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Geometric mapping from rectilinear material orthotropy to isotropy: Insights into plates and shells
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Orthotropic shell structures are ubiquitous in biology and engineering, from bacterial cell walls to reinforced
domes. We present a rescaling transformation that maps an orthotropic shallow shell to an isotropic one with
a different local geometry. The mapping is applicable to any shell section for which the material orthotropy
directions match the principal curvature directions, assuming the commonly used Huber form for the orthotropic
shear modulus. Using the rescaling transformation, we derive exact expressions for the buckling pressure as well
as the linear indentation response of orthotropic cylinders and general ellipsoids of revolution, which we verify
against numerical simulations. Our analysis disentangles the separate contributions of geometric and material
anisotropy to shell rigidity. In particular, we identify the geometric mean of orthotropic elastic constants as the
key quantifier of material stiffness, playing a role akin to the Gaussian curvature which captures the geometric
stiffness contribution. Besides providing insights into the mechanical response of orthotropic shells, our work
rigorously establishes the validity of isotropic approximations to orthotropic shells and also identifies situations
in which these approximations might fail.
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I. INTRODUCTION

Isotropic elasticity, which assumes material properties that
are independent of direction, provides a tractable and conve-
nient description of many everyday mechanical phenomena.
However, direction-dependent mechanical properties are the
rule rather than the exception in natural materials, from mus-
cle tissue [1] and wood [2] to the cell walls of bacteria [3] and
plants [4]. The mechanical anisotropy is typically a result of
high-strength filaments or fibers within these materials that are
oriented in a particular direction, strengthening the direction
and hence breaking the material rotational symmetry (i.e.,
isotropy) [5]. In the technological realm, composite materi-
als with directional reinforcements such as plywood [6] and
corrugated materials [7] are used to build structures that are
mechanically strong and resilient in desired directions; the
elastic description of these structures at length scales larger
than the reinforcement features also requires anisotropic ma-
terial parameters.

Thin-walled elastic structures, or shells, provide a rich
setting for interesting elastic phenomena that arise from the
interplay of material anisotropy and geometry. For example, a
thin cylindrical shell whose inner wall is wrapped helically by
polymer fibers can develop into a spiral shape upon expansion,
which has been proposed as a model for bacterial growth [8].
In engineered shell structures, closely spaced ribs provide
strength in high-stress directions with minimal addition of
material in, e.g., masonry domes [9] and pressure vessels [10];
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these directional reinforcements strongly influence the failure
modes of the shells [11] and can generate multistability in
shell conformations [12–15]. Besides its fundamental inter-
est to mechanics, the interplay of anisotropic elasticity, shell
geometry and external loading is crucial to our understanding
of cell biophysics as well as to structural engineering.

One obstacle to building a fundamental understanding
of shells with anisotropic elasticity is that the reduction in
material symmetries makes the governing differential equa-
tions more challenging to solve. For instance, 21 independent
elastic constants are needed to fully characterize a three-
dimensional anisotropic material (while only two are needed
in the isotropic case) [7,16]. Here, we study a particu-
lar type of material anisotropy—two-dimensional orthotropic
materials (or equivalently thin three-dimensional transversely
isotropic materials). Such materials have different elastic
properties along two orthogonal in-plane directions, one of
which has the same material composition as the material
thickness direction [6]; see Fig. 1. This form of anisotropy
provides a good approximation to engineered thin-walled
structures such as fiber-reinforced shells [7,17] and shells with
linear corrugations [18]. Orthotropic elasticity also arises as a
natural consequence of the growth mechanism of rod-shaped
bacterial cell walls, in which stiff carbohydrate chains are
laid down by molecular complexes along the circumferential
direction [19–21] breaking local material symmetry [22,23].
Orthotropy therefore serves as a tractable yet relevant model
for assessing the influence of material anisotropy on shell me-
chanics. Nevertheless, the lowered symmetry of the governing
shell equations has typically favored numerical analyses of
orthotropic shell response [11,24–28], although a few analyti-
cal results exist for buckling thresholds [29] and multistability
criteria [12–15] of orthotropic shells.
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FIG. 1. Plate and shells with local rectilinear orthotropy: an orthotropic plate (a), cylinder (b), and spheroid (c). The two material
orthotropic directions are marked by different sets of grid lines, the x1 direction by thin red lines and x2 direction by thick blue lines. For
all three structures shown, these two directions are also the principal directions of curvature. We consider only rectilinear orthotropy—shell
sections that locally look like the orthotropic plate in (a); shell regions that are curvilinearly orthotropic, e.g., the poles of the orthotropic
spheroid, are beyond the scope of this study. For curved shells (the cylinder and the spheroid), we take the x2 direction to be the azimuthal
direction; R2 hence denotes the equatorial radius of the spheroid. The cylinder radius is denoted by R.

In this work we establish an exact mapping between
orthotropic and isotropic shells, and apply this mapping
to generate analytical results for the local mechanical re-
sponse of orthotropic shells. Specifically, we will demonstrate
that although the orthotropic materials still have a reduced
symmetry compared to isotropic materials, they become ef-
fectively isotropic under an appropriately chosen coordinate
transformation. A specific version of this isotropy-orthotropy
equivalence have been recognized for linear orthotropic plate
equations [30,31]; here we rigorously establish the equiva-
lence using the tensor formulation of elasticity, and generalize
it to nonlinear deflections of curved shell sections de-
scribed by shallow-shell theory [7]. Under the aforementioned
coordinate transformation, the orthotropic shallow-shell equa-
tions are mapped to a system of equations describing a
shallow shell made of an isotropic material, but with dif-
ferent geometric parameters. We apply the transformation
to study local mechanical properties—linear response to an
indentation force [32–35] and buckling load—of thin-walled
structures that are made of orthotropic materials. These local
mechanical properties have recently been established rig-
orously for isotropic shells with arbitrary curvatures and
pressures [33,34,36]; however, to our knowledge, our map-
ping enables the first analytical results for the local response
of orthotropic shells.

II. BACKGROUND

We start with the elastic description for a two-dimensional1

orthotropic material, which relates local strains to local
stresses via a stiffness tensor. Let uαβ be the covariant

1Realistically, every material has a finite thickness and is hence
three-dimensional. The materials considered here are effectively two-
dimensional, i.e., so thin that the Kirchhoff-Love hypothesis [7]
applies.

components of the strain tensor, and let σαβ denote the con-
travariant components of the stress tensor; (α, β ∈ {1, 2}).
The generalized Hooke’s law for an orthotropic material
is uαβ = Cαβγ δ σ γ δ , where C is the rank-four stiffness
tensor [16]. (The Einstein convention of summation over re-
peated upper and lower indices is implied throughout the
paper.) In Voigt notation, this reads [6]⎛

⎝u11

u22

u12

⎞
⎠ =

⎛
⎜⎝

1
E1

− υ21
E2

0

− υ12
E1

1
E2

0

0 0 1
2G12

⎞
⎟⎠
⎛
⎝σ 11

σ 22

σ 12

⎞
⎠, (2.1)

where Eα and υαβ (α �= β ) denote Young’s moduli and Pois-
son’s ratios along the two orthogonal directions, respectively.
In this paper we consider the common case where these elastic
constants are all positive. By Betti’s reciprocal theorem [7],

υ21

E2
= υ12

E1
. (2.2)

We can accordingly define a parameter which characterizes
the degree of material anisotropy:

λ := E1

E2
= υ12

υ21
> 0. (2.3)

The positive definiteness of the stiffness matrix in Voigt no-
tation, det(C[αβ][γ δ] ) > 0, imposes an upper bound for the
anisotropy parameter: λ < 1

υ2
12

. The Poisson’s ratio υ12 can
in principle be zero [37]; as a result, λ ∈ (0,∞) (recall that
we assume υ12, υ21 > 0). The inverse of λ, 1

λ
:= E2

E1
, also has

the same range of values. In practice, given a general two-
dimensional orthotropic material, one is free to call the first
direction either of the two principal directions of the stiffness
tensor C and hence use either λ or 1

λ
to characterize the degree

of material anisotropy.
Because of Eq. (2.2), one only needs four indepen-

dent parameters to fully characterize a two-dimensional
orthotropic material. We choose the four to be Eeff := √

E1E2,
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υeff := √
υ12υ21, λ and G12. [We will see the reason for this

choice in Eq. (2.4) and Sec. III A.] The elastic constant G12

is the material’s in-plane shear modulus and is, in general, an
independent quantity. However, in practice it is closely related
to the Young’s moduli in the orthotropic directions. To elim-
inate this degree of freedom, Huber proposed the following
form for G12 [38],

G12
!= GH := Eeff

2(1 + υeff )
=

√
E1E2

2(1 + √
υ12υ21)

, (2.4)

substituting the geometric means of the anisotropic elastic
constants as effective constants into the expression of the
shear modulus of an isotropic material. The Huber form
for the orthotropic shear modulus has been accepted and
widely employed in both analytical and numerical calcula-
tions [7,11,30,39,40]. Panc demonstrated, based on theoretical
arguments, that for orthotropic materials, the Huber form may
be used as an approximation [31]. Cheng and He further
argued that although the Huber form is itself inaccurate for
fiber-reinforced composite materials, it can still yield accurate
analytical results when substituted in governing differential
equations of shell theory (at least for cylinders) [39].

The following result section is structured as follows. In
Sec. III A we introduce the main result of this paper—the
rescaling transformation which shows that an orthotropic
two-dimensional material becomes effectively isotropic if we
use a rescaled Cartesian coordinate system. In Sec. III B
we exploit the use of the transformation in shallow-shell
systems. We demonstrate that the general Donnell-Mushtari-
Vlasov (DMV) equations, the governing equations in the
shallow-shell theory, are covariant under the transformation
and use the transformation to derive the DMV equations for
orthotropic shells in a physically transparent manner. In
Secs. III D and III E, by solving these equations, we obtain
the indentation stiffness and buckling pressure of orthotropic
ellipsoids and cylinders.

III. RESULTS

A. A rescaling transformation

a. Transformation step 1. We first notice that with the Huber
form [Eq. (2.4)], Eq. (2.1) can be rewritten, in terms of the
effective elastic constants and the anisotropy parameter λ, as⎛
⎜⎝

4
√

λu11
1

4√
λ

u22

u12

⎞
⎟⎠ =

⎛
⎜⎝

1
Eeff

− υeff
Eeff

0

− υeff
Eeff

1
Eeff

0

0 0 1+υeff
Eeff

⎞
⎟⎠
⎛
⎜⎝

1
4√
λ
σ 11

4
√

λσ 22

σ 12

⎞
⎟⎠. (3.1)

The stiffness matrix now takes the form of that for an isotropic
material with elastic constants {Eeff , υeff} [6]. Equation (3.1)
in fact implies that an orthotropic material can be treated
as isotropic if we rescale physical quantities in a systematic
way. This can be seen more clearly using tensors. In tensor
notation, Eq. (3.1) can be written as uα′β ′ = Cα′β ′γ ′δ′ σγ ′δ′

.
Primed indices are used here to denote the transformed tensor
components:

uα′β ′ = 	α
α′ 	β

β ′ uαβ, (3.2a)

σα′β ′ = 	α′
α 	β ′

β σ αβ, (3.2b)

and

Cα′β ′γ ′δ′ = 	α
α′ 	β

β ′ 	γ
γ ′ 	δ

δ′ Cαβγ δ, (3.2c)

where (	i
i′ ) := diag{ 8

√
λ, 1

8√
λ
, 1}, and 	i

i′ 	
i′

j = δi
j with δi

j

the Kronecker delta. (Latin indices run from 1 to 3, while
Greek indices take on only values 1 and 2.) That is, when writ-
ten in terms of the rescaled tensor components, the anisotropic
Hooke’s law takes the isotropic form. This shows that the
orthotropic material becomes effectively isotropic if we hide
the material anisotropy by rescaling the strain and the stress
components. We note that this rescaling transformation pre-
serves the elastic energy density: uαβ σ αβ = uα′β ′ σα′β ′

.
In fact, the total elastic energy is also invariant under the

transformation. Equations (3.2) hint at the following coordi-
nate transformation:

xi′ = 	i′
j x j . (3.3)

Let gi j denote the unscaled components of the metric ten-
sor; its rescaled components can then be computed: gi′ j′ =
	i

i′ 	
j

j′ gi j . Note that det(gi′ j′ ) = det(gi j ), since det(	i
i′ ) =

1. This further implies that

U = 1

2

∫
M

√
det(gi j ) d2x uαβ σ αβ

= 1

2

∫
M′

√
det(gi′ j′ ) d2x′ uα′β ′ σα′β ′

, (3.4)

i.e., the total energy is preserved.
b. Transformation step 2. The strain tensor is related

to deformation displacement fields via the so-called strain-
displacement relations. We are now going to demonstrate that
the rescaling transformation is compatible with these rela-
tions. Since all materials are three-dimensional, we will use
the relations for a thin curved material (i.e., a shallow shell)
that satisfies the Kirchhoff-Love hypothesis [7], which basi-
cally assumes that no deformation occurs along the thickness
direction.

