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Scaling of surface roughness in film deposition with height-dependent step edge barriers
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We perform kinetic Monte Carlo simulations of film growth in simple cubic lattices with solid-on-solid
conditions, Ehrlich-Schwoebel (ES) barriers at step edges, and a kinetic barrier related to the hidden off-plane
diffusion at multilayer steps. Broad ranges of the diffusion-to-deposition ratio R, detachment probability per
lateral neighbor, ε, and monolayer step crossing probability P = exp [−EES/(kBT )] are studied. Without the
ES barrier, four possible scaling regimes are shown as the coverage θ increases: nearly layer-by-layer growth
with damped roughness oscillations; kinetic roughening in the Villain-Lai–Das Sarma (VLDS) universality class
when the roughness is W ∼ 1 (in lattice units); unstable roughening with mound nucleation and growth, where
slopes of logW × log θ plots reach values larger than 0.5; and asymptotic statistical growth with W = θ1/2

solely due to the kinetic barrier at multilayer steps. If the ES barrier is present, the layer-by-layer growth crosses
over directly to the unstable regime, with no transient VLDS scaling. However, in simulations up to θ = 104

(typical of films with a few micrometers), low temperatures (small R, ε, or P) may suppress the two or three
initial regimes, while high temperatures and P ∼ 1 produce smooth surfaces at all thicknesses. These crossovers
help to explain proposals of nonuniversal exponents in previous works. We define a smooth film thickness θc

where W = 1 and show that VLDS scaling at that point indicates negligible ES barriers, while rapidly increasing
roughness indicates a small ES barrier (EES ∼ kBT ). θc scales as ∼ exp (const × P2/3) if the other parameters are
kept fixed, which represents a high sensitivity on the ES barrier. The analysis of recent experimental data in the
light of our results distinguishes cases where EES/(kBT ) is negligible, ∼1, or �1.

DOI: 10.1103/PhysRevE.108.064802

I. INTRODUCTION

The growth of thin solid films has been a topic of in-
tense research in the last decades due to the large number
of applications of these materials [1–3]. When the films are
produced by vapor deposition with thermal velocities, large
oriented crystalline grains may grow if the adsorbed material
relaxes to low-energy configurations by diffusive transport.
During this relaxation, adsorbed atoms or molecules on grain
facets have to overcome activation energy barriers which
usually increase at step edges, leading to rates of interlayer
transport smaller than those of intralayer transport. The step
edge barriers were first recognized in the works of Ehrlich
and Schwoebel [4,5], so they are abbreviately termed ES
barriers.

The effect of thermal relaxation on the morphology of
growing films is described by several models [6–8]. In the
simplest cases, energy barriers for adatom hops depend only
on the numbers of nearest neighbors (NNs) on the lattice; this
is the case, for instance, of the deposition model of Clarke
and Vvedensky (CV) [9]. If no ES barrier is present, the
films grow with self-affine surfaces [8,10], in which rough-
ness and correlations scale as power laws of the time and
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of the observation length as predicted by the Villain-Lai–Das
Sarma (VLDS) growth equation [11–14]. In the presence of
ES barriers, the limited interlayer transport leads to much
faster roughening and mound formation [6]. Several models
also considered downward funneling (DF) of the incoming
atoms or other mechanisms of transient mobility that lead to
mound coarsening [7]. However, no universal picture of the
roughening with ES barriers was obtained yet, as recently
discussed by Schneider et al. [15].

An additional problem appears in models based on simple
cubic (SC) lattices and on the solid-on-solid (SOS) condition,
which precludes the formation of overhangs in the deposi-
tion direction. Consider, for instance, the adatom hops from
A to A′ and from B to B′ shown in Fig. 1(a). The rotated
image of Fig. 1(b) suggests that a displacement from A to
A′ requires a diffusive motion on a [100] terrace after the
adatom crosses the step edge; this differs from the displace-
ment from B to B′, which only requires the crossing event.
The [100] terrace is physically equivalent to the [001] terraces,
but adatom diffusion on [100] (and [010]) terraces cannot
be explicitly represented in SOS models because overhangs
would be formed. To account for that out-of-plane diffusion
process, Leal et al. [16] proposed a one-dimensional random
walk that reduces the hopping probability by a factor depen-
dent on the height difference between the initial and final
points [see Eq. (4) in the next section]. In this model, a kinetic
barrier originating from the hidden out-of-plane diffusion is
combined with the ES barrier.
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FIG. 1. (a) Two adatoms at positions A and B (red) hop to po-
sitions A′ and B′ (open magenta squares). The other adatoms of the
film are in blue. (b) The same sample rotated 90◦ to the left shows
that the adatom hop from A to A′ represents the step edge crossing
and the diffusion on a [100] plane.

Formerly, the study of homoepitaxial growth with this ki-
netic barrier also considered DF of the incident atoms [16].
Simulations without the ES barrier showed VLDS scaling
with very small roughness, and simulations with the ES bar-
rier showed a time increase of the roughness as ∼t1/3. In
recent applications to the early stages of heteroepitaxial film
growth, the combination of those barriers was also considered
[17,18]. However, no universal picture of kinetic roughening
regimes emerged from those works.

The present work fills this gap by studying a minimal
model that includes the ES barrier and the kinetic barrier
generated by the hidden out-of-plane diffusion in simple cubic
lattices. Surface relaxation is described as in the CV model,
with no mechanism of transient mobility after atom adsorp-
tion. In the growth without the ES barrier, our kinetic Monte
Carlo simulations show four possible scaling regimes depend-
ing on the interplay of the material energetic, the growth
temperature, and the film thickness: damped layer-by-layer
growth, kinetic roughening in the VLDS class [11,12], un-
stable roughening with mound nucleation and growth, and
statistical growth (SG) with roughness scaling as W = t1/2

[6,7]. When the ES barrier is present, no evidence of a VLDS
regime is found and the onset of unstable roughening has a
remarkable sensitivity on that barrier. The scaling relations
of the roughness and of correlation lengths obtained here are
similar to those of some recently studied materials, and the
transition from layer-by-layer growth to a linear time scaling
of the roughness, obtained with small ES barriers, is in qual-
itative agreement with that of diindenoperylene (DIP) films
deposited on SiO2 [19].

II. MODEL AND METHODS

A. Deposition model

The deposit has a SC structure with sites of edge a and
all measured lengths are given in units of a. The flat sub-
strate is located at z = 0 and substrate atoms are immobile.
Each deposited atom or molecule occupies a single lattice site
at z � 1. For simplicity, they are hereafter termed adatoms,
although applications to molecular films will be discussed.
Periodic boundary conditions are considered in the x and y
directions. Solid-on-solid conditions were considered, so the
deposits have no pores. The set of adatoms with the same
(x, y) position is termed a column of the deposit and the height
variable h(x, y) is the z coordinate of the topmost adatom in
that column.

