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Surface-directed spinodal decomposition of fluids confined in a cylindrical pore
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The surface-directed spinodal decomposition of a binary liquid confined inside a cylindrical pore is inves-
tigated using molecular dynamics simulations. One component of the liquid wets the pore surface while the
other remains neutral. A variety of wetting conditions are studied. For the partial wetting case, after an initial
period of phase separation, the domains organize themselves into pluglike structures and the system enters into
a metastable state. Therefore, a complete phase separation is never achieved. Analysis of domain growth and
the structure factor suggests a one-dimensional growth dynamics for the partial wetting case. As the wetting
interaction is increased beyond a critical value, a transition from the pluglike to tubelike domain formation is
observed, which corresponds to the full wetting morphology. Thus, a complete phase separation is achieved as
the wetting species moves towards the pore surface and forms layers enclosing the nonwetting species residing
around the axis of the cylinder. The coarsening dynamics of both the species are studied separately. The wetting
species is found to follow a two-dimensional domain growth dynamics with a growth exponent 1/2 in the viscous
hydrodynamic regime. This was substantiated by the Porod tail of the structure factor. On the other hand, the
domain grows linearly with time for the nonwetting species. This suggests that the nonwetting species behaves
akin to a three-dimensional bulk system. An appropriate reasoning is presented to justify the given observations.
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I. INTRODUCTION

The kinetics of phase separation of fluids in confinement
are of high importance in scientific research [1–4] as well
as in industry [5]. There are boundless applications of phase
separating fluids in confinement. Especially the oil, gasoline,
and natural gas extraction industries are highly reliant on
these phenomena [6]. Nonetheless, many possibilities are still
unexplored and plenty of questions regarding phase separa-
tion in such systems are unanswered. In this context, there
is paramount importance in studying the transformation of
single as well as multicomponent phase separating fluid mix-
tures.

When a homogeneous binary liquid system is rapidly
cooled within the miscibility gap, it loses thermodynamic
stability and undergoes phase separation, forming distinct
regions or domains. Over time, these domains grow and
evolve until a state of local equilibrium or saturation is
reached [7–20]. However, a system under confinement be-
haves differently from its bulk counterpart due to the presence
of additional factors like restriction, surface effects, and sys-
tem size. For instance, under confinement, the emergence
of anisotropic domain growth becomes apparent. This phe-
nomenon primarily arises from the constraints imposed by
the limited capacity of particles that can occupy a confined
space. The salient features of phase separation in such systems
are metastability and lack of observable macroscopic phase
separation. In real experiments, physical systems are often
enclosed within containers or possess exposed surfaces, which
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typically results in a preferential attraction towards one of the
species of the mixture. This selective affinity can significantly
influence the rate of phase separation. This phenomenon,
referred to as the wetting effect, entails a continual and per-
sistent competition between phase separation and interactions
with the surface or wall.

The coarsening process is always affected by the nature of
the system. Usually a single time-dependent length scale �(t )
characterizes the domain morphology [21]. This is obtained
from the equal-time correlation function C(�r, t ), where �r is
the distance between two spatial points and t is the time after
quench. The average domain size of the system follows the
power law �(t ) ∼ tα , where α is the growth exponent. The
value of α is determined by the corresponding coarsening
mechanism that drives the phase separation.

For the phase separation in solid-solid and liquid-liquid
mixtures, diffusion takes precedence, and the growth exponent
is α = 1/3 [22]. However, in fluid systems, the hydrodynamic
effect becomes significant and the growth exponents change
accordingly. In fluid-fluid mixtures the diffusive phase is short
lived and the system quickly transits to the hydrodynamic
regime. Here, we have two exponents corresponding to the
viscous hydrodynamics (α = 1) and inertial hydrodynamics
(α = 2/3). The results mentioned above refer to bulk sys-
tems [8,9].The process of spinodal decomposition in binary
fluids within bulk systems has been extensively examined, and
the principles governing their growth behaviors are compre-
hensively understood. [19–21].