For such a shell, the Green-Lagrange strain tensor is given,
in terms of two in-plane phonon fields uα (x) and one out-of-
plane deformation field u3(x), by [7,41]

uαβ = 1
2 (∂αuβ + ∂βuα + ∂αu3∂βu3) − K0

αβu3 − x3 ∂α∂βu3,

(3.5)

where ∂α ≡ ∂
∂xα , and (K0

αβ ) = diag{κ1, κ2} is the extrinsic cur-
vature tensor that encodes the two local principal curvatures of
the material’s undeformed middle surface. For a sphere with
radius R, K0

αβ = 1
R δα

β , while a cylinder of the same radius has

K0
αβ = 1

R δ1
α δ1

β (or K0
αβ = 1

R δ2
α δ2

β). The last term in Eq. (3.5)
is the bending strain [7], where x3 denotes the distance away
from the middle surface.
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The rescaled components can then be written, using Eq. (3.2a), as

uα′β ′ = 1
2

[
(	α

α′ ∂α )
(
	β

β ′ uβ

)+ (	β
β ′ ∂β

)
(	α

α′ uα ) + (	α
α′ ∂α )u3

(
	β

β ′ ∂β

)
u3
]− (	α

α′ 	β
β ′ K0

αβ

)
u3

− x3 (	α
α′ ∂α )

(
	β

β ′ ∂β

)
u3

= 1
2 (∂α′uβ ′ + ∂β ′uα′ + ∂α′u3′∂β ′u3′ ) − K0

α′β ′u3′ − x3′ ∂α′∂β ′u3′ . (3.6)

For the sake of consistency, we have written in the above
equation x3′ = 	i

3′ xi = x3 and u3′ = 	i
3′ ui = u3. Note that

both the coordinate and the displacement along the thickness
direction remain unrescaled.

Equations (3.5) and (3.6) take exactly the same form. This
means that rescaling the underlying deformation displacement
fields can indeed lead to the rescaled strain-tensor field, indi-
cating the compatibility between the rescaling transformation
and the strain-displacement relations. The only difference be-
tween the two equations is that the extrinsic curvature tensor,
in the rescaled coordinate system, now becomes

(
K0

α′β ′
) = diag{κ1′ , κ2′ } := diag

{
4
√

λκ1,
1

4
√

λ
κ2

}
. (3.7)

This shows that the material’s middle surface has a different
local geometry in the rescaled coordinate system. For exam-
ple, a sphere with radius R becomes locally an ellipsoid with
principle radii of curvature 1

4√
λ

R and 4
√

λR. Nonetheless, note
that the local Gaussian curvature remains unchanged:

K ≡ det
(
K0

αβ

) = κ1κ2 = det
(
K0

α′β ′
) ≡ K ′; (3.8)

while the other invariant of the extrinsic curvature tensor, the
local mean curvature H ≡ 1

2 tr(K0
αβ ) does not remain invariant

under the rescaling:

H = 1
2 (κ1 + κ2) �= 1

2 (κ1′ + κ2′ ) = 1
2 tr
(
K0

α′β ′
) ≡ H ′. (3.9)

To sum up, we have established a curious rescaling trans-
formation [Eqs. (3.3) and (3.2)], assuming the Huber form for
the orthotropic in-plane shear modulus. The transformation
implies that under certain circumstances, such as cases where
shear deformations are negligible, an orthotropic material can
exhibit similar elastic behaviors as an isotropic one with dif-
ferent local geometrical properties.

It should be pointed out that we have made a couple of
assumptions when establishing the above equivalence rela-
tionship. The first one is that the material-orthotropy pattern
must be rectilinear (i.e., can be characterized locally by a
Cartesian coordinate system), not curvilinear, and the two
orthogonal directions have to coincide with directions of local
principal curvatures (see Fig. 1). Also, the form of the strain
tensor, Eq. (3.5), implicitly requires that the deformation dis-
placements vary rapidly, on the scale of curvature radii, along
the principal directions, i.e., | 1

uβ
∂αuβ | � 1

min{R1,R2} , where

Rα ≡ 1
κα

[7]. Given that λ is of order one, which implies

that 8
√

λ is approximately unity, the same requirement in
the rescaled coordinate system, | 1

uβ′ ∂α′uβ ′ | � 1
min{R1′ ,R2′ } , can

accordingly still be satisfied. In the context of thin shells,
this means that a shallow shell remains shallow after getting
rescaled.

We now move on to discuss several implications of the
established equivalence relationship. The first and foremost
perhaps is that we can effortlessly obtain, without performing
any functional analysis, the equation of equilibrium and the
compatibility equation for an orthotropic doubly curved shal-
low shell. The equations will be presented in a covariant way,
in tensor notation, to illustrate that they are form-invariant
under the rescaling transformation.

B. Equations of the shallow-shell theory

Recall that we have demonstrated that an orthotropic
shallow shell with the set of parameters {E1, υ21, λ; R1, R2}
shares the same total-energy functional with an isotropic
one whose corresponding parameters are given by {Eeff ≡√

E1E2, υeff ≡ √
υ12υ21; R1′ ≡ R1

4√
λ
, R2′ ≡ 4

√
λR2}. Since min-

imizing the total-energy functional gives the equation of
equilibrium (EOE), we conclude that the EOE for the or-
thotropic shell will be the same as the corresponding isotropic
EOE when written in terms of rescaled quantities:

D′L̂′u3′ + σα′β ′
t ′(K0

α′β ′ − ∂α′∂β ′u3′
) = p′(xα′

), (3.10a)

where D′ := Eeff t3

12(1−υ2
eff )

is the effective bending modulus; t = t ′

the shell thickness; and p′ describes the load applied to the
shell. The operator L̂′ denotes the linear differential operator
∂4

∂x′4 + 2 ∂2

∂x′2
∂2

∂y′2 + ∂4

∂y′4 .2 Note that in spite of its appearance, L̂′

is in fact not the biharmonic operator in the rescaled coordi-
nate system.3

Recall that the strain-displacement relations [Eq. (3.5)]
also take the same form in both coordinate systems. By the
same reasoning, the fact that the compatibility equation stems

2The fully covariant way of writing the operator is Dαβγ δ ∂α∂β∂γ ∂δ ,
where D denotes the bending-stiffness tensor: In Voigt notation,

(D[αβ][γ δ] ) =

⎛
⎜⎜⎝

D1111 D1122 D1112 D1121

D2211 D2222 D2212 D2221

D1211 D1222 D1212 D1221

D2111 D2122 D2112 D2121

⎞
⎟⎟⎠

= D′

⎛
⎜⎜⎜⎜⎝

√
λ υeff 0 0

υeff
1√
λ

0 0

0 0 1−υeff
2

1−υeff
2

0 0 1−υeff
2

1−υeff
2

⎞
⎟⎟⎟⎟⎠,

again using the Huber form
3The Laplacian operator, or rather the Laplace-Beltrami operator,

in the rescaled coordinate system, which is non-Euclidean, is �′ ≡
1√

g′ ∂α′ (
√

g′gα′β ′
∂β ′ ) = 1

4√
λ

∂2

∂x′2 + 4
√

λ ∂2

∂y′2 , where g′ ≡ det(gα′β ′ ).
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from strain-displacement relations [42] implies that for the
orthotropic shell, the compatibility equation is given by

1

Y ′ L̂
′′ = εα′γ ′

εβ ′δ′
∂γ ′∂δ′u3′

(
K0

α′β ′ − 1

2
∂α′∂β ′u3′

)
, (3.10b)

where Y ′ := Eefft is the effective two-dimensional Young’s
modulus. The Airy stress function ′ is a scalar field and
hence unrescaled, i.e., ′(xα′

) = (xα ). It is related to the
rescaled stress components in the following way:

σα′β ′
t ′ = εα′γ ′

εβ ′δ′
∂γ ′∂δ′′, (3.11)

where εα′β ′
is the rescaled components of the two-dimensional

alternating tensor.
Equations (3.10) are the nonlinear shallow-shell equa-

tions for the orthotropic shell. The linearized version can be
obtained via the procedure outlined in Ref. [7]; the results are
shown below:

D′L̂′u3′ + σα′β ′
t ′K0

α′β ′ − σ
α′β ′
0 t ′∂α′∂β ′u3′ = 0, (3.12a)

Y ′εα′γ ′
εβ ′δ′K0

α′β ′∂γ ′∂δ′u3′ = L̂′′, (3.12b)

where σ
α′β ′
0 denotes the rescaled prestress components. Equa-

tions (3.12) are consistent with known expressions in the
literature [43]. Equations written in terms of unrescaled quan-
tities without tensor notation can be found in Appendix A.

The linearized equations can be employed to study the
local indentation stiffness of a shell subject to a concentrated
load and to perform linear buckling analysis [44], which will
be the topics for the following discussions.

C. Rederiving some established results
using the rescaling transformation

We first demonstrate the convenience of the rescaling
transformation by deriving the buckling load of orthotropic
cylinders [Fig. 1(b)] and plates [Fig. 1(a)] from the corre-
sponding isotropic expressions. Our results are consistent with
the established expressions in literature.

1. Long cylindrical shells

a. Edge load. By “edge load” we mean the load applied
at the ends of an open cylindrical shell; it has units of pres-
sure. Paschero and Hyer have observed the curious fact that
the critical edge load of an orthotropic cylinder, when the
real in-plane shear modulus is large enough (so that shear
deformations are negligible), is exactly the classical buckling
load of an isotropic cylinder with elastic constants Eeff and
υeff [40]. The rescaling transformation provides an explana-
tion for this fact. The isotropic critical axial stress is in this
case [7]

σ 11
c, iso = E√

3(1 − υ2)

t

R
. (3.13)

Since an orthotropic cylinder can be treated effectively as
isotropic with a modified radius, we can use the same formula

to write the rescaled orthotropic critical stress:

σ 1′1′
c, ortho = Eeff√

3
(
1 − υ2

eff

) t

R′ . (3.14)

Now recall that σ 1′1′ = 1
4√
λ
σ 11, and R′ = 4

√
λR. Substituting

these into the above expression will yield the desired result

σ 11
c, ortho = Eeff√

3
(
1 − υ2

eff

) t

R
. (3.15)

b. Surface load. In this case, a uniform pressure is applied
at the outer surface of an open cylindrical shell. The isotropic
critical circumferential stress is known to be [7]

σ 22
c, isot = D

R2
(n2 − 1) ≡ D

R2

(
n2 − n2

min

)
, (3.16)

where n is the number of half-waves in the circumferential
direction. To obtain the orthotropic critical stress, we again
substitute into the above expression the effective elastic con-
stants and the rescaled quantities:

σ 2′2′
c, orthot = D′

R′2
(
n′2 − n′

min
2)

,

4
√

λσ 22
c, orthot =

√
λDθ√
λR2

( 4
√

λn2 − 4
√

λ); (3.17)

n′ = R′
R

y
y′ n = 8

√
λn is the rescaled half-wave number [see

Eq. (C13)]. That it is not integral and related to the anisotropy
parameter λ arises from the following fact. Although distances
and radii of curvature have the same dimension, the former
are related to the square root of the metric, while the latter
get rescaled in the same way as the metric since both the
extrinsic curvature tensor and the metric tensor are rank-two.
Cancelling all factors involving λ, we get

σ 22
c, orthot = Dθ

R2
(n2 − 1), (3.18)

which is consistent with the result by Wang et al. [45].

2. Plates

We consider a rectangular orthotropic plate which is sub-
ject to in-plane compressive forces. Its edges are aligned with
the material orthotropic directions; the dimensions along the
x1 and x2 directions are a and b, respectively. The edges
of the plate are simply supported; in other words, bending
moments shall vanish along the edges which are held fixed but
allowed to rotate during a deformation event [see Eqs. (3.19)].
The plate is subjected to a uniform compression along the
x1 direction via edge loads of size τ per unit length acting
upon the two edges perpendicular to the x1 axis. Force bal-
ance at equilibrium dictates a resulting compressive prestress
σ 11 = τ/t . We assume that shear deformations are negligible.
In this case, the rescaling transformation maps the orthotropic
plate with parameters {E1, υ21, λ; a, b; σ 11} to an isotropic
plate with parameters {Eeff , υeff ; a′ = a

8√
λ
, b′ = 8

√
λb; σ 1′1′ }. It

should be pointed out that the orthotropic boundary conditions
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also become effectively isotropic,⎧⎪⎪⎨
⎪⎪⎩

u3|x=0,a
y=0,b

= 0,(
∂2u3

∂x2 + υ12
∂2u3

∂y2

)∣∣
x=0,a = 0,(

∂2u3

∂y2 + υ21
∂2u3

∂x2

)∣∣
y=0,b = 0,

	→

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u3

∣∣
x′=0,a′
y′=0,b′

= 0,(
∂2u3

∂x′2 + υeff
∂2u3

∂y′2
)∣∣

x′=0,a′ = 0,(
∂2u3

∂y′2 + υeff
∂2u3

∂x′2
)∣∣

y′=0,b′ = 0.

(3.19)

Therefore, the transformation only affects the way how
quantities get “measured” but does not change the system
physically.

The resulting deformations manifest themselves as elastic
waves. These waves are subject to the boundary conditions,
Eqs. (3.19), and hence take the form Amn sin( mπx

a ) sin( nπy
b ),

where Amn is the wave amplitude, and m (n) denotes the num-
ber of half-waves propagating along the horizontal (vertical)
direction. Because x and a (y and b) rescale in the same way,
m′ = m (n′ = n), i.e., the half-wave numbers are invariant in
this case [cf. Eqs. (3.17)].

