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Geometric method to determine planar anchoring strength for chromonics
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Chromonic nematics are lyotropic liquid crystals that have already been known for half a century, but have
only recently raised interest for their potential applications in life sciences. Determining elastic constants and
anchoring strengths for rigid substrates has thus become a priority in the characterization of these materials.
Here we present a method to determine chromonics’ planar anchoring strength. We call it geometric as it is
based on recognition and fitting of the stable equilibrium shapes of droplets surrounded by the isotropic phase
in a thin cell with plates enforcing parallel alignments of the nematic director. We apply our method to shapes
observed in experiments; they resemble elongated rods with round ends, which are called bâtonnets. Our theory
also predicts other droplets’ equilibrium shapes, which are either slender and round, called discoids, or slender
and pointed, called tactoids. In particular, sufficiently small droplets are expected to display shape bistability,
with two equilibrium shapes, one tactoid and one discoid, exchanging roles as stable and metastable shapes upon
varying their common area.
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I. INTRODUCTION

Liquid crystals come in two fashions: Thermotropic and
lyotropic. The former are condensed by reducing tempera-
ture, the latter by increasing concentration. Chromonic liquid
crystals (CLCs) are lyotropic; they are formed by certain
dyes, drugs, and nucleic acids. When added to water, these
microscopic compounds assemble into stacks of molecules,
giving rise to rodlike structures that constitute the anisotropic
components of the material. At appropriate temperatures
and concentrations, these constituents form a nematic phase,
which possesses only orientational order, or a more complex
columnar phase, which also exhibits a certain degree of posi-
tional order [1–5]. Here we shall be concerned with only the
nematic phase of CLCs.

Recent times have seen a surge of interest in these phases,
mainly because they are soluble in water and so promise to
have valuable applications in life sciences [6]. Indeed, success
has already been granted to the use of CLCs to detect the
presence of toxins and cancer biomarkes in simple devices
[7–9].

These and other applications rely on a proper characteriza-
tion of CLCs, including the determination of elastic constants
and anchoring strength on rigid substrates. Here we are espe-
cially interested in the latter. We shall propose a method to
determine the strength of planar anchoring for chromonics;
we call it geometric, as it is based on shape recognition and
fitting.

The primary motivation for our study came from the exper-
iment performed in [10] on two-dimensional bipolar droplets
of chromonic liquid crystals (CLCs) in the nematic phase
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at equilibrium with their isotropic phase, placed between
two parallel plates inducing uniform director alignment. The
bounding plates were patterned with submicron-scale linear
channels (equally aligned on both plates).

At sufficiently low CLC concentrations, the surface pattern
resulted in a preferential alignment of the supramolecular
stacks constituting the material with their axes along the sur-
face channels. For large enough concentrations, however, the
preferential alignment was still seen to lie on the bounding
plates, but at right angles with the surface channels, a phe-
nomenon confirmed and further analyzed in [11]. Here we
shall focus attention on the concentration regime for which
channels tend to align stacks along their axis. Substrates with
this property will be called aligning.

Experiments showed essentially two-dimensional droplets
bearing a bipolar director field n with only in-plane com-
ponents. It is precisely the stable equilibrium shape of these
droplets that will be used to determine the anchoring strength
of the bounding plates.

The paper is organized as follows. In Sec. II we extend
the model employed in [12] for degenerate substrates, that
is, substrates for which no easy axis is prescribed on the
bounding plates. Our analysis will build on our previous work,
but we shall thrive to present it in a self-contained manner,
leaving out only details that can be easily retrieved. In Sec. III
we present our method and apply it to an exemplary case taken
from [10]. Special care is given in Sec. III A to make sure that
the droplets under study are neither too small nor too large
to question the tangential anchoring of the nematic director at
their isotropic interface, which is a prerequisite of our anal-
ysis. Section IV is devoted to illuminate a typical bistability
phenomenon, which we predict to occur for sufficiently small
droplets: two different types of shapes coexist at equilibrium,
one stable and the other metastable, exchanging their roles
at a critical value of the area. Finally, in Sec. V we collect
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the conclusions of this study. Two Appendixes contain further
mathematical details needed to justify a few key passages in
our development.

II. FREE BOUNDARY PROBLEM

In this section we present our mathematical theory focused
on solving a free boundary problem within a specific class of
shapes and director fields.

A. Energetics

We shall denote by n the director field, which represents
on a macroscopic scale the average orientation in space of the
supramolecular stacks that constitute a CLC. A solid body of
experimental evidence (see, for example, [13–15]) suggests
that the ground state of CLCs is not the one with n uniform in
space, as customary in ordinary nematics, but a distorted one,
often characterized as a double twist.

