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Clogging of noncohesive suspensions through constrictions using an efficient discrete particle solver
with unresolved fluid flow
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When objects are forced to flow through constrictions their transport can be frustrated temporarily or
permanently due to the formation of arches in the region of the bottleneck. While such systems have been
intensively studied in the case of solid particles in a gas phase being forced by gravitational forces, the case of
solid particles suspended in a liquid phase, forced by the liquid itself, has received much less attention. In this
case, the influence of the liquid flow on the transport efficiency is not well understood yet, leading to several
apparently trivial but yet unanswered questions, e.g., would an increase of the liquid flow improve the transport
of particles or worsen it? Although some experimental data are already available, they lack enough detail to
give a complete answer to such a question. Numerical models would be needed to scrutinize the system deeper.
In this paper, we study this system making use of an advanced discrete particle solver (MERCURYDPM) and an
approximated numerical model for the liquid drag and compare the results with experimental data.
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I. INTRODUCTION

Many-body systems flowing through constrictions, like
sand in an hourglass, might flow continuously, but they might
also tick [1], i.e., flow intermittently, or even get permanently
clogged. The case of an hourglass is quite paradigmatic since
time immemorial and it has been studied more intensively
in the last decades. We know that, if the bottleneck is wide
enough for particles to flow continuously, the particle trans-
port rate depends on the relative size of the particle to the
bottleneck with a power N − 1/2 (where N = 2, 3 is the
dimensionality of the system) [2]. However, this continuous
flow is compromised when the size of the particles falls in the
same order of magnitude of the bottleneck size.

Most constricted flows display qualitatively similar behav-
ior regardless of their nature (grains, suspensions, pedestrians,
or animals). For example, when the flow of bodies becomes
intermittent, the probability distribution of time lapses be-
tween the passages of consecutive bodies presents remarkable
power-law tails in all cases, with an exponent that depends on
the flow regime [3].

The statistical framework sketched above holds as long as
the passing bodies remain as individual entities. This con-
dition does not hold, for example, for particles of colloidal
size, which typically feel a strong attraction towards solid
boundaries and to other particles due to van der Waals forces.
Consequently, when colloidal particle suspensions are forced
through constrictions, they tend to form aggregates either by
successive deposition at the constriction’s walls, growing up
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to sizes capable of blocking the flow [4], or even forming
aggregates further upstream, large enough to sieve the con-
striction. The clogging mechanisms for such suspensions have
been covered often in the literature and they strongly depend
on the physical chemistry of the system, which determines the
strength of the particle-particle attraction [5–9].

In contrast, noncohesive suspensions typically clog con-
strictions purely by mechanical forces much like their dry
counterparts. In previous studies [10–12], we showed that
noncohesive suspensions follow the same statistical frame-
work as granular materials [3], and therefore concluded that
the clogging mechanisms must be identical. Interestingly, this
analogy seems to hold regardless of the driving method, either
by gravity [13], by pressure [12], by pumps [11], or even for
self-propelled suspensions [14]. While silos are mostly driven
simply by gravity (i.e., a body force that acts uniformly on
all particles), suspensions can be driven by the drag produced
by the liquid flow, which adds an additional control parameter
into the system that could be potentially used to optimize the
transport of material through the bottleneck. Unfortunately,
that is not a trivial matter. Indeed, an increase in pressure (or
in liquid volume rate) may have a detrimental (or little) effect
on the transport of material through the bottleneck [12].

Recent experiments have revealed the crucial role of the
interstitial liquid flow in the clogging of noncohesive sus-
pensions [12], but several important details remain elusive.
Numerical simulations could make a significant contribution
to answer these questions.

For decades now, numerical discrete particle methods
are able to solve the dynamics of particles exerted by
forces and torques of different nature (gravitational, electro-
magnetic, etc.), as well as the mutual interactions among
the particles. Some are even capable of including contact
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forces of different nature (adhesive, elastic, plastic, and/or
viscous).