For the phase separation of fluids in confined geometry,
existing studies predominantly employ two primary methods
of analysis. The first one involves utilization of the random
pore Ising model [3,4,23], which maps the system onto a
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network of random pores. The second method, known as the
single pore model [24] is a widely accepted model for study-
ing phase separation of liquids inside porous media, and does
not rely on mapping to any specific model or randomness. For
the latter, theoretical studies were conducted, focusing on the
wetting behavior of a binary fluid system inside a cylindrical
pore [24]. This study introduced the benchmark single pore
model, which allowed one to examine the phase separation in
confined space, and is particularly applicable to scenarios such
as binary fluid segregation within Vycor glasses where the
random pore Ising model is not suitable due to low porosity.
The transition of the liquid structure from a pluglike to a
tubelike form was illustrated via a wetting phase diagram. In
between, there existed an intermediate capsulelike structure,
which occurred only when the radius of the pore was relatively
larger. The domain growth was found to slow down when it
became comparable to the pore size.

The phase separation of binary liquid inside a two-
dimensional porous media was studied by numerically
integrating the Cahn-Hilliard equation with and without wet-
ting effects [25]. While the random field Ising model failed to
explain the slowing down of the domain growth and the break-
down of scaling laws in such systems, the single pore model
successfully explained the source of slow growth. Subsequent
work on a binary liquid inside a two-dimensional strip geom-
etry involving the numerical study of the Cahn-Hilliard-Cook
equation [26] further confirmed the validity of the single pore
model. Later on, this work was extended to study the effect
of a variety of asymmetric pores, i.e., a simple strip pore, an
uneven single pore, and a junction made out of two pores [27].
The single pore method was explored further to study the
liquid-liquid phase separation using molecular dynamics sim-
ulations with neutral pore wall (no wetting) [28,29].

The surface-directed spinodal decomposition in a bi-
nary liquid mixture was studied in the bulk system using
a mesoscopic-level modeling in terms of coupled Vlasov-
Boltzmann equations with long range interactions [30]. The
effects of weak and strong surface fields on the domain growth
were analyzed. A two-dimensional study on how the wetting
effect on the mobile and immobile particles in the binary fluid
system affects the phase separation of the latter was done in
Ref. [31]. Similarly, wetting dynamics was studied in a binary
Lennard-Jones system confined within planes. Attention was
paid to the growth of bulk domain size and the wetting layer.
The standard diffusive growth with time (t1/3) was observed at
an early stage, followed by a crossover to a linear growth [32].
Recently molecular dynamics simulation was carried out on
the binary fluid inside a cylindrical nanopore with neutral
wall, and the growth nature of the domain was studied before
the system attained a metastable state [33]. An early time
diffusive growth was observed and the later time growth ex-
ponent was found to match with the inertial hydrodynamic
growth in the two-dimensional bulk system.

However, the evolution of domains of segregating fluids
inside the single pore cylindrical tube in the presence of wet-
ting interaction of a preferred component of the liquid with
the confining wall has not been addressed properly till now. In
particular, the effect on the domain structures and the growth
laws when the wetting interaction is systematically changed
is missing. As previously mentioned, this model becomes

more representative of experimental observations when the
influence of wetting effects is taken into account. In this paper
we use extensive molecular dynamic simulation to study the
kinetics of persistent interplay between the phase separation
and wetting, deep within the coexistence curve.

II. MODELS AND METHODS

In this study we use a binary AB liquid mixture confined
inside a cylindrical pore using molecular dynamic simulation.
The fluid particles interact with each other via the Lennard-
Jones (LJ) potential

Uαβ (r) = 4εαβ

[(
σαβ

ri j

)12

−
(

σαβ

ri j

)6
]
, (1)

where ε is the interaction strength, σ is the particle diameter,
ri j = |ri − r j | is the scalar distance between the two particles
i and j, and α, β ∈ A,B. The phase separation between the
two types of particles is assured by assigning the interparti-
cle diameters as σAA = σBB = σAB = 1.0 and the interaction
parameters as εAA = εBB = 2εAB = ε. This method can be
mapped to the Ising model. The computational load is reduced
by assigning a cutoff at r = rc = 2.5 for the LJ potential. This
cutoff introduces a discontinuity in the potential and force
terms. This is resolved by modifying the potential as

u(r) = U (r) − U (rc) − (r − rc)

(
dU

dr

)∣∣∣∣
r=rc

. (2)

The final term in the Eq. (2) avoids the abrupt jumps in the
force at rc. The system mentioned above is characterized in
bulk with a critical temperature of Tc = 1.421 and critical
density of ρc = N/V = 1 in three dimensions [34]. Here N
is the number of particles in the system and V is the volume.
We measure the temperature and length in units of ε/kB and σ

respectively. For convenience ε, kB, and mass of each particle
m are set to unity.

