Specifically,

FIG. 4. The two-point function (averaged over x+) as a function
of (�x, �y) measured at different y+ in the jet region (Simulation B).

in the case of the simulation considered in Figs. 2–4 we
get R�x[〈ψ ′

1ψ
′
2〉] = 0.092(R�y[〈ψ ′

1ψ
′
2〉] = 0.099) at y+ = 0.

Thus, our results are consistent with the presence of zero
modes of the form predicted in Eq. (17), and support that
these zero modes are even with respect to PT as expected from
theoretical considerations.

For y+ �= 0 one expects contributions both from the even
and the odd correlators, however, in practice we observe that
the two-point function is independent of y+ (as we expect for
the zero mode) and looks identical to that at y+ = 0. Thus,
it seems that the two-point function is dominated by the zero
mode. In the lower panel of Fig. 4 we present the part even
with respect to �x of the correlation function. The lower
and upper panels indeed appear identical, meaning that the
full correlation function is dominated by the even part. We
note that from DNS we also get that R�y,�x[〈ψ ′

1ψ
′
2〉] = 0.102,

while it should vanish from the exchange symmetry, suggest-
ing that the odd contribution to 〈ψ ′

1ψ
′
2〉 is comparable to the

numerical noise.
An important question is how does the level of fluctuations

scale with the parameters of the problem. In particular, there
are at least two small parameters which can be important, l f /L
and δ. In order for the perturbation theory to be consistent,
fluctuations should be suppressed compared to the mean flow,
the ratio expected to scale as a power of a small parameter.
To analyze the scaling of the fluctuations we will focus on
single point quantities, but instead of considering 〈ψ ′2〉 we
will consider 〈u′2〉 = 〈(∂yψ

′)2〉 and 〈v′2〉 = 〈(∂xψ
′)2〉. First,

since U = −∂y� = const., this will make the comparison to
the mean flow much cleaner. In addition, it will allow to
compare between the scaling of even under PT correlators and
that of the odd correlator 〈u′v′〉 = −〈∂xψ

′∂yψ
′〉 (while 〈ψ ′2〉

is an even correlator so there is no odd part to compare to).
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(a)

(b)

FIG. 5. Rescaled variance of the velocity fluctuations in the di-
rection (a) parallel to the jet (u′ = −∂yψ

′) and (b) perpendicular to
the jet (v′ = ∂yψ

′), for different values of the parameter δ. The two
regions where the leading-order solution for the mean flow applies
are delimited by vertical dashed lines.

For the latter we can derive an analytic expression:〈
vω′

y ψ ′〉 = 〈(∂x∇2ψ ′)ψ ′〉,
= −〈

∂2
x ψ ′∂xψ

′〉 − 〈
∂2

y ψ ′∂xψ
′〉,

= −∂x
〈(∂xψ

′)2〉
2

+ 〈∂yψ
′∂x∂yψ

′〉 + ∂y〈u′v′〉,

= ∂x
〈(∂yψ

′)2〉
2

+ ∂y〈u′v′〉 = ∂y〈u′v′〉, (22)

where we have used the homogeneity in x repeatedly. From
the leading-order solution for the mass flux we thus know that
∂y〈v′u′〉 = √

αε, meaning that 〈v′u′〉 = √
αεy which can be

written as 〈u′v′〉 = (εL)2/3(y/L)δ1/2. This is confirmed by our
DNS, shown in Fig. 7(b).

However, we expect the even correlators to be determined
by the zero modes, and using Eq. (17) we have that 〈v′2〉 =
−∂2

�xC|(0,0) and 〈u′2〉 = −∂2
�yC|(0,0) so that both variances are

expected to be constant in the jet region. Figure 5 confirms this
expectation. Note in passing that it is not a priori clear that
we can use Eq. (17) to compute single point correlators of the
derivatives of ψ ′. Indeed, the presence of a direct cascade of
the kinetic energy (∇ψ ′)2 implies that nonlinear interactions
become important for correlators of derivatives of ψ ′ at small
enough distances �x,�y � l f , which would invalidate the
approximations leading to Eq. (14) and its solution (17) for
such correlators. However, as we will see in the next section,
in the region where the mean flow is strong the direct cascade
is arrested for LQG, which may explain why the solution (17)
can still be used.

While lacking a prediction from analytic considerations,
we can use the DNS results to determine the scaling of the
fluctuations with the parameters of the model. We find that
〈v′2〉 and 〈u′2〉 scale differently, probably because of the asym-

FIG. 6. The velocity fluctuation variance inside the jet for the
simulations in Table I. Here u is the velocity component parallel to
the jet (x component) and v is the velocity component perpendicular
to the jet (y component).

metry introduced by the mean flow, and we therefore examine
them separately. We find that the following scalings lead to a
collapse of data with different run parameters:

〈u′2〉 ∼ (εL)2/3δ−1/2,

〈v′2〉 ∼ (εL)2/3δ1/4. (23)

Figure 5 demonstrates the collapse of the variance profile
when normalized by this scaling for three runs where only δ

is varied. In Fig. 6 we demonstrate the collapse for runs with
varying forcing and viscous scale. Since the velocity variance
inside the jet is uniform (Fig. 5), here we take the mean value
in the middle of the jet as representative for the run.

All in all, we find

〈u′2〉/U 2 ∼ δ1/2, 〈v′2〉/U 2 ∼ δ5/4, (24)

〈u′v′〉/U 2 ∼ (y/L)δ3/2, (25)

using that the mean jet velocity U 2 ∼ (εL)2/3δ−1. Thus, the
perturbation theory is indeed consistent, with the fluctuations
suppressed compared to the mean flow with powers of δ. It
is also worth noting that there isn’t one characteristic scal-
ing for the fluctuations, but rather a hierarchy with 〈u′2〉 �
〈v′2〉 � 〈u′v′〉, in particular the odd correlator is suppressed
compared to the even ones. That was also the case for the
condensate state in 2DNS [16,19]. This emphasizes that one
cannot straightforwardly use a kinetic theory approach and
justify quasilinear dynamics based on the naive scaling for the
fluctuations (coming from the odd correlator).

IV. DIRECT CASCADE

So far we have discussed the potential energy balance and
derived the equation for the fluctuations two-point function
based on the assumption that potential energy is transferred
to large scales, and the only effective way by which it is
dissipated is by the formation of the condensate. At the same
time, we expect there to be a direct cascade of kinetic energy
to small scales and we do not expect the condensate to have a
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significant influence on this process. Below we will show that
it is not the case for LQG turbulence.