To solve numerically the interaction between particles and
fluids, two approaches are typically employed: (1) a direct
computation of the liquid flowing through the pore space,
which accurately resolves the viscous drag, or (2) modeling
the viscous drag (drag closure) based on the space-averaged
flow around each particle. These are respectively known as
(1) resolved and (2) unresolved methods. Resolved methods
are typically preferable when the question to answer de-
mands accuracy and precision, but the method requires fine
computational meshes to resolve the flow accurately. Conse-
quently, computation times are high, and they are typically
limited to small-sized systems. A good example of resolved
methods are lattice-Boltzmann simulations [15,16], in which
both solid and fluid phase are solved through a discretized
version of the Boltzmann equation. Unresolved methods are
more convenient when averaging the flow field yields a good
approximation of the final solution. For example, in computa-
tional fluid dynamics–discrete particle method (CFD-DPM),
locally averaged equations for flow (CFD) and Newton’s
equations of motion for the discrete particle system (DPM)
are solved first independently. Then, fluid-particle interac-
tions need to be defined through a drag closure model. This
approach allows for computations with more than 1 × 106

particles in average-sized computer clusters and has been suc-
cessfully used in systems as fluidized beds [16,17], granular
batch sedimentation [18], particle beds [19], and solid-fluid
mixing [20].

One of the main features that makes clogging of suspen-
sions complex (but also interesting) is its stochastic nature,
both for the clog formation as well as for the clog destruction.
Consequently, long simulations are required to gain enough
statistics and a fully resolved method would require a sub-
stantially high computational cost. Therefore, in this paper we
make use of an unresolved method: we numerically integrate
the dynamics of a noncohesive suspension flowing through a
bottleneck with the discrete particle solver MERCURYDPM, and
approximate the fluid-particle interaction using well-known
drag closure relations. The analogous experimental system
presents high particle monodispersity and homogeneity, and
therefore seems ideal for a comparison with such a numerical
model. The comparison between numerics and experiments
is made by computing the statistical distributions of burst
durations and clogging or arrest times for both numerics and
previously published experimental data [11,12].

The paper is organized as follows: In Sec. II we describe
the numerical method employed, and in Sec. III we present
the results obtained with it. Here we perform a direct com-
parison of the numerical and experimental results. We finalize
the paper with a final conclusion, including a perspective on
future research, in Sec. IV.

II. NUMERICAL METHODS

Simulations are performed using the open source code
MERCURYDPM, created to perform DPM simulations [21].
In this case, the code is applied to simulate the motion of
particles inside a microchannel. A Poiseuille flow profile is
imposed in the channel and causes a drag onto the particles,

pushing them towards the constriction. This drag is corrected
based on the particle packing fraction following the approach
proposed by van der Hoef et al. [16]. MERCURYDPM numer-
ically computes the forces and torques that stem either from
external body forces (such as a drag force originating from the
liquid), or from particle interactions (such as contact forces).
Although MERCURYDPM has been developed extensively for
dry granular applications, it could also be adapted to include
hydrodynamic interactions such as lubrication forces result-
ing from the thin layer of viscous fluid that separates nearly
touching particles, as it will be described in the following.

The contact between particles is modeled using the so-
called Hertzian spring dashpot (HSD) model [22], where the
normal repulsion force between two spherical particles getting
into contact is

FHertz = 4Eeff
√

reff

3
δ3/2, (1)

where Eeff = E/2(1 − ν2) is the effective Young modulus
with E being the Young modulus of the particle material and
ν its Poisson ratio, reff is the effective radius, and δ refers to
the overlap between particles: δ = 0 for nontouching parti-
cles, and δ > 0 for overlapping particles. Using such model,
particles do not deform but overlap keeping their spherical
shape; thus, as the overlap δ increases, the repulsion force
FHertz increases to separate the particles. Note also that for
two particles i and j in contact, 1/reff = 1/ri + 1/r j where
r is the radius of the particle. For a monodisperse suspension,
it results in reff = d/4 where d is the particle diameter.

