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Reversible-to-irreversible transition of colloidal polycrystals under cyclic
athermal quasistatic deformation
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Cyclic loading on granular packings and amorphous media exhibits a transition from reversible elastic
behavior to irreversible plasticity. The present study compares the irreversibility transition and microscopic
details of colloidal polycrystals under oscillatory tensile-compressive and shear strain. Under both modes, the
systems exhibit a reversible to irreversible transition. However, the strain amplitude at which the transition is
observed is larger in the shear strain than in the tensile-compressive mode. The threshold strain amplitude is
confirmed by analyzing the dynamical properties, such as mobility and atomic strain (von Mises shear strain and
the volumetric strain). The structural changes are quantified using a hexatic order parameter. Under both modes
of deformation, dislocations and grain boundaries in polycrystals disappear, and monocrystals are formed. We
also recognize the dislocation motion through grains. The key difference is that strain accumulates diagonally in
oscillatory tensile-compressive deformation, whereas in shear deformation, strain accumulation is along the x or
y axis.
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I. INTRODUCTION

A large number of periodically driven soft materials,
including disordered granular media [1–3], colloidal sus-
pensions [4–7], and colloidal gels [8], exhibit an intriguing
transition from reversible, elastic behavior to irreversible,
plastic deformation as the applied strain amplitude overcomes
a threshold value [9–15]. It is important to understand the
origin of irreversibility from reversible microscopic dynam-
ics because it may shed light on the nature of yielding in
those systems. For example, in a crystalline system, yield-
ing is mediated by defects motion. For amorphous solids,
localized rearrangements, known as shear transformations, are
considered to be responsible for flow [17]. However, the iden-
tification of those local events due to their disordered structure
is challenging. In recent work, the connection between irre-
versibility transition with yielding of amorphous solids and
jamming was established by investigating the response of soft-
sphere assemblies to athermal cyclic-shear deformation over
a variety of densities and amplitudes of deformation [16,17].
The relation between yielding in crystals and glasses is still a
subject of current investigation [18].

In between those two classes of materials, crystals and
amorphous solids, lie polycrystals, in which several crys-
talline regions are separated by grain boundaries. The grain
boundaries in polycrystalline materials can control bulk prop-
erties such as electrical conductivity, yield strength, etc. For
example, the yield strength of the materials can be improved
by increasing the density of grain boundaries [19]. This
structure-property relationship is even more interesting in
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two-dimensional (2D) materials in which grain boundaries
can translate, create new boundaries, or be annihilated entirely
from the system under external forces [20].

Colloidal particles are considered scaled-up models of
atoms. Colloidal suspensions are systems widely used to di-
rectly observe phenomena that would otherwise not be within
experimental reach. They can be assembled into colloidal
polycrystals, in which ordered crystalline regions are sep-
arated by extended grain boundaries formed by dislocation
arrays [21–24]. The application of a cyclic deformation to
colloidal polycrystals allows us to follow at the same time
dynamics of individual particles (“atoms”) and the large-
scale response of the polycrystalline texture [21–24]. Plastic
deformation of colloidal polycrystals has been studied in ex-
periments and simulations [24–26]. In a previous study in
which we applied oscillatory shear deformation to polycrys-
talline samples, a nonequilibrium phase transition mediated
by the motion of defects and controlled by the strain amplitude
was observed [27]. Experiments of plastic flow have also
been performed under uniaxial stress in metallurgy, amor-
phous metals [28], and granular materials [29]. A detailed
comparison of the motion of defects that leads to nonequilib-
rium phase transition in different modes of deformations may
shed light on the microscopic dynamics associated with the
process.

In the present study, we explore the irreversibility transition
in 2D polycrystalline samples under oscillatory tension-
compression and shear deformation by employing the ather-
mal quasistatic method. The results reveal that under both
deformation modes, the system exhibits a reversible to irre-
versible transition. The threshold strain amplitude after which
irreversibility is observed is larger in the case of the oscil-
latory shear deformation. We confirmed this by analyzing
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FIG. 1. Local grain orientations are shown after the completion of 200 cycles for different strain amplitudes. γ
TCS(SS)
0 = 0 denotes the

initial configuration of the sample, i.e., without any deformation. The top row is for tensile-compressive strain, and the bottom row is for shear
strain.

dynamical properties, such as mobility and atomic strain, and
structural behavior, such as hexatic order parameters. Under
both modes of deformation, we observe the disappearance
of dislocations and grain boundaries and the formation of
monocrystals with some defects because of the particles with
larger sizes. The mechanism of monocrystal formation is also
identified, and a key difference is that in the case of os-
cillatory tensile-compressive loading, the strain accumulates
diagonally, whereas in oscillatory shear strain, the strain ac-
cumulation is along the x or y axis. This paper is organized
as follows: In Sec. II we describe the model and simulation
details, and the analysis, results, and discussion are presented
in Sec. III . Finally, the concluding remarks are made in
Sec. IV .