A. Spatial kinetic energy balance

We first derive the spatial kinetic energy balance. To obtain
the total kinetic energy balance we act with (∂iψ )∂i on Eq. (2).
Note that from here, summation is implied over repeated
indices. For the nonlinear term we have

∂iψ∂i∂ j
(
vω

j ψ
) = ∂i

(
∂iψ∂ j

(
vω

j ψ
)) − ω∂ j

(
vω

j ψ
)

= ∂i
[
∂iψ∂ j

(
vω

j ψ
) − ωvω

i ψ
] = ∂iJi, (26)

where we have used that since vω
i = εi j∂ jω, from symmetry

ψvω
i ∂iω = ψεi j∂ jω∂iω = 0. (27)

As expected from the inviscid conservation of kinetic energy,
this contribution takes the form of a divergence of a flux (of
kinetic energy) which we denote by J. We then decompose the
stream function into its mean and fluctuations ψ = � + ψ ′,
average, and assume homogeneity in x (implying there is only
a flux in the y direction):

〈Jy〉 = 〈
∂yψ∂ j

(
vω

j ψ
)〉 − 〈

ωvω
y ψ

〉
= ∂y�∂y

〈
vω′

y ψ ′〉 + ∂y�
〈
vω′

y ∂yψ
′〉 + 〈

vω′
j ∂yψ

′∂ jψ
′〉

− ∂2
y �

〈
vω′

y ψ ′〉 − �
〈
ω′vω′

y

〉 − 〈
ψ ′ω′vω′

y

〉
. (28)

The term proportional to � in fact vanishes as 〈ω′vω′
y 〉 =

〈ω′∂xω
′〉 = ∂x〈ω2′〉/2 = 0. Thus, the spatial kinetic energy

flux is given by

〈Jy〉 =∂y�∂y
〈
vω′

y ψ ′〉 + ∂y�
〈
vω′

y ∂yψ
′〉 − ∂2

y �
〈
vω′

y ψ ′〉
+ 〈

vω′
j ∂yψ

′∂ jψ
′〉 − 〈

ψ ′ω′vω′
y

〉
.

It is straightforward to compute the remaining linear terms and
the resulting steady-state balance of kinetic energy can finally
be written as

∂y[〈Jy〉 + ID] = η − D, (29)

where η = 〈∂iψ
′∂i f ′〉 is the kinetic energy injection rate, D is

the kinetic energy dissipation rate (expected to be mainly due
to hyperviscous dissipation of the fluctuations), and ID is the
flux due to diffusion (e.g., for the drag IDα

= α∂y〈(∂iψ )2〉/2).
It is also useful to write the kinetic energy balance for

the fluctuations. For the nonlinear term the contribution can
be computed by subtracting ∂i�∂i∂ j〈vω′

j ψ ′〉 = ∂y�∂2
y 〈vω′

y ψ ′〉
from ∂y〈Jy〉. In particular, for the terms involving the mean

flow ∂y� we have

∂y
[
∂y�∂y

〈
vω′

y ψ ′〉 + ∂y�
〈
vω′

y ∂yψ
′〉] − ∂y�∂2

y

〈
vω′

y ψ ′〉
= ∂y

[
∂y�

〈
vω′

y ∂yψ
′〉] + ∂2

y �∂y
〈
vω′

y ψ ′〉. (30)

The first term on the bottom line is (part of) a flux of fluc-
tuating kinetic energy, while the second term is (minus) the
transfer term of kinetic energy between the fluctuations and
the mean flow which we denote by T . We therefore get

∂y[J ′
y + I ′

D] = η − D′ + T, (31)

where

J ′
y ≡ 〈Jy〉 − ∂y�∂y

〈
vω′

y ψ ′〉 (32)

is the flux of kinetic energy of the fluctuations, I ′
D is the

fluctuating flux due to diffusion and D′ is the dissipa-
tion rate of kinetic energy fluctuations. We expect T ≡
−∂2

y �∂y〈vω′
y ψ ′〉 = ∂yU∂y〈vω′

y ψ ′〉 � 0 so that the kinetic en-
ergy is transferred from the mean flow to the fluctuations.
Note that by an order of magnitude estimate we expect the
transfer term and the difference between the total flux and the
fluctuating flux 〈Jy〉 − J ′

y to be of order ε/L2 � η.
We can now use the leading-order solutions (3) and (4),

which imply that 〈ω〉 = 0 and V ω
y = 0 as well as that 〈Jy〉 = J ′

y

and the transfer term vanishes, since both ∂y� and 〈vω′
y ψ ′〉 are

independent of y to leading order. Therefore,

〈Jy〉 = J ′
y = ∂y�

〈
vω′

y ∂yψ
′〉 + 〈vω′

j ∂yψ
′∂ jψ

′〉 − 〈
ψ ′ω′vω′

y

〉
,

(33)

and the balance for the fluctuations reads

∂y
[
∂y�

〈
vω′

y ∂yψ
′〉 + 〈

vω′
j ∂yψ

′∂ jψ
′〉 + 〈

ψ ′ω′vω′
y

〉 + I ′
D

]
= η − D′. (34)

We can now directly evaluate the spatial flux of kinetic en-
ergy mediated by the mean flow, computing 〈vω′

y ∂yψ
′〉 based

on our previous results for the two-point function. Indeed, it
is given by the limit r2 → r1 of the two-point function〈

vω′
y (r1)∂yψ

′
2

〉 = (
∂2

y1
+ ∂2

x1

)
∂x1∂y2〈ψ ′

1ψ
′
2〉. (35)

Note that we only need to consider the inhomogeneous part
of the solution (17) as the zero mode is even under the re-
flection symmetry x → −x, while there is an odd number
of derivative with respect to x1 appearing above. Thus, the
contribution from the zero mode will be odd and vanish in
the limit r2 → r1. Carrying out the calculation, we get

〈
vω′

y (r1)∂yψ
′
2

〉 =
√

α

ε
∇2

1∂x1∂y2

[
(y1 + y2)

∫ �x

0
dz

∫ �y/2

0
dz′χ̃12(z, z′)

]
+ {odd}

=
√

α

ε
∇2

1∂y2

[
(y1 + y2)

∫ �y/2

0
dz′χ̃12(�x, z′)

]
+ {odd}

=
√

α

ε
∇2

1

[
−y1 + y2

2
χ̃12(�x,�y) +

∫ �y/2

0
dz′χ̃12(�x, z′)

]
+ {odd}

= −y+

√
α

ε
∇2

1 χ̃12 + {odd}, (36)
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(a)

(b)

FIG. 7. The terms (a) 〈vω′
y ∂yψ

′〉 and (b) 〈vu〉 as measured from
the DNS (solid lines), rescaled and compared with their theoretical
predictions (dashed line), for different values of the parameter δ.
The two regions where the leading-order solution for the mean flow
applies are delimited by vertical dashed lines.

where �x = x1 − x2, �y = y1 − y2 and we have used that the
correlation function is even with respect to �x → −�x, and
�y → −�y. In writing Eq. (36) we have stated explicitly
only the terms which will contribute in the limit r2 → r1,
suppressing the odd contributions. To take the limit we must
evaluate ∇2

1 �̃12 in this limit, which can be obtained from the
definition of the kinetic energy injection rate η,

η = 〈∂i f ∂iψ〉 = −〈 f ∇2ψ〉
= − lim

r2→r1

∇2
1 〈ψ ′

1 f2〉 = − lim
r2→r1

∇2
1χ12. (37)

