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Influence of shaped boundaries on propagating compaction bands in brittle porous media
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The compression of brittle porous media can lead to the propagation of compaction bands. Although such
localization phenomena have been observed in different geometries, including cuboidal and axisymmetric
uniaxial compression, the role of boundary geometry on compaction features has yet to be explored, despite
its relevance in geological conditions and industrial processes. To this end, we investigate the influence of
shaped boundaries and inhomogeneous inclusions in a model brittle material made of puffed rice cereal. Using
a variety of geometries, we show that compaction bands assume the shape of nearby boundaries, but return to
a default planar form a distance away from them. Remarkably, the band aligns parallel to characteristic lines
of minor principal stress obtained from a simple linear elastic model. The compelling correlation between
the rotation of the principal stress directions and compaction band orientation holds implications for the
geological interpretation of localized patterns in rocks and for comprehending the formation of weak planes
in pharmaceutical tablets.
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I. INTRODUCTION

Brittle porous media exhibit specific phenomena that have
significant consequences for the industries and natural settings
in which they occur. Therefore, understanding the behavior
of such materials is crucial in areas as varied as hydrocarbon
extraction [1], underground CO2 sequestration [2], design of
cellular solids [3], and density variations in powder process-
ing [4]. Compaction bands, salient features of such media
that develop perpendicular to major principal stress during
compaction, represent zones of localized deformation where
significant volume reductions occur due to grain crushing and
pore collapse [5–9].

Compaction localization has been studied extensively, both
experimentally and numerically. Previous works have fo-
cused predominantly on the generation of localization due to
boundary stresses [10,11] and on the microstructural aspects
necessary to induce localization [12–14]. In confined uniaxial
compression, additional studies have revealed unique local-
ization patterns in monotonically loaded brittle porous media,
such as erratic short-lived compaction, diffused irreversible
densification, and oscillatory propagation of localized com-
paction [15–18].

Despite the well-documented influence of boundaries on
shear strain localization mechanisms in rock [19], metallic
glasses [20], and granular solids [21,22], limited research has
explored the effects of boundary geometry on compaction
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band emergence in brittle porous media. In particular, there
is no knowledge of the role of boundary geometry on the
characteristics of the aforementioned oscillatory compaction
band. Such conditions of combined dynamic loading and
shaped boundaries are particularly relevant to powder com-
paction processes [23], geophysics where rock formations
may contain heterogeneous inclusions [24], and compaction
shock waves [25].

In this paper, we seek to assess the impact of bound-
ary geometry on the initiation and propagation of oscillatory
compaction bands in brittle porous media. To this end, we
perform experiments on five different geometric configura-
tions and demonstrate that a simple elastic model is able to
capture the main effects of boundary conditions. Although this
experimental study cannot encompass the variety of unique
boundary conditions possible, it provides new light on the
impact of non-trivial boundary effects on compaction band
initiation and propagation.

II. METHODS

We use dry, brittle, oblong, puffed rice cereal (Kellogg’s
brand) as the test material. The test material initially has
ellipsoidal grains with a mean major axis diameter of 11.27 ±
1.5 mm (one standard deviation), a mean middle axis di-
ameter of 5.95 ± 0.64 mm, and a minor axis diameter of
3.94 ± 0.72 mm. However, these dimensions change rapidly
during compression due to crushing. For each experiment, the
material is placed inside a compression cell with transparent
acrylic walls to minimise sidewall friction and allow video
recording. Figure 1(a) shows an example of one of the exper-
imental configurations with an initial height H0 = 300 mm,
a width of 150 mm, and a thickness of 50 mm. The width
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FIG. 1. Experimental methodology. (a) A representative experi-
mental setup with curved boundaries. (b) Vertical and (c) horizontal
normalized velocity field v/V .