Using the HSD model, the contact time during particle
collisions is given by

τHertz = 2.214

(
ρ

Eeff

)2/5 d

v
1/5
c

, (2)

where ρ is the particle density, and vc the typical collision
velocity. In order to accurately resolve the contact, a typical
collision velocity between particles is set as a fraction of the
average flow velocity vc = 0.1v̄, which yields small enough
contact times to avoid any numerical errors. We have checked
that a different choice for the collision velocity does not visi-
bly affect the results, as expected due to the weak dependency
of the particle collision contact time τHertz with vc. The time
step for the simulations is then set as τHertz/50.

As stated previously, as hydrodynamic interactions we
include the normal component of the lubrication force FL

i
experienced by a particle i due to nearby particles j using the
expression

FL
i =

∑
i �= j

3πηd2

8hi j
n̂(u j − ui ) · n̂, (3)

where η is the fluid viscosity and ui is the velocity of particle
i [23]. If the distance between the position of the centers of
particles i and j is |xi j | = |xi − x j |, then the separation dis-
tance of these particles is hi j = |xi j | − ri − r j , and the normal
unit vector pointing from particle j to i is thus n̂ = xi j/|xi j |.
Lubrication forces are pairwise short-ranged hydrodynamic
interactions for particles (i, j) satisfying 2ξ � hi j � d/2 (for
the monodisperse case), with ξ the roughness of the particle.
As expected, they are attractive for particles with diverging
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FIG. 1. A constricted channel of width 4D, with D = 100 μm the
size of the constriction as shown in the right figure. The constriction
angle was set at 60◦. A suspension of particles with a diameter d
is forced through the constriction. A Poiseuille-like flow is imposed
on the left of the channel and far from the constriction. Close to the
constriction, results from COMSOL were used to compute the flow of
an empty channel. A modified Stokes drag force was used to correct
for the presence of the particles inside the channel.

trajectories and repulsive for converging ones. Given the high
particle packing fractions that we are considering here, lu-
brication forces are the only relevant hydrodynamic forces to
consider and we can safely neglect the role of longer-ranged
interactions.

Regarding the geometry of the numerical setup, the suspen-
sion flows in a rectangular channel of thickness D and width
4D, which reduces to a square cross section of D × D to form
the constriction, as depicted in Fig. 1. This is achieved by a
linear narrowing of the channel with a half angle of 60◦. D
was chosen equal to 100 μm to match the experimental setup
used in the experiments [10–12]. The channel length upstream
of the constriction is chosen to be 10D. No significant quan-
titative difference was found in the results by extending the
channel length from 10D to 15D and 20D, so 10D was chosen
for the sake of faster time computation.

The flow in the channel is assumed to follow a Poiseuille
profile and computed on a mesh using the software COMSOL.
A closest mesh neighbor interpolation then provides the flow
velocity for each particle position. To account for the large
number of particles inside the domain, we impose the same
in and out liquid flow rate: thus the presence of particles
increases the velocity of the liquid inside the channel by a
factor 1/ε, where ε accounts for the porosity of the medium.

Furthermore, we assume that the particles are being moved
along the channel by a drag force. The natural choice for
spherical particles would be a Stokes-like drag force, which in
turn applies for individual particles in the limit of very small
packing fraction (when porosity ε tends to 1). For a packed
suspension, the drag force is corrected by a voidage function
f (ε) accounting for the presence of surrounding particles.
Thus, particles are pushed by a corrected Stokes drag force
of the form

FS
i = f (ε)3πηd (v − ui ), (4)

where v is the fluid velocity and ui is velocity of particle i.
Following van der Hoef et al. [16], we use a voidage function
f (ε) = 10 (1−ε)

ε2 + ε2(1 + 3
2

√
1 − ε), since it has been proven

to correctly model the drag force over a large range of porosi-
ties, in particular for dense suspensions.

To account for spatial variation of porosity within the
channel geometry, the porosity ε is estimated by dividing the
channel into three parts and computing the so-called local

stripped porosity: (1) at the beginning of the channel, (2) in the
middle of the channel, and (3) close to the constriction. Divid-
ing the channel in a larger number of sections or computing
a local porosity using a coarse graining approach both ended
in negligible variations of the porosity once the suspension
reaches its packed state. Therefore, the former, simpler and
faster, method was chosen.