To appreciate this better, we recall that according to the
decomposition of ∇n proposed by [16] and reprised and rein-
terpreted by [17] we can write

∇n = −b ⊗ n + 1
2 T W(n) + 1

2 SP(n) + D, (1)

where S := div n is the splay, T := n · curl n is the twist, b :=
n × curl n is the bend, W(n) is the skew-symmetric tensor
associated with the axial vector n, P(n) : I − n ⊗ n is the pro-
jection onto the plane orthogonal to n, and D is a symmetric
traceless tensor such that Dn = 0, which can be represented
as

D = q(n1 ⊗ n1 − n2 ⊗ n2). (2)

In (2), (n1, n2) is an orthonormal pair in the plane orthogonal
to n and q � 0 is a scalar measure of distortion that we call
octupolar splay [18]. The bend vector b can be decomposed in
the frame (n1, n2, n) as b = b1n1 + b2n2. We call the scalars
(S, T, b1, b2, q) distortion characteristics of a director field n.

A single twist is a state of distortion for which T = ±2q,
with q constant and all other distortion characteristics zero;
this is, for example, the ground state of cholesterics [19]. On
the other hand, a double twist is a state of distortion for which
T is the only constant distortion characteristic that does not
vanish. What distinguishes a double twist from a single twist
is that the latter can fill three-dimensional space, whereas the
former cannot [20]. Thus, a double twist in the ground state
turns necessarily into a source of frustration, as it can be
achieved locally, but not globally.

The appropriate form of the elastic free energy for CLCs
has lately become a matter of debate. The classical Oseen-
Frank form WOF, written as [17]

WOF = 1
2 (K11 − K24)S2 + 1

2 (K22 − K24)T 2

+ 1
2 K33B2 + 2K24q2, (3)

where B2 := b · b and K11, K22, K33, and K24 are the splay,
twist, bend, and saddle-splay constants, has been employed
with

K24 > K22, (4)

which aims at making a double twist distortion energetically
preferred to no distortion, in violation of Ericksen’s inequal-

ities [21]. These inequalities, which are immediately read off
from (3), would instead ensure that WOF is positive semidefi-
nite: They are

K11 � K24 � 0, K22 � K24 � 0, and K33 � 0. (5)

It has, however, been shown in [22] that paradoxical conse-
quences follow from (4) for the equilibrium shape of CLC
droplets surrounded in three space dimensions by an isotropic
fluid, although for fixed domains a variational theory based on
(3) could be viable [23]. Other perplexing consequences of (4)
were also found for fixed domains in [24].

To remedy such a state of affairs and have a theory that
could be applied to fixed and variable domains alike, we pro-
posed in [25] a quartic twist elastic theory based on a density
WQ that differs from WOF by a single term proportional to T 4.
Further consequences of this theory were also examined in
[26].

Here we do not delve any longer on this possibly contro-
versial issue, as in the setting to which our theory will be
applied the director field n is planar, that is, it lies everywhere
parallel to a given plane and is independent of the coordinate
orthogonal to that plane. For such a field (see also [27]),

T = 0 and S2 = 4q2, (6)

and so both WOF and WQ reduce to

W = 1
2 K11S2 + 1

2 K33B2, (7)

which is a well-behaved positive-definite energy density for

K11 > 0 and K33 > 0, (8)

the only inequalities needed below.
Where a CLC is in contact with its coexistent isotropic

phase, an anisotropic surface tension is present along the
interface, which we shall represent by the classical Rapini-
Papoular formula [28],

Ws = γ [1 + ω(n · ν)2], (9)

where γ > 0 is the isotropic component of the surface ten-
sion at the interface, ω > −1 is a dimensionless parameter
weighting the anisotropic component, and ν is a unit normal
to the interface. Here ω is assumed to be positive, so that
the interfacial energy density (per unit area) Ws is minimized
when n is tangent to the interface. Where a CLC is in contact
with an aligning substrate, the anchoring energy density Wa is
represented similarly to (9) as

Wa = 1
2σ0[1 − (n · e)2], (10)

where σ0 > 0 is the anchoring strength and e is a unit vector
designating the easy axis. In (10), Wa is normalized so as to
have zero minimum.

B. 2D variational problem

Our theory aims to explain the experiment conducted in
[10], which involved coexisting nematic and isotropic phases
of a CLC confined within two parallel plates, both treated so
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FIG. 1. Two-dimensional problem designed to reproduce the experimental setting of [10]. A CLC island B surrounded by the isotropic
phase is squeezed between two parallel plates patterned with submicron line channels oriented along ey. The cross section R of the island has
area A0 and it is taken to be mirror symmetric about both x and the y axes. Half of the boundary ∂R is represented as graph of a smooth, even
function x = R(y), where y ∈ [−R0, R0]. The bipolar director field n lies on the same plane as R and is defined as the unit tangent field to the
family of curves x = Rt (y) = g(t )R(y), which represent the retractions of ∂R inside R for generic t ∈ [0, 1]. Both R and n should be thought
of as uniformly extended through the gap between the parallel plates that bound the cell, at distance h from one another, both orthogonal to the
z axis (which comes out of the plane of the figure).

as to induce one and the same parallel uniform easy axis on
the nematic phase.1

The experimental setting suggests a few assumptions that
we shall adopt in our analysis. First, the director field n in the
nematic phase is parallel to the bounding plates throughout the
cell (and so it is a planar field). Second, each nematic region to
which we confine attention will be considered as a cylindrical
island B of prescribed volume V0 occupying the whole gap
between the bounding plates. Third, the cross section R of B
will be symmetric about the easy axis e. We now formulate in
a mathematical language these hypotheses.