II. MODEL AND SIMULATION DETAILS

We consider a two-dimensional system with two types of
particles, large (l) and small (s). They interact via a pairwise
Lennard-Jones potential,

Vαβ (r) = 4εαβ

[(σαβ

r

)12
−

(σαβ

r

)6
]

− Vαβ (rc), (1)

where r is the distance between a particle of type α and one of
type β (α, β = l, s). The function Vα,β (r) = 0 when r > rαβ

c ,
a cutoff distance, and Vαβ (rc) ensures that Vαβ (r) is continuous
at r = rαβ

c . The parameters of the potential are chosen as fol-
lows: σ ≡ σs = 1.0, σl = 1.4σ , and σls = 1.2σ , where σα,β

is the finite distance at which the interparticle (α, β) poten-
tial becomes zero (the particle diameter), and ε ≡ εll = 1.0,
εss = 0.5ε, and εls = 1.5ε are the energy parameters. The
cutoff distance rc

αβ is fixed to 3.0σαβ . The typical numbers
of particles used in the system are Nl = 50 and Ns = 10 000,
with m = 1 for both. The typical length of a 2D simulation
box is L = 100σ . The unit of time is set as τ = σ

√
m/ε.

First, we prepare the polycrystalline sample as shown in
Fig. 1. A polycrystalline structure is made as follows: The
binary mixture is heated at the temperature of 2.0ε/kB for 50τ ,
and then the temperature is reduced to 0.001ε/kB rapidly over
a span of 5τ and then equilibrated for another 5τ at the same
temperature. The equations of motion are solved numerically
using the time-reversible measure-preserving Verlet and re-
versible reference system propagator algorithms integration
scheme with a time step 	t = 0.005τ . The temperature of
the system is controlled by connecting to a Nosé-Hoover
thermostat. Finally, the reminiscent kinetic energy is drained
out by performing NV E simulations with a viscous drag of
1.0ετ/σ 2 over a time span of 250τ , as done in Ref. [30].

The dynamics under the deformation is athermal qua-
sistatic [31,32]. Lees-Edwards periodic boundary conditions
are employed. In each deformation step, a small strain incre-
ment of 10−3 is followed by energy minimization using the
conjugate gradient method. The strain is applied in a periodic
manner: First, positive strain steps are applied. When a max-
imal predecided strain γ0 is reached, the strain is reversed by
applying strain steps in the opposite direction. This proceeds
until the strain reaches the negative value of the maximal
strain −γ0. At this point, the strain steps are reversed until
the system returns to zero strain, completing the cycle (0 →
γ0 → 0 → −γ0 → 0). The cycle is then repeated nmax = 200
times. The position of all atoms was saved at the end of every
cycle. We applied the deformation to 5 to 10 samples prepared
independently.

The deformation of the sample is carried out in two differ-
ent ways. In one case, we apply volume-preserving periodic
shear strain (SS) along the xy plane by incrementing the
strain via the coordinate transformation of x′ = x + ydγxy and
y′ = y. In the other case, we apply the deformation along the
x direction. Specifically, when there is an elongation of the
sample along the x directions, to preserve the volume, there
is compression along the y direction, and during the x-axis
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compression, elongation along the y direction is conducted,
which is called periodic tensile-compressive strain (TCS).
Volume-preserving cyclic deformation is a well-accepted
approach employed to explore the yielding, irreversibility
transition, etc., of colloidal suspensions, amorphous solids,
and polycrystals [11,18,27,32,33]. In a passing note, in
systems with high particle density, the dynamics are pri-
marily influenced by particle-particle interactions rather than
particle-solvent interactions [34]. Therefore, the solvent effect
is negligible. When dealing with attractive colloidal particles,
one common approach is to employ the square well potential
[35], the Lennard-Jones (LJ) potential shifted by the diameter
of the particle [36,37]. The simulations are performed using
LAMMPS [38].