Flow and particle properties are chosen to match the
experiments: for the polystyrene particles we employ a
Young modulus and Poisson ratio of E = 3 GPa and ν =
0.35 respectively. Furthermore, a diameter dependent particle
roughness of ξ = 0.005d and the macroscopic sliding, rolling,
and torsion friction coefficients were assumed to be identical
and equal to 0.6, which is in the range of the typical sliding
friction coefficient for frictional particles [24–28]. In order
to reduce the number of free parameters in the simulations,
the same value for all friction coefficients was deliberately
chosen, which assumes a scenario of high frictional particles.
In the experiments, liquid and particle have a matching density
of ρ = 1062 kg/m3 to avoid buoyancy effects, and the liquid
viscosity is η = 1.8 × 10−3 Pa s, which is also included in
the numerical model. More details about the experimental
methods can be found in Appendix A.

The simulations consist of a flowing suspension of
monodisperse particles of varying diameter d = 10, 22, 25,
28, 33, 40, 50, 70, and 80 μm. Adopting a neck height of D =
100 μm this corresponds to neck-to-particle ratios D/d = 10,
4.55, 4, 3.57, 3.03, 2.5, 2, 1.43, and 1.25 respectively. In
the case of particles of d = 33 μm (D/d = 3.03), showing
the characteristic intermittency regime, the packing fraction
typically reaches values of approximately 0.5, with ≈1000
particles simultaneously simulated in the channel. On the
other end, for the largest particle case of d = 80μm, the
average packing fraction was approximately 0.4, with around
60 particles simultaneously in the channel. Note that the
choice of neck-to-particle ratios is chosen to match experi-
mental data in the literature [10–12], but also involves a range
where the system is clearly three-dimensional (D/d � 3)
while another one is quasi-two-dimensional (D/d < 3). The
time step value is particle size dependent as aforementioned,
but always remains of the order of 10−6 s. Simulations are
run over typically 1 × 106 time steps and repeated tens of
times with different random seeds corresponding to various
initial positions of the injected particles. These are inserted
at the left boundary of the channel at a constant rate to keep
the maximum packing fraction attainable. Notice that when
the channel is full, we make sure to not overlap particles
during insertion. The particles are erased once they escape the
constriction.

III. RESULTS

Figure 2 presents successive snapshots of a typical exper-
iment, for D/d = 3.03. In particular, the flow has become
interrupted by the spontaneous formation of arches spanning
the bottleneck (top panel in Fig. 2). At this moment, particles
are still experiencing a drag force, perturbing the arches which
may eventually collapse. If this happens, the flow of particles
is resumed (middle panel) and a burst of particles flowing
through the constriction develops until a new clog arrests the
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FIG. 2. Successive snapshots of a burst in a suspension of parti-
cles with a diameter d = 33 μm that intermittently flows through a
constriction having a neck width and height of D = 100 μm with
D/d = 3.03. From top to bottom: An arch of particles is formed
around the neck in a clogged state, multiple particles escape after
breaking of the arch, and a new arch is formed at the constriction.
Particles are color coded according to their velocity: Immobile parti-
cles are shown in dark blue, and fast-moving particles are shown in
dark red.

flow again (bottom panel). The color coding shows in dark
blue immobile particles, and in lighter blue slow and in red
fast moving particles.