A cylindrical tube with a large length to diameter ratio is
considered, which serves as a confining structure containing
the binary mixture. The axis of the cylinder is chosen to be
the x axis. A periodic boundary condition is applied along the
length of the cylinder. The wall of the cylinder is constructed
with closely packed particles similar to the fluid particles.
The wetting effect is incorporated by introducing a preferable
attraction of one type of particles, say type A, towards the
wall via the LJ potential given in Eq. (2), and no interaction
at all for the other species. The interaction between the wall
and type A particles, denoted as εw is tuned over a wide range
of values and the effect of this wetting strength on the phase
separation is studied. We vary the εw in the range of (0.1, 0.8).

Molecular dynamics (MD) simulations are performed in
the canonical ensemble. Since our system is in the liquid
state, it is important to take into consideration the effect of
hydrodynamics. Therefore, Nosé-Hoover thermostat is used
which controls the temperature and at the same time preserves
the hydrodynamics of the system [35]. The velocity-Verlet
algorithm is used in the MD simulation to compute the po-
sitions and velocities of the particles with time step of �t =
0.005 [36]. Here time is measured in units of (mσ 2/ε)1/2.

064607-2



SURFACE-DIRECTED SPINODAL DECOMPOSITION … PHYSICAL REVIEW E 108, 064607 (2023)

The cylindrical pore we consider has a radius R = 10 and
length L = 200. It is filled with the binary liquid of number
density ρ = 0.8, where 50% of the particles are type A and
50% type B. The system is first equilibrated at a high temper-
ature of Ti = 10 to prepare a homogeneous mixture and then
suddenly quenched to a temperature Tf = 0.8 well below Tc.
Finally, the time evolution of the system towards the thermo-
dynamically favored state at Tf = 0.8 is studied. The results
are averaged over 80 independent initial configurations.

To study the domain growth and coarsening dynamics of
the segregating liquid inside the cylindrical pore, we use the
so-called two-point equal-time correlation function C(�r, t )
given by

C(�r, t ) = 〈ψ (0, t )ψ (�r, t )〉 − 〈ψ (0, t )〉〈ψ (�r, t )〉. (3)

The angular brackets represent ensemble averaging. ψ (�r, t ) is
the order parameter of the system defined in terms of the local
density fluctuations as

ψ (�r, t ) = ρA(�r, t ) − ρB(�r, t )

ρA(�r, t ) + ρB(�r, t )
. (4)

Here ρA(�r, t ) and ρB(�r, t ) are the local concentrations of A
and B particles at time t around the position �r. For the do-
main structure related studies, we resort to the static structure
factor S(�k, t ), obtained from the Fourier transformation of the
correlation function given by

S(�k, t ) =
∫

d�r exp(i�k · �r) C(�r, t ), (5)

where k is the wave vector [21]. The standard FFTW algorithm
is used to compute the Fourier transformation. For the large-k
limit in d dimensions, S(�k, t ) follows the Porod law given by

S(k, t ) ∼ k−(d+1). (6)

A detailed description of computing the order parameter
ψ (�r, t ) under different wetting conditions is provided in the
next section.

III. RESULTS

It is well established that in a bulk system, when our
symmetric binary liquid is quenched below the critical tem-
perature, it completely phase separates into two domains of
type A and type B. But when the same liquid is considered
inside a cylindrical pore, after the sudden quench, phase segre-
gation commences with the growth of tiny isotropic domains.
With time, these domains grow and organize themselves into
stripes along the axis of the cylinder in a periodic pattern.
Therefore, pluglike domains are formed in the absence of
wetting interactions between the cylinder wall and the fluid
particles [24,33]. Finally, the system attains a metastable
state and a complete macroscopic phase separation is never
achieved. The scenario remains the same far inside the coex-
istence region also. The width of these domains is found to be
insensitive to the length of the cylinder but varies linearly with
the pore diameter.