III. RESULTS AND DISCUSSION

In 2D triangular colloidal crystals, five- and seven-
coordinated particles, known as positive (+1) and negatively
charged disclinations (−1), exist as defects. The likelihood of
an individual disclination occurring is low. However, combin-
ing five- and seven-coordinated particles with small additional
energy creates edge dislocations. A regular array of dislo-
cations then forms a grain boundary separating differently
oriented crystals, as shown in Fig. 1. Careful study shows
that arrays of dislocations are mainly arranged along the grain
boundaries and create a large difference in the orientation
of the adjacent grains, which is consistent with Frank con-
dition, ρ ∝ sin dξ , where ρ is the line density (arrays of
dislocations) along the grain boundary and dξ represents the
difference in orientation of the adjacent grains separated by
the grain boundaries. In Fig. 1, we display the grain orien-
tation of a sample before and after the completion of 200
cycles with a range of values of strain amplitudes for both
modes of deformation. The properties of polycrystalline sam-
ples are primarily influenced by the number of dislocations
and impurities along the grain boundaries. We maintain a
fixed density of the larger particles, which serve as impurities,
and examine the disclination density across 10 samples. The
resulting average is 0.061σ−2 ± 0.001σ−2, which suggests a
small sample-to-sample variation. The top row corresponds
to the tensile-compressive strain except for the panel on the
far left, which displays a sample without any deformation,
and the bottom row shows shear strain. When the ampli-
tudes of the deformation are γ TCS

0 = 0.01, 0.021 and γ SS
0 =

0.02, 0.03, 0.04, after a limit cycle, the sample responses re-
verse. However, when γ TCS

0 = 0.03 and γ SS
0 = 0.055, a single

crystal is seen in both modes of deformation.
Enhanced mobility. Depending on the strain amplitude, the

local rearrangements of particles can be reversible after one or
more cycles or irreversible, leading to chaotic dynamics and
particle diffusion [33]. To characterize particle motion under
cyclic deformation, we compute mean square displacement
(MSD) 〈	r2〉 at the end of each cycle n, considering the
initial configuration (n = 0) as a reference, which is defined
as follows:

〈	r2(n)〉 = 1

N

〈
N∑

i=1

|ri(n) − ri(0)|2
〉
. (2)

We plot the MSD as a function of the number of cycles
for TCS and SS in Figs. 2(a) and 2(b), respectively. The
results reveal that for a small strain amplitude, after a couple
of cycles, particles exhibit a reversible behavior. However,
with the increase in the strain amplitudes, it takes more and
more cycles to eventually exhibit the reversible behavior.
When γ

TCS(SS)
0 is larger than the threshold value, we see that

the system does not display any more reversibility within
the explored time window, corresponding to irreversible,
nonperiodic particle trajectories, and 〈	r2〉 there scales as
〈	r2〉 ∼ n. To quantify the mobility, we measure the local
slope d〈	r2〉/dn of the 〈	r2〉 vs n plot and average over the
steady states and denote the average as diffusivity D, as we
did in our previous work [18,27]; a similar approach was used
in Refs. [9,39,40]. In Fig. 2(c), we depict D as a function of
strain amplitudes γ

TCS(SS)
0 . The results show that for a low

strain amplitude, the particle diffusivity vanishes at steady
state; that is, as expected, D ≈ 0. However, after a threshold
value that appears as γ TCS

0,t = 0.026 and γ SS
0,t = 0.0475, the

system exhibits a significant jump in D and becomes diffusive
within the simulation timescale. The responses are similar in
both modes of deformation. However, threshold strain ampli-
tude in the SS mode is larger by approximately a factor of
2 compared to the TCS mode. In tensile-compressive loading,
the amplitude of the applied strain is associated with deforma-
tion along the x direction. However, to maintain the volume of
the simulation box, elongation in the x direction necessitates
a simultaneous compression along the y direction. As a result,
the material effectively undergoes deformation in both the x
and y directions, a factor of 2 greater than the strain applied
along the x direction. In contrast, when dealing with volume-
preserving shear deformation, no such phenomenon occurs.
The geometric distinctions between these two deformation
modes are linked to a twofold shift. In our previous work,
we found a threshold value of 0.044 for oscillatory shear de-
formation at temperature T = 0.001 [18,27]. Most likely, the
difference appeared because of the different deformation pro-
tocols. Several experiments and simulations have attempted to
quantify the nature of the reversible to irreversible transition.
Experiments with colloidal suspensions and numerical models
show that the transition from reversible to irreversible is a
second-order nonequilibrium phase transition [4]. However,
a numerical study with jammed solids shows the transition
as nonequilibrium first order [40]. However, an alternative
explanation was also proposed [31,41] which relies on the
chaotic nature of trajectories in dynamical systems but not
the phase transition as a requirement to explain the relatively
sharp onset of irreversibility observed in the experiments.
In the present system, we recognize that near irreversible
transitions, D decreases by 1–2 orders of magnitude, which
can be scaled algebraically, D ∼ (γ TCS(SS)