The atomic flux is collimated in the −z direction with a rate
of F atoms per substrate site per unit time. A column (x, y) is
randomly chosen for each incident atom, which adsorbs as it
lands at the top of that column. Desorption is neglected in our
model.

The adatoms at the top of the columns may execute surface
diffusion, while those located below the column tops are im-
mobile (but they become mobile if the adatoms above them
hop to other columns). When an adatom attempts to hop,
the target direction is randomly chosen among the four NN
columns, ±x or ±y. The rate of an intralayer hop (i.e., hop
without change in the z position) of an adatom with n lateral
NNs is

D = D0ε
n, (1)

where D0 is a terrace diffusion coefficient

D0 = ν exp [−ES/(kBT )] (2)

and

ε ≡ exp [−EB/(kBT )] (3)

is a detachment factor (corresponding to detachment from
lateral NNs). Here, ν is a frequency, while ES > 0 and EB > 0
are activation energies, kB is the Boltzmann constant, and T is
the substrate temperature.

Interlayer adatom hops have the rates of Eq. (1) multiplied
by a probability Phop, which incorporates the ES barrier and
the kinetic barrier related to out-of-plane adatom diffusion
[Fig. 1(b)]. Following the reasoning of Ref. [16], we consider

Phop = P

1 + P(�h/a − 1)
, P = exp [−EES/(kBT )], (4)

where EES is the ES energy barrier. With this form, Phop = P
is recovered in monolayer steps (�h = a), which is the case of
the hop from B to B′ in Fig. 1(b). The same probability Phop is
considered for downward and upward motion; thus, the full set
of adatom hopping rules satisfies detailed balance conditions.

The deposition and the diffusion of some adatoms are il-
lustrated in Fig. 2, with the corresponding rates. The hopping
rates on the substrate and on the deposit are the same. This is
a typical assumption for homoepitaxial growth, but the results
obtained after the deposition of several atomic or molecular
layers do not depend on this initial condition and may also be
compared with results of heteroepitaxial growth.
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FIG. 2. Possible hops (arrows) of some adatoms (light blue) with
hopping rates of the form Dεn and hopping probabilities Phop for
crossing step edges; intralayer hops have Phop = 1 (not shown). Ob-
serve that the hopping rates depend only on the adatom neighborhood
while the hopping probabilities depend on the target site of the hop.

For a given deposited material, the set of activation
energies is constant. The deposition conditions are then char-
acterized by three dimensionless parameters: the detachment
factor ε [Eq. (3)], the ES probability P [Eq. (4)], and the
diffusion-to-deposition ratio on terraces,

R = D0

F
= ν̃ exp [−ES/(kBT )], (5)

where ν̃ = ν/F . At high temperatures, the average number
of hops of an adatom (predominantly on large terraces) is
proportional to R, but slower scaling with this parameter is
found at low temperatures [20].

Previous works on deposition models with the kinetic bar-
rier of Eq. (4) also considered downward funneling (DF) of
incident atoms, in which they are scattered to NN columns
with smaller heights or with higher coordination [16,21]. Such
mechanisms allow the incident atoms to bypass the barriers
at high multilayer steps. However, our aim is to distinguish
the universal effects of the step edge barriers, so we do not
consider those transient mobility mechanisms.

B. Quantities of interest

The dimensionless film thickness (or coverage) is denoted
as

θ = Ft . (6)

This is the average number of deposited atoms per column at
time t , or number of deposited layers.

The surface fluctuations are characterized by the film’s
roughness

W = √
W2 = 〈( h̃2 )〉1/2

, h̃ ≡ h − h, (7)

where the overbars denote a spatial average over the whole
sample and the angular brackets denote an average over dif-
ferent configurations with a given thickness.

In kinetic roughening processes in wide substrates, the
roughness is expected to scale as

W ∼ θβ, (8)

where β is called the growth exponent. This scaling may be
investigated with the calculation of local slopes of the logW ×

log θ plots, which are defined as effective growth exponents:

βeff = d(logW )

d(log θ )
. (9)

From simulation data, βeff is calculated in appropriately cho-
sen time intervals, which must be large enough to reduce the
effect of statistical fluctuations in W but small compared to
the total simulation times.

The spatial correlations along the surface can be character-
ized by the autocorrelation function �. At a distance s, it is
defined as [22]

�(s) = 〈h̃(
r0)h̃(
r0 + 
s)〉
W2

, s ≡ |
s|, (10)

where W2 is given in Eq. (7) and the configurational average is
taken over different initial positions 
r0, different orientations
of 
s (directions x and y), and different deposits. At any time,
� = 1 for s = 0.

The correlation of height fluctuations may be characterized
by the correlation length ξ defined by [22]

�(ξ ) = e−1 ≈ 0.3679. (11)

In kinetic roughening processes, this length is expected to
scale as

ξ ∼ θ1/z, (12)

where z is the dynamical exponent.
In mounded surfaces, the average mound size is approx-

imately twice the position λ of the first minimum of the
autocorrelation function [22]:

d�

ds

∣∣∣∣
λ

= 0. (13)

Here we do not discuss additional quantities because they
may have crossovers that impair the physical interpretations,
as shown in recent studies of height distributions of the CV
model [23] and of surface fractal dimensions of limited mo-
bility models [24].

C. Basics of kinetic roughening

In order to describe growth dominated by adatom surface
diffusion in the hydrodynamic limit, Villain, Lai, and Das
Sarma [11,12] proposed the so-called VLDS equation

∂h(
r, t )

∂t
= ν4∇4h + λ4∇2(∇h)2 + η(
r, t ), (14)

where h(
r, t ) is the height at position 
r and time t in a
d-dimensional substrate, ν4 and λ4 are constants, and η is
a Gaussian, nonconservative noise. The contribution of the
average external flux is omitted in Eq. (14).

The VLDS equation provides a coarse-grained represen-
tation of several lattice models in which adatom diffusion
controls the surface relaxation; the corresponding coefficients
ν4 and λ4 and the noise amplitude depend on the rules of each
model. Such models are said to belong to the VLDS univer-
sality class. In three dimensions (d = 2), the best numerical
estimates of scaling exponents of this class are β ≈ 0.20 and
z ≈ 3.3 [14,25–27], which agree with two-loop renormaliza-
tion estimates β ≈ 0.199 and z ≈ 3.36 [28].
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TABLE I. Parameter sets used in the simulations. The last col-
umn corresponds to the maximal EES used, corresponding to P =
0.01.