and the thickness were kept constant for all experimental
configurations, and the height was typically 300 mm with
some variation to allow for different boundary shapes. These
dimensions are consistent with previous studies wherein com-
paction bands propagated in this material [15]. The material
is compressed vertically at a constant velocity, V = 1.27
mm s−1, until a global axial strain εa = �H/H0 ≈ 0.45 is
achieved, where �H is the change in sample height from the
start of the test. The axial stress versus strain demonstrated
stress drops that occurred once the compaction band reached
the loading piston. No discernible differences were observed
between the experiments performed within this paper and
previously published results, which the interested reader may
find within [15,18]. The gathered video images have a res-
olution of 1080 × 1920 px and are sampled to 5 frames
per second with PIVLAB [26] for Digital Image Correlation
(DIC) analysis. This ensures that the material is displaced by
approximately 1 to 2 pixels per frame, optimising accuracy.
The material’s velocity field is then determined as shown in
Figs. 1(b)–1(c). The strain rate tensor ε̇ = 1

2 (∇v + (∇v)T ) is
then calculated using first-order spatial central finite differen-
tiation. Note that we only extract planar strains from one side
of the cell, not the full three-dimensional (3D) strain tensor,
and assume that material behavior is independent of depth
in the thickness direction. The volumetric strain ε̇v = tr(ε̇)
is determined from the trace of the strain rate tensor field,
with compression taken as positive. This is used to identify
the regions of localised compaction and compaction bands
[7,15], characterized by high ε̇v , to monitor their evolution
and geometric characteristics over time.

We determine the compaction band’s position at the pixel
scale by assuming that such position corresponds to the global
maximization of ε̇v across the materials’ width; this corre-
sponds to a nondecreasing paths problem [27]. There are some
localization locating methods, such as acoustic emissions [28]
or manual selection [7], that can identify localisation regions
but these lack the resolution necessary for determining evolv-
ing geometric characteristics. Therefore, the location and
shape of the band are determined with a maximum-weighted
path algorithm. Importantly, this algorithm constrains the lo-
cal slope of the compaction band to a maximum of 45◦ (side

and corner adjacent pixels). The algorithm first generates a
weight matrix Wi, j , with i ∈ {0, N}; j ∈ {0, M} referring to
indices of data points of the N × M field of ε̇v . The algorithm
for determining the weight matrix is

Wi,0 = ε̇v
i,0, ∀i ∈ {0, N},

Wi, j = max
k∈{−1,0,1}

(Wi+k, j−1) + ε̇v
i, j, (1)

where, for the equation, i ∈ {1, N − 1} and j ∈ {1, M}.
For i = 0 or i = N , the range of k is adjusted to k ∈
{0, 1} and k ∈ {−1, 0}, respectively. Following the genera-
tion of the W matrix, the maximum-weighted path vector is
determined by

ẑ0 = λI (max(Wi,M )), ∀i ∈ {0, N},
ẑm = λI ( max

k∈{−1,0,1}
(Wẑm−1/λ+k,M−m)), (2)

where m ∈ {1, M} and I is an operation that returns the index
of the row for a given matrix, λ is a conversion factor in
m/px, and ẑ is the position of the compaction band. Addition-
ally, if ẑm = 0 or λN , then k must be changed accordingly,
as explained for Wi, j . Note that we only take the maxima
on adjacent data points (side and corners) corresponding to
k ∈ {−1, 0, 1} instead of on the entire height of the sam-
ple, as this could result in random and sporadic jumps in
the compaction band’s position due to noise in the DIC cal-
culation and random areas of intense deformation. Further
detail of this algorithm is given in the Supplemental Material
(SM) [29].

III. RESULTS

For each experimental configuration, Fig. 2 displays snap-
shots of the ε̇v field approximately two seconds apart, the lo-
cation of the compaction band as determined by the algorithm
above, and its direction of propagation. The configuration
in Fig. 2(a), referred to as the base configuration, is used
both as a reference to previous studies and for comparing the
geometrical characteristics of compaction in more complex
boundaries. Figures 2(b) and 2(c) show modified configura-
tions with concave boundaries and a sloped bottom boundary,
respectively. We also modified the base configuration by plac-
ing either a block at the bottom of the porous medium or a free
cylinder in the center of it, as shown in Figs. 2(d) and 2(e).
It is evident that a compaction band forms and propagates
cyclically in all the configurations, which is consistent with
previous publications [15,18]. Note that in all geometries, the
band does propagate from one end of the assembly to the
other in a cyclic manner, yet the direction of propagation is
not universal.

