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Stochastic motion under nonlinear friction representing shear thinning
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We study stochastic motion under a nonlinear frictional force that levels off with increasing velocity. Specif-
ically, our frictional force is of the so-called Coulomb-tanh type. At small speed, it increases approximately
linearly with velocity, while at large speed, it approaches a constant magnitude, similarly to solid (dry, Coulomb)
friction. In one spatial dimension, a formal analogy between the associated Fokker-Planck equation and the
Schrödinger equation for a quantum mechanical oscillator in a nonharmonic Pöschl-Teller potential is revealed.
Then, the stationary velocity statistics can be treated analytically. From such analytical considerations, we
determine associated diffusion coefficients, which we confirm by agent-based simulations. Moreover, from such
simulations and from numerically solving the associated Fokker-Planck equation, we find that the spatial distri-
bution function, starting from an initial Gaussian shape, develops tails that appear exponential at intermediate
timescales. At small magnitudes of stochastic driving, the velocity distribution resembles the case of linear
friction, while at large magnitudes, it rather approaches the case of solid (dry, Coulomb) friction. The same is true
for diffusion coefficients. In a certain sense thus interpolating between the two extreme cases of linear friction
and solid (dry, Coulomb) friction, our approach should be useful to describe several cases of practical relevance.
For instance, a reduced increase in friction with increasing relative speed is typical of shear-thinning behavior.
Therefore, driven motion in shear-thinning environments is one specific example to which our description may
be applied.
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I. INTRODUCTION

Addressing the dynamics of an object that is subject to
both linear friction with its environment and a white stochastic
driving force of Gaussian distribution is a classical textbook
example [1]. The procedure of deriving the corresponding
velocity and spatial displacement statistics by crossing from
the Langevin dynamics to the associated Fokker-Planck equa-
tion is well established. In that case, the steady-state velocity
distribution is of Gaussian form. Moreover, an initially single-
peaked spatial probability distribution of finding the object at
a certain location likewise adopts Gaussian shape over time,
shrinks in height, and broadens in width.

To describe the stochastically driven motion of objects
that slide on a solid substrate, it is common to include the
so-called solid or dry friction, sometimes also referred to as
Coulomb friction [2]. This frictional force at nonvanishing
speed is of constant magnitude and always oriented against the
current velocity direction. The associated steady-state velocity
distribution features a cusp at vanishing speed and, in the
absence of linear friction, is of purely exponential character
[3–8]. Initially single-peaked spatial distribution functions de-
velop intermediate non-Gaussian shapes and tails, while the
mean-squared displacement apparently still increases linearly
in time [6]. Experimental investigations on a broad variety of
different systems provide related observations [9].
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Solid (dry) friction of the Coulomb type is an extreme
example. From zero velocity, it directly jumps to a constant
magnitude when the object is set into motion. Similarly, when
reverting the velocity direction starting from small but non-
vanishing speed, this type of friction abruptly jumps from the
finite initial value to the value of opposite sign but identical
magnitude.

One way of loosening this peculiar property of finite jump
at vanishing speed is to replace the associated functional form
of friction with respect to the velocity by a hyperbolic tan-
gent. It smoothly and steadily crosses the point of vanishing
speed with finite slope. Yet, it remains bounded for increasing
magnitude of velocity. This so-called Coulomb-tanh friction
model has been introduced and applied before [10–12]. Here,
we illustrate a way to evaluate this friction model in the con-
text of motion of a stochastically driven object. Our statistical
approach allows for some analytical considerations including
velocity statistics and diffusion coefficients, whereas the spa-
tial statistics are evaluated numerically.

We point out that one possible context of dynamics un-
der Coulomb-tanh friction is, to some degree, motion in a
shear-thinning environment [13]. Generally, for relative mo-
tion under shear thinning, the increase in friction decreases
with increasing relative speed. At small magnitudes of veloc-
ity, Coulomb-tanh friction increases approximately linearly
with speed. This increase is reduced by rising speed, which,
for example, can be considered as the mentioned characteristic
feature of shear-thinning behavior. If regarded in this context
and along these lines, we may interpret the mathematical form
of solid (dry, Coulomb) friction as an extreme limit. Contrarily
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but in a similar spirit, the statistics of stochastic motion in a
shear-thickening environment has also been evaluated in the
context of a nonlinear friction term [14].