We take the aligning bounding plates parallel to the (x, y)
plane of a Cartesian frame (ex, ey, ez ), with ey coincident with
easy axis e. We represent the island B as R × [− h

2 , h
2 ], where

R is a region with piecewise smooth boundary ∂R in the
(x, y) plane [see Fig. 1(a)] and h is the cell’s thickness. The
director field n lies everywhere in the (x, y) plane and is
independent of z.

The isoperimetric constraint on the volume of B translates
into a constraint on the area of R,

A(R ) = A0, (11)

where A is the area measure and A0 = V0/h.

1Alignment was achieved by use of topographic patterns that had
already been characterized for thermotropic liquid crystals [29–31].

With ω > 0 in (9), the interfacial energy density Ws is
minimized when n is tangent to ∂R. For simplicity, we shall
assume that

n · ν ≡ 0, on ∂R, (12)

and we shall treat it as a constraint on n, save checking its
validity a posteriori with appropriate energy comparisons (see
Sec. III A) to ensure that such a tangential anchoring is not
broken. In particular, we expect that for aligning substrates
assumption (12) may fail to hold for both sufficiently small
droplets, as was shown to be the case for degenerate substrates
[12], and for sufficiently large droplets, for which the anchor-
ing energy Wa is more likely to prevail over Ws.

Adding all energy contributions discussed above, with the
aid of (7), (9), and (10), we arrive at the following total free-
energy functional F , which describes a chromonic island B
with cross section R,

F [R; n]

:= h

{
1

2

∫
R

[K11(div n)2+K33|n × curl n|2]dA+γ �(∂R )

}
− σ0

∫
R

(n · ey)2dA, (13)

where �(∂R ) denotes the length of ∂R and use has been made
of (12). In (13), an additive constant, σ0A0, has been omitted;
it plays no role in the minimum problem studied here, in force
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of the isoperimetric constraint (11), which prescribes the area
A0 of the admissible domains R.

C. Shapes and director fields

The shape of R is the primary unknown of our minimum
problem. Free boundary problems like this are usually very
difficult when treated in great generality, even in two space
dimensions (as also witnessed by a recent analytic study [32]).
Following a well-established tradition (see, for example, the
papers [33–39]), we shall tackle this problem in a special class
of admissible shapes for R.

Inspired by the experimental setting of [10], we shall as-
sume that the long axis of R is aligned with ey and that the
shape of R is mirror symmetric about both the x and the y
axes of the frame (ex, ey). Thus, only half of the curve that
bounds R needs to be described, the other half being obtained
by mirror symmetry. More precisely, ∂R will be described as
the graph of a smooth, even function x = R(y) defined over the
interval [−R0, R0], which is to be determined. The function R
vanishes at the end points of this interval; they designate the
poles of the drop [see Fig. 1(b)],

R(±R0) = 0. (14)

Smoothness and symmetry require R′(0) = 0, where a prime
denotes differentiation with respect to the argument. When-
ever R′(R0) is finite, the surface normal is discontinuous at the
poles and the shape R is a genuine tactoid; conversely, when
R′(R0) is unbounded, ∂R is everywhere smooth.

We shall use the method devised in [12] to obtain a bipolar
director field n inside R from the mere knowledge of ∂R; this
consists in retracting ∂R inside R to generate a family of non-
intersecting curves filling the whole of R with n everywhere
tangent to them. More precisely, n is defined as the unit vector
field tangent to the retracting inner curve Rt (y) := g(t )R(y),
where t ∈ [0, 1] and g is an increasing function such that
g(0) = 0 and g(1) = 1. Figure 1(b) illustrates a sketch for
such retracting lines; we will find the total free energy to be
independent of the specific function g, and so of the specific
method of retraction.

We rescale both y and R(y) to the radius Re of the equiva-
lent disk with area A0, keeping their names unchanged, while
we denote by μ the ratio

μ := R0

Re
. (15)

With this normalization, the area constraint (11) reads simply
as ∫ μ

−μ

R(y)dy = π

2
(16)

and (14) becomes

R(±μ) = 0. (17)

Reasoning as in [12], we can reduce F in (13) to the following
functional in the scaled variables y and R(y):

F[μ; R] := F [R; n]

K11h
= Fe[μ; R] + Fa[μ; R], (18)

where

Fe[μ; R] :=
∫ μ

−μ

{[
R′

R
− R′′

R′ + 1

8

RR′′2

R′3 (3 + k3)

]
arctan R′

+ R′′

1 + R′2 + 1

8

RR′′2

(1 + R′2)2

[
(k3 − 5)− 1

R′2 (3 + k3)