0 − γ
TCS(SS)
0,t )α , with

α = 0.64 and 1.54 for TCS and SS, respectively, as γ
TCS(SS)
0,t

is approached from above [see Fig. 2(d)]. A recent study in
which two-dimensional, amorphous solids under oscillatory
shear were investigated showed the diffusion coefficient above
the transition follows power-law scaling with an exponent of
1.217 > 1 [42], while in the case of a three-dimensional LJ
glass, the exponent appeared to be 0.61 for low temperature
and 0.54 for high temperature [39].
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(a) (b)

(c) (d)

FIG. 2. MSD as a function of the number of cycles n for (a) TCS and (b) shear strain. (c) The local slope averaged over within the last
50 cycles D is shown as a function of strain amplitudes for TCS and shear strain. The dashed lines indicate the threshold strain amplitudes
γ

TCS(SS)
0,t . (d) D is shown as a function of γ

TCS(SS)
0 − γ

TCS(SS)
0,t . The dashed lines indicate D ∼ [γ TCS(SS)

0 − γ
TCS(SS)
0,t ]α , with α = 0.64 and 1.54 for

TCS and SS, respectively.

Hexatic order parameter. To further quantify how the merg-
ing of grains influences the local structure, we measure the 2D
local bond-orientational order parameter ψ6 for each particle i
and plot the results in Fig. 3. The 2D local bond-orientational
order parameter ψ6 for each particle i is defined as

ψ6(ri j ) = 1

q

q∑
j=1

ei6θ (rij ), (3)

where the summation is over all q nearest neighbors of the
particle i. θ is the angle between the vector ri j connecting
particle i to j and the x axis. In the case of perfect hexagonal
symmetry, |ψ6| = 1, and 〈|ψ6|〉 > 0.7 indicates that the sys-
tem is crystalline [43,44]. In our systems, the particles with
five or seven neighbors (dislocations) exhibit 〈|ψ6|〉 ≈ 0.525,
and for an initial configuration, their density is ≈5.8% (the
remaining ≈94% of particles have hexatic symmetry and dis-
play 〈|ψ6|〉 ≈ 0.985). Therefore, our study samples display
〈|ψ6|〉 � 0.95. Under deformation, 〈|ψ6|〉 even possess the
larger value (until γ TCS

0 = 0.027 and γ SS
0 = 0.055), as shown

in Figs. 3(a) and 3(b). The fraction of particles with the largest
|ψ6| also increases, as shown in Figs. 3(c) and 3(d). This
indicates that the dislocations, i.e., particles with five or seven
neighbors, disappear and exhibit perfect hexatic symmetry.
The disappearance of dislocations occurs continuously with

large fluctuations close to the threshold γ
TCS(SS)
0,t , indicated by

the dashed blue lines in Figs. 3(a) and 3(b). Similar behavior
is observed in the distribution of hexatic order parameters. A
further increase in strain amplitude reduces the order param-
eters, the fraction of particles with the largest |ψ6| decreases,
and the maximum appears at a slightly lower |ψ6| for γ TCS

0 =
0.06 and γ SS

0 = 0.12. A similar behavior was observed when
shear-induced melting and crystallization were investigated
by confocal microscopy in concentrated colloidal suspensions
of hard-sphere-like particles [43]. A possible reason is that
the particles move along a zigzag path [45–48] and they
experience more collisions than without shear. Together with
the hydrodynamics under shear, this leads to a larger mean
square displacement and thus larger deviations from hexago-
nal symmetry [48]. In the inset of Fig. 3(b), we display 〈|ψ6|〉
vs γ