For an isotropic plate, the intensity of the load that gives
rise to waves of a particular (m, n) is given in Ref. [7]:

σ 11
isot = π2D

b2

(
mb

a
+ n2 a

mb

)2

. (3.20)

The corresponding orthotropic stresses are hence

σ 1′1′
orthot = π2D′

b′2

(
mb′

a′ + n2 a′

mb′

)2

(3.21a)

σ 11
orthot = π2

b2

[
D1

(
mb

a

)2

+ 2D′n2 + D2n4
( a

mb

)2
]
,

(3.21b)

which agrees with the known expression in the literature [7].
Its global minimum, with respect to the half-wave numbers, is
the critical stress at which the plate buckles out of the plane.4

In contrast to plates and singly curved cylindrical shells
with orthotropy, few exact results exist for the mechanical
response of doubly curved orthotropic shells. As a concrete
application of our mapping, we next show that patches of
orthotropic spheroidal shells transform locally to isotropic
spheroidal shells with a different geometry, and use this map-
ping to derive new results for the indentation stiffness and
buckling load of general orthotropic spheroidal shells.

D. Indentation stiffness of orthotropic spheroidal shells

The indentation assay—measuring the response of a struc-
ture to a point force—is commonly used to gauge the
material properties of biological [23,46–51], as well as syn-
thetic [52,53] shell structures. It also serves as a quantifier of
shell stiffness and its relationships with geometry, pressure,

4If the real shear modulus G12 deviates much from the Huber
form, to obtain the orthotropic stress, we can simply replace D′ in
Eq. (3.21b) with H = G12t3

6 + D1υ12, the real bending stiffness that
penalizes twisting deformations (which reduces to D′ when assuming
the Huber form).

and material properties which reveals the fundamental mech-
anisms underlying geometric rigidity [32–36]. Our mapping
enables us to calculate the linear indentation response of or-
thotropic spheroidal and cylindrical shells under pressure, by
making use of known results for isotropic shells [36].

We consider an orthotropic spheroid, as depicted in
Fig. 1(c), with a concentrated load exerted at the point O on
its equator.

1. The zero-pressure case

a. General doubly curved shells. For this simple case,
σ

α′β ′
0 = 0, and an extra term, −Fδ(x1)δ(x2), needs to be

included on the right-hand side of Eq. (3.12a) to model
the concentrated load at the origin, where F denotes the
load strength, and δ(x) is the Dirac delta function. Note
that because of the scaling property of the delta function,
δ(ax) = 1

|a|δ(x), the load strength does not need rescaling, i.e.,

Fδ(x1)δ(x2) = Fδ(x1′
)δ(x2′

) ≡ F ′δ(x1′
)δ(x2′

).
The indentation stiffness is defined as

k := − F

u3(0, 0)
= − F ′

u3′ (0, 0)
, (3.22)

where u3(0, 0) is the transverse displacement of the shell
at the origin in response to the indentation load. As shown
in Ref. [36], the inverse of the indentation stiffness at zero
pressure (denoted by k0) is given by the following definite
integral:

1

k0
= 1

4π2

∫
R2

Q dQ dϕ

D′Q4 + Y ′( 1
R2′ cos2 ϕ + 1

R1′ sin2 ϕ
)2 , (3.23)

where the integration variables Q and ϕ are related
to wave vectors, q = (q1′

, q2′
), in the following way:

q1′ = 1
4√
λ

Q cos ϕ and q2′ = 4
√

λQ sin ϕ. The fact that Q2 =√
λ(q1′

)2 + 1√
λ

(q2′
)2 implicitly reflects that the metric of

the rescaled Fourier space is non-Euclidean, resulting from
the original material orthotropy. Evaluating the integral in
Eq. (3.23) gives

k0 = 8
√

D′Y ′√K ′ = 4Eefft2√
3
(
1 − υ2

eff

) 1√
R1R2

:= 4
√

E1E2t2

√
3(1 − υ12υ21)

√
1 − β0

R2
, (3.24)

where in the second line, we used the definition of the ef-
fective elastic constants, Eeff and υeff . The parameter β0 :=
1 − R2

R1
characterizes the asphericity of a given spheroid; for

example, β0 = 0 (R1 = R2) corresponds to a sphere, while
β0 = 1 (R1 → +∞) a cylinder. Equation (3.24) clearly
shows the separate contributions of geometry and material
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anisotropy to the indentation stiffness. As in the isotropic case,
the Gaussian curvature, K = K ′ = 1/(R1R2), is still the dom-
inant geometrical quantity that governs shell stiffness at zero
pressure [34,36]. Heuristically, we could have anticipated this
K dependence based on the fact that K is invariant under our
rescaling transformation [Eq. (3.8)], and therefore captures
the geometric rigidity independently of how the rescaling is
performed.

Just as the geometric contribution is captured by the
geometric mean of the two curvatures, effects of material
anisotropy also come in the form of geometric means, Eeff =√

E1E2 and υeff = √
υ12υ21. These geometric-mean depen-

dencies are consistent with the requirement of invariance of
the indentation stiffness under coordinate transformations.
Consider the equator of an orthotropic sphere. We call the
local polar (meridional) and azimuthal (zonal) direction the
first and the second direction, respectively, i.e., θ ≡ x1 and
φ ≡ x2. Assume that the shell is strengthened along the first
direction, i.e., E1 > E2. We now rotate our local coordinate
system clockwise by ninety degrees, so that x1 	→ −x2, and
x2 	→ x1. The rotation leaves us with the same spherical shell
locally but with the second direction strengthened. We can
infer two conclusions from this simple argument. First, any
local elastic property around the equator of an orthotropic
sphere should exhibit an exchange symmetry: Interchanging
directions 1 and 2 does not make a difference. Second, if
material anisotropy and geometry affect shell elasticity lo-
cally separately from one another, then for shells of any
type, their local elastic properties should depend on com-
binations of elastic constants which are invariant under the
interchange 1 ↔ 2.

More generally, local elastic properties should be functions
of invariant quantities constructed from the corresponding
tensors. In our system, such examples are furnished by the
Gaussian curvature (the square root of the extrinsic curvature
tensor’s determinant) as well as the combination 1−υ12υ21

E1E2
,

which happens to be the determinant of the stiffness matrix
C[αβ][γ δ] [Eq. (2.1)], if we assume that the deformation is
axisymmetrical, i.e., ignoring G12. We can to some extent
rule out the trace of these tensors as the invariant setting the
stiffness, based on the fact that these traces are not invariant
under the rescaling transformation [cf. the local mean curva-
ture, Eq. (3.9)].

For general ellipsoidal shells of revolution, material prop-
erties are usually different along the polar and azimuthal
direction, which are also the principal directions of such
shell surfaces [54]. Therefore, according to the shallow-shell
theory, for these shells, Eq. (3.24) can be applied almost glob-
ally, except at the two poles, where the material-orthotropy
pattern becomes curvilinear. Nevertheless, if we think of the
local indentation stiffness as a function of positions on the
shell surface and consider only small deformations, we expect
that taking the analytical continuation of the function to the
poles will imply that Eq. (3.24) can be still valid there. An
explicit calculation of the zero-pressure indentation stiffness
at the poles confirms this expectation for spherical shells
(see Appendix B for calculation details and comparison to
simulations).

b. Long cylindrical shells. As for their isotropic counter-
parts [36], the case of long orthotropic cylinders also requires

special attention. In contrast to doubly curved shells, cylinders
admit nearly isometric deformations which are not accurately
captured by the two-dimensional Fourier transform applied
to a shallow shell section as used in Eq. (3.23). Instead,
the transverse deformation field along the entire circumferen-
tial direction must be described using a Fourier series; this
approach was used by Yuan to describe the indentation of
isotropic cylinders [55]. We apply the rescaling transforma-
tion to Yuan’s analysis and accordingly obtain the following
expression for the zero-pressure stiffness of orthotropic cylin-
ders (see Appendix C for details):

k0
cyl(λ) ≈ 1

4
√

λ

2π

3
√

2
(
1 − υ2

eff

) Eefft3

R2

( ∞∑
n=1

1

n3

√
1 + �n

�n

)−1

,

(3.25)
where �2

n := 1 + 3(1−υ2
eff )

4n4 ( R
t )2. The dependence of the stiff-

ness expression on the cylinder’s thickness and radius in the
thin-shell limit (R/t � 1) is obtained by keeping the leading
term of the series in Eq. (3.25), which dominates when R

t is
sufficiently large:

k0
cyl(λ) ≈ 1

4
√

λ

2π

3
√

2
(
1 − υ2

eff

) Eefft3

R2

√
�1

≈ 1
4
√

λ

π[
3
(
1 − υ2

eff

)] 3
4

Eefft
5
2

R
3
2

. (3.26)

For isotropic (λ = 1) cylinders with a negligible Poisson’s
ratio (υ ≈ 0), Eq. (3.26) becomes

k0
cyl(λ = 1) ≈ 1.38

Et
5
2

R
3
2

. (3.27)

Equation (3.27) matches exactly, including the order-one pref-
actor, with the expression obtained by de Pablo et al. [48].

From Eq. (3.25), we observe that the zero-pressure inden-
tation stiffness for long cylinders depends on the anisotropy
parameter λ both implicitly (through the anisotropic elastic
constants absorbed into Eeff and υeff ) and explicitly (in the
1/

4
√

λ factor), unlike the stiffness of orthotropic doubly curved
shells whose λ dependence is purely implicit [see Eq. (3.24)].
The explicit λ dependence breaks the aforementioned local
exchange symmetry and is a consequence of the fact that open
cylinders can deform isometrically (see Sec. III D 2 b).

Figure 2 compares the theoretical predictions for zero-
pressure indentation stiffness of orthotropic spheroids
(curves) to the output of finite-element simulations (symbols).
For each geometry, we report a nondimensionalized stiffness
k̃ obtained by dividing k0 by the zero-pressure stiffness of a
spherical (for β0 < 1) or cylindrical (for β0 = 1) shell with
the same equatorial radius R = R2 and isotropic elasticity gov-
erned by {E = E1, υ = υeff}. This stiffness scale was chosen
to show both the implicit and explicit λ dependencies as well
as the dependence on Gaussian curvature for doubly curved
shells [Eq. (3.24)]: The Gaussian curvature can be written as
K = 1−β0

R2
2

, so the zero-pressure stiffness of a doubly curved
shell with a lower β0 is larger (R2 is fixed).

Theoretical predictions lie within a few percent of finite-
element measurements for all parameter values in Fig. 2,
verifying that our rescaling transformation provides accurate
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FIG. 2. Zero-pressure indentation stiffness of four different ge-
ometries of orthotropic shells with varying values of the anisotropy
parameter λ. Symbols denote data obtained from finite-element sim-
ulations as detailed in Appendix D. Solid curves through each set
of symbols show the analytical expressions evaluated at the corre-
sponding values of the asphericity β0: Eq. (3.24) for β0 < 1 and
Eq. (3.26) for β0 = 1. The vertical axis reports the stiffness scaled
by 4E1t2√

3(1−υ2
eff )

1
R2

for doubly curved shells (β0 = 0, ±0.5), and by

π

[3(1−υ2
eff )]

3
4

E1t
5
2

R
3
2

for cylinders (β0 = 1). The insets show the same data

on logarithmic axes.

results for indentation calculations. The largest discrepancy
between theory and simulation is around 8% for cylinders
with λ < 1; this mismatch likely stems from the fact that
Eq. (3.26) omits higher-order terms. Despite the simpli-
fication, the expression accurately captures the explicit λ

dependence of the zero-pressure cylinder stiffness, which fol-
lows a different power-law relationship compared to doubly
curved shells as seen in the insets to Fig. 2. From the top inset,
we can see that the indentation stiffness of doubly curved
shells all scales as 1√

λ
, which shows the dependence on Eeff

(since Eeff = E1/
√

λ). In contrast, the stiffness of long cylin-
ders has a λ dependence given by 1

4√
λ3

; this is a combination

of the same Eeff dependence and the explicit 1
4√
λ

factor in
Eq. (3.25).

2. The pressurized case

We now consider the indentation stiffness of closed or-
thotropic shells subjected to a uniform pressure. This situation
is relevant to biological shell-like structures, which often
experience high turgor pressures; varying the pressure also
provides a route to modifying the shape and stiffness of ar-
tificial shells [11,56].

In the absence of indenting forces, the pressurized shell
deforms from its original shape to attain a new equilibrium in
which in-plane stresses balance the transverse loads due to the
pressure. The indentation forces and deflections are then cal-
culated with reference to this prestressed state. For thin shells,
the indentation response is still a local property of the geome-
try, elasticity, and prestresses in the vicinity of the indentation
point, and a shallow-shell description of the local response
will suffice to calculate the indentation stiffness. However, the
prestressed state itself depends on the global shell shape—it
is not determined solely by local properties [30]. For thin
spheroidal and cylindrical orthotropic shells, these prestress
configurations in response to a uniform pressure are known
as a function of pressure and global geometry [7], and are
independent of the elastic properties of the shell as long as the
deformations in response to the pressure are small. We will
use these prior results as inputs to our rescaled theory, which
we then use to calculate the indentation stiffness as a function
of geometry and pressure.

a. General spheroids. Spheroids are ellipsoids of revolu-
tion. We are interested in the local indentation stiffness around
a spheroid’s equator. Following Ref. [36], we use β0 := 1 −
R2
R1

to characterize the asphericity of a spheroid, where R2 is

the radius of its equator, and 1
R1

is the local principal curvature
along the meridional direction for points on the equator. In the
vicinity of the equator, the prestress components are given by
σ 11

0 t = 1
2 pR2, σ 22

0 t = 1
2 pR2(1 + β0) and σ 12

0 t = 0 [7], where
p denotes the uniform pressure to which the spheroid is sub-
ject.5 The sign convention for the pressure is that a positive
(negative) p means an internal (external) pressure.