We obtain 〈vω′
y ∂yψ

′〉 by taking �x,�y → 0 in Eq. (36) using
Eq. (37) and get

〈
vω′

y ∂yψ
′〉 = η

√
α

ε
y =

√
εα

l2
f

y, (38)

which is in good agreement with DNS, as presented in
Fig. 7(a). Note that here we have assumed that there is a
negligible amount of kinetic energy injected into the kx = 0
and ky = 0 modes (but have not assumed that the forcing is
isotropic) so that η̃ = ∇2

1 �̃12 ≈ ∇2
1�12 = η. As a whole we

thus get that at leading order

∂yJ ′
y = ∂y�∂y

〈
vω′

y ∂yψ
′〉 ≈ η. (39)

We could have inferred that this flux term will give
a contribution of the order of η based on an order-of-
magnitude estimate. To see this, we first recall that 〈vω′

y ψ ′〉 =
∂y〈v′u′〉, where u′ = −∂yψ

′, v′ = ∂xψ
′. However, we evaluate

∂y〈vω′
y ∂yψ

′〉 = −∂y〈vω′
y u′〉. As the fluctuations are determined

at small scales, we thus expect that derivatives acting on

FIG. 8. Kinetic energy balance of the fluctuations (31). The dom-
inant flux term in the jet region U 〈vω′

y y′〉 = ∂y�〈vω′
y ∂yψ

′〉 is plotted
separately from the other flux terms. The two regions where the
leading-order solution for the mean flow applies are delimited by
vertical dashed lines (Simulation B).

the fluctuating fields inside the average will get a contribu-
tion from scales ∼l f , which leads to the estimate ∂y〈vω′

y u〉 ∼
∂y〈v′u′〉/l2

f ∼ √
αε/l2

f in agreement with Eq. (38). Note that
the sign of the flux, implying that it carries kinetic energy
away from the jet region, seems to be a nontrivial result of the
calculation. The direction of the flux is evidently linked to the
direction of transfer of potential energy between scales: When
potential energy is transferred from the fluctuations to the
mean flow, that suppresses the direct cascade in that region,
and kinetic energy is carried away from this region.

The result for J ′
y, Eq. (39), suggests that all the kinetic

energy which is injected locally is carried away by a spatial
flux due to the presence of the mean flow. In particular, if there
is no spatial flux due to nonlinear fluctuations-fluctuations
interactions which brings kinetic energy to this region from
other regions, then the dissipation of kinetic energy in the jet
region is negligible, D′ � η. This is indeed in agreement with
our results from DNS, as can be seen from Fig. 8 where the
profiles of the terms in the kinetic energy balance (31) are
shown. In the jet region we indeed see that the balance is
between the kinetic energy injection and the divergence of the
flux ∂y(U 〈〈vω′

y u′〉) due to the mean flow, in accordance with
Eq. (39). This implies that the kinetic energy is carried away
from the jet region, where the mean flow is strong, before it
has time to cascade to small scales and dissipate there—so
that the mean flow effectively arrests the direct cascade. The
kinetic energy is then deposited in the region in between the
jets where the divergence of this flux becomes negative in
most of the region as seen in Fig. 8. This is also the region
where dissipation of kinetic energy occurs. Note, however,
that other terms in the flux J ′

y also become important in that
region, redistributing kinetic energy in the opposite direction
to that of U 〈〈vω′

y u′〉, as seen in the red curve in Fig. 8. In par-
ticular cubic terms in fluctuations (not shown separately here)
have an important contribution to the flux, which is probably
related to the presence of a coherent vortex in that region.

B. Local scale-to-scale flux: Filtering approach

The presence of a condensate makes our problem inhomo-
geneous due to the effects of the large-scale mean flow. In the
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previous section, we have shown indications that this inhomo-
geneity affects the transfer of kinetic energy to small scales so
that we expect the direct cascade to proceed inhomogeneously
in space. In this section, we confirm this scenario by directly
examining the kinetic energy flux between scales for different
regions in the flow. The flux in Fourier space only gives the
mean flux for the entire flow, so cannot differentiate between
different spatial regions. Instead, we employ a real space
filtering technique [30], combining local spatial information
and information about transfer between scales. It relies on a
coarse-graining of the fields in real space using a convolution
kernel with a characteristic length scale. The convolution with
the kernel effectively filters features on scales smaller than
its length scale. This approach is somewhat similar to a 2D
wavelet transform, that keeps the spatial dependence. It then
allows for the decomposition of the fluid kinetic energy (or
other quadratic integrals) into band-pass contributions from a
series of length scales in real space, writing the corresponding
budget equation gives the transfers of turbulent energy both in
space and in scale. The main feature of this approach which
will be useful here is the scale-to-scale flux term which is
space dependent in this approach. It will allow us to determine
the spatial distribution of the flux across scales of potential
and kinetic energy. The approach was previously applied to
incompressible Navier-Stokes [30,37–39], as well as other
kinds of flows, including compressible flows [40]. Here we
will perform the scale decomposition and derive the analogous
balance equations for the LQG equations.

Following Ref. [30], we define a smooth low-pass filter as

ψ l (r) ≡
∫

dx′ Gl (x′)ψ (x′ + r), (40)

where the convolution kernel Gl (x) is taken to be smooth,
nonnegative, normalized

∫
dr Gl (r) = 1, and spatially lo-

calized. The filter scales with l as Gl (r) = l−2G(r/l ).
Specifically, we will choose the Gaussian kernel Gl (r) =
e−r2/2l/(2π l2) when applying filtering to DNS. We may
use the filtering operator to write equations for the filtered
quantities with a given length scale. In doing so, nonlinear
interactions cause the emergence of terms representing energy
transfer between scales. Filtering is a type of averaging, so the
balance equations derived in this section for the large-scale
kinetic and potential energy are identical in structure to those
one derives for the mean flow (where the averaging is over
time). In particular, acting with the filter on Eq. (2) results in
the filtered equations of motion,

∂τψl + ∇(
vω

l ψ l + ξl

) = fl + α∇2ψl − ν(−∇2)pψl , (41)

where ξ is the space dependent flux of the stream function to
small scales, defined as

ξl ≡ (vωψ )l − vω
l ψ l . (42)

Note that aside from the additional, small scale, spatial flux
term ξl , Eq. (41) is the same as the regular LQG Eq. (2) (with
ψ replaced by ψ̄l ).

We are interested in the potential el ≡ 1
2ψl

2
and kinetic

hl ≡ 1
2 [∂iψl ]2 energy balance. We start with the potential en-

ergy flux, obtained by multiplying (41) by ψ l and writing the
nonlinear terms as a divergence of a flux and a transfer term

between scales:

∂el

∂τ
+ ∇ · Je

l = Pe
l − �l − De

l , (43)

where Je
l is a spatial flux term of large-scale energy, Pe

l is
the production of large-scale energy, De

l is the dissipation of
energy at large scales and �l is the scale-to-scale energy flux,
positive if the transfer is out of the large scales to small scales.
The terms are given by

�l = −∇ψl · ξl , (44)

Je
l = vω

l el + ψlξl − α∇el + νIe,p
l , (45)

De
l = α(∂iψl )

2 + ν(∂i1 · · · ∂ipψl )
2, (46)

Pe
l = ψl fl , (47)

where Ie,p
l is the spatial transport due to hyperviscosity ∇ ·

Ie,p
l ≡ [ψl (−∇2)pψl − (∂i1 · · · ∂ipψl )2].