TCS(SS)
0 − γ

TCS(SS)
0,t for both modes of deformation. The

results show that one can access larger ordering in shear defor-
mation than the tensile-compressive strain. This is connected
to the larger diffusivity in the TCS mode after the threshold
value than in the SS mode. To be precise, when we increase
the strain amplitude, the number of cycles before reversibility
is achieved rises. Consequently, there is a greater degree of
particle mobility, leading to the annihilation of defects and an
increase in the hexatic order parameters. In a passing note,
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(a) (b)

(c) (d)

FIG. 3. Average hexatic order parameter 〈|ψ6|〉 as a function of (a) tensile-compressive strain amplitude γ TCS
0 and (b) shear strain amplitude

γ SS
0 . The dashed blue line indicates the threshold value of the irreversible transition. In the inset we display 〈|ψ6|〉 as a function of γ

TCS(SS)
0 −

γ
TCS(SS)
0,t . Distribution of the hexatic order parameter |ψ6| under (c) tensile-compressive and (d) shear strain for different values of amplitudes.

The solid lines are a guide to the eye.

in soft systems like colloidal glasses, this connection between
the irreversibility transition and structural change is complex
and debated. Recent research showed that the yielding tran-
sition of colloidal glass in oscillatory shear can be detected
through the static structure of the system [49]. However,
computer simulations differ from that conclusion and argue
that yielding is revealed through the dynamic evolution of the
system [40].

Atomic strain. To understand the plastic deformation at the
particle level in both modes of deformation, we look at the
von Mises shear stress η [50]. The following algorithm is
used: The initial configuration is considered as a reference,
and the local transformation matrix Ji that best maps {d0

ji} →
{d ji} ∀ j ∈ P0

i is formed, where d are vector separations (row
vectors) between atom j and i (a superscript 0 indicates the
reference configuration). Here, j is one of atom i’s nearest
neighbors, and P0

i is the total number of nearest neighbors
of atom i at the reference configuration. Ji is determined by
minimizing

∑
j∈P0

i
|d0

jiJi − d ji|2 → Ji. For each Ji, the local

Lagrangian strain matrix is computed as ηi = 1
2 (JiJT

i − I).
Then, the local shear invariant is calculated for each
atom as

ηi =
√

η2
xy + (ηxx − ηyy)2

2
, (4)

and the atomic hydrostatic volumetric strain can be read as

δi = 	V

V
≈ ηxx + ηyy

2
. (5)

We measure the local shear invariant of individual particles
after the completion of each cycle n with respect to the initial
configuration, i.e., nref = 0, and the average 〈ηn

nref =0〉 is plotted
as a function of n in Figs. 4(a) and 4(b) for tensile-compressive
and shear strain, respectively. Qualitatively similar
behaviors are observed, as in the case of particle mobility (see
Fig. 2). When d〈ηn

nref =0〉/dn is measured as a function of n

for different values of γ
TCS(SS)
0 , the observed large transient

fluctuations in d〈ηn
nref =0〉/dn close to the transition indicates

the crackling noise, which is a signature of the nonequilibrium
transition of grain boundary depinning (data not shown). This
echoes the analogous behavior observed in d〈	r2〉/dn
versus n for different γ

TCS(SS)
0 (data not shown). Given these

findings, we are inclined to adopt a methodology similar to
that for diffusivity—a widely accepted metric for measuring
the transition from reversible to irreversible processes. We
measured local slope d〈ηn

nref =0〉/dn from the 〈ηn
nref =0〉 vs n

plot and averaged over the steady states, denoted as F , and
the result is shown as a function of strain amplitudes γ

TCS(SS)
0

in Fig. 4(c) for TCS and SS. The threshold strain amplitude
appears the same as we see in the case of particle mobility.
Further analysis reveals that the rate of change of the strain
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(a) (b)

(c) (d)

FIG. 4. Average of von Mises shear strain 〈ηn
nref=0

〉 as a function of the number of cycles n for (a) TCS and (b) shear strain. (c) Local slope
averaged over within the last 50 cycles F is shown as a function of strain amplitudes for TCS and shear strain. The dashed lines indicate the
threshold strain amplitudes γ

TCS(SS)
0,t . (d) F is shown as a function of γ

TCS(SS)
0 − γ

TCS(SS)
0,t . The dashed lines indicate F ∼ [γ TCS(SS)

0 − γ
TCS(SS)
0,t ]β ,

with β = 0.94 and 1.38 for TCS and SS, respectively.

accumulation above the threshold amplitude is larger in the
case of TCS than in the case of SS. The increment scales as
F ∼ (γ TCS(SS)