Similarly to previous initial treatments of stochastic motion
under solid (dry) friction of the Coulomb type [3,5,6], here
we confine ourselves to motion in one spatial dimension. This
allows for several analytical considerations. Our presentation
is structured as follows. Next, in Sec. II, we present the un-
derlying stochastic equations of Langevin and Fokker-Planck
types. Particularly, we introduce an appropriate “velocity
potential” in the Fokker-Planck equation that reproduces the
Coulomb-tanh friction term in the Langevin equation. As a
consequence, we find an analytical expression for the veloc-
ity distribution in Sec. III and can analytically approach its
dynamics in Sec. IV. On this basis, an expression of closed in-
tegral form is obtained for the diffusion coefficient in Sec. V.
The dynamics of the decaying spatial distribution is illustrated
by numerical solution in Sec. VI. We conclude in Sec. VII by
presenting an outlook on possible future investigations. Some
technical details are shifted to the four appendices.

II. STATISTICAL EQUATIONS

Theoretically, the stochastic motion of an object in
one spatial dimension under Coulomb-tanh friction is de-
scribed by the following coupled differential equations of the
Langevin type:

m
d ṽ

dt̃
= −F̃ tanh

(
ṽ

v0

)
+ γ̃ (t̃ ), (1a)

dx̃

dt̃
= ṽ. (1b)

In these equations, x̃, ṽ, and t̃ denote the still dimensionful
spatial position, velocity, and time, respectively. m is the mass
of the object. The first term −F̃ tanh(ṽ/v0) on the right-hand
side of Eq. (1a) introduces the mathematical expression of
the specific frictional force of the Coulomb-tanh type that
we mentioned above. The parameter v0 sets the slope at in-
finitely small speed, which is F̃/v0. Moreover, the last term
of Eq. (1a), γ̃ (t̃ ), includes the stochastic force. We assume
it to be δ correlated in time, white, and of Gaussian type,
〈γ̃ (t̃ ), γ̃ (t̃ ′)〉 = 2Kδ(t̃ − t̃ ′). Here, K sets the strength and δ

denotes the Dirac delta function. Furthermore, we require
〈γ̃ (t̃ )〉 = 0.

We remark in this context that as is apparent from relating
the strength of the stochastic force to a constant value K , the
situation that we are addressing is not an equilibrium one. In
the latter case, a fluctuation-dissipation theorem would apply
that balances the input of energy to our object due to stochastic
driving caused by thermal fluctuations with the loss in energy
due to friction and dissipation. In general, its form under non-
linear friction differs from the fluctuation-dissipation theorem
for linear friction [15].

In contrast to such an equilibrium situation, here we rather
think of a scenario in which the stochastic driving is caused
by a defined external mechanism. For example, related ear-
lier works by de Gennes [3] and Chaudhury et al. [16,17]
assume and experimentally investigate an object on a vibrated
substrate. To this situation, they apply the described formal-
ism, setting the ensemble-averaged strength of the stochastic

force constant. The stochastic force there is determined by the
externally controlled magnitude and type of applied vibration.
In their case, dry (solid) friction results between the substrate
and the object, which is modeled in the calculations by a
nonlinear friction term of the Coulomb type.

In our case, we likewise assume a driving force of con-
stant averaged strength and therefore a similar setting. Yet,
we consider a modified type of friction between the object
and the surface. For instance, a layer of polymer solution
or melt may be deposited onto the vibrated substrate. Thus,
the vibrated object slides on this layer and shears it between
itself and the substrate. This shear may cause nonlinear fric-
tion that increases less substantially with speed the higher
the speed of the sliding object becomes. The nonlinearity
of the friction then results from the shear-thinning behavior
of the deposited layer between the sliding object and the
vibrated substrate. This trend of behavior is modeled in our
approach by the nonlinear Coulomb-tanh friction force. Con-
finement to one-dimensional motion can be imposed in exper-
iments using appropriate spatial constrictions. In that context,
toroidal cavities of diameters that are large compared to the
dimension of the vibrated objects could be used to mimic one-
dimensional motion under periodic boundary conditions [18].