Nevertheless, when the wetting effect is considered, the
growth behavior is quite tangled. In our present study, we
analyze the wetting effect on the domain growth dynamics
over a wide range of wetting strengths εw, from partial to

FIG. 1. The time evolution of the segregating binary liquid
mixture confined inside a cylindrical pore for the partial wetting
interaction εw = 0.1. Here we show the orthogonal view of the
cylinder. A and B types of particles are represented by red and blue
colors respectively.

full wetting, systematically. The preferential attraction of type
A particles implies that they have comparatively lesser sur-
face tension γA with the wall than those of the other type,
γB [37]. Hence, if θ is the contact angle between the fluid
and wall interface, then according to Young’s condition [38]
γAB cos θ = γB − γA, where γAB is the surface tension between
the A and B interface. The conditions for partial wetting and
complete wetting are deduced from this criterion [37]. When
γB − γA < γAB, both A and B species are in contact with the
surface and the system is only partially wet. On the other hand,
when γB − γA > γAB, Young’s condition is not valid and the
B phase is expelled from the wall resulting in the complete
wetting of the wall with phase A.

Following the rapid cooling process, the phase segrega-
tion begins as small isotropic domains starts to form inside
the pore. The interaction of phase separation and wetting,
known as surface-directed spinodal decomposition, involves
a dynamic interplay between these two kinetic processes. In
Fig. 1 we show the time evolution of the domain structures of
our system for the wetting interaction εw = 0.1. The outcome
is more or less close to the phase separation of the binary liq-
uid inside the nanopore without wetting [26,33]. The system
freezes into a multidomain metastable state and no further
domain evolution is observed with time. This outcome can
be attributed to the following. When the adjacent stripes are
separated by more than a characteristic distance, the length
scale saturates as a result of a weak contact between the fronts
of the neighboring stripes. The pluglike structures are formed
and the metastable state is reached.

In Fig. 2 we show the domain structures corresponding
to the longest possible simulation time for the wetting in-
teractions εw in the range 0.1 to 0.5. It clearly depicts how
the metastable state varies with εw. The width of the striped
domains appears to increase as the wetting strength increases.
This is because the pore wall acts as a bridge between the
alternative stripes, which facilitates phase separation with
increasing εw. We find a critical field strength εw = 0.5 up
to which the metastable phase separation takes place with
the formation of stripes. Therefore, εw � 0.5 corresponds to
partial wetting.

As the wetting strength is increased further, stripe forma-
tion no longer occurs. Instead, the transition from a pluglike to

064607-3



DANIYA DAVIS AND BHASKAR SEN GUPTA PHYSICAL REVIEW E 108, 064607 (2023)

FIG. 2. Final configurations of our binary liquid system forming
plug like domain structure for different wetting interactions εw . Here
we show the orthogonal view of the cylinder. A and B types of
particles are represented by red and blue colors respectively.

a tubelike domain is observed, which corresponds to the full
wetting morphology. In Fig. 3 we show the time evolution of
the domain structure for the highest interaction strength εw =
0.8 chosen in our simulation. We clearly observe a complete
phase separation of the binary liquid inside the pore. For better
visualization, the cross sectional view of the system after the
complete phase separation is shown in Fig. 4. This surface
field value satisfies the complete wetting condition men-
tioned above. Correspondingly, the type A particles interact
with the pore wall, forming a layer near it. On the other hand,
the neutral B type particles are pushed towards the axis of
the cylinder [24]. Thus our simulation confirms that, when the
wetting interaction is above a particular threshold value (in our

FIG. 3. Representative snapshots for the phase separating binary
liquid mixture inside the cylindrical pore for the full wetting interac-
tion εw = 0.8.

FIG. 4. The cross sectional view of the fully phase separated
liquid inside the pore.

case εw > 0.5), we find the tubelike domain along the axis of
the cylinder formed by the nonwetting particles, whereas the
wetting species coats the inner surface of the pore. Therefore,
a complete phase separation is achieved for the full wetting
case.