Similarly, to derive the balance for the kinetic energy one
takes the derivative of Eq. (41) ∂i, and multiplies it by ∂iψl ,
which gives the equation for low-pass kinetic energy density
balance

∂

∂τ
hl + ∇ · Jh

l = Ph
l − Zl − Dh

l , (48)

where Jh
l is the spatial flux of large-scale kinetic energy

[compare the nonlinear contribution to Eq. (26)], Ph
l is the pro-

duction of kinetic energy at large scales, Dh
l is the dissipation

of kinetic energy at large scales and Zl is the scale-to-scale
kinetic energy flux. The different terms are given by

Zl = −(∂ j∂iψ l )∂iξ j, (49)

Jh
l = (∇ψ l )v

ω
j ∂ jψ l − vω

l ψ l∇2ψ l + ∂iψ l∂iξl

− α∇hl + νIh,p
l , (50)

Dh
l = α

(
∂i1∂i2ψl

)2 + ν
(
∂i1 · · · ∂ip+1ψl

)2
, (51)

Ph
l = ∂iψl∂i fl , (52)

with ∇Ih,p
l ≡ [(∂iψl )(−∇2)p(∂iψl ) − (∂i1 · · · ∂ip+1ψl )2]. The

transfer terms �l and Zl can either be positive, transferring
energy from scale l to smaller scales (acting as a sink), or
negative, transferring energy from small scales to l (acting as a
source). The direct cascade of kinetic energy corresponds to a
positive flux (large to small scales), i.e., one expects Zl > 0 on
average, while an inverse transfer of potential energy implies
�l < 0 on average. In addition, we expect that Zl ≈ 0 for
large enough scales l , as kinetic energy is transferred from the
forcing scale to smaller scales, and similarly that �l ≈ 0 for
small enough l . The indications above that the direct cascade
does not occur in regions where the jets are strong leads to the
expectation that Zl ≈ 0 in those regions and that the transfer
of kinetic energy to small scales is concentrated in between
the jets.

We show a short time average over 15TL of �l and Zl in
Fig. 9, which demonstrates their spatial distribution. In previ-
ous studies of the interscale flux in turbulent flows, the flux
was observed to be statistically isotropic (as expected) and
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(a) (b) (c) (d)

FIG. 9. Potential energy flux between scales �l normalized by the total injection rate ε for scales l/L = 0.11 (a) and l/L = 0.89 (b).
Kinetic energy flux between scales Zl normalized by the total injection rate η for scales l/L = 0.11 (c) and l/L = 0.89 (d). Below each plot
the average over x is shown. The fields shown are obtained upon taking a short-time average over 15TL in steady state. The two regions where
the leading-order solution for the mean flow applies are delimited by vertical dashed lines (Simulation K).

had regions of both positive and negative contributions on the
level of a single snapshot [22]. A definite sign thus emerged
only upon averaging. This is roughly what we observe for the
potential energy interscale flux �l averaged over short times,
Figs. 9(a) and 9(b). In the panel below, we also show the
flux when averaged in the x (homogeneous) direction. Then,
though the result is still highly fluctuating, a negative flux, on
average independent of y in the jet region, emerges for the
larger coarse-graining scale l . At the small scales, as expected
the flux is homogeneous and fluctuating around zero. Note
that at the large scales there is an imprint of the jet structure
on the flux, with stronger fluctuations in the interjet region.

For the kinetic energy flux Zl the distinction between jet
regions and interjet regions is evident already at the level of a
short-time average, Figs. 9(c) and 9(d). In particular, the flux is
visibly suppressed in the jet regions, and for small l is mostly
positive between them (rather than having spatially distributed
patches of positive and negative contributions of almost com-
parable magnitude). At large scales l larger fluctuations can be
seen in between the jets, but a definite sign is harder to distin-
guish. These observations are further quantified in the panel
below, where upon averaging in the x direction the difference
between the two regions is even more clearly seen for the
smaller scale l . For the larger l , the flux fluctuates around zero
in the jet region while in between jets a very small negative
flux emerges (related to the kinetic energy of the mean flow in
that region, which has large gradients there). Thus, we see that
most of the direct cascade is indeed concentrated in regions
between jets, where the bias between a positive and a negative
transfer is much amplified.

Finally, to more systematically quantify the effects ob-
served in Fig. 9 we consider the spatially averaged interscale
fluxes with varying coarse-graining scale l . We average both
in space and in time, starting once the simulations reach the
steady state and up to 100TL. To examine the difference in
Zl between spatial regions inside and outside the jets, we

split the spatial average of Zl (x, y) into the jet region Ajet

and the region outside the jet Ainterjet. We choose Ajet as the
region where the leading-order solution for the mean flow
applies, as also used in previous figures, and Anonjet = A − Ajet

with A being the entire domain. We can also define the
total average flux (averaged over the whole domain) given
by: 〈Zl〉 = (Ajet/A)〈Zl〉|Ajet + (Ainterjet/A)〈Zl〉|Ainterjet . For truly
homogeneous turbulent flow, the partition would not affect
the measurement (as long as both parts are large enough so
that the statistics are comparable or the averaging time is
long enough). The results are presented in Fig. 10. As per

(a)

(b)

FIG. 10. Average energy fluxes across length scale l inside (blue)
and outside (orange) the jet region. The total flux is denoted by a
dashed line (green). (a) Potential energy flux 〈�l〉. (b) Kinetic energy
flux 〈Zl〉 (Simulation K).
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our expectation, the potential energy interscale flux 〈�l〉 is
negative everywhere, corresponding to an inverse transfer,
while 〈Zl〉 is everywhere positive (up to a very slight negative
flux for l/L > 0.3 in the interjet region), as expected for a
direct cascade. Moreover, the interscale flux from small scales
l � 0.1 is significantly suppressed in the jet region, implying
that so is the direct cascade. This means that the spatial flux Jh

l
dominates over the interscale flux Zl in the jet region at scales
smaller than the forcing scale. Furthermore, at the smallest
scales we observe that the total interscale flux is completely
dominated by the interjet region (which occupies a smaller
area fraction), in agreement with our observation that the over-
whelming majority of the dissipation occurs there, Fig. 8. The
presence of the mean flow also affects the potential energy
interscale flux 〈�l〉 at large scales l/L > 0.3, though less
dramatically. We observe that the interscale flux is reduced
in between jets at large enough scales. This is probably a
consequence of the inverse transfer being mostly mediated by
the mean flow, which takes the form of a vortex in that region.
The size of the vortex being of the order of 0.1L may thus
explain the observed decrease.