Set ES (eV) EN (eV) T (K) R ε Max EES (eV)

A 0.667 0.166 300 6.3 × 102 0.0016 0.119
B 0.667 0.133 300 6.3 × 102 0.0058 0.119
C 0.725 0.164 350 3.6 × 103 0.0043 0.139
D 0.725 0.131 350 3.6 × 103 0.013 0.139
E 0.805 0.266 400 7.2 × 103 0.00044 0.159
F 0.805 0.133 400 7.2 × 103 0.021 0.159
G 0.839 0.188 450 4.00 × 104 0.0079 0.179
H 0.839 0.150 450 4.00 × 104 0.021 0.179
I 0.923 0.333 500 4.98 × 104 0.00044 0.198
J 0.923 0.170 500 4.98 × 104 0.021 0.198
K 0.954 0.210 550 1.80 × 105 0.012 0.218
L 0.831 0.366 550 2.38 × 106 0.00044 0.218
M 0.908 0.200 600 2.38 × 106 0.021 0.238

The CV model without step edge barriers [i.e., Phop = 1 in
Eq. (4)] is theoretically predicted to belong to the VLDS class
[29], which is confirmed by simulations [13,14,30]. Simula-
tions in a broad range of parameters confirm this prediction
and show that the roughness can be written as [13]

W = fCV

(
θ

R3/2[ε + c]

)
, (15)

where fCV is a function that scales as fCV (x) ∼ x0.20 for x 
 1
(i.e., β ≈ 0.20) and c ≈ 0.025.

When the film growth occurs without interlayer transport,
the roughness scales as [6]

W = θ1/2 (16)

(i.e. β = 1/2), which is termed statistical growth (SG).
There are also cases of unstable roughening in which the

surface peaks grow faster than the valleys. If different growth
velocities persist at long times, the height fluctuations linearly
increase in time, i.e., with β = 1.

D. Simulation parameters

Table I shows the sets of parameters of the CV model used
in the simulations, which are labeled from A to M. In order to
choose these sets, we first choose values of ν, F , ES , and EB.
The typical value ν = 1013 s−1 and a small flux F = 0.1 s−1

give ν̃ = 1014 in Eq. (5). The energy values that describe the
growth of metal and semiconductor films generally obey the
relation ES > EB, so this relation is obeyed in all simulated
sets. Since our aim is to scan a broad range of deposition
conditions, we attempted to vary the dimensionless parame-
ters R and ε by some orders of magnitude; consequently, for
most energy sets, simulations in only one temperature were
performed.

The values of EES used in the simulations of each param-
eter set varied between zero (no ES barrier, P = 1) and the
maximal value listed in Table I. The strongest ES barrier in all
cases corresponds to P = 0.01.

The maximal film thickness is θ = 104 in most parameter
sets. For deposition of atoms or molecules with diameters

typically in the range 0.2–2 nm, the maximal simulated thick-
nesses are roughly 2–20 µm. The only exceptions are sets
A, B, and C, in which simulations up to θ = 106, 105, and
105 were performed, respectively. For each parameter set, the
number of generated deposits varied from 10 to 100.

The fluctuations of the average quantities among the sim-
ulated deposits were small, as shown in Appendix A. This
justifies the relatively small number of configurations used
for the averaging. Moreover, it shows that the uncertainties
of the data points are sufficiently small to justify not plotting
the error bars throughout this work.

The lateral size of the substrate and of the simulated de-
posits is L = 1024a. It was checked to be large enough to
avoid finite-size effects on the calculated quantities, as shown
in Appendix B.

The simulations were implemented with the kinetic Monte
Carlo (KMC) algorithm described in detail in Ref. [31] and
summarized in Appendix C.

III. RESULTS

The presentation of results hereafter refers to model param-
eters by the labels in Table I [from A to M, which set the pair
(R, ε)] and to the value of P.

A. Growth with large ES barriers

Here we analyze the results of simulations with P = 0.01,
which corresponds to EES ≈ 5kBT (the maximal values of EES

in Table I).
Figure 3 shows top and cross-section views of a film grown

with the parameter set M and four thicknesses. This is the
set with the highest adatom mobility studied here. Islands
nucleate at the substrate and give rise to mounds, which con-
tinuously grow vertically but have little change in their lateral
sizes. Thus, the dynamics of the formation of the first layers
control the mound size. Similar features are observed for
other parameters sets, though with smaller islands. A notable
feature at the longest times is the formation of ridges aligned
in (±1,±1, 0) directions, which is a consequence of a slow
coarsening of neighboring mounds.

Figure 4(a) shows W as a function of θ in films grown
with sets F, I, and M, which span more than two orders
of magnitude of R and two values of ε. In all cases, the
roughness follows a power-law relation with slope ≈0.5 as
in SG [Eq. (16)]. However, the prefactors of that relation are
0.6–0.8 in the thickest films, θ ∼ 104. This is consistent with
negligible mass flux between the mounds, which leads to an
effectively random (uncorrelated) deposition [10] at the scale
of the mound size.

Figure 4(b) shows the autocorrelation function of films
grown with set I with thicknesses from 10 to 104. The small
differences between the curves indicate that the associated
correlation lengths ξ and λ increase very slowly in time. This
confirms the negligible coarsening of mounds. The formation
of ridges, shown in Fig. 3, does not affect those characteristic
lengths because those structures are elongated in only one
direction.

The main features discussed above were already observed
in homoepitaxial growth models with strong ES barriers but
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FIG. 3. Vertical cross sections and top views of parts of the deposits grown in simulations with set M and P = 0.01. All lengths are in units
of the lattice constant.

without the kinetic barrier. In heteroepitaxial growth, if the
substrate effects disappear after the formation of a continuous
film, the mounds will grow with the same sizes as in the
present model. However, in such cases, the adatom diffu-
sion coefficient on the substrate differs from that on the film
surface, which may lead, e.g., to growth of islands on the sub-
strate. These initial growth features, including the nontrivial
variations of the roughness when the islands coalesce, were
analyzed in recent works [17,18].

B. Growth with the kinetic barrier only (EES = 0, P = 1)

1. Evolution of film morphology

Figures 5(a)–5(c) show top and cross-section images of
deposits grown with parameter sets A, F, and M, comprising
three orders of magnitude of the thickness. Set A is the case
with the lowest adatom mobility. When the film has small
numbers of layers (θ = 10–102), the surface only shows some
asperity, but at θ ∼ 103 it has mounds of irregular shape
separated by narrow gaps. This irregular mound pattern devel-
ops deeper gaps in the largest thicknesses (θ ∼ 104). For the
intermediate values of R and ε, the parameter set F [Fig. 5(b)]
produces smooth surfaces from 10 to 104 deposited layers.

FIG. 4. (a) Evolution of the surface roughness of films grown
with sets F (black), I (red), and M (blue), with the highest ES barriers
(P = 0.01). The dashed line is the SG of Eq. (16). (b) Autocorrela-
tion function of films grown with set I and P = 0.01 at the indicated
times. All lengths are in units of the lattice constant.

