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Microscopic origin of granular fluidity: An experimental investigation
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Granular fluidity has been central to the development of nonlocal constitutive equations, which are necessary
for characterizing nonlocal effects observed in experimental granular flow data. However, validation of these
equations has been largely computational due to challenges in laboratory experiments. Specifically, the origin
of the fluidity on a microscopic, single-particle level is still unproven. In this work, we present an experimental
validation of a microscopic definition of granular fluidity, and show the importance of basal boundary conditions
to the validity of the theory.
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Granular materials are classified as a “complex fluid” [1]:
a multiphase material whose flow cannot be described by a
Newtonian rheology. The conventional μ(I ) rheology devel-
oped by GDR-MiDi [2] and Jop et al. [3] has been successful
in predicting many aspects of granular flows, but has signif-
icant shortcomings. Specifically, the “nonlocal phenomena”
[4] that are abundant in granular observations, for example a
creeping “static” granular pack and the thin layer of material
left behind after an avalanche, cannot be replicated with a
local rheological model. In order to correctly describe these
nonlocal manifestations, it is not sufficient to model a lin-
ear relationship between the strain rate and stress [5]. Great
advancements have been made in recent years in theoreti-
cal modeling of such nonlocal phenomena, with a variety
of constitutive relations being proposed [6–8]. However, ex-
perimental validation lags behind model development due to
the complexity of these experiments. In this manuscript, we
present experimental findings that enable us to validate a key
theoretical relationship in nonlocal granular flow theory.

To construct nonlocal constitutive equations for granular
flow, Kamrin and Koval [7] extended the kinetic elastoplastic
(KEP) model of Bocquet et al. [9]—originally formulated
to describe nonlocality in emulsions—to a granular material
application. In the KEP model the key additional variable is
the fluidity: a phenomenologically defined parameter describ-
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ing how “deformable” a system is. The fluidity vanishes for
static regions and reaches a maximum value in fully fluidized
regions [5].

Kamrin and Koval defined the granular fluidity gmacro,

gmacro = γ̇

μ
, (1)

where γ̇ is the shear rate, and μ = τ/P is the ratio between
the shear stress τ and pressure P. They used this fluidity to
construct a set of nonlocal constitutive equations, which have
successfully described nonlocal phenomena in both experi-
ments [10] and DEM simulations [7]. The predictive success
of these constitutive equations supports the importance of the
fluidity in nonlocal descriptions.

However, the fluidity used in their constitutive equations is
only defined in terms of macroscopic flow quantities: the
definition in Eq. (1) is operational, and gives no insight into
the physical origin of the fluidity on a single particle level.
Thus, Zhang and Kamrin [11] (ZK) subsequently proposed a
microscopic fluidity,

gmicro = δv

d
F (�), (2)

where δv quantifies single-particle velocity fluctuations
around the spatial mean value, d is the particle diameter, and
F (�) is a general function of the local volume fraction �.
Computational and theoretical studies have found F (�) to be
constant for intermediate �, falling to zero as � approaches a
critical value [11–14]. ZK validated their proposed definition
by numerical simulations in three different 3D geometries.
More recently, DEM simulations in other geometries have
shown a partial agreement with ZK’s definition [15].

Experimental validation of the equivalence of the micro-
scopic and macroscopic expressions for fluidity in a single
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system is still limited; previous testing of the theory has been
carried out largely by numerical simulations. This is partly
due to the difficulty in concurrently measuring both kinematic
(“velocity”) and dynamic (“force”) properties. The relevant
quantities have been experimentally measured in some pre-
vious studies using wall-averaged measurements of the stress
[16], and at very low inertial number (I < 10−4) [17].

In this article, we provide an experimental validation of the
ZK definition, using an existing experimental setup designed
to create a two-dimensional avalanche of photoelastic disks,
resulting in granular flows with large values of the inertial
number I and allowing access to individual particle stress
measurements [18]. Previously we used this setup to find a
correlation between the fluidity and the fluctuation rate of
force chains in the flow [19]. Here we measure and calculate
the kinematic properties of our flow, and combine them with
our published measurements of the dynamic flow properties,
in order to experimentally validate the ZK definition outlined
in Eq. (2). We use particle tracking to access the velocity
fluctuations δv and the packing fraction �, and photoelastic
analysis [18] to obtain the stress ratio μ.