]
+ 2α

√
1 + R′2

}
dy (19)

is the scaled elastic free energy functional [see Eq. (11) of
[12]], while

Fa[μ; R] := −4βα2
∫ μ

−μ

R

R′ arctan R′dy (20)

is the appropriate dimensionless form of the anchoring energy
for aligning substrates (see Appendix A). In (19),

k3 := K33

K11
(21)

is the reduced bend constant and

α := γ Re

K11
(22)

is a reduced area.2 In (20),

β := σ0K11

2hγ 2
(23)

is the dimensionless anchoring strength of the substrates.
Both α and β are dimensionless parameters: while α is

the ratio of two forces, β does not have an equally trans-
parent physical interpretation. The parameter β̃ := 2α2β =
σ0R2

e/K11h would seem to be more meaningful, as it is the
ratio of two energies. As will become clear in Sec. III, in
the present setting (for Re ∼ 10 µm and σ0 ∼ 10–102 µJm−2)
we expect that α ∼ 102 and β̃ ∼ 102–103, which makes β ∼
10−2–10−1. Here to simplify comparison with experiment,
we choose to estimate α from other sources and not to use
it as an independent fitting parameter. This makes β and β̃

interchangeable. According to (19), the value k3 = 5 seems to
be somewhat special: for k3 > 5, two similar terms in the inte-
grand would become antagonistic; we lack an explanation for
this, but we heed that k3 < 5 for the material of the experiment
in [10] (see Sec. III).

As a consequence of (17), the functional Fe in (18) di-
verges logarithmically to +∞ near the poles of R, due to
the nonintegrablity at y = ±μ of the integrand R′

R arctan R′.3
The poles of R are also the points where n exhibits surface
defects, also known as boojums; following a common practice
(see, for example, [41], p. 171 ) we tame these singularities
by replacing them with isotropic cores of size ε (in Re units).

2Equivalently, α = Re/ξe, where ξe is the de Gennes-Kleman ex-
trapolation length [40, p. 159]. In this language, a drop is either small
or large, whether α � 1 or α 	 1, respectively.

3Despite the apparent similarity between this integrand and that in
(20), the latter stays bounded, irrespective of the limiting value of
R′(y) for y → ±μ (no matter whether finite or not).
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FIG. 2. Gallery of exemplary shapes with profile as in (25) ob-
tained for different values of parameters (φ,μ), each showing a
different type of possible convex minimizer of F in (18). Tactoids
conventionally occur for 0 � φ < 0.20, discoids for 0.20 � φ <

1.77, and bâtonnets for 1.77 � φ < 2.03. The value of φ assigns the
type of shape represented by (25), while μ affects its aspect ratio
according to (26): for given φ, the polar distance grows quadratically
with μ relative to the width.

Thus, the integrals in (18) and (19) can be taken over a shorter
interval [−η, η], where η is such that [12]

R(η) = R(−η) = ε. (24)

For Re in the order of 10 µm, it is reasonable to take ε ∼ 10−3.
As shown in Appendix B, the extra energy stored in the defect
cores does not depend on ε and is negligible compared with
the surface anchoring energy, so that it plays no role in the
global minimum problem.

D. Special family of shapes

Here to simplify the analysis of the functional F in (18),
we represent the admissible shapes of R by a two-parameter
family of functions R(y). Specifically, we let

R(φ,μ; y) = π

H (φ)

1

μ

{[
1 −

(
y

μ

)2
]

cos φ

+
√

1 −
(

y

μ

)2

sin φ

}
,

with H (φ) := 8

3
cos φ + π sin φ > 0. (25)

The parameters (φ,μ) describe a two-dimensional configu-
ration space S := {(φ,μ) : 0 � φ � 3π

4 , μ > 0}, where the
bounds on φ imply that H > 0. More details on the geometric
construction that justifies (25) can be found in [12]. Here we
heed only that while by (17) μ represents the polar distance
of R, different values of φ affect its shape: conventionally, R
is said to be a tactoid for 0 � φ < π

16 , a discoid for π
16 � φ <

9π
16 , and a bâtonnet4 for 9π

16 � φ < φc := arccot(− 1
2 ). Genuine

tactoids occur only for φ = 0. Representatives of these types
of admissible shapes are depicted in Fig. 2. They are all
convex; nonconvex shapes can also be represented by (25) for

4Name borrowed from French, meaning short staff.

φ > φc, but they play no role in our analysis, as they do not
minimize F .

Within the class of shapes described by (25), the aspect
ratio δ of R can be expressed as an explicit function of the
parameters (φ,μ),

δ(φ,μ) := μ

R(φ,μ; 0)
= μ2

(
8
3 cos φ + π sin φ

)
π (cos φ + sin φ)

. (26)

The major advantage of using (25) to represent the admissi-
ble shapes of R is that the functional F in (18) reduces to
a function F (α, β; φ,μ) defined on S for any given value
of the pair (α, β ). We need only to minimize F over S to
obtain an approximate minimizer R of F , a task that can be
accomplished numerically with fairly standard methods.

III. GEOMETRIC METHOD

We wish to apply the theory outlined in Sec. II to interpret
the experiment performed in [10]. There two aligning sub-
strates consisting in replicas of 250 nm-deep linear channels
equally spaced at 250 nm were overlaid parallel to one an-
other, separated by a gap of 7 µm; the cell they delimited was
filled with a DSCG solution prepared at concentration c =
11 wt% by dissolving the chromonic material in deionized
water. At temperature T = 25 ◦C, elongated bâtonnets were
observed with a dipolar director field n on their boundaries
and their long axes aligned to the channels.