Following the same procedure as the zero-pressure case,
we obtain the inverse of the indentation stiffness which is
now a function of three parameters, namely, the scaled pres-

sure ηs,y(λ) = pR2
2

4
√

D′(λ)Y ′(λ)
, the asphericity β0 as well as the

anisotropy parameter λ explicitly:

1

k(ηs,y(λ), β0, λ)
= 1

8π2

√
R2

2′

D′Y ′

∫ 2π

0
dϕ

∫ +∞

0

du

u2 + 2ηs,y(1 + β ′
λ sin2 ϕ)u + (1 − β ′ sin2 ϕ)2

, (3.28)

where β ′ := 1 − √
λ(1 − β0) and β ′

λ := 2
√

λ − 2 + β ′ appear to couple the geometry and the material anisotropies. Nonetheless,
it turns out that these explicit λ dependences are spurious, as we will now demonstrate. The double integral in Eq. (3.28) can be
evaluated in the following closed form (see Appendix E for details):

1

k(ηs,y(λ), β0)
= 1

2π

√
R2

2

D′Y ′
1√

1 − β0

1√
(1 − ηs,y)(1 + αηs,y)

F

(
1

2
arccos ηs,y

∣∣∣∣− 2(1 − α)ηs,y

(1 − ηs,y)(1 + αηs,y)

)
, (3.29)

5We would like to mention that an orthotropic spheroid shares the same prestress as the corresponding isotropic one with the same geometry
only on regions that are far away from the two poles [57,58].
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where α := 1+β ′
λ

1−β ′ = 1+β0

1−β0
is independent of λ, and F(ϑ |C2)

denotes the incomplete elliptic integral of the first kind:

F(ϑ |C2) :=
∫ ϑ

0

dϕ√
1 − C2 sin2 ϕ

. (3.30)

Equation (3.29) is the primary result of this work: by
applying the rescaling transformation, we have obtained a
closed-form expression for the equatorial indentation stiff-
ness of pressurized orthotropic spheroids, provided that the
material anisotropy directions align with the latitudinal and
longitudinal directions as shown in Fig. 1(c). As a consis-
tency check, setting β0 = 0 (R1 = R2 = R) and λ = 1 (Eeff =
E and υeff = υ) reduces Eq. (3.29) to, after taking the
inverse,

k(ηs,y(1), 0) = 2π
√

DY

R

√
1 − η2

F
(

1
2 arccos η|0 )

= 8
√

DY

R

√
1 − η2

1 − 2
π

arcsin η
, (3.31)

which recovers the established result of the indentation stiff-
ness of pressurized isotropic spherical shells [33,44].

Equation (3.29) demonstrates that the indentation stiffness
depends on the anisotropy parameter λ only implicitly via the
coupling constants D′ = √

D1D2 and Y ′ = Eefft ≡ √
E1E2t .

In other words, the only effect of material anisotropy is mod-
ifying the elastic constants. As a consequence, our previous
analysis on the behavior of the stiffness integral in different
parameter regimes [36] should carry over to the orthotropic
case. In particular, it was established in Ref. [36] that at
high pressures, the geometry of the spheroid becomes less
relevant and instead the indentation response is dominated by
a new length scale—the radius of distensile curvature, defined
as

R ≡ 1

p

√
det
(
σ

αβ

0 t
) = R2

√
1 + β0;

the indentation stiffness for arbitrary isotropic ellipsoids at
high pressure approaches that of a sphere of radius R and
experiencing the same pressure. For anisotropic spheroids,
we expect the same behavior, provided the geometric-mean
coupling constants D′ and Y ′ are used to define the relevant
pressure scale: upon defining a nondimensionalized pressure
ηR ≡ pR2/(4

√
D′Y ′), we expect the rescaled indentation

stiffness k̃ ≡ k/

√
D′Y ′
R2 for different shell geometries to ap-

proach a single curve when ηR � 1.
This expectation is confirmed in Fig. 3, which re-

ports simulation data (symbols) and theoretical predictions
(solid curves) for the indentation stiffness of pressurized
shells as a function of pressure over a range of geometry
and anisotropy values. The data have been nondimen-
sionalized using scales related to the radius of distensile
curvature R and the geometric-mean elastic constants D′
and Y ′. Using this rescaling, indentation stiffnesses mea-
sured from simulations with different material anisotropies
collapse onto curves that depend only on the geometry
parameter β0. The data collapse and agreement with the
solid curves for β0 ∈ {−0.778, 0, 0.75, 0.96} validate our

10−5 10−3 10−1 101
10−2
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100

101

102
β0 = −0.778
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β0 = 0.75
β0 = 0.96
β0 = 1

β0 = 0.9999
λ = 0.5
λ = 1
λ = 2
λ = 10

0.5 1 5 10λ
0.11

0.16
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0.25

k̃

1

-0.25

ηR = 9.44 × 10−10

FIG. 3. Indentation stiffness of orthotropic shells of varying ge-
ometries (β0 values) and degrees of anisotropy (λ values), as a
function of pressure. Symbols denote data obtained from finite-
element indentation simulations as described in Appendix D. Solid
curves correspond to the analytical expressions Eq. (3.29) for β0 < 1
and Eq. (3.32) for β0 = 1. Colors distinguish different geometries:
the asphericity values for the curves ordered from top to bottom
are β0 = 0 (green), 0.75 (blue), −0.778 (red), 0.96 (cyan), and 1
(magenta). Data points below the β0 = 0.96 curve are from simu-
lations with β0 = 1 for ηR < 10−2 and β0 = 0.9999 for ηR > 10−2.

Data are scaled using the stiffness scale
√

D′Y ′
R2 and the pressure scale

4
√

D′Y ′
R2 derived from the distensile curvature radius R. Dotted hori-

zontal lines indicate the scaled zero-pressure stiffness of orthotropic
cylinders [Eq. (3.26)] with anisotropy values λ = {0.5, 1, 2, 10} in
order from top to bottom. Inset, indentation stiffness of cylinders
simulated at a low pressure ηR = 9.44 × 10−10, on logarithmic axes.
The dashed line indicates the power-law relationship k̃ ∝ 1

4√
λ
.

prediction for the indentation stiffness of pressurized or-
thotropic doubly curved shells, Eq. (3.29). Theoretical curves
and simulation data for different shell geometries converge
in the limit ηR � 1, indicating that the distensile curva-
ture and the pressure-induced prestresses fully determine
the indentation response for shells with large internal pres-
sures as anticipated by the behavior of pressurized isotropic
shells [36].

b. Long cylindrical shells. We had previously mentioned
that shallow-shell theory failed to capture the indentation stiff-
ness of cylinders at zero pressure, which instead required a
different analysis (Sec. III D 1 b and Appendix C). However,
we expect that the shallow-shell approach again becomes ac-
curate for cylinders at large enough internal pressures [36].
At finite internal pressure, the extent of the indentation de-
formation along the circumferential direction of the cylinders
is restricted by a length scale of order

√
D2/(pR2), which

becomes much smaller than R2 at high enough pressures. In
this regime, the shallow-shell analysis leading to Eq. (3.29)
for doubly curved shells is also appropriate for cylinders. It is
possible to obtain the indentation stiffness of long pressurized
cylinders directly from Eq. (3.29) by taking the limit β0 → 1−
and invoking L’Hôpital’s rule repeatedly. As a more direct
approach, we first impose that limit in Eq. (3.28) and then
evaluate the resulting definite integral. By doing so, we get,
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after some calculations (see Appendix E),

1

k(ηs,y(λ), 1)
≡ 1

kcyl[ηs,y(λ)]

= 1

4π

√
R2

D′Y ′
1√
ηs,y

∫ +∞

0

dx√
x4 + 2ηs,yx2 + 1

= 1

4π

√
R2

D′Y ′
1√
ηs,y

K

(
1

2
(1 − ηs,y)

)
, (3.32)

where R ≡ R2 is the radius of cylinders, and K(C2) denotes
the complete elliptic integral of the first kind:

K(C2) := F
(π

2

∣∣∣C2
)

=
∫ π

2

0

dϕ√
1 − C2 sin2 ϕ

. (3.33)

The fact that K(C2) is analytic for |C| < 1 indicates that when
0 < ηs,y � 1, kcyl[ηs,y(λ)] ∝ √

ηs,y for orthotropic cylinders,
just like their isotropic counterparts [36].

To test the validity of our prediction for the pressurized
cylinder stiffness, Eq. (3.32), we compared the expression
to finite-element simulation measurements for nearly cylin-
drical spheroids with β0 = 0.9999 and varying levels of
material anisotropy in Fig. 3. The highly elongated spheroidal
geometry was used to avoid instability and convergence is-
sues with simulating perfect cylinders at high pressures (see
Appendix D 2 a for details). We found that the nearly cylin-
drical shells closely follow Eq. (3.32) (solid curve, β0 =
1) for high enough rescaled pressures (ηR � 10−2). We
also simulated perfect cylinders (β0 = 1, symbols) of finite
length and rescaled pressure values below 10−2. At these
low pressures, the indentation stiffness deviates from the
expression derived from shallow-shell theory, and instead
approaches the zero-pressure expression evaluated using a
Fourier series, Eq. (3.26) (dotted lines). As noted above, the
zero-pressure stiffness of anisotropic cylinders retains an ex-
plicit λ dependence beyond the implicit dependence through
the combination of elastic moduli D′Y ′; this dependence is
made apparent by the fact that the cylinder data at low pres-
sures and different anisotropy values no longer collapse onto
each other in Fig. 3. The inset confirms that the residual λ

dependence of the rescaled indentation stiffness for cylin-
ders at very low internal pressures follows the expectation
k̃ ∝ k0

cyl/Eeff ∝ 1
4√
λ

from Eq. (3.25). The results for shells with
β0 = 0.9999 and β0 = 1 show that the expressions Eq. (3.25)
and Eq. (3.32), taken together, provide a nearly comprehen-
sive analytical understanding of the indentation stiffness of
pressurized orthotropic cylinders.

E. Buckling load of orthotropic spheroids
under uniform pressure

Shell buckling is a catastrophic failure mode of thin-walled
structures, and its avoidance is of critical importance in en-
gineering design [30,41]. Buckling is also one of the key
mechanisms that give rise to a diversity of morphologies in na-
ture, ranging from saddle-shaped leaves [59] to the undulating
shapes of animal tissues in diverse organs [60]. In technology,
buckling can be exploited for actuation and shape control of
soft capsules [56,61], with a range of potential applications

in, e.g., 4D printing and drug delivery [62]. Although shell
buckling is a nonlinear phenomenon, the buckling load of a
shell can be predicted by linear stability analysis [7]. We now
use our mapping to generate expressions for the critical buck-
ling pressures of spheroids in parameter regimes for which
buckling is driven by a linear instability in a region of local
rectilinear orthotropy.

1. General spheroids

a. External buckling pressure. When a curved shell buckles
under a uniform pressure, it also becomes locally soft, i.e.,
its indentation stiffness vanishes, because of the emergence
of an unstable mode, for which the integral in Eq. (3.28)
diverges [36]. We can then obtain the local buckling pressure
around the equator of such shells by studying the zeros of
k(ηs,y(λ), β0) for a given β0. We can read off the zeros directly
from Eq. (3.29) and hence acquire the nondimensionalized
buckling pressure:

ηc =
{−1, for the oblate (β0 � 0),

− 1−β0

1+β0
, for the prolate (β0 > 0).

(3.34a)

Recall that the pressure scale used in Eq. (3.29) is psc :=
4
√

D′Y ′
R2

2
. The dimensionful buckling pressure is thus

pc := ηc psc =

⎧⎪⎨
⎪⎩

− 4
√

D′Y ′
R2

2
, for β0 � 0,

− 4
√

D′Y ′
2R1R2−R2

2
, for β0 > 0.

(3.34b)

As was the case with the indentation stiffness expression,
the local buckling pressure of orthotropic spheroids (both pro-
late and oblate) is exactly that of the corresponding isotropic
shells [36] with the same geometry and with geometric-mean
elastic constants taking the place of the isotropic elasticity pa-
rameters. This fact again shows that the main effect of material
anisotropy is to modify the elastic constants; the geometric
contribution (radius dependence of the buckling pressure) is
not affected. Our result is consistent with the established
expression for the buckling pressure of spheroidal shells
stiffened by reinforcements along the equatorial or longitu-
dinal directions, which was also founded on the shallow-shell
theory [29].

As a special case, the local buckling pressure of an or-
thotropic sphere around its equator is given by setting β0 = 0
above:

pc, sph = −4
√

D′Y ′

R2
, (3.35)

The buckling of orthotropic spheres was investigated com-
putationally and experimentally in Ref. [11]. In that work,
it was found that upon increasing the external pressure on
an orthotropic sphere with material anisotropy aligned to the
polar and azimuthal directions, buckling first occurred in the
vicinity of the equator when λ � 1 (i.e., when the stiffness E1

along the polar direction is greater than the stiffness E2 along
the azimuthal direction). Consequently, our expression for the
local buckling pressure at the equator provides a prediction
for the global buckling pressure when λ > 1.