The proposed equivalence of gmacro and gmicro implies the
existence of a function F (�) that is universal for the system,
where

F (�) ≡ γ̇

μ

d

δv
(3)

from Eqs. (1) and (2). The dimensionless quantity γ̇ d/δv

was introduced by Savage and Jeffrey, who showed that it
should be a function of � [20]. The existence of this function
has also been shown numerically and experimentally [16,17].
We have previously shown that μ is a function of � in our
system for one basal boundary condition. In this letter we
further calculate the kinematic quantity γ̇ d/δv, and combine
it with μ to find the function F (�) for our system with two
basal boundary conditions. We then compare our F (�) to
those previously found by numerical [11–13] and theoretical
methods [14]. This comparison requires accounting for the
difference in dimensionality between our experiments and
previous work: experimental constraints limit us to a 2D setup,
while previous numerical simulations have been conducted
for 3D systems. However, we are able to make an appropriate
conversion between the 3D volume and 2D area fractions, and
find a strong similarity between our empirical form and those
predicted in previous studies. Lastly, we interpret the shape
of F (�) in terms of the jamming transition in dense granular
flows.

Our experimental setup has been extensively introduced
by Thomas and Vriend [18], and involves 2D avalanches
of photoelastic disks as illustrated in Fig. 1. We use equal
numbers of disks of diameters 11, 12, and 13 mm, equivalent
to a 10% polydispersity, which reduces crystallization. The
material flows down a narrow 2 m long chute, inclined at 20◦
to the horizontal, and has a free surface as a top boundary
condition, and an either smooth or roughened bottom bound-
ary condition. We use the coordinate system shown in Fig. 1: x
points in the downstream direction with its origin at the chute
mouth, and z points upwards, perpendicular to the chute base.
The chute is slightly wider than the thickness of a particle,
leaving enough space for the particles to flow freely with

FIG. 1. Schematic of the experimental setup for different bound-
ary conditions (a), (b) with sample velocity profiles for both (c). The
chute is inclined at 20◦ to the horizontal, so gravity is in the direction
indicated by g. Different basal conditions give rise to different flow
profiles. The smooth base (a) has a constant flowing layer, while
the rough base (b) features a wedge of quasistatic particles (on
timescales 1–100 ms) that accumulate along the entire length of the
base, with flowing particles above. In both bases, the height of the
layer of flowing particles is approximately constant in x. Velocity
profiles are taken from full data in [18].

minimal side wall friction, but not enough to rotate out of the
plane of the chute, resulting in a single layer in the lateral
direction. A pair of polarizer sheets, one on either side of the
chute, are attached to a sliding carriage, allowing photoelastic
visualization at any downstream position.

High resolution datasets are taken for 0.5 s at a sampling
frequency of 1 kHz and are acquired at four downstream loca-
tions, spaced at 50 cm intervals between x = 25 cm and x =
175 cm inclusive. The frame size is approximately 20d × 20d
and there are approximately 300 particles visible in each im-
age. Further details of the experimental setup are given in [18].
For the smooth base, 175 cm dataset, only 0.3 s of data was
available due to edge effects of the avalanche.

The basal boundary condition qualitatively affects the ve-
locity profile and the flow features. A smooth perspex surface
allows significant slip at the base, with an increasing x velocity
as z increases, Fig. 1(a). In contrast, for a rough boundary con-
dition, constructed from half-cut particles glued to the bottom,
a quasistatic basal wedge forms, above which particles flow
in a layer of constant height, Fig. 1(b). Particles at the bottom
of the quasistatic wedge are stationary on timescales from 1
ms to 100 ms, but creep at longer time scales [21]. Velocity
profiles of the flow are show in Fig. 1(c).