The overall intermittent behavior, in which several flowing
and arrested periods of time alternate, can be better visualized
in the spatiotemporal diagrams in Fig. 3. There, in order to
analyze the different regimes of particle flow, we report the
results obtained over the range of neck-to-particle ratios 10 �
D/d � 1.25. Spatiotemporal diagrams are constructed to vi-
sually represent the passage of successive particles through
the neck constriction: a black vertical line represents a par-
ticle escaping through the constriction, while gray regions
are particle flow interruptions when no particle escapes, i.e.,
clogs. The thickness of the vertical black lines width is given
by one Stokes time τ , the time a particle takes to travel its
own diameter length. Such a diagram is the numerical version
of the spatiotemporal diagrams discussed by Zuriguel et al.
[29], and constructed experimentally in Souzy et al. [11] and
Zuriguel et al. [3]. The diagrams clearly reveal a qualitative
difference in the flow behavior: from a clogged situation for
larger particles (top diagram) to uninterrupted particle flow
for the smallest ones (bottom diagram). For D/d = 1.25 only
few particles escape before the particle flow rate is interrupted
(in gray) and a permanent clog is formed which lasts until the
end of the simulation. For D/d = 1.43, following few short
intermittent bursts where particles escape in small numbers (in
black), a permanent clog is eventually formed. For D/d � 2
particles continuously keep on escaping in bursts. As D/d
is increased, the flowing intervals become longer and more
abundant. This regime persists until the particle flow becomes
continuous for D/d � 10, so the burst intermittency becomes
immeasurable. At this point, a minimum clog time Tmin needs
to be defined in order to discern clogging from flowing: a
flow interruption longer than Tmin separates the end of a burst

FIG. 3. Spatiotemporal diagrams at the constriction neck for various D/d . Gray: Clog, no particle flowing through the constriction neck.
Black: Particles flowing through the neck. Each black vertical line represents the time when a particle has escaped the constriction. The width
of every diagram line is given by the Stokes time of the particle, i.e., the time it takes a particle to move a distance equal to its own diameter at
an average velocity of v̄ = 5 mm/s.
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and the beginning of another. Note that given the discrete
nature of the system, defining an arrest time threshold to set
apart successive bursts is not straightforward. This is done by
looking at the distribution of times T between the passage of
two consecutive particles. From those distributions, and using
the Clauset-Shalizi-Newman method [30], the characteristic
minimum time Tmin = τ/2 is obtained, which corresponds
to the time it takes for a particle to travel its own radius
(more details in Appendix B). For D/d � 10, no time lapse
T between the passage of consecutive particles is reported to
be larger than Tmin.

To quantify the intermittent dynamics in what follows, we
will analyze separately the arch formation and destruction
processes by looking at the statistics of burst sizes and arrest
times, respectively. These two measurable quantities are prox-
ies of these two crucial mechanisms: the number of escapees
per burst is an indicator of the probability of clogging, while
the arrest time characterizes the lifetime of a clog once it is
formed, thus being an indicator of the unclogging probability.

A. Arch formation

Similarly to pedestrians [32], animal flocks [33], and
avalanches [34], the number of entities escaping per burst
has been experimentally found to follow an exponential dis-
tribution in constricted flow of suspensions [11,12]. While
monitoring the number of particles per burst is not an easy
task experimentally given that particles overlap frequently in
this three-dimensional configuration, achieving such quan-
titative measurement using numerical simulations is trivial
as the position of each single particle is monitored at each
time. The corresponding distribution P(s/〈s〉) of the number
of escapees per burst normalized by the average number of
escapees, which are shown in Fig. 4 for various D/d , is con-
sistent with the previous experimental measurements reported
in the literature. Such exponential distributions of s/〈s〉 reveal
that the arch formation follows a Poissonian process; thus
it has been described using a simple stochastic model [10],
considering that an arch develops when a sufficient number
of randomly arriving particles reach the constriction in the
appropriate arrangement. Similarly, Thomas and Durian [31]
proposed a model for dry systems in which they showed that
the discharged particle mass grows as an exponential func-
tion of hole diameter, which is also in agreement with the
results reported in the inset of Fig. 4, highlighting that the
average number of escapees per burst is well approximated
using an exponential fit. Both models are actually compatible
with the idea that new microstates [31] in the vicinity of the
constriction are continuously and randomly sampled while
particles arrive, until a stable arch is eventually found. A first
consequence of such clogging mechanism contemplated by
both models is that there is no sharp clogging transition for
a given critical outlet size in the sense that there is always a
nonzero probability for a clog to occur. A second consequence
is that the average number 〈s〉 of escaping particles per burst
is therefore a good proxy for the probability of clogging: the
higher 〈s〉, the smaller the probability of arch formation.