We compared our theoretical result against simulation re-
sults for the buckling load of orthotropic spherical shells with
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FIG. 4. The scaled global buckling pressure of orthotropic
spheres as a function of the degree of material anisotropy λ. The
spheres considered here have a larger Young’s modulus along the
polar direction, λ � 1 (E1 � E2). Symbols denote finite element

simulation data (see Appendix F for details). We set υeff
!= 0.3 in

the simulations. The solid curve corresponds to the analytical re-
sult (3.37) subtracting a constant offset of 0.0738.

λ > 1, which were generated following the computational
approach reported in Ref. [11] (see Appendix F for details).
To isolate the explicit dependence of the buckling pressure on
the anisotropy parameter, theory and simulation values were
rescaled by the classical buckling pressure of an isotropic
sphere with the same radius and elastic parameters {E1, υ12}:

pM
sc := − 2E1√

3
(
1 − υ2

12

)
(

t

R

)2

. (3.36)

Using this pressure scale, the rescaled prediction for the buck-
ling pressure of spheres with λ > 1 is

ηM
c, sph := pc, sph

pM
sc

= 1√
λ

√
1

1 − υ2
eff

(
1 − υ2

eff

λ

)
, (3.37)

which is plotted as a solid line in Fig. 4. We found that
upon subtracting a constant offset of 0.0738, the theoretical
result successfully captures the dependence of the buckling
pressure on the anisotropy parameter. The constant offset,
which comes from matching the simulated buckling pressure
for an isotropic sphere (λ = 1) and the corresponding known
theoretical expression [63], is well within the expected devi-
ation between theory and simulations due to factors such as
imperfection sensitivity. Reference [11] also reported buck-
ling pressures for orthotropic spherical shells with λ < 1,
for which buckling was observed to first occur near the two
poles where the type of orthotropy is not rectilinear but polar.
The rescaling transformation does not apply to this form of
anisotropy, so we cannot predict the global buckling pressure
in this parameter region using our approach.

b. Internal buckling pressure. In our previous work [36],
we demonstrated qualitatively that because of the sign switch
of the prestress component σ 22

0 [= 1
2 pR2(1 + β0)] at β0 = −1,

it is possible for a highly oblate spheroidal shell with β0 <

−1 to buckle under a high enough internal pressure (p > 0,
ηs,y > 0 in our convention) due to compressive stresses along

its equator. Using Eq. (3.29), we are able to identify that pres-
sure exactly. For β0 < −1 (α < 0) and ηs,y > 0, the function
k(ηs,y(λ), β0) vanishes when 1 + αηs,y = 0, or equivalently,
when ηs,y reaches the internal buckling pressure

ηint
c := − 1

α
= 1 − β0

|1 + β0| > 0. (3.38a)

(This behavior arises from the property
limx→+∞ |√x F(ϑ |x)| = +∞.) Restoring the physical units
gives

pint
c = 4

√
D′Y ′

R2
2 − 2R1R2

(3.38b)

[cf. Eqs. (3.34)]. Equations (3.38) are consistent with pre-
dictions by Tovstik and Smirnov for the internal buckling
pressure of highly oblate isotropic spheroidal shells [64], and
yet again show that the orthotropic shell response is dic-
tated by replacing the isotropic elastic constants with their
geometric-mean counterparts D′ and Y ′.

IV. DISCUSSION

We have established that under a particular coordinate
transformation [Eq. (3.3)], which we termed the rescaling
transformation, an orthotropic shallow shell with shear mod-
ulus satisfying the Huber form (Eq. (2.4)) can be treated
locally as an isotropic one of a different geometry. The prin-
ciple underlying the rescaling transformation—mapping an
anisotropic system to an isotropic one by rescaling the co-
ordinate system used—has also been used in other contexts,
e.g., the anisotropic XY model [65]. The rescaling transforma-
tion enabled us to obtain analytical expressions for the local
mechanical properties of orthotropic spheroidal and cylindri-
cal shells, such as their buckling load [Eqs. (3.34), (3.15),
and (3.18)] and indentation stiffness [Eqs. (3.29) and (3.26)],
directly from using the corresponding isotropic results.

Besides its mathematical convenience that engendered new
exact results for orthotropic shells, the transformation also
helped to quantify the separate effects of geometry and ma-
terial anisotropy on these local mechanical properties. We
demonstrated that when the principal directions of curva-
ture and material anisotropy are aligned, the two forms of
anisotropy are effectively decoupled—our expressions factor
into terms that capture the elasticity, multiplied with terms
that incorporate the shell geometry. A consequence of this
decoupling is that an orthotropic shell can have identical
local mechanical properties as an isotropic shell with the
same local geometry, and with appropriately chosen elastic
parameters that render the material contributions identical as
well. This fact was previously recognized and exploited in
the geometric-mean isotropic (GMI) approach to studying
orthotropic cylinders, in which the orthotropic material was
replaced with an isotropic material whose elastic constants are
geometric means of the orthotropic values [40]. Our mapping
rigorously establishes the equivalence of the two problems
when the orthotropic in-plane shear modulus satisfies the Hu-
ber form [GH given by Eq. (2.4)].

The separation of geometry and material properties al-
lowed us to use the results of our previous work, Ref. [36],
to calculate the geometric contribution to local mechanical
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properties. The effects of material anisotropy, which we have
derived in this work, differ depending on whether or not the
deformation considered is localized. In the case of a local-
ized deformation, the anisotropic elastic constants combine in
the form of geometrical mean as in the GMI approach; the
resulting combinations serve the role of effective isotropic
elastic constants. However, if the deformation is not local-
ized, like the case of indenting a cylinder at zero pressure
(Sec. III D 1 b), local mechanical properties can also depend
on other dimensionless combinations of the anisotropic elastic
constants, such as their ratio [see Eq. (3.26)]. In such cases,
the GMI approximation is no longer appropriate since the
geometric means of the elastic constants do not capture all
the material effects.

We assumed throughout this paper that the orthotropic in-
plane shear modulus G12 is given by the Huber form [GH,
Eq. (2.4)]. While the Huber form is widely used and its valid-
ity has been verified for several different forms of orthotropic
materials [31,38,39], it is known that some properties of gen-
eral orthotropic materials, such as tristability [14], require a
departure from the Huber form. Our work provides theoretical
insight on why this is the case: any local elastic behavior of a
Huber-form orthotropic shell can, through our mapping, also
be observed in an isotropic shell of the same geometry. Our
mapping cannot be used to calculate properties of general or-
thotropic materials that would not be observed in an isotropic
shell. However, we envision that the rescaling transformation
can be adapted to shells made of general orthotropic materials:
In these cases, G12 is in general a free parameter, and a torsion-
like term with coupling constant proportional to (G12 − GH)
needs to be added into the governing equations in addition to
the terms that are derived from isotropic shells. This additional
term could be analyzed as the driver of phenomena that have
no counterparts in isotropic shells.

Besides the potential for extension to general (non-Huber
form) orthotropic materials, our work points to a few addi-
tional directions for future investigations. First, recall from
Sec. III A that the rescaling transformation only applies in
the case where the axes of curvature and material anisotropy
perfectly coincide [Fig. 1(c)]. When the two sets of axes
are misaligned, i.e., they are locally related by a rotation of
some angle, we expect that effects of geometry and material
anisotropy can couple together, unlike the case we studied
in this paper, potentially leading to richer stiffness behav-
iors that could be useful for structural design. In the case
of spheroids for which the extrinsic curvature tensor K and
the prestress tensor σ0 share the same principal axes, the
effect of the mismatch between the two sets of axes can
be captured by a second torsion-like term6 whose coupling
constant will be given by off-diagonal components of σ0

if one uses as the coordinate axes the principal material
axes. Furthermore, we note that at the poles of the spheroids
that we considered, material orthotropy becomes curvilin-
ear. The rescaling transformation does not apply in this case

6Note that this term, which will contain second-order derivatives,
is different from the term related to the Huber form GH that is
proportional to fourth-order derivatives.

because of the complicated form that the biharmonic oper-
ator takes in polar coordinates [6]. Expanding the analysis
of the buckling pressure and indentation stiffness to shells
of curvilinear orthotropy could shed light on problems in
morphogenesis [11], where different growth mechanisms gen-
erate diverse relationships between material anisotropy and
geometry in thin-walled structures such as cell walls [66–68],
fruit skins [69], and the epidermis of developing animal
embryos [70].
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APPENDIX A: UNRESCALED LINEARIZED
SHALLOW-SHELL EQUATIONS

This Appendix contains expressions for linearized (recti-
linearly) anisotropic shallow-shell equations7 written in terms
of unrescaled coordinates (which are unprimed in this paper)
without using tensor notation. The dimensionless version of
the equations has been derived in Ref. [43]; we are here going
to restore physical units.

For shells made of orthotropic materials, the compatibility
equation takes the following form:

√
λ

∂4(x, y)

∂x4

+ 2Eeff

(
1

2G12
− υ12

E2

)
∂4(x, y)

∂x2 ∂y2 + 1√
λ

∂4(x, y)

∂y4

= Y ′
(

1

R2

∂2w(x, y)

∂x2 + 1

R1

∂2w(x, y)

∂y2

)
, (A1)

and the EOE is given by

√
λ

∂4w(x, y)

∂x4 + 2
1

D′
t3

12

(
2G12 + E1υ12

1 − υ12υ21

)
∂4w(x, y)

∂x2 ∂y2

+ 1√
λ

∂4w(x, y)

∂y4 + 1

D′

(
1

R2

∂2(x, y)

∂x2 + 1

R1

∂2(x, y)

∂y2

)

= 1

D′

(
σ 11

0 t
∂2w(x, y)

∂x2 +2σ 12
0 t

∂2w(x, y)

∂x ∂y
+ σ 22

0 t
∂2w(x, y)

∂y2

)
.

(A2)

Let G12
!= Eeff

2(1+υeff ) , i.e., assuming that the Huber form applies.
We notice the following simplifications:

1

2G12
− υ12

E2
= 1 + υeff

Eeff
− υeff

Eeff
= 1

Eeff
(A3)

7The fact that the original nonlinear shallow-shell equations can
be linearized implies that rectilinearly orthotropic shells can deform
uniformly under a uniform pressure, at least in an approximate sense.
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and

t3

12

(
2G12 + E1υ12

1 − υ12υ21

)
= t3

12

(
Eeff

1 + υeff
+ Eeffυeff

1 − υ2
eff

)

= Eefft3

12
(
1 − υ2

eff

) ≡ D′. (A4)

The two shallow-shell equations then reduce to(
4
√

λ
∂2

∂x2 + 1
4
√

λ

∂2

∂y2

)2

(x, y) =: L̂(x, y) = Y ′�Vw(x, y)

(A5a)

and

D′L̂w(x, y)+ �V(x, y) = σ 11
0 t

∂2w(x, y)

∂x2 + 2σ 12
0 t

∂2w(x, y)

∂x ∂y

+ σ 22
0 t

∂2w(x, y)

∂y2 , (A5b)

where �V ≡ 1
R2

∂2

∂x2 + 1
R1

∂2

∂y2 denotes the Vlasov operator.
Combining the two equations, we obtain

D′L̂2w(x, y) + Y ′�V
2w(x, y)

= L̂

(
σ 11

0 t
∂2w(x, y)

∂x2 +2σ 12
0 t

∂2w(x, y)

∂x ∂y
+σ 22

0 t
∂2w(x, y)

∂y2

)
.

(A6)

APPENDIX B: MECHANICAL PROPERTIES AT THE
POLES OF AN ORTHOTROPIC SPHEROID

In this Appendix, we will derive the indentation stiffness
at the poles of an orthotropic spheroid in the absence of pres-
sure. Recall that the material orthotropy pattern is curvilinear
at the poles. The result is obtained in two ways, first by a
qualitative energy-balance argument which is then supported
by analytically solving the governing linearized equations of
equilibrium (EOEs). We finish the Appendix with a short dis-
cussion about what will happen if the spheroid is pressurized.

1. Zero-pressure indentation stiffness

a. The energy-balance argument

Landau and Lifshitz first used this approach to obtain the
indentation stiffness and buckling pressure of an isotropic
spherical shell [16]. We here modify their approach to include
polar material orthotropy.

Figure 5 depicts that a point load F is applied at one of
a spheroid’s poles, the center of a locally spherical region
with radius R. The area of the resulting deformed region is
of the order d2 (∼d2). The deflection ζ varies significantly
over a distance of d , which implies that the bending energy
is ∼Ert3( ζ

d2 )2d2, where Er denotes Young’s modulus along
the meridional direction. The reason why Er was used to
estimate the bending energy is that from the cross-sectional
view, Fig. 5, shell bending mainly occurs in the meridional
direction, while stretching happens in the zonal direction.