In particular, we shall focus on the droplet shown in
Fig. 12(a) of [10] (and highlighted in Fig. 3). Its area A0 and
aspect ratio δ are estimated to be

A0 ≈ 3217 µm2 and δ ≈ 2.4, (27)

the former corresponding to Re ≈ 32 µm. We read off from
the phase diagram for DSCG in Fig. 2(a) of [42] that at
T = 25 ◦C the concentration of the coexisting nematic phase
is approximately 13.5 wt%, larger than the concentration of
the preparation (as expected). Using the curves that in [43]
represent the temperature dependence of the elastic constants
of the nematic phase of DSCG at c = 14 wt%, we readily find
that at T = 25 ◦C

K11 ≈ 3 pN and k3 ≈ 4.5. (28)

As for the isotropic surface tension γ , we take the estimate
γ ≈ 10 µJ/m2 suggested by our previous study [12]). We then
obtain from (28) and (22) that α ≈ 110.5

Some estimates of the anchoring strength σ0 for chromon-
ics in contact with different substrates are already known:
They range from σ0 ∼ 10−1 µJ/m2, for both scratched glasses
[11] and rubbed polyimide surfaces [44], to σ0 ∼ 102 µJ/m2,
for surfaces lithographed by secondary sputtering [45].6 In
the experiment under consideration, the aligning surfaces

5We are aware that such an estimate for α may be affected by the
value chosen for γ , that applies to a DSCG solution in conditions
different than the ones occurring in [10]. Unfortunately, we lack
better data.

6For thermotropic liquid crystals, the strength of planar anchoring
ranges from about 1 µJ/m2 to one or two orders of magnitude higher,
as shown, for example, in Table 3.1 of [46]. On the strongest side
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FIG. 3. Experimental picture, borrowed from Fig. 12(a) of [10],
representing the top view of a cell of thickness h = 7 µm filled with
DSCG prepared at concentration c = 11 wt% and observed between
crossed polarizers (marked on the top right corner) in the coexisting
biphasic regime (where the concentration of the nematic phase is
estimated to be c ≈ 13.5 wt%). The white stripes on the bottom left
corner designate the orientation of the aligning channels on both
bounding substrates. The droplet outlined in green corresponds to the
minimizer φ0

.= 1.77 and μ0
.= 1.51 of the free energy F (α, β; φ,μ)

for α = 110 and β = 5.5 × 10−2, the latter identified so as to fit the
experimental value δ ≈ 2.4 of the droplet’s aspect ratio, as shown in
Fig. 4. The polar distance is 2R0 = 2μRe ≈ 96 µm (for Re ≈ 32 µm).
The green outline, obtained from (25), is superimposed to the ex-
perimental image. The whitish cartoon is an illustration (proposed
in [10]) of the observed director field; it is not meant to represent
closely the droplet’s shape.

were lithographed, and so we expect σ0 to be in the range
10–102 µJ/m2. By using K11 ∼ 1 pN from (28) and γ ∼
10 µJ/m2 from [12], for h ∼ 10 µm, we estimate from (23)
that β ∼ 10−2.

We thus seek numerically the minimum of F (α, β; φ,μ)
in the pair (φ,μ) for α = 110 and 0.01 � β � 0.1; for every
value of β in this interval, we compute the theoretical value of
the aspect ratio δ according to (26), obtaining the graph shown
in Fig. 4.

The experimental value of δ is met for

β
.= 5.5 × 10−2 (29)

and the corresponding coordinates of the energy minimizer
in S are φ0

.= 1.77 and μ0
.= 1.51. The predicted equilibrium

shape is a bâtonnet, which is to be compared with the shape
of the droplet experimentally observed in Fig. 3. Theory and
experiment seem to be in good agreement. By combining (29)
and (23), we arrive at the following estimate of the anchoring

is the measurement of [47], based on an improved reflectometric
method introduced in [48]; for 5CB, it was found that σ0 ∼ 102J/m2.

FIG. 4. Graph of the aspect ratio δ0 = δ(φ0, μ0 ) according to
(26) for the minimizer (φ0, μ0 ) of the free energy F (α, β; φ, μ) for
α = 110, k3 = 4.5, and 0.01 � β � 0.1.

strength:

σ0 ≈ 26 µJ/m2, (30)

which turns out to have the same order of magnitude as γ and
intermediate between values measured with other methods for
the same material.

A. Tangential anchoring breaking

As in our previous work [12], the theory presented here is
based on the assumption that the director configuration at the
boundary of the drop remains bipolar for all admissible values
of the area A0.

Although the validity of this constraint is confirmed exper-
imentally, we are aware that it cannot hold for all values of A0,
as the tangential anchoring of n is bound to be broken both for
A0 sufficiently small and for A0 sufficiently large. Indeed, for
given h, the elastic, interfacial, and anchoring energies scale
like R0

e , R1
e , and R2

e , respectively (see also [49], for a similar
reasoning). Thus, for α � 1, the elastic energy dominates,
promoting a uniform orientation of n, preferentially along the
aligning channels. On the other hand, for α 	 1, the anchor-
ing energy dominates, promoting the same uniform alignment
of n. In both limiting cases, the tangential anchoring at the
isotropic interface is broken.