We are interested in the steady state of the avalanche,
where the flow height and velocity profile are constant in
time, so we let the front pass before acquiring steady state
data from the main body of the avalanche. For the flowing
particles (all of the smooth base data and the top layer of the
rough base data), the measured flow quantities (e.g., velocity
and volume fraction) are constant in x. However, the thickness
of the quasistatic basal wedge in the rough base experiments
varies slowly in x. It varies by ±0.5d within each dataset
and by approximately 2d between datasets at successive chute
locations, so we average in x over the frame width of one
dataset, but not over datasets at different locations.

Particle identification and tracking is performed as de-
scribed in [18]. The particle radii found by this automated
process are rescaled to give an average particle radius equal
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to the known true value. The bulk stress tensor components P
and τ are also calculated as in [18].

Particle velocities are calculated from the positions, then
these individual particle quantities are used to calculate δv,
�, and γ̇ as a function of depth z for each dataset. These
flow profiles are calculated instantaneously before being time
averaged, since we are interested in spatial fluctuations as
a means of understanding spatial non-locality [11]. We then
coarse-grain in z as in [11], using identical coarse-graining
parameters. The shear rate γ̇ = dvx

dz is calculated from the
coarse-grained velocity vx(z) using a second-order finite dif-
ference method. The particle diameter d is constant in z to
within ≈2%, i.e. the particles do not segregate with depth, so
we use the average diameter value throughout.

The velocity fluctuation δv is defined in [11] as the square
root of the granular temperature T , which is determined for a
particle i as Ti = |�vi − �̄v(zi )|2 for particle velocity �vi and aver-
age velocity �̄v(zi ) at the particle depth zi. These single-particle
values are coarse-grained as in [11] to give T̄ (z), whose square
root gives the velocity fluctuation profile δv(z).

Additional steps are needed to mitigate the effects of ex-
perimental noise, since the definition of δv is such that noise
is not removed by averaging or coarse-graining. Our final step
is to exclude spurious points. These are found at the top and
bottom of the flow, due to factors such as: coarse-graining
edge effects, systematic measurement errors when μ falls
below a certain value, and the function F (�) being undefined
for basal particles within the quasi-static wedge. Details of
these steps are given in the Supplemental Materials (SM) [22].

Having calculated the parameters γ̇ (z), δv(z), μ(z) and
�(z), we can now validate the relationship between the
macroscopic and microscopic definitions of the granular fluid-
ity, Eqs. 1 and 2. This validation is achieved by finding a form
of F (�) for our system, then using it to plot gmicro against
gmacro to test their proposed equivalence. Our data below will
show qualitatively different behavior depending on the bottom
boundary condition.

We first present and discuss data taken with a rough base,
where the particles at the base form a quasi-static wedge.
Fig. 2(a) plots the ratio F (�) against � for this data. Each
color indicates a different experiment (varying the down-
stream position), while each point in a given dataset represents
a different value of the depth z.

Our experimental geometry has a pressure release bound-
ary condition at the surface, which limits our � range. To
interpret our F (�) data, we refer to the previous work by ZK
(and others) showing that the shape of F (�) is constant below
some critical � value, above which it falls to zero. The lack
of observable downturn in our data indicates that our � values
lie below the critical value for our system, as discussed further
below. Across our available range of �, F (�) for all datasets
is thus fitted by a constant value, consistent with previously
found forms of F (�). Taking the average of all datapoints
gives the constant value as F (�) = 2.12 over our range of �,
with a standard deviation of 0.52.

We use our F (�) to plot (δv/d )F (�) against γ̇ /μ,
Fig. 2(c). The R2 value of our data compared to the theoret-
ical relationship of gmicro = gmacro is 0.80. The definition in
Eq. (2) is thus validated by these datasets. The average value
of (|gmicro − gmacro|)/gmacro for our data is 0.2. This is compa-

rable to the experimental errors for both axes: the uncertainties
in γ̇ /μ and (δv/d )F (�) were mainly due to μ and F (�),
respectively, which both had an error of ∼20%. (Errors from
[21] and spread of points in Fig. 2(a) respectively.)