Strain does not depend on d and is ∼ ζ

R . The stretching
energy is thus ∼Eθ t ( ζ

R )2d2, and the total elastic energy is

FIG. 5. Indenting a spherical shell of radius R near one of its
poles. A point load, F, is applied right at the pole. The radius of the
resulting deformed region is roughly d , and the vertical deflection
along F is denoted by ζ .

roughly

U ∼ Ert3ζ 2

d2
+ Eθ tζ 2

R2
d2. (B1)

The global minimum of U can be rapidly obtained by recalling
the AM-GM inequality:

Umin ∼ 2
√

ErEθ t2ζ 2

R

= 2

√(
Ert3ζ 2

d2

)(
Eθ tζ 2

R2
d2

)

� Ert3ζ 2

d2
+ Eθ tζ 2

R2
d2 ∼ U . (B2)

Varying Umin with respect to ζ and equating the result to F δζ ,
the variation of the work done by the point load, we find the
deflection ζ ∼ FR

4
√

Er Eθ t2 and hence the indentation stiffness

kpole
p=0 = F

ζ
∼ 4

√
ErEθ t2

R
, (B3)

which agrees with Eq. (3.24) up to a factor of two. As this
argument explicitly shows, although the local symmetry at the
equator (see Sec. III D) completely breaks down at the poles,
i.e., the two orthogonal directions now become curvilinear
and hence distinguishable, the geometric-mean dependence
persists and stems from balancing the bending and stretching
energies.

b. The analytical approach

Equation (B3) can also be obtained by solving the EOEs
that govern the deformations of a curvilinearly orthotropic
shallow spherical shell. The full nonlinear EOEs can be found
in, for example, Ref. [6]. Since we only consider small de-
formations due to a point load at the center of the shell, it
is reasonable to linearize these equations and further assume,
from a symmetry point of view, that the deformations of
interest are axisymmetric, i.e., do not vary along the azimuthal
direction. In this case, the governing equations reduce to [26]

Dr� 1√
λ

y(r) + y(r)

R
= − F

2π

1

r
, (B4a)

1

Yθ

� 1√
λ

φ(r) − φ(r)

R
= 0, (B4b)
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where Dr := Ert3

12(1−υrθ υθr ) is the bending stiffness along the
meridional direction; Yθ := Eθ t the Young’s modulus in the
zonal direction; and λ := Er

Eθ
the anisotropy parameter in

this case. That Dr and Yθ show up in the governing equa-
tions supports our previous observation that shell bending and
stretching occur in different directions. The fields y and φ

are the first derivative of the normal displacement u3 and the
Airy stress function , respectively: y := du3

dr , and φ := d
dr ,

where r is the distance away from the pole. The operator
�ν ≡ d2

dr2 + 1
r

d
dr − ( ν

r )2 (ν ∈ C) is the Bessel differential op-
erator. It is known that Bessel functions of the first kind with
order ν (denoted by Jν) are its eigenfunctions. This motivates
us to solve Eqs. (B4) using the Hankel transform.

a. Hankel transform. Roughly speaking, Hankel transform
is like Fourier transform in polar coordinates and is often
used to solve linear axisymmetric differential equations. The
Hankel transform of a well-behaved axisymmetric function
f (r) is given by [71]

f̂ν (k) ≡ Hν{ f (r)}(k) =
∫ +∞

0
r dr f (r)Jν (kr). (B5)

The inverse transform is given by

f (r) =
∫ +∞

0
k dk f̂ν (k)Jν (kr). (B6)

The Hankel transform of the Bessel operator, �ν , is simply
−k2, which is independent of ν. This can be most easily seen
by recalling the definition of the Bessel differential equation:

(�ν + k2)Jν (kr) = 0. (B7)

It follows that for an axisymmetric function f (r),

�ν f (r) = �ν

∫ +∞

0
k dk f̂ν (k)Jν (kr)

=
∫ +∞

0
k dk

(−k2 f̂ν (k)
)
Jν (kr). (B8)

It is also straightforward to obtain the Hankel transform of the
function 1

r : By definition,

Hν

{
1

r

}
(k) =

∫ +∞

0
r dr

1

r
Jν (kr)

=
∫ +∞

0
dr Jν (kr)

= 1

k

∫ +∞

0
du Jν (u) = 1

k
, (B9)

where we have used the fact that for all ν,∫ +∞

0
dx Jν (x) = 1. (B10)

The Hankel transform of Eqs. (B4) is hence

−Drk2ŷ 1√
λ

(k) + 1

R
φ̂ 1√

λ

(k) = − F

2π

1

k
, (B11a)

− 1

Yθ

k2φ̂ 1√
λ

(k) − 1

R
ŷ 1√

λ

(k) = 0. (B11b)
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FIG. 6. Zero-pressure indentation stiffness of an orthotropic
sphere at its poles as a function of the anisotropy parameter λ. Sym-
bols denote data obtained from COMSOL simulations. Solid curves
correspond to the analytical expression Eq. (B15). Indentation stiff-
ness is scaled by 4Ert2√

3(1−υrθ υθr )
1
R . The inset shows the same data on

double-log scale.

Substituting Eq. (B11b) into Eq. (B11a) to eliminate φ̂ 1√
λ

(k),

we get, after applying the inverse transform,

dw

dr
(r) =: y(r) = F

2π

∫ +∞

0
dk

k2

Drk4 + Yθ

R2

J 1√
λ

(kr). (B12)

To proceed, we impose the boundary conditions w(0) = −ζ

and limr→+∞ w(r) = 0 which together give

∫ +∞

0
dr

dw

dr
(r) = lim

r→+∞ w(r) − w(0) = ζ . (B13)

Combining Eqs. (B12) and (B13), we finally attain the follow-
ing relation between ζ and F :

ζ =
∫ +∞

0
dr

F

2π

∫ +∞

0
dk

k2

Drk4 + Yθ

R2

J 1√
λ

(kr)

= F

2π

∫ +∞

0
dk

k2

Drk4 + Yθ

R2

∫ +∞

0
dr J 1√

λ

(kr)

= F

2π

∫ +∞

0
dk

k

Drk4 + Yθ

R2

= F
R

8
√

DrYθ

. (B14)

From Eq. (B14), we can get the indentation stiffness:

k := F

ζ
= 8

√
DrYθ

R
= 4

√
ErEθ t2

√
3(1 − υrθυθr )

1

R
(B15)

[cf. Eq. (3.24)]. This proves our claim in the main text (see
Sec. III D). As Fig. 6 shows, our analytical expression agrees
well with numerical simulations using COMSOL.
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2. Pressurized orthotropic spheroids

Recall the fact that near its poles, a spheroid is locally
spherical. Therefore, the following discussions are centered
around curvilinearly orthotropic spherical shells.

Unlike its isotropic counterpart, a curvilinearly orthotropic
sphere does not deform uniformly under a constant pressure.
This can be seen by substituting the membrane solution

ym(r) = 0,

φm(r) = 1
2 pRr, (B16)

into the nonlinear shallow-shell equations [26]

Dr� 1√
λ

y(r) − φ(r)

r

(
y(r) − r

R

)
= 1

2
pr, (B17a)

1

Yθ

� 1√
λ

φ(r) + 1

2

y(r)

r

(
y(r) − 2r

R

)
= 0. (B17b)

Equation (B17b) gives (1 − 1
λ

) pR
Yθ

= 0 which only holds in the

isotropic case (λ = 1). Moreover, we notice that (1 − 1
λ

) pR
Yθ

switches its sign at λ = 1. The presence of this term illustrates
the fact that upon being pressurized, spheres with a curvilinear
orthotropy pattern deform differently depending on whether
Er > Eθ or the other way around [15,58]. Therefore, the term
cannot be ignored in general, and linearization using the mem-
brane solution thus generally fails for these shells.

In fact, as Reissner has demonstrated, for pressurized
curvilinearly orthotropic spheres, both the displacement field

w(r) and the Airy stress function (r) scale as r
1√
λ
+1 near

the origin [58]. As a result, the actual stress, ‖σ(r)‖t ∼ (r)
r2

will have the power-law behavior r
1√
λ
−1; that is, depending on

the magnitude of λ, the stress at the poles will either vanish
(λ < 1) or explode (λ > 1). This stress singularity makes it
challenging to derive the indentation stiffness and buckling
pressure of pressurized curvilinearly orthotropic spheres in
general.

However, for sufficiently low pressures, such that the ap-
proximation (1 − 1

λ
) pR

Yθ
≈ 0 can be safely made, following the

same procedure as in the pressureless case, we obtain

ζ = F

2π

∫ +∞

0
dk

k

Drk4 + pR
2 k2 + Yθ

R2

= F

4π

√
R2

DrYθ

∫ +∞

0

du

u2 + 2ηs,yu + 1

= F
R

8
√

DrYθ

1 − 2
π

arcsin ηs,y√
1 − η2

s,y

, (B18)

where ηs,y := pR2

4
√

DrYθ
. The indentation stiffness in this case is

hence

k ≡ F

ζ
= 8

√
DrYθ

R

√
1 − η2

s,y

1 − 2
π

arcsin ηs,y
. (B19)

Note that Eq. (B19) is still invariant under interchange of
labels r and θ . Mathematically, this means that k(λ) = k( 1

λ
).

This analytical insight is confirmed by COMSOL simulations, as

0 2 4 6 8

10

20

30

40

50

60
λ = 0.5 λ = 2

FIG. 7. Indentation stiffness of two orthotropic spheres with dif-
ferent degrees of anisotropy as a function of pressure. Symbols
denote data obtained from COMSOL simulations. The solid curve cor-
responds to the analytical expression Eq. (B19). Indentation stiffness
is scaled by

√
DrYθ

R .

Fig. 7 shows. At low pressures, such that pR
Yθ

≈ 0, indentation
stiffness of the two orthotropic spheres is basically identical
to each other; however, when the scaled pressure increases
to order one (ηs,y ∼ 1), we start to see deviations from the
theory. The fact that the two sets of data fall onto different
sides of the theory curve is a result of the term (1 − 1

λ
) pR

Yθ

being non-negligible.

APPENDIX C: A DERIVATION FOR THE ZERO-PRESSURE
INDENTATION STIFFNESS OF LONG CYLINDERS

In this Appendix, we will combine Yuan’s approach [55]
and the rescaling transformation to solve the linearized
shallow-shell equation for long cylindrical shells:

D′L̂2w(x, s) + Y ′

R2

∂4w(x, s)

∂x4 = L̂q(x, s) (C1a)

[see Eq. (A6)] or equivalently,

D′L̂′2w′(x′, s′) + Y ′

R′2
∂4w′(x′, s′)

∂x′4 = L̂′q′(x′, s′). (C1b)

1. Yuan’s approach

In short, the approach by Yuan has two main distinctive
features compared with our analysis in Ref. [36]. First, along
the circumferential direction (associated with the coordinate
s), a Fourier series defined on (−πR, πR], instead of a Fourier
transform, was used: More specifically, a well-behaved func-
tion f (x, s) can be written as

f (x, s) =
∫ +∞

−∞

dk

2π
f̂ (k, s)eikx

=
∫ +∞

−∞

dk

2π

∞∑
n=−∞

f̂n(k)ein s
R eikx. (C2)
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Furthermore, if the function f (x, s) is even in both x and s, the
above expression reduces to

f (x, s) = 2
∫ +∞

0

dk

2π

[
1

2
f̂0(k)+

∞∑
n=1

f̂n(k) cos
(

n
s

R

)]
cos kx,

(C3)
where we have implicitly used the fact that the Fourier trans-
form of an even function is even. For a separable function, i.e.,
f (x, s) = X (x)S(s), Eq. (C3) becomes

f (x, s) = 2

[
1

2
S0 +

∞∑
n=1

Sn cos
(

n
s

R

)] ∫ +∞

0

dk

2π
X̂ (k) cos kx.

(C4)
Second, Yuan did not use the Dirac delta function to model
a concentrated load; instead, he first considered a uniformly
distributed load over a rectangular region and then shrank the
size of the region.

2. The rescaling transformation

We can thus write

w(x, s) =
∫ +∞

0

dk

2π

[
ŵ0(k) +

∞∑
n=1

2ŵn(k) cos
(

n
s

R

)]
cos kx

=
∞∑

n=0

[
(2 − δ0n)

∫ +∞

0

dk

2π
ŵn(k) cos kx cos

(
n

s

R

)]
(C5)

since the normal displacement field w(x, s) must be an even
function in both x and s from a symmetry point of view.
The constant load is applied on a rectangular region that is
symmetric with respect to the origin; therefore, q(x, s) is even
and separable: q(x, s) = X (x)Q(s), and

q(x, s) =
∞∑

n=0

[
(2− δ0n)

∫ +∞

0

dk

2π
X̂ (k)Qn cos kx cos

(
n

s

R

)]
.

(C6)
Letting the region be R = {(x, s) ∈ [−ε, ε] × [−c, c]}, we can
then determine X̂ (k) and Qn. By definition,

X̂ (k) =
∫ +∞

−∞
dx X (x)e−ikx = 2

∫ ε

0
dx cos kx = 2εsinckε,

(C7)
and

Qn = 2

πR

∫ πR

0
ds Q(s) cos

(
n

s

R

)

= 2

πR

∫ c

0
ds q0 cos

(
n

s

R

)
= 2

π

c

R
sinc
(

n
c

R

)
q0. (C8)

The intensity of the load is denoted by q0, and the total force is
hence F = q0A = 4q0cε. In the limits of kε → 0 and n c

R →
0,

X̂ (k) ≈ 2ε, and Qn ≈ 2

π

c

R
q0. (C9)

Remark. In Yuan’s original formulation of the problem, there
is an additional concentrated load being applied at the bottom
of the cylinder (s = ±πR). As a consequence, when comput-
ing the Fourier coefficients Qn for the original system, an extra
term,

2

πR

∫ πR

πR−c
ds Q(s) cos

(
n

s

R

)
= (−1)nQn, (C10)

needs to be added. This leads to vanishing of the odd terms in
the Fourier series.

Therefore, for a point load,

q(x, s) ≈ F

πR

∞∑
n=0

[
(2 − δ0n)

∫ +∞

0

dk

2π
cos kx cos

(
n

s

R

)]
.