A closer look at the distribution P(s/〈s〉) shows a
substantially higher probability for the smallest particle
bursts. Interestingly, such feature has already been reported

FIG. 4. Probability distribution of the normalized number of par-
ticles escaping per burst s/〈s〉, which follow a similar exponential
distribution over the range of investigated D/d . Inset: The average
〈s〉 plotted as a function of (D/d )3, with the error bars standing for
the standard deviation. The red line corresponds to the best expo-
nential fit, the signature of the predicted exponential trend expected
by Thomas and Durian [31] for a transition from a regime where
clogs occur very frequently (only few escapees before a new clog
develops for D/d = 1.43) to a regime of almost continuous particle
flowing (thousands of particles escape before a clog develops for
D/d = 4.55).

experimentally in three-dimensional flow of constricted sus-
pension [11] and in three-dimensional silos [35] and shows
that, relatively often, a small number of particles manage
to escape through the arch without destabilizing it. We
interpret this feature as a result of the system’s inherent
three-dimensionality, as such behavior is not reported for two-
dimensional configurations. It is rather remarkable to notice
that, although using an unresolved method for modeling the
viscous drag, simulations are still able to capture such fine
details which are experimentally observed.

B. Arch destruction

To investigate the unclogging process, we now analyze
the probability distributions of time lapses T between the
passage of consecutive particles. Such an approach has been
extensively implemented in previous studies on intermittently
flowing systems, such as pedestrian crowds [32,36,37], hun-
gry sheep herds [33], mice escaping a water pool [38], or
vibrated silos of dry granular material [39,40]. Interestingly,
in such systems the distribution of arrested time lapses ex-
hibits a power-law tail P(T ) ∝ T −α , a signature of systems
susceptible of clogging [3,41]. Furthermore, the value of the
exponent α can be directly related to the long-term behavior of
the system: the average time lapses 〈T 〉 can only be defined for
distributions fulfilling α > 2, while 〈T 〉 diverges for α � 2.
This feature has therefore been interpreted as a transition to a
scenario in which a permanent clog will eventually develop.
For α � 2, there is a nonzero probability of observing ever-
lasting clogs, while for α > 2, the system can be temporary
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(a) (b)

FIG. 5. (a) Probability distribution of the arrest time lapses T normalized by the Stokes time τ . The lines correspond to the best power-law
fits with their exponent α, as determined using the Clauset-Shalizi-Newman method [30] for T > Tmin where Tmin = τ/2 is the minimum arrest
time to discern clogging from flowing. (b) Semilog plot of α as a function of the neck-to-particle size ratio D/d . The exponent can only be
defined when the flow is intermittent and comparison with previous experimental measurements in a similar configuration reveals a quantitative
value mismatch yet similar trend with increasing D/d . The red line corresponds to an exponential fit α ∝ e0.5D/d .

blocked due to the formation of clogs but no arch will persist
infinitely. More detailed discussions can be found in Zuriguel
et al. [3], Zuriguel and Garcimartín [41], and Garcimartín
et al. [42].

Figure 5(a) presents the probability distribution of the ar-
rest lapses obtained for various D/d from the spatiotemporal
diagrams shown in Fig. 3. The distribution P(T/τ ) exhibits
the characteristic power-law tail P(T/τ ) ∝ (T/τ )−α . Note
that we have been able to measure time lapses up to two
orders of magnitude larger than the Stokes time, and that
for each fixed value of D/d � 2 more than ≈1000 bursts
have been analysed. For D/d = 1.43, as the flow is composed
of few bursts of escaping particles before a permanent clog
develops within a simulation, statistics are restricted to ≈150
bursts. Finding the right parameters for power-law tails can
easily suffer from arbitrary biases, therefore the exponent α of
the power-law tail is obtained using the rigorous and widely
accepted Clauset-Shalizi-Newman method [30], which also
yields the minimum time lapse Tmin from which the power-law
fit is valid. As mentioned earlier, note that for D/d = 10 no
time lapse T � Tmin is reported, the signature of the transition
to continuous particle flow for large neck-to-particle aspect
ratio.