C. Influence of the inverse cascade
on the direct cascade in other 2D flows

We have seen that the condensate has a dramatic effect on
the direct cascade in LQG, an effect that appears to be absent
in 2DNS [35]. That raises the question of what determines for
which types of 2D flows (with an inverse cascade) the latter ef-
fect could occur. In particular, recall that LQG and 2DNS are
part of a wider class of active scalar equations where a scalar
q is advected by a velocity u = (ux, uy) with stream function
φ, with the relation between the two given by qk = |k|mφk

[41]. Here m controls the range of the dynamics, for 2DNS,
(m, q, φ) = (2, ω,ψ ) and for LQG (m, q, φ) = (−2, ψ, ω)
so the velocity is given by derivatives of the scalar, making
the dynamics local. All these flows have two positive defi-
nite conserved quantities, we shall call E = 1

2

∫
qφd2x and

Z = 1
2

∫
q2d2x, where Z cascades to small scales while E is

transferred to large scales.
We have seen that for LQG the arrest of the direct cascade

occurs in the regions where the mean flow is strong due to a
spatial flux of Z away from those regions. A natural question
is whether this mechanism could occur for other active scalar
flows. To answer this question we consider the balance of
Z for the turbulent fluctuations. First note that there are two
types of terms involving the mean flow which enter this bal-
ance and can interfere with a homogeneous direct cascade: a
transfer term between the mean flow and the fluctuations and a
spatial flux term. We expect Z to be transferred to small scales,
and therefore an exchange term would tend to remove Z from
the mean flow and transfer it to the fluctuations—enhancing
the Z injection into the fluctuations in the regions of a strong
mean flow. Thus, it is only a spatial flux term which could
arrest the direct cascade as in LQG.

We now show that a spatial flux of Z fluctuations due
to the mean flow is absent in models where interactions are
nonlocal. In particular, we demonstrate this both for SWQG
with Ld > l f (for Ld � l f the deformation radius influences
the direct cascade and we expect a transition to the LQG

regime for scales Ld < l < l f ), and for an active scalar with
m > 0, assuming the flow is statistically homogeneous in the
direction of the mean flow (i.e., that there is no trivial spatial
flux due to the inhomogeneity of the turbulence). This is a
consequence of the Z = q2 balance for the fluctuations in the
steady state:

∂i

〈
u′

i

q′2

2

〉
+ ∂iQ〈uiq

′〉 + Ui∂i

〈
q′2

2

〉
= η − D, (53)

where the third term (which is a spatial flux of Z ′ = q′2, due
to advection by the mean flow) vanishes for a flow statisti-
cally homogeneous in the direction of U . Thus, the feedback
between the condensate and the direct cascade as we have
demonstrated in LQG does not exist for an active scalar with
m > 0 which has long-range interactions, but might, exist in
models with m < 0 where small scale interactions are ampli-
fied.

Finally, let us also discuss if the transfer of Z from the
mean flow to the fluctuations, ∂iQ〈u′

iq
′〉, could significantly

enhance the direct cascade in regions of strong mean flow
(or large Q gradients). That requires for this term to be of
order η (the Z injection rate), which we now show is not the
case in 2DNS and SWQG. To estimate it let us assume a jet
geometry for simplicity, giving ∂yQ〈u′

yq′〉 ≡ ∂yQ〈v′q′〉 where
we denote u′ = −∂yφ

′, v′ = ∂xφ
′ as we had above. For SWQG

(and 2DNS) we have 〈v′q′〉 = −∂y〈u′v′〉:
〈v′q′〉 = 〈

∂xψ
′(∇2 − L−2

d

)
ψ ′〉 = −〈ψ ′∂x∇2ψ ′〉 = −∂y〈u′v′〉,

(54)

where we have already demonstrated the last equality (the
Taylor identity) in Eq. (22) above. Thus, an order of mag-
nitude estimate provided that Ld > l f gives ∂yQ〈v′q′〉 ∼
U ′′′∂y〈u′v′〉 ∼ ε/L2 � ε/l2

f = η, where ε is the injection rate
of E , meaning that the transfer term is small. This is consistent
with the observations in 2DNS [35], where the cubic-in-
fluctuations spatial flux of Z was more significant (though still
small) compared to the transfer term.

V. DISCUSSION

In this work we have characterized the second-order
statistics of a jet condensate forming in the large-scale-
quasigeostrophic equation, where potential energy experi-
ences an inverse transfer while kinetic energy cascades to
small scales. We have demonstrated that in the regions where
the jets are strong the quasilinear approximation is sufficient
to obtain the second-order, two-point correlation functions of
all the fluctuating fields (ψ and its derivatives). This is the
case since the direct cascade is effectively arrested in those
regions, so that nonlinear fluctuation-fluctuation interactions
are unimportant even for the kinetic energy (and thus can be
neglected when determining, e.g., correlators of ∇ψ). Using
a local coarse-graining approach we have shown that the di-
rect cascade is indeed mostly limited to the interjet regions.
In the regions where the jets are strong, there is instead a
spatial flux of kinetic energy, mediated by the mean flow,
which prevents the direct cascade from developing, and which
carries the kinetic energy to the interjet regions. At the same
time, in between the jets we find regions where the quasilinear
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approximation for the potential energy necessarily cannot
work, since the mean-flow-fluctuations interactions (propor-
tional to U = −∂y�) in those regions are small, and there
are no other quasilinear terms which can facilitate a transfer
between mean flow and fluctuations. This is a consequence of
interactions being local in LQG, so that there are no nonlocal
(e.g., pressure) terms related to the mean flow which can redis-
tribute the energy. Thus, we find that in LQG the domain can
be decomposed into two distinct regions: one where the dy-
namics is quasilinear both for potential energy and for kinetic
energy and another where fluctuation-fluctuation interactions
overwhelm mean-flow-turbulence interactions for both, which
is also where the direct cascade is concentrated. We argue that
both phenomena are related to the locality of interactions in
LQG, and do not occur for flows with long-range interactions,
i.e., active scalars with m > 0, as well as models with short-
range interactions reaching beyond the forcing scale, namely
SWQG with Ld > l f . It remains to be seen if active scalars
with m < 0 or SWQG with Ld < l f , both having dominant
interactions below the forcing scale, can exhibit an arrest of
the direct cascade as we have found for the limiting LQG
case (m = −2, Ld = 0). More generally, understanding the
similarities and differences in the condensate state between
these two classes of flows away from the LQG limit is an
interesting direction for future work.

For the regions where the quasilinear approximation
applies, we have found that fluctuations are suppressed com-
pared to the mean flow with powers of δ, the parameter which
quantifies the strength of the condensate. Furthermore, we find
that different correlation functions scale differently with δ and
that correlators which are odd with respect to parity + time
reversal symmetry are significantly suppressed compared to
even correlators. Such a hierarchy was previously observed in
2DNS [19], and points to the fact that constructing a closed
perturbative quasilinear theory for the condensate may be a
subtle issue, as it cannot simply rely on a uniform scaling for
the fluctuations. Related to this issue, in this work we have
determined that even correlators arise from zero modes of
an advection operator. We found that these zero modes are
homogeneous in the jet region, depending only on �x and
�y. How exactly those modes are to be determined, including
their scaling with δ, however, remains unclear and is left for
future work.