At θ = 10, the surface has a wide terrace with shallow valleys
and monolayer islands with disordered borders. In the thickest
films (θ = 103–104), wide mounds and shallow valleys are
formed [respectively yellow and black tones in Fig. 5(b)],
whose lateral sizes are apparently increasing in time. When
the film is grown with the largest adatom mobilities [set M,
Figs. 5(c)], wide terraces appear until the largest thicknesses,
while monolayer valleys and islands have smooth borders.

2. Surface roughness

Figure 6(a) shows the evolution of the surface roughness
in films with small thicknesses (θ � 30) grown with five
parameter sets. In films grown with R > 103 (all sets except
A and B), oscillations are observed when the roughness is
0.5 or smaller, which indicates approximately layer-by-layer
growth. As the adatom mobility increases, the oscillations
persist at longer times; in sets L and M, they are observed
until θ > 102. During the oscillations, the maxima W ≈ 0.5
are obtained nearly at half-integer θ . The minima are obtained
nearly at integer θ and are typically above W ≈ 0.2, which
means that perfectly flat surfaces are not obtained in those
conditions. The oscillations are damped because the minima
of W increases as the film grows, indicating that the deviation
from the perfect filling increases.

Figure 6(b) shows W in the whole range of θ of the simu-
lations with the same parameter sets. For better visualization,
the plots are built with constant intervals of log θ between
consecutive data points, so the initial roughness oscillations
may be hindered or distorted in some cases. Figure 6(c) shows
the evolution of the corresponding effective growth exponents
[Eq. (9)].

In the films grown with set A, the small roughness at
θ � 102 is consistent with the smooth surfaces observed in
Fig. 5(a). Subsequently, W grows with increasing slope βeff

until ∼104 layers. This suggests unstable roughening, which
physically corresponds to the formation of the mounds of
irregular shape separated by deep gaps, as shown in Fig. 5(a).
However, the effective exponent βeff decreases for larger
thicknesses, which means that the unstable growth is also
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FIG. 5. Top and cross-section views of parts of the deposits grown with sets (a) A, (b) F, and (c) M with P = 1. All lengths are given in
lattice units.

transient. The convergence to the exponent 0.5 of SG
[Eq. (16)] is suggested in Fig. 6(c).

The films grown with set C have small roughness until θ ∼
104, but the roughening is much faster in the subsequent time
or thickness decade. This is confirmed by the rapid increase
of βeff , which reaches values much larger than 0.5. Com-

pared with set A, these results show that the higher adatom
mobility of set C delays the instability, but it becomes more
pronounced. In the largest thicknesses, βeff begins to decrease.

These features are consistent with the expectation of a
universal SG asymptotically. Additional support is provided
by the evolution of the adatom current, which tends to zero at
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FIG. 6. Evolution of (a) surface roughness at short times, (b) sur-
face roughness at all simulated times, and (c) effective growth
exponent of films grown with sets A (black), C (red), F (blue), J
(green), and M (purple), with P = 1. All lengths are in units of the
lattice constant.

long times, as shown in Appendix D. Such an expectation is
reasonable because the symmetries of the interactions are the
same for all values of the model parameters.

The films grown with set F have small roughness (between
1 and 2) until θ ∼ 104 and the exponents βeff slowly increase.
In the films grown with sets J and M, the oscillations of the
roughness are followed by a slow increase of that quantity.
The large fluctuations in βeff , particularly in set M, are conse-
quences of the large relative fluctuations of W . From the point
of view of applications, an important consequence of these
results is that, without the ES barrier, the asymptotic SG can
hardly be observed up to 104 deposited layers, which typically
means a thickness of a few micrometers.

3. Correlation lengths

Figure 7(a) shows the correlation length ξ [Eq. (11)] and
Fig. 7(b) shows the length λ [Eq. (13)] as functions of the
thickness for the same parameter sets of Figs. 6(a)–6(c). In

FIG. 7. Evolution of (a) correlation length ξ and (b) characteris-
tic length λ of films grown with sets A (black), C (red), F (blue), J
(green), and M (purple), with P = 1. In (b), the dashed line has the
slope 0.30 of the correlation length in the VLDS class. All lengths
are in units of the lattice constant.

both plots, the dashed lines have the slope 0.30 of the corre-
lation length of the VLDS class, which is the class of the CV
model without step edge barriers.

In films grown with set A, both lengths slowly vary in time;
a similar result is obtained with set B. This is consistent with
the absence of coarsening of the mounds shown in Fig. 5(a)
due to the limited interlayer transport. Combined with the
trend of decrease of βeff in Fig. 6(c), these results confirm the
asymptotic SG as a consequence of the kinetic barrier alone.

The evolution of the correlation length ξ is very different
for different parameter sets. The log ξ × log θ plots of films
grown with sets C and F have downward curvatures, so reli-
able scaling exponents cannot be obtained; in set J, the plot
changes the curvature between θ = 102 and 103, and in set
M, ξ has very slow variation with the thickness (except for a
bump in the thickest samples).

On the other hand, the slopes of the log λ × log θ plots
are near the VLDS value 0.30 across three orders of the
thickness in sets C, F, J, and M. Similar behavior is observed
in films grown with other parameter sets. There is no mound
formation in those films up to θ = 104, so we understand that
the increase of λ is representing an increase in the distance
of neighboring peaks and valleys which have small height
differences.

4. Scaling relations

The features of films with small roughness, especially in
the regime of layer-by-layer growth, can be explained by
recalling results of previous studies of submonolayer growth
[32–35]. This is possible because the surface dynamics is
mainly controlled by a top layer above some completely
filled layers. First, in set M, εR1/5 ∼ 1 corresponds to a
high-temperature regime in which four-adatom islands on ter-
races may be unstable [35]. This explains the persistence of
roughness oscillations until large thicknesses and, after the
oscillations are damped, the very slow increase of the rough-
ness [Figs. 6(a) and 6(b)]. The same studies of submonolayer
growth show that two-adatom islands are stable for εR2/3 < 1,
while their instability is expected if εR2/3 � 10 [35]. The
former condition is observed in sets A and B, the latter is
observed in sets F–M, and sets C–E are in a crossover region.
The instability of two-adatom islands allows the formation of
large islands on terraces, which facilitates the layer-by-layer
growth. This explains why long roughness oscillations are
also shown in sets F–L [see data for F and J in Fig. 6(a)].
Instead, the stability of two-adatom islands with the param-
eter sets A and B implies almost irreversible aggregation of
adatoms to existing islands; thus, at short times, adatoms may
be at stable positions in several layers, which leads to surface
roughening instead of layer-by-layer growth.