Figure 5(b) presents the value of α, for various neck-
to-particle size ratios D/d . The error bars in the vertical
axis follow directly from the Clauset-Shalizi-Newman method
[30], and they represent the uncertainty in the estimate fit to a
power law. Note that for larger D/d , the fit is performed over
scarcer events as most of the time lapses between the passage
of consecutive particles lay below Tmin, thus resulting in larger
uncertainty in the α value.

The first important thing to notice is that, as previously
reported [11], the value of α is remarkably sensitive to the
neck-to-particle size ratio D/d , increasing significantly with
larger D/d [see Fig. 5(b)]. This is expected: the smaller the
particles d , the higher the value of α, thus the higher is
the probability of short-lived clogs. This highlights the fact

that arches composed of more particles (large D/d) are less
stable, and thus more prone to break due to the perturbations
induced by the interstitial flow. In other words, shorter arches
are stronger than longer ones. Remarkably, over the explored
range of D/d for which an exponent α could be estimated, val-
ues of α > 2 were found, thus indicating that the intermittent
regimes would continue indefinitely, with a zero probability
of permanent clogs which would persist endlessly. This is
similar to other scenarios where clogging transitions have
been reported based on the power-law tails of the arrest times,
like vibrated silos [39], Brownian particles [15], pedestrians
[3], and self-propelled robots [43]. All those systems reported
a fairly smooth transition from an intermittent clogged state
(α � 2) to a continuous flow, passing through a region of in-
termittent flow with α > 2. Interestingly, the values of α from
the simulations are well fitted by an exponential fit α ∝ e0.5D/d

in the explored range of D/d , highlighting again how crucial
the neck-to-particle size ratio parameter is both to the arch
formation and destruction processes.

The second thing to notice is that there is a significant
quantitative mismatch between the values of α reported for the
numerical simulations with those reported for the experiments
of Souzy et al. [11]. In this respect, note that Souzy and Marin
[12] reported that the value of α is independent of the imposed
flow rate in volume controlled configuration. Therefore, when
comparing the results of the simulations to the experimental
results obtained under constant flow rate configuration, the
quantitative mismatch cannot be attributed to a mismatch
between the flow rate imposed within the experiments and
the numerical simulations. The higher values of α in the nu-
merical results imply a higher probability of arch destruction,
thus a lower arch stability when compared to experiments. We
could speculate about different reasons for such mismatch.
One reason could be attributed to the porosity estimation
ε, or to the voidage function f (ε), which may overestimate
the Stokes drag force, thus leading to an enhancement of
the arch destabilization mechanism. Another hypothesis could
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be found in the presence of “fast channels” [44] within the
dynamic porous network in experiments, which cannot be re-
produced in the current simulations due to the lack of coupling
between the fluid flow and the particle network.

IV. CONCLUSION

Numerical simulations of the intermittent flow of particles
reported in three-dimensional flow of constricted suspensions
[11] but also in granular silos [35] are remarkably captured
within the simulation, highlighting a striking phenomenolog-
ical agreement. Regarding the arch destruction processes, we
report larger values of the exponent α from the simulations
compared to the experiments, a direct signature of shorter-
living arches. Consequently, both the arch construction and
the arch destruction are enhanced in silico when compared to
the experiments. Observing a facilitated arch destruction pro-
cess in the simulations is quite a counterintuitive result, given
the high friction scenario in which the simulations were run,
which suggests that particle friction is not the most critical
ingredient controlling the arch destruction process.

The fundamental reasons for such puzzling discrepan-
cies are yet to be investigated and require additional study.
The current results reveal that resolving the fluid flow is
not necessary to mimic the rich phenomenology of partic-
ulate suspensions flowing through a constriction, offering a
promising cost-efficient numerical method to study the phe-
nomenology of such a complex problem. A tool like this
could be particularly useful to investigate the effect of var-
ious parameters which are experimentally very challenging
to explore on the overall flow behavior, such as the effect
of particle roughness, the constriction angle, the particle soft-
ness, deciphering the respective importance of hydrodynamic
forces, or extensively exploring the intermittent flow transition
by varying the neck-to-particle size ratio. However, our results
indicate that resolving the interparticle flow with a numerical
CFD solver may be necessary when a direct comparison with
experiments is required.
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APPENDIX A: EXPERIMENTAL METHODS