(C11)
Substituting Eqs. (C5) and (C11) into Eq. (C1a), we obtain,
after some algebra,

ŵn(k) = F

πR

(
4
√

λk2 + 1
4√
λ

n2

R2

)2
D′( 4

√
λk2 + 1

4√
λ

n2

R2

)4 + Y ′
R2 k4

. (C12)

We now apply the rescaling transformation in Fourier
space: R 	→ R′ = 4

√
λR, k 	→ k′ = 8

√
λk and n 	→ n′ = 8

√
λn;

Eq. (C12) then reduces to

ŵn(k) = 4
√

λ
1

π

FR′3

D′
(k̃′2 + n′2)2

(k̃′2 + n′2)4 + γ ′k̃′4 , (C13)

where k̃′ := R′k′ = 8
√

λ3Rk, which is dimensionless, and γ ′ :=
Y ′R′2

D′ is the Föppl-von Kármán number for the rescaled system.
We note that Eq. (C13) can also be attained by directly sub-
stituting into Eq. (C1b) Fourier series and transforms that are
written in terms of the rescaled variables, e.g.,

f (x′, s′) = 1
8
√

λ

∫ +∞

−∞

dk′

2π

∞∑
n=−∞

f̂n′ (k′)ein′ s′
R′ eik′x′

. (C14)

From Eq. (C13), we can get the following expression for the
inverse of the indentation stiffness:

1

k0
cyl(λ)

:= w(0, 0)

F
= 1

2π2
8
√

λ
R′2

D′

∞∑
n=0

[
(2 − δ0n)

∫ +∞

0
du

(u2 + n′2)2

(u2 + n′2)4 + γ ′u4

]

= 1

2π2
8
√

λ
R′2

D′

∫ +∞

0

du

u4 + γ ′ + 1

π2
8
√

λ
R′2

D′

∞∑
n=1

∫ +∞

0
du

(u2 + n′2)2

(u2 + n′2)4 + γ ′u4
. (C15)
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Remark. Notice that the n = 0 mode does not lead to a diver-
gence, unlike the situation in Ref. [36] where the stiffness was
written in terms of the following double integral:

1

k0
cyl(λ = 1)

= 1

2π2

R√
DY

∫ π
2

0
dθ

∫ +∞

0

du

u2 + cos4 θ
,

(C16)
which diverges in the infrared limit (u → 0). As Yuan found,
the contribution of the n = 0 mode to the indentation stiffness
is in fact negligible compared to other modes; as a result, the
first term on the right-hand side of Eq. (C15) can be neglected.

Equation (C15) takes the same form as Eq. (10) in
Ref. [55], except for an extra factor of 1

2
8
√

λ. We can hence
directly apply Yuan’s final result, Eq. (17), without actually
evaluating the definite integrals in Eq. (C15):

1

k0
cyl(λ)

≈ 1

2π

8
√

λ
3
√

2
(
1 − υ2

eff

)
Eeff

R′2

t3

∞∑
n=1

1

n′3

√
1 + �n

�n
,

(C17)
where �2

n := 1 + 3(1−υ2
eff )

4n′4 ( R′
t )2 = 1 + 3(1−υ2

eff )
4n4 ( R

t )2. After
some rearrangements, we finally get Eq. (3.25).

APPENDIX D: SIMULATION METHODS: SHELL
INDENTATION (COMSOL)

In this Appendix we provide implementation details
of finite element simulations of the indentation studies
(Sec. III D), which were performed using the software COMSOL
Multiphysics. We used the Stationary solver with the
Shell module to simulate the equilibrium configurations of
orthotropic thin shells under combined pressure and point
loads. Geometric nonlinearity was enabled to ensure that the
influence of the pressure-induced prestress was correctly ac-
counted for in the indentation study.

1. Orthotropic materials

COMSOL allows for the definition of arbitrary anisotropic
elastic materials using the Material module. It is known that
a three-dimensional orthotropic material has nine independent
elastic constants; these include three Young’s moduli (E1, E2,
and E3), three Poisson’s ratios (υ12, υ13, and υ23) and three
shear moduli (G12, G13, and G23) [6]. The nine parameters
have to satisfy constraints that stem from positive definiteness
of the corresponding stiffness tensor. This makes it challeng-
ing to choose sets of these parameters which can guarantee
stable simulations. We therefore followed the presentation by
Li and Barbič for simulating orthotropic materials [72]. The
essence of their approach is summarized below.

Li and Barbič consider a subclass of orthotropic materials
which can be characterized with only four independent param-
eters: {E1, λ ≡ λ12 := E1

E2
, λ13 := E1

E3
, υeff}. The last parameter

υeff is related to the three Poisson’s ratios in the following
way:

υeff := √
υ12υ21

!= √
υ13υ31

!= √
υ23υ32, (D1)

which implies (using the facts υi j

Ei
= υ ji

E j
) that

υi j = υeff

√
Ei

Ej
(i, j ∈ {1, 2, 3}). (D2)

The three shear moduli are given by the corresponding Huber
form:

Gi j
!=

√
EiEj

2(1 + υeff )
. (D3)

The positive definiteness constraints require that E1, λ, λ13 ∈
R>0, and υeff ∈ (−1, 1

2 ].8

In our simulations, we fixed the value of E1 and υeff to be
70 GPa and 0.3, respectively. We also fixed the value of λ13

after having verified that transverse shear deformations were

indeed negligible in our studies. We chose λ13
!= 2. Therefore,

in our simulations, there was really only one free parameter
that needed tuning to vary the degree of a thin shell’s material
anisotropy, namely λ.

2. Shells with material orthotropy and boundary conditions

The 3D Component feature was first used to generate
spheroidal and cylindrical surfaces. We then used the Shell
module to turn these surfaces into actual shells.

a. Spheroidal shells

A spheroid is an ellipsoid of revolution. To parametrize a
spheroid, x2

a2 + y2+z2

b2 = 1, two parameters, a and b, are needed.

In our simulations, we fixed b
!= 1 m (so that Ry

!= 1 m) and

set a
!= b√

1−β0
. We varied the asphericity of a spheroid by

changing β0 (β0 ∈ (−1, 1]). The thickness of the spheroidal
shell (denoted by t) was also fixed during each simulation.
Since we were simulating thin shells, it is required that b

t �
50. We used t

!= 1 mm in our simulations.
For best results, we aimed for the mesh in the vicinity of

the indentation point to be as fine as possible, relative to the
characteristic length scales for thin-shell deflections which are
the geometric means

√
R1t and

√
R2t ; however, setting the

same fine mesh size for the entire shell was computationally
impractical and also unnecessary: the main contribution of the
rest of the shell away from the indentation region is to provide
the geometry-determined prestress in response to the internal
pressure, which varies on much longer length scales of order
R1 and R2. Therefore, we assembled the shell surface out of
separate regions with different mesh fineness requirements to
balance physics performance with computational efficiency,
as described below.

We used both the Physics-controlled mesh and the
User-controlled mesh to build our spheroidal shells (β0 �=
1). Each shell surface S is composed of three disjoint regions:
S = Stop � Sbot � Srest. Take the ellipsoid in Fig. 1(c) as an
example. Among the three, the second region Sbot is centered
at O. Its projection onto the tangent plane at O is an ellip-
tical disk E whose semimajor (semiminor) axis is given by
max{3√

Rxt, 3
√

Ryt} (min{3√
Rxt, 3

√
Ryt}). The first region

Stop is centered at the top of the ellipsoid but otherwise identi-
cal to Sbot, and Srest represents the rest of the shell surface. The

8Note that the isotropic Poisson’s ratio υiso has the same range as
υeff : υiso ∈ (−1, 1

2 ]. This is indeed the key motivation for introducing
υeff .
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first two regions can be built by obtaining the Intersection
of S and a solid elliptical cylinder with cross section E (the
cylinder can be built with the built-in Extrude function),
and the third region by taking the Difference. For Stop and
Sbot, we used the User-controlled mesh and set the mesh
size exactly to 3t = 3 mm (we enforced Maximum element
size and Minimum element size to be equal). For Srest,
the physics-controlled Extremely fine mesh size was
used.

Material orthotropy was implemented using the
Material module. Orientations of material orthotropy were
conveniently set, by default in COMSOL, to coincide with the
shell’s Global coordinate system, which can be found
under Shell/Linear Elastic Material/Shell Local
System/Coordinate System Selection/Coordinate
system. The default orientation recreated the desired
alignment of the material directions with the symmetry
directions of spheroidal shells for equatorial indentations
(Fig. 1). For simulations on indentation response at the poles
of an orthotropic sphere (Appendix B), we instead used the
Boundary System for orienting the orthotropy directions,
which conveniently put the two poles at the sphere’s top and
bottom.

We used the boundary condition Rigid Motion
Suppression for All boundaries. We also used the
boundary condition Symmetry for All edges except the
boundary of Stop and Sbot.

To simulate an internal pressure, a negative Face Load
was applied. For the zero-pressure simulations, the magni-
tude of the Face Load was set to zero. The indentation
itself was implemented using two instances of Point Load
to ensure force balance: one Point Load with a negative
magnitude was applied at the top of the shell, (0, 0, b),
and a positive one at the bottom, (0, 0,−b). The absolute
magnitude of the two loads was identical (this is essential
for Rigid Motion Suppression to be used properly) and
small, such that the resulting normal displacement, shell.w,
was much less than the shell thickness t . In our simula-
tions, the force magnitude used was 1 N. The ratio of the
force magnitude to the resulting normal displacement pro-
vided the desired indentation stiffness measurement in our
simulations.

b. Cylindrical shells

The radius of the cylindrical shells (denoted by R) was
fixed to be 1 m. As for spheroidal shells, it is required
that R

t � 50, where t again denotes the shell thickness.
As before, we used 1 mm for t . We also used the same
loading conditions (Face Load and Point Load); however,
depending on the magnitude of the internal pressure, dif-
ferent geometries with associated boundary conditions were
employed.

a. Low pressures. Under this circumstance, which includes
the zero-pressure case, indentation response of long cylin-
ders is not localized. In our simulations, this corresponds to
the pressure range ηs,y � 10−4. For this pressure range, we
run our simulations with real cylindrical shells for which
β0 is exactly equal to one. Because COMSOL is not able to
simulate infinite cylinders, we set the length of our shells

FIG. 8. COMSOL setup for a sphere (β0 = 0). The different mesh
regions are indicated.

to be 10R
√

R
t . The combination R

√
R
t is the characteristic

deformation length scale for indenting a cylinder at zero pres-
sure [48]: The indentation response becomes negligible at
distances greater than this length scale away from the point
load. For this geometry, Rigid Motion Suppression was
again imposed for All boundaries, and Symmetry for All
edges. We only used the User-controlled mesh to build
our cylindrical shells; the mesh size belongs to the range
(10t, 1000t ).

b. High pressures. By “high pressure” we mean that the
internal pressure that a cylinder is subjected to is high enough,
so that the resulting indentation response starts to become
localized [36], and it is accurate to use the double Fourier
transform. In our simulations, this happens when the scaled
pressure is of the order of 10−2 (ηs,y ∼ 10−2). However,
we found that for perfectly cylindrical shells, the prestress
components computed by COMSOL did not match the well-
established results for cylindrical pressure vessels [5]. While
we could not pinpoint the source of this discrepancy, we ob-
served that the discrepancy was eliminated upon using highly
elongated spheroids with β0 = 0.9999, which have approxi-
mately the same prestress profile and the same local geometry
as cylinders at the equator. Therefore, for ηs,y � 10−2, we run
our simulations using elongated spheroids with β0 = 0.9999.
The Rigid Motion Suppression was again imposed for
All boundaries. Unlike before, Symmetry was only im-
posed for the edges with respect to which the top and bottom
of a spheroid are symmetric (e.g., the blue curves in Fig. 8);
imposing Symmetry for All edges created issues related to
a known “bursting” instability of nearly cylindrical shells at
very high pressures [73].

We built the surface of these elongated spheroidal shells
using the same three regions as before (see Appendix D 2 a).
For Stop and Sbot, the User-controlled mesh was used with
mesh size belonging to the range (3t, 30t ), and the physics-
controlled Extremely fine mesh size was used for Srest.
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APPENDIX E: EVALUATING THE STIFFNESS INTEGRALS

In this Appendix we will show the details how we evaluated the definite integrals in Eqs. (3.28) and (3.32). We will start with
the latter, which is a special case of the former.