APPENDIX A: LQG FROM SWQG AND CONSISTENCY
OF LIMITS

We first briefly remind the physical origin of the shallow
water quasigeostrophic equation, from which the large-scale-
quasigeostrophic (LQG) system is derived. It describes a
rotating shallow fluid layer, where the horizontal scale of
the fluid motion, L, is assumed much larger than the layers’
mean depth H , and which is under the influence of gravity
g. Assuming a constant rotation rate 
ẑ, and a characteristic
velocity U , the ratio between inertia and the Coriolis force
is given by the Rossby number Ro = U/
L. A perturbative
expansion in Ro � 1, while assuming Ro(L/Ld )2 ∼ o(1) then
gives the SWQG equation [25]

∂t q + v · ∇q = ∂t q + J (ψ, q) = 0; q = (∇2 − L−2
d

)
ψ,

(A1)

where q is the potential vorticity, ψ is the stream function with
v = ẑ × ∇ψ , ω = ∇2ψ = (∇ × v)ẑ is the vorticity, J (ψ, q)
is the Jacobian operator defined as J (ψ, q) = ∂xψ∂yq −
∂yψ∂xq = εi j∂iψ∂ jq with εi j the 2D Levi-Civita symbol. The
length scale Ld = √

gH/2
 is the Rossby deformation radius.
Here, hydrostatic balance relates the variation in the layers’
depth δh to the pressure gρ∇δh = ∇p. While geostrophic
balance relates the stream function to the pressure so that in
total ψ = (g/
)δh, and there is a single equation for ψ . There
are two quadratic invariants in the SWQG system: energy
(potential + kinetic)

∫
d2x qψ and square potential vorticity∫

d2x q2. As a consequence, it permits both a direct and an
inverse cascade.

Including forcing f , friction α (linear drag on velocity) and
(hyper) viscosity ν, and using the box scale L to nondimen-
sionalize lengths we can write the SWQG equation as

∂t

(
∇2 −

(
L

Ld

)2 1

L2

)
ψ + εi j∂iψ∂ j∇2ψ

= f − α∇2ψ + ν(−∇2)p∇2ψ. (A2)

Taking the limit (Ld/L)2 → 0 formally gives ∂tψ = 0, which
is a purely decaying system. Following Ref. [28], to capture
the emerging slow dynamics we will work in rescaled time
τ = t (Ld/L)2 with the limit Ld/L → 0, giving

− ∂τψ + L2εi j∂iψ∂ j∇2ψ

= f L2 − αL2∇2ψ + L2ν(−∇2)p+1ψ. (A3)

Next, we define a new stream-function variable ψ̃ = L2ψ and
a corresponding forcing f̃ = − f L2, drag α̃ = αL2, and vis-
cosity ν̃ = νL2. With the chosen scaling the relation between
the stream function and the height perturbation in the shallow
water system becomes ψ̃ = (gL2/
)δh. We thus arrive at the
LQG Eq. (2).

Let us also demonstrate that the LQG equation can be
consistently derived directly from the rotating shallow water
equations in the geostrophic limit Ro → 0.

For a single-layer fluid, and including the Coriolis term, the
inviscid shallow water equations (SW) are

∂t u + (u∇)u + f c × u = −g∇η, (A4)

∂t h + ∇(uh) = 0, (A5)

where u = (u, v) is the horizontal velocity, h is the height of
the upper free surface (where the bottom surface is assumed
flat), f c = 
ẑ and g is gravity. We apply the geostrophic scal-
ing [25]—assuming that u = (u, v) ∼ U , (x, y) ∼ L and an
advective timescale T ∼ L/U . We decompose the free layer
height as h = h + δh with the mean height h = H = const.
and the variation δh ∼ RoH (L/Ld )2. The assumptions so far
are the same as those made to obtain SWQG. Here, we also
rescale the time by τ = t (Ld/L)2. We will consider two limits,
Ro → 0 and (Ld/L) → 0, and we must specify the relation
between them. For what follows we assume that when both
limits are taken Ro tends to zero faster than (Ld/L). Thus,
we may assume that (Ld/L) ∼ Rob with 0 < b < 1/2. Note
that with this scaling the height perturbations are still small
compared to the mean height as δh/H ∼ Ro1−2b � 1. With
this scaling, we obtain the nondimensional SW momentum
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equation:

Ro1+2b∂τ u′ + Ro(u′∇)u′ + f ′
c × u′ = −∇η′, (A6)

and the nondimensional SW height variation equation:

Ro∂τ δh′ + Ro1−2b(u′∇′)δh′ + (∇ · u′)(1 + Ro1−2bδh′) = 0.

(A7)

Having expressed both small parameters as functions of Ro
we expand the velocity u′, v′ in εi = εi(Ro) such that 1 =
ε0 � ε1 � ... and similarly we expand the height variation
δh′ in μi = μi(Ro) such that 1 = μ0 � μ1 � ...

u′ =
∞∑

i=0

εiu
′
i, v′ =

∞∑
i=0

εiv
′
i, δh′ =

∞∑
i=0

μiδh′
i. (A8)

We leave the asymptotic series arbitrary for now. Substituting
the series (A8) into the rescaled time momentum Eq. (A6) we
get

f ′
c × u′

0 + O(ε1; μ1; Ro) = −∇δh′
0, (A9)

where f ′
c ≡ f ′

0ẑ = 1ẑ. The dominant balance (for any
ε1, μ1 � 1) is between the pressure and Coriolis force, thus

f ′
0u′

0 = −∂yδh′
0 f ′

0v
′
0 = ∂xδh′

0 ⇒ ∇u′
0 = 0. (A10)

The rescaled mass conservation (A7) gives at leading order
the same result. This allows for the definition of the stream
function ψ ′

0 ≡ δh′
0/ f ′

0.
Moving on to the next order in perturbation theory to get

the dynamics, we consider the next order of the momentum
Eq. (A6),

Ro1+2b∂τ u′
0 + Ro(u′

0∇)u′
0 + ε1 f ′

0 × u′
1

= −μ1∇δh′
1 + O(Ro, ε2, μ2). (A11)

Taking its curl gives the vorticity ω = ∇ × u equation

Ro(u′
0∇)ω′

0 = − f ′
0ε1(∇ · u′

1) + O(Ro, ε2, δ2), (A12)

where the time derivative term has been neglected as it is of
higher-order in Ro than the advection term. Note that the only
nontrivial option, in this case, is for ε1 = Ro and in general we
may assume that εn = Ron. To proceed consider the next order
of Eq. (A7). First, we note that Eq. (A10) gives (u′

0∇)δh′
0 = 0

and that Ro1−2b � 1, thus we get

Ro∂τ δh′
0 + Ro1−2bμ1(u′

0∇)δh′
1

= −Ro(∇ · u′
1) + O(μ1Ro; Ro2−2b). (A13)

Using the (∇ · u′
1) term to relate Eqs. (A12) and (A13) we

obtain

∂τ

(
δh′

0

f ′
0

)
− (u′

0∇)ω′
0 = μ1

Ro2b

1

f ′
0

(u′
0∇)δh′

1. (A14)

We wish to obtain a solution for which the leading-order
velocity does not vanish, thus ∂τ δh′