Direct energy comparisons performed with the method
illustrated in Appendix B of [12] (based on constructions
by Wulff [50] and Williams [51]) allowed us to estimate
an interval α1 � α � α2, within which we can be confi-
dent that the tangential anchoring hypothesized here on the
isotropic interface is not broken. The end points of such a
safeguard interval for α were identified as the farthest apart
roots of the following polynomial in α as λ ranges in the
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FIG. 5. Roots of polynomial Pλ(α) in (31) as λ ranges in the interval (0,1], for ε = 10−3 and β and k3 as in (29) and (28), respectively.

interval 0 < λ � 1,

Pλ(α) := − 1

3
βλ2α2 +

[
4 j(ω) − 4λ

(π

2
− ε

)
− π

λ
(1 − λ2)

− 2ωλπε

]
α − 4

[
π

4
(k3 − 1 − k3 ln 2 − ln ε) + ε

]
,

(31)

where j is a monotone function of the dimensionless
anisotropic strength ω in (9) [see Fig. 5(a)]. Figure 5(b) shows
how both α1 and α2 depend on ω (the latter more dramatically
than the former) for ε = 10−3 and β and k3 as in (29) and (28),
respectively. Letting ω = 5, which is a choice supported by
some evidence [38,52], we obtain that α1

.= 7 and α2
.= 1262,

showing that the case we have studied (α ≈ 110) falls well
inside the range of validity of our model.7

In the following section, we shall explore the equilibrium
shapes of R for values of α both smaller and larger than
the one corresponding to the experimental shape outlined in
Fig. 3, but still within the safeguard interval identified above.
We shall see that for sufficiently small droplets our theory
also predicts shape bistability in the present setting of aligning
substrates, as it did in [12] for planar degenerate ones.

IV. SHAPE BISTABILITY

We extended the analysis of the minimizers of the reduced
free energy function F (α, β; φ,μ) by allowing α to cover the
whole safeguard interval corresponding to the values of k3 and
β in (28) and (29), respectively. Our aim was to see whether
our theory would also predict droplets’ equilibrium shapes
qualitatively different than those observed in [10] (represen-
tative examples of which are reported in Fig. 3). We found
out that it does, in a range of sufficiently small values of the

7Reverting the safeguard interval for α into one for the equivalent
radius Re, we arrive at 0.1 µm � Re � 0.4 mm, confirming again that
in the case of interest (Re ≈ 32 µm) our theory is perfectly legitimate.

droplets’ area; they do not seem to have been observed, at least
in [10].

In brief, we found that, for α in the interval α∗ � α � α∗,
two equilibrium shapes compete for the global energy mini-
mizer, a tactoid and a discoid, coexisting as local minimizers
and exchanging their role as global minimizer at a critical
value, α = αb, of perfect bistability. Details of our analysis are
illustrated in the bifurcation diagrams with hysteresis shown
in Fig. 6.

For α < α∗, only the (blue) tactoidal branch exists and is
globally stable. As soon as α exceeds α∗ the (red) discoidal
branch comes into life as a metastable equilibrium and takes
over the tactoidal branch as energy minimizer at α = αb. Two
black dots mark the exchange of stability occurring in the
system; close to them in Fig. 6(a) are placed the corresponding
equilibrium shapes depicted in the same color as the equi-
librium branch they belong to. For α > αb, the metastable
tactoidal branch ceases altogether to exist at α = α∗ and gives
way to the discoidal one as unique equilibrium branch. In an
interval, the φ trajectory of energy minimizers in Fig. 6(a)
traverses the bâtonnet border, while staying otherwise in the
discoidal territory for α > α∗. For α < α∗, instead, the φ

trajectory stays consistently within the tactoidal territory.
Two features deserve notice. First, discoids are energy

minimizers, but not for all values of α: upon increasing the
droplet’s area, the equilibrium shape undergoes two smooth
transitions, from a discoid to a bâtonnet and back again to a
discoid. Second, as shown by both Figs. 6(b) and 6(c), upon
increasing the droplet’s area in the whole admissible domain,
the equilibrium shape is first thickened and then thinned,
suffering a transient setback at the transition.

The transition values of α shown in Fig. 6 are α∗ ≈ 60,
αb ≈ 80, and α∗ ≈ 96, while the reentrant bâtonnet inter-
val in Fig. 6(a) is 106 � α � 160, where in particular falls
the value α ≈ 110 corresponding to the droplet outlined
in Fig. 3. In physical units, according to the model pro-
posed here, one would then expect coexistence of tactoids
and discoids for 18 µm � Re � 29 µm, a regime of small
droplets for which no data are available in [10]. For Re �
29 µm, only nontactoidal shapes should be observed; they
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FIG. 6. Bifurcation diagrams with hysteresis of the energy minimizers drawn for k3 = 4.5 and β = 5.5 × 10−2; thick lines represent global
minimizers (stable branches) of F (α, β; φ,μ) in the pair (φ,μ), while thin lines represent local minimizers (metastable branches). Open circles
mark the equilibrium shapes that delimit the interval of coexistence of tactoidal and discoidal shapes, while green lines bound the corresponding
shape hysteresis. Black dots identify the two perfectly bistable minimizers. The end points α1 and α2 of the safeguard interval for α are marked
by (red) squares, while the value α ≈ 110 corresponding to the shape outlined in Fig. 3 is marked by a (red) diamond. In panel (a), a red dot
signals the value of α where the trajectory of minimizers leaves the φ = 0 axis and equilibrium tactoids cease to be genuine. The conventional
border of bâtonnets is placed at φ