Next, we examine the dynamical properties of the system
for the partial wetting case, that exhibits stripe formation.
Since the geometrical confinement imposed on the system
results in the stripe patterned domains, growth is analyzed
along the axial direction [28,29]. Therefore, the order param-
eter takes the form

ψ (x, t ) = ρA(x, t ) − ρB(x, t )

ρA(x, t ) + ρB(x, t )
. (7)

To compute ψ (x, t ) we divide the cylinder vertically into
sections of equal width �x = 2.0. ρA(x, t ) and ρB(x, t ) are
calculated for each section and thus ψ (x, t ) is obtained from
Eq. (7).

To study the domain growth dynamics we compute the
two-point equal-time correlation function given by Eq. (3)
along the x axis. For the wetting strength εw � 0.5, the
observation of a consistent self-similarity pattern in stripe
formation suggests that our system is likely to adhere to
the scaling law C(x, t ) ≡ C̃(x/�(t )), where C̃ is a time-
independent master scaling function [21]. The identification
of this scaling law enables the definition of a time-dependent
length scale �(t ) based on the decay of C(x, t ). Throughout the
paper, we utilize the first zero-crossing of C(x, t ) as a reliable
measure of �(t )

Figure 5 confirms the scaling law of the correlation where
C(x, t ) is plotted vs x/�(t ) for different strengths of wall
interactions corresponding to partial wetting at a given time.
The data collapse is highly evident, except for the case of
εw = 0.5, where the impact of wetting is close to disrupting
the barrier responsible for stripe formation and maintaining a
metastable equilibrium. So, we can generalize that the Porod
law is valid for partial wetting. Note that the scaling holds
well for x/�(t ) < 1. The violation of the scaling law beyond
this point can be comprehended as follows. The x/�(t ) = 1
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FIG. 5. Scaled correlation function C(x, t ) vs x/�(t ) for different
partial wetting interactions εw at a fixed time t = 320. In the inset we
show the scaling plot of C(x, t ) vs x/�(t ) for εw = 0.2 for different
times.

corresponds to the domain interface between two successive
stripes. For x/l (t ) > 1, the domain boundary is crossed and
the correlation becomes negative. The results indicate that
within a stripe the domain morphology is self-similar in na-
ture. Once the interface is crossed, the self-similarity is lost for
different εw values and the correlation curves do not overlap.
The inset of the figure shows the scaling of correlation for a
particular choice of εw = 0.2 at different times. We observe an
excellent data collapse. A similar scaling behavior is observed
for other εw values also (not shown here).

To examine patterns and investigate domain structures in
both simulations and experiments, it is a common practice
to calculate the structure factor. One-dimensional correspon-
dence of Eq. (5) is used for this purpose. Figure 6 shows
the scaled structure factor. The decaying part of the tail ex-
hibits a power law S(k, t ) ∼ k−2, showing the Porod law
behavior and supporting the one-dimensional growth in the
system as defined in Eq. (6). Additionally, the S(k, t ) ∼ k2

11 0kl
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S(
k,

t)l
 -1

εw= 0.1
εw= 0.2
εw= 0.3
εw= 0.4
εw= 0.5

k2

k-2

FIG. 6. The scaled structure factor S(k, t )�−1 vs k� for the differ-
ent partial wetting strengths εw . The dashed lines are guide lines for
the Porod law.
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εw=0.4
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t1/3

FIG. 7. The time evolution of the length scale �(t ) for the partial
wetting case with different εw . The dashed lines are the reference for
the power law growth.

behavior at the small-k limit further supports the argument of
one-dimensional domain growth. The second peak at kl ∼ 10
corresponds to the sharp interface between two successive
stripes. Note that, for smaller εw = 0.1, 0.2, and 0.3, the
stripes are clearly formed with sharp interfaces. With further
increase of εw, we approach the critical wetting strength for
the transition from partial to full wetting, where the stripe in-
terfaces are rough and less distinct and the cylindrical domains
start to form. Consequently, for εw = 0.4 and 0.5, which are
in proximity to the critical transition value, an anticipated
deviation of the structure factor from the one-dimensional
Porod law is expected due to this morphological transition.