0 must be determined at
this order and μ1 � Ro2b. If we assume μ1 = Ro2b � Ro �
Ro1+2b, then we obtain from Eq. (A11)∇δh′

1 = 0 and thus
(u′

0∇)δh′
1 = 0. Therefore, in any case the right-hand side term

can be neglected and Eq. (A14) reduces to

∂τ (δh′
0/ f ′

0) − (u′
0∇)ω′

0 = 0, (A15)

and with the definitions ψ ′
0 ≡ δh′

0/ f ′
0 and J (ω,ψ ) =

∂xω∂yψ − ∂yω∂xψ we obtain the dimensionless inviscid LQG
equation

∂τ ′ψ ′ + J (ω′, ψ ′) = 0. (A16)

Returning the dimensions using ψ ∼ UL we have that ∂τψ +
L2J (ω,ψ ) = 0. We may absorb the additional factor L2 by
redefining the stream function as ψ̃ = L2ψ and thus ω̃ =
∇2ψ̃ = L2ω. Dropping the tilde notation we arrive at the LQG
equation for the rescaled stream function,

∂τψ + J (ω,ψ ) = 0. (A17)

APPENDIX B: SOLUTION FOR
THE TWO-POINT FUNCTION

Here we describe solution to Eq. (14) for the leading order
of the two-point function. The solution to Eq. (14) is the sum
of the solution to the homogeneous equation and the particular
solution to the inhomogeneous equation. We begin by describ-
ing the latter, assuming the forcing is homogeneous in y, so
that χ12 depends only on y− ≡ �y/2 and �x. In principle, in
the variables y+, y−, x1 the equation can be straightforwardly
integrated to obtain the inhomogeneous solution. However,
there is a subtle point that has to do with the consistency of
the perturbation theory for some of the fluctuations modes.

Consider the Fourier transform of Eq. (14) with respect
to �x (equivalently x1), denoting the corresponding wave
number by kx, and with respect to �y, denoting the wave
number by ky. In �x, this is possible since the mean-flow
solution is homogeneous in x and is applicable throughout
the x direction, which is periodic. In �y, we assume that
correlations decay with �y within the region of applicability
of the mean-flow solution (note that this is not necessarily
the case in y+, and that y+ is not a periodic coordinate since
the leading-order mean flow has a finite range of applicability
in y). We see that for kx = 0 and ky = 0 while the left-hand
side of the equation turns to zero, the right-hand side does
not. Thus, modes of the forcing with kx = 0 or ky = 0 need
to be treated separately, and Eq. (14) is not the leading-order
equation. This is easily understood for kx = 0: perturbations
with kx = 0 are not advected by the mean flow, so cubic
terms or dissipative terms must be important in balancing the
injection of the forcing into such modes. That kx = 0 and
ky = 0 modes cannot be treated in a quasilinear approximation
is a completely general statement for mean-flow-turbulence
interactions, e.g., also for 2DNS [19]. Therefore, in Eq. (14)
we should subtract these modes from the forcing correlation
function:

χ̃12 = χ12 − 1

Ly

∫ Ly
2

− Ly
2

χ12(�x, s)ds − 1

Lx

∫ Lx
2

− Lx
2

χ12(s,�y)ds.

(B1)
Then, the inhomogeneous solution reads

〈ψ ′
1ψ

′
2〉inh = (y1 + y2)

√
α

ε

∫ �x

0
dz

∫ �y/2

0
dz′χ̃12(z, z′).

(B2)

In Eq. (B2) we choose the initial point of the integra-
tion to be at coincident points �y = 0, and �x = 0 which
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makes the inhomogeneous part symmetric with respect to the
replacement r1 → r2 (i.e., even under reflection �x →
−�x, �y → −�y). However, it is odd with respect to �x →
−�x (and �y → −�y) separately. This is what we expect
from the fact that the forcing combined with the mean flow
break the parity + time reversal symmetry x → −x, t → −t
of the system; see the discussion in Ref. [29].

Let us consider the influence of the subtraction of the
modes with kx = 0 and ky = 0 from the forcing. Assume a
typical forcing length scale l f , it will be convenient to de-
note χ12(�x,�y) = ε�( �x

l f
,

�y
l f

), such that �(0, 0) = 1. This
gives

〈ψ ′
1ψ

′
2〉inh = 2y+l2

f

√
αε

∫ �x
l f

0
dz

∫ �y
2l f

0
dz′�̃(z, z′), (B3)

where

�̃(z, z′) = �(z, z′) − l f

Ly

∫ Ly
2l f

− Ly
2l f

�(z, s)ds − l f

Lx

∫ Lx
2l f

− Lx
2l f

�(s, z′)ds

= �(z, z′) − �̂(z, ky = 0) − �̂(kx = 0, z′), (B4)

with �̂ being the Fourier transform of � with respect to �x
or �y. Here, �̃(z, z′) has no modes with kx = 0 or ky = 0:
ˆ̃�(z, ky = 0) = ˆ̃�(kx = 0, z′) = 0. For the forcing we have

been using in DNS, a direct calculation gives ˆ̃�(z, ky = 0) =
1
π

cos 2πz and ˆ̃�(kx = 0, z′) = 1
π

cos 2πz′.
Now, for �x,�y � l f the replacement of � by �̃ does not

change the result at leading order: The difference between
Eq. (B3) and the expression when �̃(z, z′) is replaced by
�(z, z′) is of order O(l f /L) (after integration). Similarly, we
expect that the contribution to two-point correlation functions
from kx = 0 and ky = 0 modes of the forcing, finding which
requires a fully nonlinear treatment not carried out here, will
be small, of order O(l f /L), compared with the leading order.

However, for, e.g., �y ≈ L/2 (similarly for �x ≈ L/4) we
notice that∫ Ly

4l f

0
dz′�̃(z, z′) ≈

∫ Ly
2l f

0
dz′�̃(z, z′) = 1

2

∫ Ly
2l f

− Ly
2l f

dz′�̃(z, z′),

= Ly

2l f

ˆ̃�(z, ky = 0),

(B5)

where we have used that �̃ is a decaying function of z′ as-

suming that
∫ Ly

2l f
Ly
4l f

dz′�̃(z, z′) → 0 as Ly/l f → ∞, that we are

working in the regime L/l f � 1, and that �̃(z, z′) is even in z′:
�̃(z, z′) = �̃(z,−z′) (corresponding to the assumed statistical
reflection symmetry y → −y of the forcing). We then have∫ �x

l f

0
dz

∫ Ly
2l f

0
dz′�̃(z, z′) ≈ Ly

2l f

∫ �x
l f

0
dz ˆ̃�(z, ky = 0) = 0.

(B6)

Thus, we see that the forcing influences two-point correlation
functions only for �x,�y � l f , where we can use �̃(z, z′) ≈
�(z, z′), while for �x,�y ≈ L the contribution from the in-
homogeneous solution is negligible.

While the forcing provides the leading-order contribution
to the odd in �x part of the correlation function, correspond-
ing to parity + time reversal symmetry breaking, the even
contribution at leading order must come from the homoge-
neous solutions to Eq. (B3). Those are the zero modes of the
advection operator L1 + L2 = ∇2

1∂x1 + ∇2
2∂x2 = ∂y+∂y−∂x1 :

〈ψ ′
1ψ

′
2〉hom = C(�y,�x) + C1(y+,�x) + C2(y+,�y).