Importantly, the geometry of the compaction band is
clearly influenced by the vicinity of non-flat boundaries. Such
variations are strikingly evident in Figs. 2(b)–2(e), which
show the compaction band structure strongly influenced by
the nearby boundary. For example, Figs. 2(b) and 2(c) show
that the band curves or slopes nearby the non-planar bound-
aries. Far from any boundary, however, the band typically
orients nearly horizontally. Interestingly, Fig. 2(e) shows the
compaction region splits into two distinct bands before merg-
ing into a singular band at some point above the rectangular
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FIG. 2. Experimental geometries (first column) and corresponding volumetric strain rate ε̇v fields over time during a compaction band
propagation. (a) Cuboidal (base) configuration, (b) concave boundary with radius R = 90 mm, (c) slanted bottom boundary with angle
θ = 30◦, (d) free-floating cylinder with a diameter D = 0.4 mm, (e) embedded rectangle with width Wb = 75 mm and height Hb = 50 mm.
Each snapshot of ε̇v is separated by roughly 2 s. The black lines overlaying the color field denote the identified location of the compaction
band, and the black arrows denote the traveling direction of the compaction band.

inclusion. Note that this observed behavior required some
slight modification to the maximum-weighted path algorithm
to be captured accurately as the compaction band is discon-
tinuous, as described in detail in the SM [29]. As the band is
discontinuous in that case, in the rest of the paper we will
focus on the cases of Figs. 2(a)–2(d) where a single band
spans the width of the apparatus.

We chose to formally characterize the geometrical charac-
teristics of the compaction bands by representing their shape
with simple functions that match the configurations shown in
Figs. 2(a)–2(d). Specifically, the functions

z(x) = c, (3a)

z(x) = αx2 + c, (3b)

z(x) = βx + c, (3c)

z(x) = γ (1 − x2)2 + c, (3d)

were used to approximate the band shape for the experi-
ments with planar, concave, sloped, and embedded cylinder
boundaries, respectively. Note that in each function, c is re-
lated to the mean position of the compaction band, and x ∈
[−1, 1] is the normalized x position. Thus, the band’s geome-
try is described only by the coefficients α, β, or γ for each of
the non-base configurations, and we define its location at any
given time as z̄ = 1

M

∑M
i=0 z(xi). The geometric coefficients,

i.e., α, β, and γ , and c are determined by minimization of the

root mean square error Rq =
√

1
M

∑M
i=0(ẑi − z(xi ))2, which is

also a measure of roughness [30].

064906-3



RILEY, VALDES, EINAV, AND GUILLARD PHYSICAL REVIEW E 108, 064906 (2023)

FIG. 3. Normalized compaction band position z̄/H0 plotted
against axial strain εa. Roughness Rq and normalized geometric
coefficients α/αb, β/βb, and 2γ /D are plotted on the color scale
for the (a) base configuration, as well as for those with (b) concave,
(c) sloped, and (d) embedded cylinder boundaries, respectively. Flat
boundaries are displayed with solid black lines, whereas the average
position of non-flat boundaries is plotted with dashed black lines.
Square brackets denote the corresponding propagation cycles ana-
lyzed in Figs. 4 and 5.

Figure 3 shows the location of the compaction bands z̄ as
the sample is compressed for the four configurations selected.
The respective color scales denote the geometric character-
istic of the band at a given strain. Specifically, for the base
configuration, Rq is used, whereas for the concave and sloped
boundaries, we indicate the normalized geometric coefficients
α/αb and β/βb, with αb = 0.0267 m−1 and βb ≈ 0.59 for
an ideal band that matches the boundary shape. For the
embedded cylinder, the color scale displays the normalised
coefficient 2γ /D.