The correlation and structure factor clearly show an onset
of deviation for εw = 0.5, as they start to diverge from the
one-dimensional growth and the wetting effect becomes dom-
inant and tends to shift towards the capsulelike structure. The
pore diameter not being large enough, we do not observe a
proper capsule formation. Instead, a direct transition occurs
from plug- to tubelike domains as εw is increased further. A
more detailed discussion of this phenomenon will follow.

Subsequently, our attention turns to quantifying the growth
of the stripes along the axial direction in terms of the length
scale �(t ). As mentioned earlier, this quantity is computed
from the first zero crossing of the correlation function C(x =
�, t ) = 0. The time evolution of �(t ) is shown in Fig. 7. The
dashed lines in the graph show the power law correspondence
at different stages of the growth. The transport mechanism
in the system decides the rate of domain growth. During the
initial stage, the system exhibits diffusive behavior, following
the Lifshitz-Slyozov growth law as t1/3. The slight deviation
can be attributed to the finite system size effect. When a homo-
geneous system equilibrated at high temperature is quenched
suddenly below TC at time t = 0, it becomes unstable because
of fluctuations. Usually at this stage the domain growth is
quantified by the equation �(t ) = �0 + Atα [39], where �0 is
the average cluster size immediately after quench at t = 0.
A specific domain size interpretation is not attributed to this
parameter. Instead, it is regarded in a manner analogous to a
background quantity encountered in critical phenomena. Such
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FIG. 8. Scaled correlation function C(r, t ) vs r/�(t ) for different
εw corresponding to the full wetting case. In the inset we show the
scaling plot of C(r, t ) vs r/�(t ) for εw = 0.8 for different times. Both
the graphs correspond to type A particles.

background quantities arise from minor length fluctuations,
and their temperature-dependent variations are typically disre-
garded. The term Atα stands for the scaling of domain growth.
For large system size, �(t ) � �0. Nonetheless, in computer
simulations involving small systems, �0 becomes compara-
ble with �(t ) at shorter time, and therefore, the exponent α

deviates from 1/3. This is followed by a crossover to the
inertial hydrodynamic growth characterized by a power law
of t2/3 [40]. The same growth exponents were obtained when
the pore wall was considered neutral (nonwetting). It is worth
noting that the wetting strength of εw = 0.5 is evidently a
critical scenario where, despite the presence of stripe domains,
the dynamical properties deviate significantly from the typical
behavior observed for the partial wetting case.

Next, we shift our attention to investigate the phase sep-
aration dynamics for the full wetting case, i.e., εw > 0.5. A
complete phase separation is achieved here via the formation
of tubelike domains. A typical domain morphology is dis-
played in Fig. 3. It is crucial to emphasize that, during the
phase separation of domains inside the pore for the complete
wetting case, the correlation is assessed radially rather than
axially. Hence the order parameter is calculated accordingly
from Eq. (4). For that, the whole system is divided into small
cubic boxes of size (2σ )3 and the local density fluctuations
are computed over these boxes. Finally, we calculate the cor-
relation function along the radial direction from Eq. (3).

During the coarsening process, the two species proceed
individually following the surface-directed spinodal decom-
position. The wetting species endures surface enrichment
while the other is expelled from the surface. This results in
complete phase separation, as shown in Fig. 3. The correla-
tion function for both the species is calculated separately to
study their individual domain growth. Figure 8 corresponds
to the scaled correlation of wetting particles. We observe a
satisfactory data collapse for different interaction strengths
εw. The inset shows the scaled correlation for the maximum
interaction strength εw = 0.8 at different times. They exhibit
a perfect data collapse as well. Hence, the surface-directed
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FIG. 9. The scaled structure factor S(k, t )�−1 vs k� graph for
different εw corresponding to the full wetting case at a fixed time
t = 110 for the (a) wetting species (A particles) and (b) nonwetting
species (B particles). The dashed lines are guide lines for the Porod
law.

migration of particles in our confined system perseveres
and upholds the presence of superuniversality and the Porod
law [41–43]. The same exercise is repeated for the nonwet-
ting species (not shown), and a similar scaling behavior is
observed.