As the films grow, the kinetic barrier is expected to play
a role when a significant fraction of the neighboring columns
have height differences >1 (in units of the lattice constant).
We expect that this occurs when W � 1. When W ∼ 1, the
effect of the kinetic barrier is still negligible, so the roughness
is expected to vary approximately as in the CV model without
step edge barriers, Eq. (15). Of course this is applicable after
the layer-by-layer regime with W � 0.5, so it is applicable to
a very narrow range of roughness.

064802-7



CARRASCO, TO, AND REIS PHYSICAL REVIEW E 108, 064802 (2023)

FIG. 8. (a) Scaling of the characteristic thickness of smooth films
for the indicated parameter sets with P = 1. (b) Surface roughness
as a function of the scaled thickness for the indicated parameter sets
with P = 1. All lengths are in units of the lattice constant.

In order to investigate the consistency of this interpretation,
we define the characteristic thickness θc of smooth films by

W (θc) = 1. (17)

Assuming that the roughness follows Eq. (15), we expect that
θc ∼ R3/2(ε + c), with c constant. Figure 8(a) shows that θc is
a function of a slightly changed variable R(ε + 0.007), with
the dashed line of slope 3/2 in the double logarithmic plot.
This leads to

θc ∼ [R(ε + 0.007)]3/2, (18)

i.e., the same power law on R obtained in the CV model with-
out step edge barriers [13], but a slightly different dependence
on ε. This confirms that a transient VLDS regime is present
when the roughness is small.

The transient VLDS scaling is also supported by the former
results for the roughness and for the length λ. The exponents
βeff in Fig. 6(c) are near the VLDS value ≈0.20 in films grown
with sets C and F when W ≈ 1. Moreover, the length λ in
Fig. 7(b) scales with an exponent near the VLDS value ≈0.30.
Interestingly, the VLDS regime is indicated by a length that
characterizes typical distances of peaks and valleys, in con-
trast with the correlation length ξ .

In Fig. 8(b), we show the film roughness as a function
of the scaled thickness θ/[R(ε + 0.007)]3/2 for several pa-
rameter sets. The data for most sets collapse into a universal
curve whose slope rapidly increases for θ � θc; this indicates

a crossover from the VLDS regime to unstable roughening.
The deviations from the collapse in sets A and B are probably
related to their small values of θc and consequent narrow range
of the VLDS transient. On the other hand, it is interesting
to observe that the oscillations of W in some sets behave as
wrappings of the universal curve of Fig. 8(b).

C. Growth with small ES barrier

Now we study the growth with small ES barriers,
0.1 � P � 0.8, corresponding to EES between ≈0.2kBT and
≈2.3kBT .

1. Surface morphology

The snapshots of a film in Fig. 9 were obtained with set F
and P = 0.4 (EES ≈ kBT ). For small thickness, θ = 10, the
film surface is relatively smooth. The comparison with the
films grown with P = 1 [Fig. 5(b)] shows no relevant differ-
ence in the morphology. When θ = 102, the top view shows
the nucleation of mounds separated by narrow gaps in films
grown with the ES barrier. However, the cross-section view
shows that the surface is globally smooth; i.e., the mounds
have very small slopes. When θ = 103, the mounds become
larger and the gaps between them are deeper, so that the
mounded morphology is also visible in the cross-section view.
Finally, in the largest thickness, those mounds have grown
vertically, but with negligible increase of the lateral size,
which indicates that mound coarsening is very slow. This is
consistent with a convergence to SG, as observed with larger
ES barriers (Sec. III A). These features contrast with those of
films grown with set F and P = 1, which have smooth surfaces
until θ = 104 [Fig. 5(b)].

2. Roughness and correlation length

Figure 10(a) shows the short-time evolution (θ � 20) of
the roughness in films grown with P = 0.1, the same sets of
R and ε of Fig. 6(a), and the additional set L. The films grown
with sets A, C, and F reach W = 0.6 before the deposition of a
single layer (θ = 1), so no oscillation is observed. With set J,
damped oscillations of the roughness are observed in the first
two to three layers and are followed by a rapid increase. With

FIG. 9. Top and cross-section views of parts of a deposit grown with set F and P = 0.4. All lengths are given in lattice units.
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FIG. 10. Surface roughness of films grown with (a) sets A
(black), C (red), F (blue), J (green), L (purple), and M (orange) with
P = 0.1 at short times and sets (b) D, (c) F, and (d) K with several P
until θ = 104. All lengths are in units of the lattice constant.

set M, the oscillations remain after the deposition of more than
20 layers. For comparison, the oscillations are damped much
faster in films grown with set L, in which R is the same as set
M but ε is smaller (see Table I). These trends show that nearly
layer-by-layer growth is facilitated if the adatom mobility is
sufficiently high on terraces and at island borders, where the
detachment factor ε becomes important.

Figures 10(b), 10(c), and 10(d) show the full roughness
evolution of films grown with sets D, F, and K, respectively,
for P ranging between 0.1 and 1 (different values of P were
chosen in each case). The insets of those plots show the
evolution of βeff for selected values of P. When W � 0.5,
i.e., in the conditions of layer-by-layer growth, the difference
between the growth with or without the ES barriers is always
small. However, after that regime, small changes in P lead
to large changes in the roughness evolution; as P decreases,
the unstable roughening begins at shorter times. The effect
of changing P is observed even when W ∼ 1, i.e., when the
surface is very smooth, because the ES barrier is active at any
surface step, contrary to the kinetic barrier, which is active
only for height differences 2 or larger. Thus, the crossover
thickness θc [Eq. (17)] is drastically affected by changes in
P, as will be discussed in Sec. III C 3.

The general trend of the roughening can be understood by
simultaneous inspection of the snapshots of Fig. 9 and the
roughness evolution in Fig. 10(c) for P = 0.4. When θ = 102

and the mounds are nucleated, the roughness is ≈1; i.e.,
this is close to the smooth film thickness of Eq. (17). The
mounded morphology differs from the self-affine morphology
of interfaces in the VLDS class, so a transient VLDS scaling
is not expected in this case. As the film grows to θ = 103,
the roughness increases to ≈10 and the presence of mounds
is clearer. The thickness interval 102–103 is where the peak in
βeff is observed, i.e., the region with the faster roughening,

FIG. 11. Characteristic length λ in the indicated sets, given in
units of the lattice constant.

which indicates the development of an instability. Similar
features are observed with other values of P < 1 in different
sets. In the largest simulated thicknesses, the trend of βeff to
converge to the SG value is observed in several cases. The
evolution of the adatom current shown in Appendix D and the
expectation of universality support the asymptotic SG for all
parameter values.