The band position and geometric shape fluctuate rapidly
during the initial stages in all experiments (εa � 0.15). Os-
cillatory compaction is not yet established during this stage,
as the deformation is pronounced near the piston and limited
to the upper half of each assembly. Following this stage, i.e.,

(0.15 � εa � 0.45), the band position for the base configura-
tion features a coherent pattern associated with the periodic
oscillation of the compaction band, between the upper and
lower boundaries, which is consistent across all the tested
experimental configurations. However, the concave and em-
bedded cylinder boundaries [Figs. 3(b) and 3(c)] exhibit a
less coherent pattern, and in some instances, the band fails
to reach the top boundary, e.g., when εa ≈ 0.3 for the con-
cave boundary configuration. The sloped boundary [Fig. 3(c)]
displays a smoother band propagation. This suggests that
the concave boundary and the embedded cylinder alter the
imposed stress field sufficiently to disrupt the coherency of
the propagation.

Despite the observed variabilities in propagation features,
the compaction band geometry exhibits unique characteristics
irrespective of the configuration. In the concave boundary
case, geometric coefficient variations (color scale) show that
the band is primarily horizontal away from the boundaries
(|α/αb| ∼ 0), but it mimics the surface shape as it approaches
the boundary (|α/αb| ∼ 1). Similar geometric trends are ob-
served in Fig. 3(c), with β/βb ∼ 1 near the sloped boundary.
Notably, the propagating band maintains a slope while propa-
gating for εa > 0.3. In the embedded cylinder case, the band
is mostly horizontal when far from the cylinder (|2γ /D| ∼ 0),
but becomes temporarily pinned to the cylinder surface as it
approaches and while the side portions of the band continue
to propagate. This results in the abrupt change of 2γ /D from
∼ − 1 to ∼ + 1 when the band crosses the cylinder location.

IV. DISCUSSION

The orientation of a localization band can be determined
from instability conditions [31] but requires the implemen-
tation of a rather complex constitutive model capable of
exhibiting bifurcation. Here, we bypass the use for such a
model by assuming that the compaction band occurs normal
to the major principal stress, as observed in other works [8,9].
Thus, we opt for the simplest possible model, linear elasticity,
to obtain estimations of the principal stress directions. Clearly,
this implies a gross oversimplification of the material, given
that puffed rice undergoes localization induced by breakage,
pore collapse, and plastic rearrangements, and thus exhibits a
nonlinear, serrated stress-strain response [32]. However, linear
elasticity provides a reasonable field of stress distribution
within the material, with the advantage of simplicity.

We performed a quasi-static generalized plane-strain
boundary value problem with the Finite Element Method
(FEM) software MOOSE [33]. To achieve this, we simulated
material compression for the strain segments denoted by the
square brackets in Fig. 3. We utilized homogeneous isotropic
linear elasticity and modelled the interaction between the in-
ternal media and the boundaries with a frictionless penalty
contact. The bulk modulus K = 0.1 MPa was used with a
Poisson’s ratio ν = 0.2. Note that the choice of K does not
influence the principal stress directions. However, ν does, as
it was found that as ν increases there is a more pronounced
curvature near shaped boundaries. For Poisson’s ratio, we
assume ν = 0.20, which is within the range of typical values
for open porous foams [34] and rocks [35], since the Pois-
son’s ratio of the material is unknown. The confining cell
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FIG. 4. Comparison of FEM characteristic lines of minor princi-
pal stress (dashed red line) and compaction band location (solid black
line) for (a) base configuration, (b) concave boundaries, (c) sloped
boundary, and (d) embedded cylinder. Note that compaction band
positions are snapshots, with the band’s first position occurring at the
bottom of the experimental configuration and the arrows indicating
the direction of the band’s propagation.

material properties were K = 1 MPa and ν = 0.3 to ensure
the exterior material was sufficiently rigid. Furthermore, the
internal boundaries of the compression cell are restrained
from movement, and thus, ν for the compression cell does not
play a role in the interaction behavior. The contact penalty
parameters were selected to ensure less than 0.002 m of
interpenetration.

The characteristic lines of principal stress were deter-
mined by first calculating the principal stress directions at
each node and then interpolating these values to estimate
the minor principal stress direction at specific points. We
start at one boundary and incrementally used the calcu-
lated directions to compute the next coordinate along the
characteristic line, repeating until the opposite boundary
is reached.