(B7)

To determine which zero modes contribute to the correla-
tion function we need to take into account the boundary
conditions. First, we assume that the fluctuations decorre-
late as �y → L, as confirmed in DNS Fig. 2(b), implying
that C1(y+,�x) = 0. Indeed, the odd and even parts of the
correlation function should decay to zero separately in this
limit. Also, since C(�x,�y) is independent of y+ while C2

is independent of �x, C1(y+,�x) should separately decay to
zero as �y → L, implying it must be identically zero. This
gives

〈ψ ′
1ψ

′
2〉 = C(�y,�x) + C2(y+,�y)

+ 2y+

√
α

ε

∫ �x

0
dz

∫ �y/2

0
dz′χ̃12(z, z′). (B8)

Next, C2(y+,�y) is in fact a zero mode of the individual
advection operators Li, reflecting the fact that kx = 0 modes
of ψ ′ are not advected by a mean flow pointing in the x̂ direc-
tion, irrespective of the shape of the mean flow (as discussed
above). So, such contributions to the correlation function are
not constrained by the quasilinear approximation. While there
is no a priori reason to set them to zero, we may thus expect
that modes with kx = 0 do not contribute significantly. Indeed,
we see empirically in our DNS that when setting �y = 0 the
even part of the two-point correlation function (with varying
�x) is independent of y+; see Figs. 2(a) and 3(b). Thus, it
does not contribute, at least to leading order. Finally, the full
solution reads

〈ψ ′
1ψ

′
2〉 = C(�y,�x) + 2y+

√
α

ε

∫ �x

0
dz

×
∫ �y/2

0
dz′χ̃12(z, z′). (B9)

APPENDIX C: SPATIAL AND TEMPORAL
RESOLUTION OF DNS

For all DNS, a constant time step dt , different for each
DNS was used (Table II), with the forcing amplitude normal-
ized by

√
dt so that energy injection is independent of it. The

grid spacing dx = dy ≈ 0.05 is the same for all simulations
considered at the default resolution of 64 × 128. To verify
the adequacy of the choice of dt and dx, they are compared
with the smallest physical timescale τE (lν ) and length scale
lν , respectively, as presented in Table II. While the temporal
resolution is smaller by at least 4 orders of magnitude than
τE (lν ), the grid spacing is relatively close to the Kolmogorov
scale lν . The large difference between the spatial and temporal
resolutions required is due to the hyperviscosity used in the
evolution Eq. (2). It allows us to use a relatively large grid
spacing (or low resolution), as for p = 7 the energy cutoff
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TABLE II. Spatial and temporal resolutions used for integration
of the simulations detailed in Table I with and addition of simulations
B(∗2), B(∗4), and B(p5) which are performed at higher spatial resolu-
tions. The spatial resolutions dx are compared with the Kolmogorov
scale lν while the temporal resolution dt is compared with the fastest
timescale τE (lν ).

dx dt lν/dx τE (lν )/dt

A 0.0491 4.0 × 10−5 4.085 5.2 × 103

B 0.0491 4.0 × 10−5 4.086 5.2 × 103

C 0.0491 2.0 × 10−5 4.087 1.1 × 104

D 0.0491 4.0 × 10−5 4.185 7.4 × 103

E 0.0491 1.6 × 10−5 3.224 7.0 × 103

F 0.0491 1.0 × 10−4 4.279 2.9 × 103

G 0.0491 4.0 × 10−5 4.278 7.3 × 103

H 0.0491 4.0 × 10−5 4.279 7.3 × 103

I 0.0491 2.0 × 10−5 4.076 1.0 × 104

J 0.0491 1.6 × 10−5 3.217 6.7 × 103

K 0.0491 1.6 × 10−5 3.216 6.7 × 103

B(*2) 0.0245 4.0 × 10−5 8.169 5.2 × 103

B(*4) 0.0123 4.0 × 10−5 16.34 5.2 × 103

B(p5) 0.0245 4.0 × 10−5 8.149 5.2 × 103

is extremely sharp leaving only a small fraction of the total
energy at length scales lν < l � dx. To verify that the sim-
ulations are spatially fully developed and that this resolution
is not too coarse, two high-resolution simulations [Sim-B(*2)
and Sim-B(*4)] were performed with the same parameters
as Simulation B but with dx = dy ≈ 0.025 and dx = dy ≈
0.0125 corresponding to 128 × 256 and 256 × 512 resolu-
tions, respectively. The resulting condensate is exactly the
same as for the lower resolution, as can be appreciated from
the snapshot comparison in Fig. 11 and from the averaged
terms in Fig. 12.

Finally, to demonstrate that the choice of hyperviscosity
in Eq. (2) does not affect the mean-flow condensate, we per-
formed an additional low hyperviscosity run with the same

(a) (b)

FIG. 11. Comparison of the LQG jet condensate at two
spatial resolutions, showing the velocity v = ẑ × ∇ψ snapshot
(a) Simulation-B with dx = dy = 0.0491 and (b) Simulation-B(*2)
with dx = dy = 0.245.

(a)

(b)

FIG. 12. The terms (a) ∂y� and (b) 〈vω′
y ∂yψ

′〉 as measured from
the DNS (solid lines), rescaled and compared with their theoreti-
cal predictions (dashed line), for simulations B, B(*2), and B(*4)
with spatial resolution dx = dy = 0.0491, dx = dy = 0.0245, and
dx = dy = 0.0123, respectively, with all other parameters the same.
The profiles are obtained from short averaging over ∼30TL . The two
regions where the leading-order solution for the mean flow applies
are delimited by vertical dashed lines.

parameters as Sim-B(*2) but with p = 5 and ν = 6.3 × 10−13

- Sim-B(p5). The value of ν was chosen so that the Kol-
mogorov scale for both Sim-B(*2) and Sim-B(p5) is lν ≈
0.2. The higher resolution (compared to Sim-B) is used in
the comparison as the energy cutoff is not as sharp in the
p = 5 case, requiring a larger separation of scales to ensure
convergence. The comparison demonstrates that the choice of
hyperviscosity does not affect the mean flow, as presented in
Fig. 13. Note that due to the longer time required to integrate

(a)

(b)

FIG. 13. The terms (a) ∂y� and (b) 〈vω′
y ∂yψ

′〉 as measured from
the DNS (solid lines), rescaled and compared with their theoretical
predictions (dashed line), for simulations B(*2) and B(p5) with hy-
perviscocity (ν = 7.3 × 10−19, p = 7) and (ν = 6.91 × 10−13, p =
5), respectively, chosen such that kν ≈ 31.2. The two regions where
the leading-order solution for the mean flow applies are delimited by
vertical dashed lines.
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the equations at the high resolution, only limited statistics
were obtained amounting to ∼30TL. To make the comparison

quantitative, the averaged terms presented in Figs. 12 and 13
are over 30TL for all simulations.
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