A common feature of all films grown with P < 1 is that
βeff � 0.5 when W ∼ 1. This is additional evidence that no
transient VLDS regime occurs when the ES barrier is present.
Thus, for high adatom mobility, the initial layer-by-layer
growth crosses over directly to the unstable growth. Indeed, in
that initial regime, as the islands at the top layer become suf-
ficiently wide, the ES barrier prevents the interlayer transport,
leading to second-layer island nucleation, as quantitatively
explained in Ref. [36].

Figure 11 shows the evolution of the length λ of films
grown with three parameter sets that lead to similar evolution
of the surface roughness in Figs. 10(a)–10(c). In particular,
W ∼ 1 at θ = 102 in all cases and the peak of βeff (the signa-
ture of the instability) occurs between θ = 102 and 103. In this
region, λ slowly varies; for instance, for set F and P = 0.4, λ

increases by a factor of ∼1.5, consistently with the widening
of the mounds in Fig. 9. In the last decade of time or thickness,
all plots show a trend of saturation, indicating that mound
coarsening does not occur.

3. Characteristic thickness of smooth films

Here we also define the characteristic thickness of smooth
film surface using Eq. (17). Our interpretation is that θc indi-
cates the onset of mound growth instead of a VLDS regime,
which was the case only without the ES barrier.

Figure 12 shows ln (ln θc) as a function of ln P =
−EES/(kBT ) for several parameter sets. The double
exponential form is suggested by the high sensitivity of
θc to variations in P, in contrast with the power-law relations
obtained in P = 1. In Fig. 12, the plots for constant values of
R and ε are fit by straight lines that lead to

θc ≈ exp
(
BP2/3), (19)
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FIG. 12. Characteristic thickness of smooth films as a function
of the ES barrier probability in films grown with several parameter
sets. Dashed lines are linear fits for each set, i.e., constant R and ε.

where B is a constant that depends on those parameters. Devi-
ations are observed only in growth with relatively low adatom
mobility (sets A and B) and with the highest mobilities (sets
L and M), in which the exponents of P in Eq. (19) change to
values ≈0.5.

Observe that R and ε depend on the temperature as well as
the parameter P, so the interpretation of the fits in Fig. 12 and
of Eq. (19) must be careful. For instance, if one attempts to
interpret them as Arrhenius plots (in which the variable in the
abscissa changes with the temperature), then the temperature
variation has to be so small that variations in R and ε can be
neglected, but not the variation in P.

The scaling relation (18) is not expected with P < 1 be-
cause there is no evidence of a transient VLDS scaling.
Indeed, if W is plotted as a function of θ/θc, no data collapse
is obtained. We also tried to extend the scaling plot of Fig. 8(b)
by including corrections in the form exp (Pα ) (α = 0.5–1)
in the variable of the abscissa, but also failed to collapse
the data of various sets with 0.1 � P � 0.75. Observe that
scaling relations for the roughness and for related quantities
are typically built to fit power laws, so it is not surprising that
they fail to fit the apparently exponential relations obtained
with the probability P [Eq. (19)].

IV. DISCUSSION

A. Summary of scaling regimes

Figure 13 illustrates the scaling regimes of the roughness
that can be observed only with the kinetic barrier (which
accounts for the hidden out-of-plane diffusion) and with the
addition of a small ES barrier.

At short times, both plots show the oscillations charac-
teristic of layer-by-layer growth, which are damped as the
film grows. The damping is related to the formation of sta-
ble islands on the top of larger islands, which prevents the
formation of flat surfaces for integer coverage θ . If the ES
barrier is present, the hopping rates are reduced at all step
edges, including monolayer steps, facilitating the nucleation
at multiple layers; a quantitative treatment is in Ref. [36]. If
the ES barrier is absent, the instability of islands with two
adatoms seems to be a necessary condition for the oscillations;

FIG. 13. Evolution of the roughness in films grown with set C
and P = 1 (red) and set G and P = 0.25 (blue). All lengths are given
in lattice units.

according to previous results of submonolayer growth, this is
achieved if εR2/3 � 10 [33,35].

If only the kinetic barrier is present, the layer-by-layer
regime is followed by roughening in the VLDS class [11,12],
i.e., the same universality class of the CV model without
step edge barriers [13]. The roughness range of this regime
is small, typically 0.5 � W � 3, but the thickness range may
be long (see data for set C and P = 1 in Fig. 13). The VLDS
roughening leads to the formation of an increasing density of
steps with height difference larger than 1, which activates the
kinetic barrier and reduces the interlayer transport. This leads
to a regime of unstable roughening, in which mounds nucleate
and begin to grow and the local slopes of the logW × log θ

plots may reach values larger than 1. Finally, as the mounds
become sufficiently high, the mass flux between them is
suppressed (there is no mechanism of transient mobility of
incident atoms in the model) and the convergence to SG is
observed.

If an ES barrier is present, the difference is the absence of a
transient VLDS regime. The restriction to interlayer transport
is always active, even at monolayer steps, so the instability
begins as soon as the layer-by-layer growth is suppressed. In-
deed, the nucleation of mounds can be observed when W ≈ 1,
i.e., in very smooth surfaces.

The observation of these scaling regimes in simulation
works and in real deposition processes strongly depends on
the working temperature, which controls the adatom mobil-
ity (R, ε) and the hopping probability at step edges (P).
Observe that four regimes are shown in set C with P = 1
(Fig. 13) because the simulations reached 105 layers; how-
ever, only two or three of those regimes are observed with
the other parameter sets with P = 1 and deposition of 104

layers (which usually corresponds to thicknesses of a few
micrometers). Moreover, with P � 0.01 (EES � 4.6kBT ), our
simulations show SG since early times. This explains the
difficulties of previous works to determine universal behaviors
in the presence of ES barriers, leading, e.g., to suggestions of
continuously varying exponents for the roughness scaling (see
Sec. IV C for relations with those works).

For quantitative studies of the crossovers between scaling
regimes, a suitable quantity is the smooth film thickness θc,
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defined as the thickness in which the roughness is equal to the
diameter of an atom or molecule [Eq. (17)]. If VLDS scaling
is observed at that point, it suggests that ES barriers are neg-
ligible. Instead, if the roughness is rapidly increasing at that
point (βeff ≈ 0.5 or larger), ES barriers are probably present.
For small ES barriers, our simulations suggest an exponential
dependence of θc on P if the other parameters are constant,
which implies a high sensitivity to the ratio EES/(kBT ). This
may eventually be explored to estimate activation energies.
Unfortunately, that type of exponential relation seems to pre-
vent the incorporation of the parameter P in scaling laws, in
contrast with the case without the ES barrier.

B. Possible applications

Several models of homoepitaxial growth of metal and
semiconductor films have already shown the effects of step
edge barriers on the scaling of surface correlations [6,7]. Thus,
this section has a focus on recent works on heteroepitaxial
growth which show scaling relations similar to those obtained
here. Evidently, such comparison is possible only when the
growth has lost the memory on the initial substrate pattern.