0 − γ
TCS(SS)
0,t )β , with β = 0.94 and 1.38 for TCS

and SS, respectively [see Fig. 4(d)].
To further understand the atomic strain of individual par-

ticles, we measure the distribution of η after completion
of nmax(= 200) cycles with respect to the initial configura-
tion P(ηnmax

nref =0) and display the results in Figs. 5(a) and 5(c)
for tensile-compressive and shear strain, respectively. Under
tensile-compressive deformation, when the strain amplitude is
kept at a low value, such as γ TCS

0 = 0.021, approximately 39%
of the particles are found within a region where η

nmax
nref =0 < 0.04,

and they are situated in the interior of the grains. Notably,
distinct peaks emerge at η

nmax
nref =0 ≈ 0.1 and at 0.3, which can

be attributed to dislocation motions occurring through the
grains [see Fig. 6(a)]. Furthermore, particles experiencing
even higher strain are observed because of the dislocation
motions near the grain boundaries. Moreover, as the value
of γ TCS

0 increases, as anticipated, the occurrence of particles
with a strain below 0.04 becomes less frequent [see Figs. 6(b)
and 6(c)]. Nevertheless, the distinct peaks at approximately
0.1 and 0.3 in the η

nmax
nref =0 distribution persist even with the

increase in γ TCS
0 . Similar dynamics are evident under shear

deformation when 0.03 � γ SS
0 ≈ γ SS

0,t , as clarified in the strain
map in Figs. 6(d) and 6(e). However, for γ SS

0 = 0.01 and
0.02, no additional peaks are present. Instead, we observe a

power-law distribution with an exponent of −1.54. In this
range of strain amplitudes, strain accumulation occurs pri-
marily due to the motion of defects near the grain boundaries
rather than the motion of the defect through the grains. To be
precise, depending on the strain amplitude, we have observed
two distinct mechanisms of plastic deformation in polycrys-
talline systems: dislocations may move through the grains,
eventually forming slip lines in two dimensions. Second, par-
ticles at the grain boundaries undergo local rearrangements,
leading to grain boundary motions. These two types of motion
were previously reported in the study by Shiba and Onuki
[51]. In a passing note, in the case of colloidal glass, the sec-
ond type of rearrangement (referring to the motion of particles
at the grain boundaries) is predominantly observed [52,53].

In Figs. 5(b) and 5(d), we show the distribution of
p(ηnmax

nref =0/〈ηnmax
nref =0〉) for TCS and SS, respectively, and data

collapse reasonably with expected differences before and after
the threshold strain amplitudes. For both modes of deforma-
tion, when γ

TCS(SS)
0 > γ

TCS(SS)
0,t , the motion of the dislocations

through crystals dominates the distribution. However, a key
difference is that the strain is accumulated diagonally in
tensile-compressive loading [see Fig. 6(c)], whereas in the
case of shear loading, the strain accumulation is either along
the x axis or along the y axis, as shown in Figs. 6(e) and
6(f). This observation can be understood based on the Peach-
Koehler theory, from which one can write the elastic energy
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(a) (b)

(c) (d)

FIG. 5. Distribution of von Mises shear strain measured after completion of nmax(= 200) cycles for the (a) TCS and (c) shear strain with
respect to the initial configuration. The data are collapsed using average accumulated strain and are shown in (b) and (d) for TCS and shear
strain, respectively.

FIG. 6. von Mises shear strain map for individual particles after 200 cycles. It is measured with respect to the initial configurations. The
top row corresponds to TCS, and the bottom row shows shear strain. The strain amplitude is specified. For the TCS, the strain accumulates
diagonally, and for the shear loading, strain is accumulated along the x or y axis.

064612-7



KHUSHIKA, LAURSON, AND JANA PHYSICAL REVIEW E 108, 064612 (2023)

(a) (b)

FIG. 7. von Mises shear strain of an individual particle is measured after n cycles with respect to the initial configuration, i.e., nref = 0,
and the distribution is displayed. (a) is for γ TCS

0 = 0.025, and (b) is for γ SS
0 = 0.045.

of the slip in isotropic elasticity as

Fslip = Gb2

2π

ln(L/b)

1 − ν
± σ ext

xy bL cos(2φ). (6)