Figure 4 shows snapshots of the location of the compaction
band at a few discrete times, compared with the characteristic
lines that fit them best from the simulations. The best-fit
characteristic lines were determined by minimising the mean
square residual, as previously done with Eqs. (3a) to (3d).
As expected, in the base configuration used in Fig. 4(a),
the minor principal stress characteristics can be matched
closely with the essentially horizontal bands, albeit with
some deviation that emerges naturally due to material het-
erogeneity, as observed in the field [36] and other numerical
simulations [5].

More surprisingly though, the characteristic lines capture
the band’s geometric change in the vicinity of the concave and
sloped boundaries remarkably well, as shown in Figs. 4(b) and
4(c), respectively. Moreover, for the sloped boundary case, the
slope of the characteristic lines reduces with height, similar to
the compaction band. Similarly, Fig. 5(b) shows that the char-
acteristic lines curve around the embedded circle. Yet, these
results are primarily qualitative in nature. In Fig. 5(a), the
values of Rq are plotted for all experimental configurations,
where we now use the height of the best fit characteristic line
ze(xi ) for determination of the band’s roughness instead of the
model heights given by Eqs. (3a) to (3d). Notably, all experi-
ments produce bands with the same roughness with respect to
the characteristic lines, suggesting that they are a good model
for the band locations. Figure 5(b) shows the differential
roughness δRq = Rq − R f

q , where R f
q represents the roughness

under the assumption of a horizontal band for the concave,

FIG. 5. Analysis of fit of characteristic lines of minor principle
stress for a single propagation cycle. (a) Roughness Rq against the
normalised height of compaction band z̄/Ht , where Ht is the maxi-
mum height at the end of the propagation cycle shown by the black
bracket in Fig. 3. (b) Differential roughness δRq = Rq − R f

q against
normalized height, where R f

q is the roughness assuming a horizontal
minor principle stress.

sloped, and embedded cylinder boundaries as opposed to
resulting minor principal stress characteristics. It becomes
evident that for both the concave and sloped boundaries, near
the boundary, δRq < 0, which indicates that the compaction
band geometry is generally better approximated through the
principal stress rotations induced by the shaped boundary.
However, farther from the boundary, δRq ≈ 0, which implies
that the band reverts to a nearly horizontal orientation, as
demonstrated by the qualitative comparison in Fig. 4 and the
quantitative depiction of band shape in Fig. 3. Additionally,
δRq offers insights into how far from the boundary the shape
of the compaction band remains unaffected. It is worth noting
that the sloped boundary appears to transition progressively
to horizontal, without a discernible critical distance, a trait not
evident for the embedded cylinder case. To a lesser degree, the
concave boundary shows this transition as well, but this tran-
sition occurs over a much shorter distance. The results found
indicate that to first order, simple linear elasticity can be used
to predict principal plane orientations, which are in turn linked
to compaction band orientations. Of course, a more advanced
constitutive law for the material should be able to provide a
more accurate description of the compaction instability and,
in particular, give information on band propagation that is
inaccessible to the linear elastic equilibrium simulations.

V. CONCLUSION

In conclusion, using compression experiments on puffed
rice assemblies, we reveal that boundary shapes substan-
tially affect the initiation and propagation of oscillatory
compaction bands in brittle porous media. Compaction
bands are generated even at curved or inclined boundaries
and propagate persistently despite encountering an obsta-
cle. In addition to this consistent propagation, we found
that the shape of a compaction band assumes the shape of
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the boundary it approaches. A linear elastic analysis sug-
gests that the characteristic lines of minor principal stress
provide a first-order approximation of the shape of the
band. While this model offers insight into the compaction
band’s shape, advanced constitutive laws, such as those
in [32], are essential for understanding band propagation
dynamics and the influence of complex boundaries. Such
models would involve recurrent softening linked to potential
instabilities necessitating advanced numerical schemes, which
are currently under study. Our study provides valuable insight
into the roles that boundary conditions play on strain localisa-

tion mechanisms, which are in turn significant for the analysis
of relevant natural processes and for the design of engineering
materials and operations.
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