Recent studies of deposition of oxides [37] and sulfides
[38], using different techniques, showed growth exponents
β ≈ 0.5. Their fits of logW × log θ plots do not seem to be
influenced by the inclusion of data from relatively thin films.
Thus, in both cases, we believe that the results are indicative
of large ES barriers.

In recent works on chemical bath deposition of CdS on
glass [39] and electron beam evaporation of SnTe on quartz
[40], estimates of growth exponents β near 0.8 were obtained.
Concomitantly, the values of 1/z estimated from correlation
lengths are smaller than β, meaning that those lengths grow
slower than the height fluctuations. This is a signature of un-
stable growth and suggests the presence of small ES barriers,
i.e., EES � kBT [compare, for instance, with our results in
Figs. 10(b)–10(d) (insets with βeff > 0.5) and Fig. 11 (slowly
increasing length λ)].

In thermal evaporation of tin phthalocyanine dichloride
[41], the film structure changed according to the choice of
the substrate. The films grown on Si were amorphous and,
for roughness ≈2–4 nm, β = 0.21 ± 0.08 was obtained. The
films grown on glass were formed by triclinic crystallites and,
for roughness ≈2–6 nm, β = 0.48 ± 0.07 was obtained. The
growth units are molecules with characteristic sizes larger
than 1 nm, so those films are in a regime of relatively low
roughness (W ∼ 1 in units of the lattice constant). Notably,
the smoothest films (amorphous) show an exponent very close
to the VLDS value, while the roughest films (polycrystalline)
show an exponent close to the SG value. Since the structures
of those films are different, it is possible that different inter-
actions appear during their growth. If so, our results suggest
that ES barriers are present in the polycrystalline films, but are
much smaller (possibly absent) in the amorphous ones.

Finally, in organic molecular beam deposition of DIP
films on SiO2 (T = 120 ◦C), Zhang et al. [19] showed a
transition from layer-by-layer growth (roughness oscillations)
to an approximately linear increase of the roughness with
the thickness. A recent work shows that this transition can
be explained by strong intermolecular interactions near the

substrate [42]. However, a simpler alternative interpretation
of that transition is suggested by our results with small ES
barriers. For instance, Fig. 10(a) shows that a small ES barrier
and a high adatom mobility may lead to damped roughness
oscillations followed by an approximately linear increase (sets
H–M). This occurs with the same lateral interactions between
the molecules in different layers. Since the roughening is
highly sensitive to the value of the ES barrier, another possible
explanation for the transition is a slight increase of the ES
energy as the DIP films reach a certain thickness.

C. Relations with previous models

A previous investigation of kinetic roughening with the
kinetic barrier and the ES barrier also considered DF
of the incident atoms [16]. For a single parameter set with-
out the ES barrier, VLDS scaling for W � 1 was observed.
However, with the ES barrier, W ∼ t1/3 was obtained at large
thicknesses (θ ∼ 104), which is significantly different from
the SG obtained here. That power law is probably a con-
sequence of the DF mechanism, which may lead to mound
coarsening [43–45]. Other mechanisms may also contribute
to mound coarsening and slope selection when ES barriers are
present, such as corner diffusion [45] and transient mobility of
incident atoms [46,47]. However, none of these mechanisms
was present in our simulations.

Some authors studied the scaling of height correlations
with ES barriers (but without the kinetic barrier) in other lat-
tice structures. In modeling Fe/Fe(100) deposition up to five
layers and small roughness (W � a), Amar and Family [48]
showed significant differences in the roughening by varying
EES from 0 to 0.04 eV, which are small barriers. This parallels
our observation of a high sensitivity of the roughening with
the ES barrier. Simulations by Bartelt and Evans considering
DF showed an initial roughness oscillation followed by a
scaling W ∼ θ0.18 and skewed height distributions [47], in
agreement with experiments [49,50]. The VLDS class has
growth exponent β ≈ 0.20 [25] and skewed height distribu-
tions [14], so our results suggest the possibility of VLDS
roughening in those films; such a suggestion is based on the
assumption of universality because quantitative comparisons
with our results are not possible.

In a model of Ag/Ag(100) film deposition up to 2 × 103

layers, Caspersen et al. [51] showed oscillatory roughness at
small thicknesses (θ = 1–10) followed by a rapid increase of
the effective growth exponent βeff , beginning when W ∼ 1
(in lattice units). That exponent reached peak values between
0.45 and 0.8, depending on the temperature. At the largest
thicknesses, the roughening was slower, with βeff converging
to 0.25–0.3. These results also parallel those of our work,
although the inclusion of additional relaxation mechanisms
and the consequent mound coarsening will lead to smaller β.

Recently, Schneider et al. [15] studied the roughening and
mound coarsening of films grown in simple cubic lattices
with and without ES barriers, but considering mechanisms
of downward transport of incident atoms. The simulations up
to 103 layers revealed a variety of behaviors of the rough-
ness when it varied in the narrow range ≈0.3–3 (in lattice
units). The growth exponents β and the coarsening expo-
nents n estimated from the long-time behavior had remarkable
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dependence on the model parameters. Our results suggest that
the investigated thickness ranges are near or at an unstable
regime, which explains the exponent variability. However,
quantitative comparisons are not possible because that work
considered the relaxation of incident atoms.

Finally, we recall that the kinetic barrier (with or without
the ES barrier) was already considered in limited mobility
growth models [21] and in models of the initial stages of het-
eroepitaxial film deposition [17,18]. In the latter, the adatom
diffusion coefficients on the substrate were much larger than
those on the film surface. Thus, in simulations with relatively
small thicknesses, the roughness and the correlations were
strongly influenced by the initial conditions set by the film-
substrate interaction. This prevented a systematic study of the
effects of the kinetic barrier in those works.

V. CONCLUSION

We studied the Clarke-Vvedensky (CV) model of film
growth in simple cubic lattices and solid-on-solid conditions
considering Ehrlich-Schwoebel (ES) barriers for adatoms to
cross step edges and an additional kinetic barrier related to the
hidden off-plane diffusion at edges with heights larger than
one lattice constant. The latter barrier follows the proposal of
Ref. [16]. Kinetic Monte Carlo simulations were performed
in a broad range of values of the diffusion-to-deposition ratio
R, of the detachment probability ε, and of the probability P
associated with the ES energy barrier.