We now compare our form of F (�) from our rough base
boundary condition with previous research. Forms of F (�)
have been found by previous authors [11,14], but only in 3D.
To allow comparison with this research, we must therefore
“translate” 3D volume fractions into 2D area fractions. This
is nontrivial, requiring physical understanding of the form of
F (�).

In numerical simulations of frictional spheres in a vari-
ety of flow geometries, ZK found that F (�) is constant at
two for � � 0.58, then falls rapidly for higher values of
�, reaching zero at � = 0.63, Fig. 2 in Ref. [11]. ZK note
that 0.63 corresponds approximately to random close packing
(�RCP). Physically, we expect a limiting behavior of F (�)
as � → �RCP, since granular materials become “frozen” at
�RCP. Additionally, for frictional systems, jamming occurs at
some �jam < �RCP, with �jam decreasing as the interparticle
friction coefficient increases. We note that ZK’s “downturn”
value of 0.58 is the �jam value for monodisperse spheres with
ZK’s friction coefficient [24].

Berzi and Jenkins [14] explained the shape of F (�) using
kinetic theory, for a system of frictionless spheres. They find
an agreement between their theoretical prediction and two
sets of numerical modeling results for the same system. Their
derived F (�) agrees with ZK’s in its shape, but differs in its
numerical values. First, the downturn occurs at a higher �

value, likely due to the absence of friction in Berzi and Jenkins
[14] system, so that �jam approaches �RCP. DEM simulations
have shown that the downturn in F (�) occurs at lower �

values as the interparticle friction coefficient is increased [15],
confirming this hypothesis. Second, the constant value for
F (�) at low � is higher (but still of order one). The low-�
constant depends on the coefficient of restitution e of the
particles, but for ZK’s significantly lower e of 0.1, Berzi and
Jenkins [14] predict an even higher value of F (� = 0.5) ≈
11. (See the SM [22] for details). We therefore deduce that
the presence of friction in ZK’s system renders the numerical
predictions of Ref. [14] unsuitable so that we are unable to use
their equations to predict the low-� constant for our frictional
system, which has the additional difference of being in 2D.
However, our similar coefficient of restitution to ZK’s may be
responsible for our similar low-� value.

Experimental measurement of F (�) in a 2D system by
Fazelpour et al. [17] shows a similar shape to ZK’s, but a
limiting value of 0.1 at low �, Fig. 2(a). The reason for the
order of magnitude difference between this value and those
found here and by ZK is unclear, although it may be to do
with the inertial numbers of the system of Fazelpour et al.
[17] being a few orders of magnitude lower than ours.

Thus, previous numerical research in 3D has found a single
form for F (�), whose shape can be explained by kinetic
theory. The precise numerical values depend on the system
parameters, but it always vanishes at �RCP, and the downturn
likely begins around �jam. The kinetic theory argument is di-
mensionally independent [14,25], so we expect our 2D system
to display this same form of F (�): constant at lower values,
with a downturn at �jam and vanishing at �RCP.
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FIG. 2. (a), (b) F (�) for the rough and smooth bases. Dashed gray lines show 2D values for �jam = 0.82 and �RCP = 0.843 [23,24].
F (�) for the rough base clusters around a constant average value of 2.12 with a standard deviation of 0.52. We also plot a 2D analog of the
F (�) predicted by ZK, with the � values for the downturn and vanishing points translated into a 2D system with our value of particle friction
(dashed line) and plot experimental data points from another work (circle markers: see [17] for details of the experimental parameters). The
smooth base is much less clustered, with a mean of 2.79 and a standard deviation of 2.10. We therefore fit F (�) for the rough base as a
constant value of 2.12 [black line in (a)], but we do not fit F (�) for the smooth base. (c), (d) Correlation plots of the two fluidity definitions,
Eq. (2) against (1), for the same data. Both plots use F (�) = 2.12 from the rough base data. The black lines show the theoretical relationship,
(δv/d )F (�) = γ̇ /μ. F (�) cannot be convincingly calculated for the smooth base, so the correlation is plotted using the F (�) calculated
from the rough base. Although a clear correlation is no longer observed, the points loosely cluster around the theoretical prediction. The inset
figure plots δv/d against γ̇ /μ without including F (�). Values within 2d of the free surface or base, or within the quasistatic basal wedge, are
plotted in fainter colors as they are affected by coarse graining and proximity to a boundary, and are therefore excluded from the analysis.