.= 1.77, while the tactoidal territory is delimited by the conventional border at φ
.= 0.20. Here α∗ ≈ 60,

αb ≈ 80, and α∗ ≈ 96; the following abbreviations are used on the horizontal axis: l∗ := ln α∗
.= 4.1, lb := ln αb

.= 4.4, and l∗ := ln α∗ .= 4.6.

are discoids, except for 32 µm � Re � 48 µm, where they are
bâtonnets.

V. CONCLUSION

We proposed a method to determine the planar anchoring
strength σ0 of a chromonic liquid crystal on a rigid sub-
strate; its distinctive feature is geometric, as it is based on
the observation and fitting of the stable equilibrium shapes
of droplets in the nematic phase coexisting in a cell with the
isotropic phase. Prior knowledge of the surface tension γ of
the nematic phase at the isotropic interface is presumed, which
can be gained by use of cells with substrates enforcing planar
degenerate anchoring [12].

Our study was motivated by the experiment described in
[10], where nematic chromonic droplets formed in a thin cell
enclosed within parallel planar substrates orienting the direc-
tor n in one and the same direction. To illustrate our method,
we applied it to one of the DSCG droplets shown in [10]
and extracted an estimate for σ0 from its shape. Although this
figure for σ0 is similar to those obtained with other methods,
by no means can our estimate be regarded as a measure of σ0,
as it lacks the appropriate statistics and, what is perhaps more
important, an independent determination of γ .

Opting for importing the value of γ from other sources,
we determined β (and thus σ0) by fitting the aspect ratio of a
selected, representative droplet, judging then the agreement
between experiment and theory from a qualitative compar-
ison between observed and predicted shapes. This suffices
to provide a proof of principle that the proposed method is
indeed viable. It can be improved: using α and β̃ = 2α2β

as independent parameters, one could determine both γ and
σ0 by fitting an observed shape with the family described
in (25) by the parameters (φ,μ) (possibly through a shape
recognition algorithm). The optimal (α, β̃ ) would then be
determined by minimizing the free energy F (α, β̃; φ0, μ0)
associated with the best shape represented by (φ0, μ0). Doing

this for several droplets (each with its own Re) would result in
several measures of both γ and σ0.

One method successfully employed so far to measure σ0

for chromonics uses twist cells with plates promoting planar
easy axes at right angles to one another. Measuring the total
twist angle � across the cell (and how it differs from 90◦)
determines σ0, once the twist constant K22 is known [53].
This method relies on the theory (put forward by McIntyre
[54,55]) relating (in closed form) � to the maximum and
minimum transmitted intensity of light with normal incidence
propagating (between crossed polarizers) through the cell.
Although this theory has a wider range of validity than Mau-
guin’s adiabatic limit [56] (see also [41], p. 268), it makes
approximations too. It might thus be valuable to have an
alternative, independent method to rely upon.

Our theory was developed having especially chromonic
nematics in mind, but nothing prevents one from applying it
to thermotropic nematics as well, as in the setting envisioned
here no macroscopic differences arise between these materi-
als.

The droplets’ shapes observed in [10] mainly resembled
elongated rods with rounded ends, which we called bâtonnets.
Theory also predicted other stable equilibrium shapes: either
slender and round, which we called discoids, or slender and
pointed, which we called tactoids. Moreover, in the range of
small droplets, we found a regime of bistability, where dis-
coids and tactoids coexist as energy minimizers, taking turns
in being alternatively stable or metastable. A similar bistabil-
ity was also predicted for two-dimensional droplets between
parallel plates enforcing planar degenerate anchoring [12],
but not for fully three-dimensional droplets [57]. Although
these two coincidences cannot be a proof,8 we are inclined to

8Common wisdom has it that Agatha Christie once said that one
coincidence is a coincidence, two coincidences are a clue, three
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think that bistability of shape might be a two-dimensionality
signature.
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APPENDIX A: FURTHER MATHEMATICAL DETAILS

This Appendix contains ancillary calculations used to ar-
rive at the dimensionless form of F in (19) for the retracted
bipolar vector field n described in Sec. II C. A fuller account
can be found in [12]. The boundary curve R = R(y) is re-
tracted inside R as the curve

pt (y) := g(t )R(y)ex + yey, −R0 � y � R0, (A1)

where t ∈ [0, 1] and g is any strictly increasing function on
[0,1] of class C1 such that g(0) = 0 and g(1) = 1. In this
two-dimensional setting, n is defined as the unit vector field
tangent to the lines represented by (A1) at fixed t ; by differen-
tiating pt in (A1) with respect to y, keeping t fixed, we easily
obtain that

n = gR′ex + ey√
1 + (gR′)2

, (A2)

where a prime denotes differentiation. The element of area dA
of R is given by

dA = dtdyg′R
√

1 + (gR′)2ex × n · ez = g′Rdtdy. (A3)

By rescaling all lengths to the radius Re of the disk of area
A0, we obtain the following dimensionless form of the total
anchoring energy in (13):

Fa[μ; R] := − σ0

K11h

∫
R

(n · ey)2dA

= − 2
σ0R2

e

K11h

∫ μ

−μ

dy
∫ 1

0

g′R
1 + (gR′)2

dt, (A4)

where μ is defined in (15). By use of (22) and (23), we
readily give (A4) the form in (20), which is independent of
the specific choice of g, provided this is monotonic and obeys
the prescribed boundary conditions.