1. Equation (3.32)

Setting β0 = 1 (and hence β ′ = 1 and β ′
λ = 2

√
λ − 1) in Eq. (3.28) gives

1

kcyl(ηs,y(λ), λ)
:= 1

8π2

√
R′2

D′Y ′ I1(ηs,y(λ), λ), (E1)

where R′ = 4
√

λR with R the radius of cylinders, and

I1(ηs,y(λ), λ) :=
∫ 2π

0
dϕ

∫ +∞

0

du

u2 + 2ηs,y(1 + β ′
λ sin2 ϕ)u + cos4 ϕ,

= 4
∫ π

2

0
dϕ

∫ +∞

0

du

u2 + 2ηs,y(1 + β ′
λ cos2 ϕ)u + sin4 ϕ

;

(E2)

we have used the fact ∫ 2π

0
dϕ f (cos2 ϕ) = 4

∫ π
2

0
dϕ f (sin2 ϕ). (E3)

To evaluate I1(ηs,y(λ), λ), we make two changes of variables: s = u csc2 ϕ and t = cot ϕ; as a result,

I1(ηs,y(λ), λ) = 4
∫ π

2

0
dϕ

csc4 ϕ

csc4 ϕ

∫ +∞

0

du

u2 + 2ηs,y(1 + β ′
λ cos2 ϕ)u + sin4 ϕ

= 4
∫ π

2

0
dϕ csc2 ϕ

∫ +∞

0

d(u csc2 ϕ)

(u csc2 ϕ)2 + 2ηs,y(csc2 ϕ + β ′
λ cot2 ϕ)(u csc2 ϕ) + 1

= 4
∫ +∞

0

∫ +∞

0

ds dt

s2 + 2ηs,y(1 + 2
√

λt2)s + 1
, (E4)

where in the last step, we changed the order of integration. We notice at this point that we can easily “tease out” the integral’s
explicit λ dependence by making another change of variables v = 2

√
ηs,y

4
√

λt :

I1(ηs,y(λ), λ) = 2
√

ηs,y
4
√

λ

∫ +∞

0

∫ +∞

0

ds dv

sv2 + (s2 + 2ηs,ys + 1)
. (E5)

It is now straightforward to evaluate I1(ηs,y(λ), λ):

I1(ηs,y(λ), λ) = 2
√

ηs,y
4
√

λ

∫ +∞

0

ds

s

∫ +∞

0

dv

v2 + (√ s2+2ηs,ys+1
s

)2
= π

√
ηs,y

4
√

λ

∫ +∞

0

ds√
s

1√
s2 + 2ηs,ys + 1

= 2π
√

ηs,y
4
√

λ

∫ +∞

0

dx√
x4 + 2ηs,yx2 + 1

. (E6)

The last integral in the equation above can be expressed in terms of the complete elliptic integral of the first kind [74]:∫ +∞

0

dx√
x4 + 2ηs,yx2 + 1

=
∫ +∞

0

dx√
(x2 + 1)2 − 2(1 − ηs,y)x2

=
∫ π

2

0

d(tan θ )√
(tan2 θ + 1)2 − 2(1 − ηs,y) tan2 θ

=
∫ π

2

0

sec2 θ dθ√
sec4 θ − 2(1 − ηs,y) tan2 θ

=
∫ π

2

0

dθ√
1 − 1

2 (1 − ηs,y) sin2 2θ

= 1

2

∫ π

0

dφ√
1 − 1

2 (1 − ηs,y) sin2 φ

= K

(
1

2
(1 − ηs,y)

)
; (E7)
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to arrive at the last step, we have used ∫ π

0
dφ g(sin2 φ) = 2

∫ π
2

0
dφ g(sin2 φ). (E8)

After some more algebra, we obtain Eq. (3.32).
Remark. By changing the order of integration, like what we did in Ref. [36], we get the following identity for the complete

elliptic integral of the first kind:

K(x) =
√

2

π

∫ +∞

0
du

arccos(u2 + 1 − 2x)√
1 − (u2 + 1 − 2x)2

. (E9)

2. Equation (3.28)

We now return to the more general case, Eq. (3.28); the way of evaluating the integral is essentially the same, but the changes
of variables involved will require slightly more thoughts.

We start by rewriting the integral in Eq. (3.28):

I (ηs,y(λ), β0, λ) :=
∫ 2π

0
dϕ

∫ +∞

0

du

u2 + 2ηs,y(1 + β ′
λ sin2 ϕ)u + (1 − β ′ sin2 ϕ)2

= 4
∫ π

2

0
dϕ

∫ +∞

0

du

u2 + 2ηs,y(1 + β ′
λ cos2 ϕ)u + (1 − β ′ cos2 ϕ)2

= 4
∫ π

2

0

dϕ

1 − β ′ cos2 ϕ

∫ +∞

0

dv

v2 + 2ηs,y
( 1+β ′

λ cos2 ϕ

1−β ′ cos2 ϕ

)
v + 1

, (E10)

where v := u
1−β ′ cos2 ϕ

. Realizing

d

dϕ
arctan

(
1√

1 − β ′ tan ϕ

)
=
√

1 − β ′ 1

1 − β ′ cos2 ϕ
, (E11)

we make the change of variables

s = arctan

(
1√

1 − β ′ tan ϕ

)
. (E12)

As a result, we can make the following simplification:

1 + β ′
λ cos2 ϕ

1 − β ′ cos2 ϕ
= 1 + β ′ + β ′

λ

sec2 ϕ − β ′ = 1 + β ′ + β ′
λ

1 + (1 − β ′) tan2 s − β ′ = 1 + β ′ + β ′
λ

1 − β ′ cos2 s := 1 + α′ cos2 s, (E13)

where

α′ := β ′ + β ′
λ

1 − β ′ = 2β0

1 − β0
= 1 + β0

1 − β0
− 1 := α − 1, (E14)

a combination of parameters, which is independent of λ; accordingly, with the new integration variable,

I (ηs,y(λ), β0, λ) = 4√
1 − β ′

∫ π
2

0
ds
∫ +∞

0

dv

v2 + 2ηs,y(1 + α′ cos2 s)v + 1
. (E15)

We notice that all the explicit λ dependence is in the prefactor 4√
1−β ′ .

Changing the order of integration, we first evaluate the s integral. After some algebra, we arrive at

I (ηs,y(λ), β0, λ) = 2π√
1 − β ′

∫ +∞

0

dv

v2 + 2ηs,yv + 1

1√
1 + 2α′ηs,yv

v2+2ηs,yv+1

, (E16)

where we have used ∫ π
2

0

ds

A + B cos2 s
= π

2

1√
A

1√
A + B

. (E17)
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We notice that the term (1 + 2α′ηs,yv

v2+2ηs,yv+1 )−
1
2 contains all the nontrivial geometric dependence: Setting β0 = 0 (β ′ = 1 − √

λ and

α′ = 0) gives

I (ηs,y(λ), β0 = 0, λ) = 2π
4
√

λ

∫ +∞

0

dv

v2 + 2ηs,yv + 1
, (E18)

which is the familiar integral corresponding to the stiffness of a spherical shell.
Realizing

d

dv
arctan

⎛
⎜⎝ v + ηs,y√

1 − η2
s,y

⎞
⎟⎠ =

√
1 − η2

s,y
1

v2 + 2ηs,yv + 1
, (E19)

we make the change of variables

t = arctan

⎛
⎜⎝ v + ηs,y√

1 − η2
s,y

⎞
⎟⎠. (E20)

As a consequence, we can rewrite the term just mentioned, which is related to geometric anisotropy, in terms of t :

v

v2 + 2ηs,yv + 1
=
√

1 − η2
s,y tan t − ηs,y√
1 − η2

s,y

(
dv

dt
(t )

)−1

=
√

1 − η2
s,y tan t − ηs,y(

1 − η2
s,y

)
sec2 t

= − 1

2
(
1 − η2

s,y

)(−
√

1 − η2
s,y sin 2t + ηs,y cos 2t + ηs,y

)

= − 1

2
(
1 − η2

s,y

) [cos(2t + arccos ηs,y) + ηs,y]. (E21)

It follows that in terms of the new integration variable,

I (ηs,y(λ), β0, λ) = 2π√
1 − β ′

1√
1 − η2

s,y

∫ π
2

arcsin ηs,y

dt√
1 − α′ ηs,y

1−η2
s,y

[cos(2t + arccos ηs,y) + ηs,y]

= π√
1 − β ′

1√
1 − η2

s,y

∫ π+arccos ηs,y

π−arccos ηs,y

dθ√
1 − α′ η2

s,y

1−η2
s,y

− α′ ηs,y

1−η2
s,y

cos θ

, (E22)

where we used the following identities:

arctan

⎛
⎜⎝ ηs,y√

1 − η2
s,y

⎞
⎟⎠ = arcsin ηs,y and arccos ηs,y + arcsin ηs,y = π

2
, (E23)

and we also changed the integration variable from t to θ = 2t + arccos ηs,y. Performing another change of variables φ = θ − π ,

we can rewrite I (ηs,y(λ), β0, λ) as follows: Factoring out the term

√
1 − α′ η2

s,y

1−η2
s,y

from the denominator of the integrand,

I (ηs,y(λ), β0, λ) = 2π√
1 − β ′

1√
1 − αη2

s,y

∫ arccos ηs,y

0

dφ√
1 + α′ηs,y

1−αη2
s,y

cos φ
; (E24)

recall α = α′ + 1. Using the identity ∫ ϑ

0

dφ√
1 + A cos φ

= 2√
1 + A

F

(
1

2
ϑ

∣∣∣∣ 2A

1 + A

)
, (E25)

we finally get, after some rewriting, Eq. (3.29).
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APPENDIX F: SIMULATION METHODS: BUCKLING
OF ORTHOTROPIC SPHERES

The buckling pressure of orthotropic spherical shells,
Fig. 4, was determined with finite element simulations. As
the implementation in C++ is based on previous work
[11,75–77], we summarize only the main aspects here.

Denote by � ⊂ R3 the middle surface of the thin shell
with thickness t . We now distinguish between the stress-free
reference configuration denoted by barred symbols, and the
deformed configuration, denoted by bare symbols. Thus, � ⊂
R3 is the middle surface of the unstrained shell (a sphere in
the case considered here). We describe the shell in a total La-
grangian formulation, with x(x1, x2) and x(x1, x2) curvilinear
parametrizations of � and �, respectively. The tangent spaces
of � and � are then spanned by

aα (x1, x2) = x,α = ∂x
∂xα

, aα (x1, x2) = x,α = ∂x
∂xα

, (F1)

and by virtue of the Kirchhoff assumption, the shell directors
are given by the unit surface normals

a3 = a1 × a2

‖a1 × a2‖ , a3 = a1 × a2

‖a1 × a2‖ . (F2)

To define the membrane and bending strains, we require the
covariant components of the metric tensor,

aαβ = aα · aβ, aαβ = aα · aβ, (F3)

and those of the shape tensor,

bαβ = a3 · aα,β, bαβ = a3 · aα,β . (F4)

Since the thin shell is in a state of locally plane stress, the
strain tensors for stretching and bending with respect to the
curvilinear coordinates can be expressed in Voigt notation as

α =
⎛
⎝ α11

α22

2α12

⎞
⎠ = 1

2

⎛
⎝ a11 − a11

a22 − a22

2(a12 − a12)

⎞
⎠,

β =
⎛
⎝ β11

β22

2β12

⎞
⎠ =

⎛
⎝ b11 − b11

b22 − b22

2(b12 − b12)

⎞
⎠. (F5)

We now transform these into an orthonormal basis {e1, e2}
of the tangent space, with respect to which the material or-
thotropy is expressed, using a transformation matrix T [77]:

ε = Tα, κ = Tβ (F6)

with

T =

⎛
⎜⎝ t2

11 t2
21 t11t21

t2
12 t2

22 t12t22

2t11t12 2t21t22 t11t22 + t12t21

⎞
⎟⎠, tαβ = aα · eβ.

(F7)
For a spherical shell, we define the material coordinate system
aligned with the polar and azimuthal directions:

e1 = x
‖x‖ × e2, e2 = ẑ × x

‖ẑ × x‖ (F8)

where ẑ = (0, 0, 1)�.

With these definitions, the potential energy of a pressur-
ized, orthotropic thin shell can be expressed as [77]

U =
∫

�

1

2

(
tε�Cε + t3

12
κ�Cκ

)
− p a3 · (x − x) d�, (F9)

where p is the internal-to-external pressure difference, d� =
‖a1 × a2‖ dx1dx2 the reference area element, and

C =
⎛
⎝ E1/(1 − υ12υ21) υ21E1/(1 − υ12υ21) 0

υ12E2/(1 − υ12υ21) E2/(1 − υ12υ21) 0
0 0 G12

⎞
⎠

(F10)

the elastic tensor for orthotropic plane stress. To minimize U
numerically, we discretized the spherical shell into a triangu-
lated mesh that was built by recursively subdividing a regular
icosahedron five times, resulting in a so-called “icosphere”
consisting of 20 480 triangles and 10 242 vertices. 10% of
the average edge length was added to each vertex position
on the sphere as random noise to break the mesh symmetry.
Using C1-conforming Loop subdivision surface shape func-
tions [78], the middle surface can then be expressed as linear
combinations of the shape functions NI with the nodal posi-
tions xI as weights:

x(x1, x2) =
12∑

I=1

xI NI , x(x1, x2) =
12∑

I=1

xI NI . (F11)

(Note that for evaluation of the surface on patches with
nodes of valence other than six, a recursive procedure is
needed [78].) With this finite element discretization, and using
a single Gauss point per triangle, the nodal forces can be
assembled as [77]

f I = −
∑

e

{(
tM�

I Ĉα + t3

12
B�

I Ĉβ − pNI a3

)‖a1 × a2‖
2

}
e

,

(F12)

where the sum runs over all triangles e within the local support
of NI , {·}e denotes evaluation at the barycenter of e,

Ĉ = T�CT (F13)

is the elastic tensor transformed to the local frame, and MI

and BI are membrane and bending matrices, whose transpose
are column-wise given by [77]

M�
I = (NI,1a1 NI,2a2 NI,1a2 + NI,2a1), (F14)

B�
I = (bI

11 bI
22 2bI

12

)
, (F15)

with

bI
αβ = 1

‖a1 × a2‖ (aα,β − bαβ a3) × (NI,1a2 − NI,2a1)

− NI,αβa3. (F16)

With the nodal forces, we solved Newton’s equations of
motion with far-subcritical viscous damping added, using a
Newmark predictor-corrector method [77]. To determine the
critical pressure, we slowly ramped up the applied pressure p
in the simulations until the shell collapsed.
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