The values of �jam and �RCP depend on the dimension-
ality, polydispersity, and particle friction coefficient of the
system. �RCP for a 2D system with our polydispersity value is
approximately 0.843 [26], identical to that of the commonly
tested bidisperse 2D system [24]. We therefore assume that
our value for �jam is also very close to the bidisperse value
at the appropriate particle friction coefficient. We use the
yield stress ratio, 0.26, as the best available approximation
for our particle friction coefficient [19]. By interpolation of
the frictional dependence of �jam for a bidisperse 2D system
given in [24], we thus estimate our �jam ≈ 0.82.

We can thus “translate” ZK’s functional form of F (�) to
our system using the relevant �jam and �RCP, Fig. 2(a), and
see that it qualitatively compares to our data. (See the SM [22]
for details.) As the majority of our � values are below �jam,

the absence of a significant downturn in our F (�) is to be
expected, and we restrict ourselves to fitting a constant value
for F (�) for our dataset, using the average value of all of the
points.

We note that our boundary conditions are qualitatively
different from ZK’s: we have a free surface flow as opposed to
their confined flow, which prevents us from accessing higher
� values. It would be illuminating to carry out further experi-
ments in a more confined geometry, to reach higher � values
and ascertain whether F (�RCP) does indeed vanish for 2D
frictional systems.

Although we cannot change our free surface boundary
condition, we can change our basal boundary conditions. Hav-
ing shown that gmicro = gmacro for the rough base, we now
present the smooth base data, which lacks the quasistatic basal
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particles of the rough base. Figures 2(b) and 2(d) plot F (�)
and gmicro against gmacro for this dataset. The results show clear
differences to the rough base results, indicating the impor-
tance of the basal boundary condition for this theory. For the
smooth base, F (�) is much less clustered, with a mean of 2.79
and a standard deviation of 2.10, Fig. 2(b). Thus, in contrast
to the rough base data, it is not sensible to fit a single form of
F (�). Plotting gmicro against gmacro for the smooth base, using
the rough base value of F (�) = 2.12, shows no correlation,
Fig. 2(d).

We therefore conclude that the proposed microscopic fluid-
ity definition holds in our experimental system for the rough
basal boundary condition. In contrast, the relationship does
not hold for the smooth basal boundary condition, indicating
the importance of boundary conditions to the validity of the
definition and the need for further work in this area.

Future improvements to our experimental setup could re-
sult in higher quality data. By simultaneously recording our
experiments with a nonpolarizing camera, we could image
the particles with improved contrast, allowing higher accuracy
in our position and velocity measurements. It would also be
valuable to perform experiments at higher volume fractions,
to experimentally test whether F (�) drops as � → �RCP, as
found previously [11–14,17]. Previous work using our exper-
imental setup has found that the force chain fluctuation rate is
also correlated with the fluidity [19], implying a relationship
between force chain and velocity fluctuations that may be
illuminating to investigate.

As the granular fluidity is key to many proposed nonlocal
descriptions of granular flows, but has no widely agreed-upon
definition [5], this experimental insight into its microscopic
origins is a profound contribution to current research into the
nature and role of fluidity in granular systems. In particular,
this definition provides a link between granular fluidity and
kinetic theory as approaches in nonlocal modeling of granular
systems [14].

To conclude, we have found experimental evidence to
support the theory that the nonlocal granular fluidity on a
microscopic level is due to spatial fluctuations of the in-
dividual particle velocities. We show that the validity of
the theory depends on the basal boundary condition of the
flow.
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