APPENDIX B: BOOJUM’S DEFECT CORE

Here we estimate the energy stored in the defect core of a
boojum on the boundary of a two-dimensional droplet. To this
end, we apply a simplified version of Ericksen’s model [58].
We write the total free energy in the form

Fc[S, n] := h
∫

C

{
K

2
(k|∇S|2 + S2|∇n|2) + ψ (S)

}
dA,

(B1)

coincidences a proof. We could not locate this precise quote in her
writings, but in The ABC Murders M. Poirot comes close when he
says, “It is the same motif three times repeated. That cannot be
coincidence.”

where S denotes the scalar order parameter and n is the di-
rector field, ψ is the condensation potential, K in an average
elastic constant, and 0 < k < 1 is a dimensionless parameter.
The domain of integration C is a circular sector of radius
rc = εRe with (inner) cusp angle τ , located at each pole of
the region R shown in Fig. 1: τ = π when ∂R is smooth,
that is, for nongenuine tactoids, discoids, and bâtonnets (see
Fig. 2), whereas τ < π for genuine tactoids. We write the
condensation potential ψ in the standard form,

ψ (S) = 1
2 aS2 − 1

3 bS3 + 1
4 cS4, (B2)

where a depends on temperature T as a = A(T − T ∗), A is
a positive constant and T ∗ is the supercooling temperature,
while both b and c are positive constant independent of tem-
perature.

The representation for Fc in (B1) is valid under the as-
sumption that S and n are independent of the coordinate z
across the cell confining the droplet. For our estimate, we
further take n = er , where er is the unit vector field in the
plane (x, y) emanating from the pole of R, and we assume
that S = S(r), where r is the radial coordinate, subject to the
boundary condition

S(rc) = S0. (B3)

Here for b2 > 4ac,

S0 := b + √
b2 − 4ac

2c
(B4)

is the absolute minimizer of ψ .
Under these assumptions, by scaling lengths to rc, we give

Fc the following dimensionless form:

Fc[S] := 1

Kh
Fc[S, er] = τ

∫ 1

0

[
1

2
kS′2 + 1

2

S2

ρ2

+ ξ

(
1

2
S2 − 1

3
b0S3 + 1

4
c0S4

)]
ρdρ, (B5)

where

ρ := r

rc
, ξ := ar2

c

K
, b0 := b

a
, c0 := c

a
, (B6)

and a prime denotes differentiation with respect to ρ. In (B5),
ξ weights the condensation energy against the elastic energy.
To estimate this dimensionless parameter, we resort to the
classical data of [59] (see also [40], p. 130) and for T − T ∗ ∼
1 K, rc ∼ 10 nm, and K ∼ 1 pN, we find that ξ ∼ 1.9 Thus,
elastic and condensation components of the free energy in
(B5) have the same order of magnitude. Since ψ (S) � ψ (S0)
for 0 � S � S0, Fc satisfies the inequality

Fc[S] � 1

2
τ

∫ 1

0

(
kS′2 + S2

ρ2

)
ρdρ

+ 1

2
τξS2

0

(
1

2
− 1

3
b0S0 + 1

4
c0S2

0

)
. (B7)

9More precisely, for MBBA, we learn from [59] that 1
2 A ≈ 5 ×

104 Jm−3K−1, 1
3 b ≈ 2 × 105 Jm−3, 1

4 c ≈ 3 × 105 Jm−3. Since S ∼
10−1, for T − T ∗ > 1 K, the order of magnitude of ψ (S) is that of
aS2.
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An estimate for the the minimum of Fc can be obtained by
minimizing the integral on the right-hand side of (B7) subject
to the boundary conditions

S(1) = S0 and S(0) = 0, (B8)

the former stemming from (B4) and the latter being required
for Fc to be finite. The corresponding equilibrium equation is
simply given by

k(ρS′)′ = S

ρ
. (B9)

The solution to (B9) and (B8) is

S = S0ρ
1/

√
k . (B10)

We thus conclude that the core energy Fc can be estimated
from the inequality

minFc[S] � 1
2τS2

0

(√
k + ξ + 1

2 − 1
3 b0S0 + 1

4 c0S2
0

)
, (B11)

which substantiates our claim in Sec. II C to the effect that
Fc does not depend on rc, but only on S0 and the cusp angle
τ . Moreover, since, by (20), Fa ∼ α2βμ ∼ 102-103 and, by
(B11), Fc ∼ 10−2, it is justified to neglect Fc in the (dimen-
sionless) total free energy F in (18).
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