The first term is the elastic energy of the dislocations, and the
second is the work of the applied force. The ± sign indicates
the direction of motion of the particles around the slip line, b
is the lattice constant, L is the slip length, G is the shear mod-
ulus, ν is Poisson’s ratio, and φ is the angle between the slip
direction and the x axis. For shear deformation with σ ext

xy > 0,
when we use +, we can achieve the lowest Fslip for φ = 0
(i.e., the slip is along the x axis), and when we use −, the slip
is along the y axis as φ = π/2. For uniaxial deformation σ ext

α ,
we can write an analogous equation as follows:

Fslip = Gb2

2π

ln(L/b)

1 − ν
± σ ext

α bL sin(2φ), (7)

and the preferred orientation of the slip line is ±π/4. These
preferred directions have been observed in amorphous metals
[28,54] and granular materials [29,55]. In simulations, shear
bands in these preferred directions were realized in model
amorphous metals and polymers [56–61] and in a model crys-
tal with weak elastic anisotropy [62].

To further analyze the atomic strain, we compute p(ηn
nref =0)

after each n for γ TCS
0 = 0.025 [see Fig. 7(a)] and γ SS

0 = 0.045
[see Fig. 7(b)], which are close to γ

TCS(SS)
0,t and in the re-

versible regime. Under the TCS (γ TCS
0 = 0.025) deformation,

we observe that rearrangements around the grain boundaries
and dislocation motions through the grains are activated im-
mediately after the first cycle. However, it is worth noting that
more than 50% of the particles (approximately 58%) remain
in the strain regime where the strain 〈ηn

nref =0〉 is less than 0.04.
As the number of cycles n increases, the situation evolves.
At n = 30, we observe indications of two additional peaks in
the probability distribution function p(ηn

nref =0). However, these
peaks become smeared out when n = 200. On the other hand,
in the case of shear strain (γ SS

0 = 0.045), the two additional
peaks remain clearly visible in the strain regime under investi-
gation even at n = 200. However, a situation similar to that for
tensile-compressive deformation (i.e., peaks become smeared
out when n = 200) emerges for γ SS

0 = 0.05. We observe a
resemblance in the behavior of atomic rearrangements be-

tween the two cases, indicating the common characteristics in
the strain response under both shear and tensile-compressive
deformations.

To identify and characterize the two additional peaks in
both modes of deformation, we compute the von Mises shear
strain for individual particles at cycle number n with respect to
the previous cycle, n − 1, instead of taking the configuration
where n = 0 as a reference. The distribution and the strain
map are shown in Figs. 8 and 9, respectively, for γ TCS

0 = 0.03
and γ SS

0 = 0.055, which are in the irreversible regime where
the defect motion through crystal dominates. Two clear peaks
are observed in both cases [see Figs. 8, 9(a), and 9(b)]. When
dislocations move through the crystals, the particles at the
adjacent grains exhibit either clockwise or counterclockwise
rotation. See the displacement field in Fig. 9(c). This type of
rotation leads to the merging of grains with different orienta-
tions and creates a single-grain structure.

Last, we evaluate the volumetric strain δ of each par-
ticle using Eq. (5), and their distributions are displayed
in Figs. 10(a) and 10(b) for different values of TCS and
SS amplitudes, respectively. When the shear strain ampli-

FIG. 8. von Mises shear strain of an individual particle is mea-
sured after each cycle n with respect to the configuration after n − 1
cycles, and the distribution averaged over the first 20 cycles is dis-
played. For both tensile-compressive and shear strains, two peaks
appear between 0.05 and 0.35.
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FIG. 9. von Mises shear strain map for individual particles measured with respect to the previous configuration to display the dislocation
motions through crystals. (a) is for γ TCS

0 = 0.03, and (b) is for γ SS
0 = 0.055. (c) Displacement map corresponding to the motion of the defect

in oscillatory TCS. The arrow indicates the direction of the displacement.

tude is small [see γ SS
0 = 0.02 in Fig. 10(b)], we observe a

symmetrical distribution centered around δ = 0. However,
with the increase of γ SS

0 (say, 0.04 or 0.045), the distri-
bution becomes positively skewed, and the additional peak
appears and grows at around 0.05 ± 0.01 [see the inset of
Fig. 10(b)]; the peak height decreases when the strain am-
plitude approaches the threshold value. This additional peak
in volumetric strain is also a signature of dislocation motion
through the grains. This motion through grains takes over

the volumetric strain distribution in the irreversible regime.
Under tensile-compressive loading, the system behaves sim-
ilarly [see Fig. 10(a) and its inset]. The evolution pattern
of the additional peak over the cycles at a strain amplitude
close to the threshold value appears nonmonotonic depending
on the strain amplitude. We see the nonmonotonicity when
γ TCS