Considering the rationale mentioned earlier, it is prudent
to compute the structure factor independently for each of the
species. The results are shown in Fig. 9 for three different εw

at a particular time t = 110. The dotted lines correspond to the
power law reference. The results clearly demonstrate that the
trailing section of the structure factor exhibits distinct power
laws for the two species. According to Eq. (6), wherein d rep-
resents the dimension of the domain, k−3 pertains to growth
in two dimensions while k−4 refers to growth in three di-
mensions. This suggests that the wetting species experiences
two-dimensional domain growth, while the other undergoes
three-dimensional growth. This can be clearly understood
from Figs. 3 and 4, where the type A particles form a layer on
the inner surface of the pore wall, resembling a curved two-
dimensional plane. Therefore, the structure obtained for the
wetting particles is two dimensional, providing a rationale for
the Porod law exponent. On the other hand, type B particles
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FIG. 10. The time evolution of the length scale �(t ) for the full
wetting case with different εw . The solid lines and dashed dotted lines
refer to the wetting and nonwetting species respectively. The dotted
lines represent the power law growth.

that congregate around the axis of the cylindrical pore behave
akin to a bulk system. This three-dimensional structure of the
nonwetting particles is affirmed by the Porod tail behavior
observed in the structure factor.

The time dependence of the characteristic domain growth
for the two types of particles are computed separately for three
different εw. In Fig. 10 we show �(t ) for both species. The
dotted lines indicate the power law. The domain growth of the
nonwetting species resembles liquids in a three-dimensional
bulk system. After an initial transition period, the domain
size grows as �(t ) ∼ t , which corresponds to the bulk vis-
cous hydrodynamics growth. This result is consistent with the
structure factor, which shows a three-dimensional Porod tail
of k−4.

For the wetting species, the growth law is found to be
t1/2, which resembles domain growth of liquids in a two-
dimensional surface. This can be comprehended as follows.
The wetting particles interact with the pore wall and form
layers inside the wall, which specifically encloses the non-
wetting particles. Therefore, this structure is identical to a
two-dimensional curved surface. It is well known that a binary
liquid phase separates with a growth law exponent of 1/2
on a two-dimensional plane. Hence the domain growth of
the wetting particles can be explained analogously. This is
further endorsed by the structure factor in Fig. 9, which shows
Porod tail behavior of k−3. The same exercise was repeated by
considering two additional cylindrical pores of different radii
(not shown here), and the domain growth laws are found to be
robust and insensitive to the pore size.

IV. CONCLUSION

In summary, we have studied the surface-directed spinodal
decomposition of a segregating binary liquid mixture sys-
tem confined inside a cylindrical pore using comprehensive
molecular dynamics simulations. One of the species of the
liquid adheres to the pore surface, whereas the other remains
inert. A wide range of wetting interactions is contemplated,
encompassing both partial and full wetting. For the partial
wetting case, the domain structure resembles the nonwetting
scenario. After the initial domain growth, phase separation
is halted via formation of pluglike structures. The growth
exponent of the domain is estimated to be 2/3 which suggests
one-dimensional growth dynamics. This is further confirmed
from the Porod law tail of the structure factor.

The scenario changes completely as the wetting interaction
is increased beyond a critical value (εw > 0.5). The pluglike
structure breaks down and cylindrical domains emerge for
the full wetting case. Hence, a complete phase segregation
is observed when the wetting substance migrates toward the
pore surface and creates layers that encompass the nonwetting
species located around the axis of the cylinder. The wetting
substance is observed to adhere to a two-dimensional domain
growth pattern, characterized by the growth exponent α = 1/2
in the viscous hydrodynamic regime. This is supported by the
Porod tail pertaining to the structure factor. On the other hand,
the nonwetting species is found to experience linear domain
growth over time. This implies that the nonwetting species
behaves similarly to a three-dimensional bulk system. This
behavior was additionally affirmed through an examination of
the tail section of the structure factor. Our works provides a
comprehensive understanding of the kinetics of phase separa-
tion in confined liquids under different wetting conditions. It
is worth mentioning here that the critical value of the interac-
tion strength for the partial to full wetting transition depends
on the degree of confinement, and is found to increase with
decreasing radius of the cylinder. Therefore, with decreasing
pore size the confinement effect increases and a larger interac-
tion strength is needed to obtain complete wetting. A detailed
study in this direction will be reported elsewhere. Also, it will
be interesting to extend this work where the confinement has
complex topology, i.e., random porous media [44].
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