The experimental results used as a benchmark for the
numerical results are extracted from Souzy et al. [11] and
Souzy and Marin [12]. The experimental setup, also used
in Marin et al. [10], consists of a single transparent straight
channel of borosilicate glass (isotropic wet etching, Micronit
microfluidics) with a rectangular cross section of 100 ×
400μm2 which reduces to an almost square cross section of
100 × 110μm2 to form the neck. A linear narrowing of the

channel with a half angle of 60◦ achieves the constriction,
such that the fluidic system forms a two-dimensional nozzle
converging towards the neck. Particles and liquid have been
chosen to avoid buoyancy effects, particle aggregation, and
particle deposition at the microchannel walls: the suspen-
sion consists of monodisperse spherical polystyrene particles
(Microparticles GmbH) of diameter d which is varied from
19.0 to 41.1μm (±3%). Particles are stabilized with nega-
tively charged sulfate groups in a density-matched 26.3-wt.-%
aqueous solution of glycerine, with a density ρ = 1062 kg/m3

[45]. The charged sulfate groups confer them a small negative
surface potential (on the order of −50 mV) but sufficient to
prevent both their agglomeration and their adhesion to the
channel walls. The suspension is prepared with a particle
volume fraction of about 2%, then inserted in the device and
driven downstream of the constriction towards a filter which
only allows the fluid to flow through. Particles are therefore
initially concentrated in that position.

An experiment starts when the flow is reversed and parti-
cles are dragged by the fluid towards the constriction. Note
that although the experimental system is designed to flow ei-
ther in pressure or volume-controlled driving, the comparisons
were done with experimental results obtained in an imposed
volume-rate configuration. Particles flow towards the constric-
tion forming a compact and long “column” of particles, and
the suspension is imaged with a high-speed CMOS camera
(PCO.dimax CS1) coupled to an inverted microscope (Nikon
Instruments, Eclipse TE2000-U).

Note that the reason for using such particle size range
(between 10 and 50μm) is dual: on the one hand, we avoid
colloidal particle interactions and Brownian motion. On the
other hand, increasing the particle size further would also
involve handling larger volumes of fluid, i.e., larger Reynolds
number Re and higher working pressures. Therefore, the
range of particle size chosen allows us to work with highly
monodisperse particles interacting mainly by hydrodynamic
interactions and low-pressure solid contacts, manipulated via
microfluidic technology, which allows us to obtain a high de-
gree of control and reproducibility difficult to achieve experi-
mentally at other length scales. Each experiment was typically
repeated ≈30–50 times, where each recorded run typically
monitors tens of clog formation or destruction events.

APPENDIX B: CHARACTERISTIC MINIMUM TIME Tmin

Given the discrete nature of the system, defining an ar-
rest or clog time threshold to set apart successive bursts is
not straightforward. This is done by looking at the distribu-
tions P(T ) of times between the passage of two consecutive
particles, which exhibit power-law tails. Finding the right
parameters for power-law tails can easily suffer from arbi-
trary biases when trying to characterize experimental data.
To tackle such issue, the exponents α of the power-law tails
are obtained using the rigorous and widely accepted Clauset-
Shalizi-Newman method [30]. This method also yields the
estimated error of the fit, which is used to set the error bars
on Fig. 5(b). Regarding the value of the minimum time lapse
Tmin (from which the power-law fit is performed), it can be set
as a free parameter, which will be determined by the method,
or it can be given as an input of the method. When using the
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Clauset-Shalizi-Newman method over the data leaving Tmin

as a free parameter, we find that Tmin ≈ 0.5τ ± 0.1τ over
a wide range of 2 � D/d � 4.55. A value of Tmin = 0.5τ ,
which corresponds to the time it takes for a particle to travel
its own radius, was therefore subsequently used as an input for

the Clauset-Shalizi method to determine the values of α. More
importantly, this value was used to define the minimum time
lapse to set apart consecutive bursts: a clog event is defined as
any event where the time lapse T between the passage of two
consecutive particles is such that T � Tmin.
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