In the growth without the ES barrier, four scaling regimes
are identified: an approximately layer-by-layer growth at
small thicknesses θ , in which the roughness shows damped
oscillations with maxima W ≈ 0.5 (in units of the lattice
constant); a kinetic roughening regime in the VLDS class
when W ∼ 1; unstable roughening with mound nucleation
and growth, in which local slopes βe f f of logW × log θ

plots reach values larger (possibly much larger) than 0.5; and
asymptotic statistical growth (SG), W = t1/2, because mass
flux between the mounds is suppressed. However, in most
simulations until θ = 104 layers, only some of those regimes
are observed: in low-temperature conditions, the instability
develops at short times, while in high temperatures the rough-
ness may never reach 1 and only the layer-by-layer and the
VLDS regimes may be observed.

If the ES barrier is present, no evidence of a VLDS regime
is found, but the other regimes may be observed. Again, low
adatom mobility (low temperature) and high ES barriers sup-
press the initial layer-by-layer growth and possibly lead to SG
when a small number of layers is deposited.

We defined the smooth film thickness θc at the point in
which the roughness is equal to the diameter of an atom or
molecule. If the roughness has VLDS scaling at that point,
it suggests that ES barriers are negligible. Otherwise, if the
roughness is rapidly increasing at θc, typically with βe f f �
0.5, a small ES barrier (EES ∼ kBT ) may be present. The
simulations suggest that θc scales exponentially with ∼P2/3

if the other parameters are kept fixed, which represents a high
sensitivity to the parameter P.

The large number of crossovers observed in our sim-
ulations and their remarkable dependence on the model
parameters explain why previous simulation studies could

hardly show universal features in growth with ES barriers,
except for the predicted asymptotic SG. From the perspective
of applications, the discrimination of those scaling regimes
may be important for the estimation of growth parameters
such as the activation energies. Along these lines, we com-
pared values of growth and dynamical exponents obtained in
some recent experiments with our models and identified cases
in which those barriers are expected to be negligible, small
(EES ∼ kBT ), or large. However, quantitative comparisons are
usually difficult due to the simple features of the model and
the fact that most of the materials of interest do not have a
simple cubic lattice structure.

ACKNOWLEDGMENTS

F.D.A.A.R. acknowledges support from the Brazilian
agencies CNPq (Grant No. 305391/2018-6), FAPERJ (Grants
No. E-26/210.040/2020 and No. E-26/201.050/2022),
and CAPES (Grant No. 88881.700849/2022-01).
T.B.T.T. acknowledges support from CAPES (Grant No.
PNPD20130933-31003010002P7).

APPENDIX A: UNCERTAINTIES IN THE
SIMULATION DATA

The uncertainty of the roughness in each film thickness
is given by the standard deviation of this quantity in the
simulated samples. Figure 14(a) shows the roughness with
the corresponding uncertainties in films grown with set C and
P = 1, considering ten simulated samples. The size of the
error bars hardly exceeds the thickness of the curve which was
formerly shown in Fig. 6(b). The same is observed in the other
sets with all values of P.

The uncertainties in the lengths ξ and λ are the stan-
dard deviations of the values of these quantities obtained
from Eqs. (11) and (13) in different samples, respectively.
Figure 14(b) shows those lengths with the corresponding un-
certainties in films grown with set M and P = 1. This also
illustrates the general trend that the uncertainties are smaller
than the sizes of the data points.

APPENDIX B: ABSENCE OF FINITE-SIZE EFFECTS
IN THE SIMULATION DATA

When the films have smooth surfaces, typically with W �
5, finite-size effects are absent if the position λ of the first

FIG. 14. (a) Surface roughness of films grown with set C and
P = 1 with uncertainties. (b) Lengths ξ and λ of films grown with
set M and P = 1 with uncertainties. All lengths are given in lattice
units.
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FIG. 15. (a) Surface roughness and (b) autocorrelation function
of films grown with set K and P = 1 in lattice sizes L = 512 and
L = 1024. All lengths are given in lattice units.

minimum of the autocorrelation function is smaller than L/2
(which is the maximal length in which spatial correlations can
be calculated in systems with periodic boundaries). This is the
same approach used in our previous simulations of films in the
same thickness range [23,52]. The reliability of this method
for set K with P = 1 is illustrated in Figs. 15(a) and 15(b)
by comparing the roughness and the autocorrelation function,
respectively, obtained in lattices with L = 512 and L = 1024.
Observe that λ ≈ 250 in those simulations, so L = 512 is the
minimal length expected to provide size-independent results.
Instead, in the lattice size used throughout this work (L =
1024), simulations with all sets from A to K obey a more rigid
condition λ � L/4, which safely excludes the possibility of
finite-size effects. Sets L and M with P = 1 are the only ones
in which λ lies between L/4 and L/2.

When mounds are developed in the film surface (typically
with W � 5), lattice lengths much larger than λ are necessary
to ensure that the observed structures are not affected by the
lattice size. In these cases, we ensured that |�(L/2)| < 0.05;
i.e., the correlations were very small at the maximal distances
where they could be calculated. In these cases, we also ob-
tained λ < L/4 and some comparisons of results in L = 512
and L = 1024 confirmed the absence of finite-size effects.

APPENDIX C: SUMMARY OF THE KMC ALGORITHM

The L2 surface atoms have their positions (x, y) grouped
into five lists {Xn} according to the number of adatoms at
nearest-neighbor sites (n = 0, . . . , 4) at the same height z.
The position of a surface particle in a list Xn is stored in an
inverted-list matrix M(x, y).

FIG. 16. Adatom current in films grown with set B and the indi-
cated values of P. The lengths are in lattice units and the times are in
units of 1/F .

At each step of the simulation, the rates of all possible
events (namely, deposition and hop of one of the L2 sur-
face particles) are calculated and their sum is denoted as 
.
The probability of a deposition event is the ratio between its
rate and 
. Since all particles in each list Xn have the same
hopping rate, the probability of that list is the product of the
number of particles in the list and the hopping rate divided
by 
. The event to be executed is then chosen according to
those probabilities. In the case of choosing a list, one of its
particles is randomly chosen to hop, in a direction which is
also randomly chosen among four possibilities (±x, ±y); in
the case of a hop to a different layer, the hop is executed with
probability Phop, otherwise nothing occurs.

After a simulation step, the time is incremented by 1/


minus the natural logarithm of a randomly chosen number
in the interval (0, 1]; the latter contribution has a very small
effect on the total deposition time.

APPENDIX D: ADATOM CURRENTS

In a time interval �t , the adatom current φ in the vertical
direction is defined as the number of upwards movements
minus the number of downwards movements of all surface
atoms divided by L2�t . Figure 16 shows the evolution of φ in
films grown with set B and several values of P. In all cases,
the current has negative values, which means that downward
hops are more frequent than upward hops. This is expected
because the sites with the highest coordinations are usually
located at the lowest points. However, the monotonic increase
of the current suggests that the upward and downward hops
tend to be balanced at long times, thus leading to SG.
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