0 = 0.025, as shown in Fig. 10(c), and γ SS
0 = 0.05 (data

not shown), while it is not at γ SS
0 = 0.045 [see Fig. 10(d)]. In

addition to that, we also observe a positive skewness in the

(a) (b)

(c) (d)

FIG. 10. (a) Distribution of volumetric strain of an individual particle δi measured after nmax(= 200) cycles for different strain amplitudes
of (a) tensile-compressive and (b) shear loading. The distribution is measured after each cycle n and is shown as indicated in the legends of
(c) and (d). (c) is for tensile-compressive strain with γ TCS

0 = 0.025, and (d) is for shear strain with γ SS
0 = 0.045. The insets are zoomed in on

the additional peak.
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distribution as we apply more and more cycles. Additionally,
we observe a significant correlation between the volumetric
strain and the shear strain in both modes of deformation. This
finding is consistent with previous observations in the case of
metallic glasses [63], indicating a common behavior across
different materials and deformation modes.

IV. CONCLUSIONS

The present study investigated the irreversible transi-
tion in a 2D polycrystalline sample under two distinct
oscillatory deformation modes: Tensile-compressive and
shear strain. Upon subjecting the material to both deforma-
tion modes, we observed a reversible elastic response up to
a critical strain amplitude, beyond which irreversible plastic
deformation occurs. Notably, the threshold strain amplitude
required for the transition was found to be larger in the case of
shear strain compared to the tensile-compressive deformation.
To confirm the threshold values of the reversible-irreversible
transition, we conducted dynamical analyses, including as-
sessments of particle mobility and atomic strain. Additionally,
we performed structural analyses, such as evaluating the
hexatic order parameter. For particle mobility, we studied
the MSD of the particles with respect to the initial con-
figurations. From there, we defined diffusivity as the local
slope of the MSD vs the number of cycles plot. We found
that for both modes of deformation, the diffusivity decreases
≈1 to 2 orders of magnitudes close to the threshold value
from the above, defined as the irreversible regime, and
then jumps to D ≈ 0 during the steady states, defined as
the reversible regime. In a passing note, one may consider
the average particle displacement after each cycle as a dy-
namic observable instead of the diffusivity from the MSD
as done in Ref. [40]. This study also opens up the question
of whether the nonequilibrium transition is continuous or
discontinuous.

In the structural analysis, we observed that the hexatic or-
der parameter increases as we increase the strain amplitude for
both modes of deformation, which indicates the disappearance
of grain boundaries and dislocations. A further increase in
strain amplitudes lowers the order parameters.

To explore the strain at the particle level, we measured both
von Mises shear strain and the volumetric strain. The change

in von Mises shear strain per cycle as a function of strain
amplitude shows behavior qualitatively similar to that of diffu-
sivity for both modes of deformation. We observed two types
of dynamics: first, the local rearrangement of particles near
the grain boundary leads to the grain boundary motion, and
second, the motion of dislocation through the grains results in
a slip line in two dimensions. Further analysis revealed that in
the case of tensile-compressive shear, the strain accumulates
(slip line) diagonally, whereas for shear strain, the strain ac-
cumulation occurs along the x and y directions. The nature of
the strain accumulation was explained in terms of the Peach-
Koheler theory. The volumetric strain analysis also captured
the dislocation motion through the grains. Additionally, we
observed a strong correlation between the von Mises shear
strain and the volumetric strain.

Our findings reveal that colloidal polycrystals subjected
to oscillatory shear and tensile-compressive strain exhibit
an irreversibility transition similar to disordered particle as-
semblies and colloidal glasses. However, in this context, the
relevant degrees of freedom are the topological defects rather
than the particles themselves. The implications of our study
extend to applications such as Zener pinning, where inclusions
are strategically utilized to impede grain growth in poly-
crystals [64]. The critical strain amplitude for irreversibility
that we identified should correspond to the depinning stress
required to initiate grain boundary growth [65]. One could
test our results in colloidal particle experiments [21–23]. This
study could potentially expand into the realm of amorphous
solids [32,33]. Our investigation revealed that the larger strain
amplitude of irreversible transition in the SS mode is linked to
deformation geometry. Based on this finding, we anticipate a
similar effect in amorphous solids when they are subjected to
these deformation modes.
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