Next, we turn to dimensionless quantities by rescaling v =
ṽ/v0, t = Kt̃/m2v2

0 , F = mv0F̃/K , and x = Kx̃/m2v3
0 . Now,

the frictional force of the Coulomb-tanh type simply reads
−F tanh(v). Its magnitude is bounded by the parameter F > 0
in the limit of large speed. There, the frictional force levels off
and approaches the magnitude of solid (dry, Coulomb) friction
−Fσ (v) [see Fig. 1(a)], where σ (v) with σ (0) = 0 denotes
the sign function. At small speed, we recover standard linear
friction −Fv.

Finally, we introduce the probability density in phase
space, f (x, v, t ), of finding an object at time t at position
x with velocity v. Its dynamic evolution is described by a
continuum equation of the Fokker-Planck type. It is derived
via standard procedures [1,19] and reads

∂t f (x, v, t ) = {− v∂x + ∂vF tanh v + ∂2
v

}
f (x, v, t ). (2)

III. STEADY-STATE VELOCITY DISTRIBUTION

We find the differential equation for the velocity distribu-
tion fv (v, t ) = ∫ ∞

−∞ f (x, v, t )dx by integrating out the spatial
position x from Eq. (2), resulting in

∂t fv (v, t ) = ∂v{F tanh v + ∂v} fv (v, t ). (3)

From there, we obtain the normalized stationary velocity dis-
tribution via ∂t fv (v, t ) = 0,

fv,st (v) = cosh−F (v)∫ ∞
−∞ cosh−F (v) dv

. (4a)

This expression can be rewritten as

fv,st (v) = F !F

2F+1(F/2)!2
cosh−F (v)

= �
(

F+1
2

)
√

π �
(

F
2

) cosh−F (v) (4b)

(see Appendix A), where � denotes the Gamma function.
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FIG. 1. Friction of the Coulomb-tanh type −F tanh(v) (blue,
solid) in comparison to linear friction −Fv (green, dashed) and solid
(dry, Coulomb) friction −Fσ (v) (orange, dash-dotted) as well as
stationary velocity distributions fv,st (v). (a) At small magnitudes of
velocity |v|, the friction of the Coulomb-tanh type increases linearly
with v, while at large |v|, it levels off and approaches the limit of
solid (dry, Coulomb) friction. (b) Stationary velocity distributions
fv,st (v), f lin

v,st (v), and f dry
v,st (v) [see Eqs. (4), (6), and (8), respectively]

when compared to each other. The friction parameters F = 2 for
Coulomb-tanh friction, F = 1.22 for linear friction, and F = 1.56
for solid (dry, Coulomb) friction were adjusted to render the mean-
squared velocity equal. They imply an equal effective temperature of
Tv (2) ≈ T lin

v (1.22) ≈ T dry
v (1.56) ≈ 0.82 as defined by Eqs. (5), (7),

and (9). (c) Stationary velocity distribution fv,st (v) for Coulomb-tanh
friction [see Eqs. (4)] at different force parameters F . For better
comparison, we rescale the velocity and the distribution function
using the root-mean-squared velocity vrms in each case.

Examining this distribution and comparing it to the cases
of linear and purely solid (dry, Coulomb) friction, it generally
shows an intermediate shape; see Fig. 1(b). At small speed, it
resembles a Gaussian distribution due to the approximate lin-
earity of the frictional force in this regime. At large speed, the
tails appear exponential as in the case of solid (dry, Coulomb)

friction, which is related to the leveling off of the frictional
force.

Additional dependence of the shape of fv,st (v) results from
the parameter F > 0. As we can see in Fig. 1(c), with decreas-
ing values of F , the Gaussian regime becomes very narrow
and the distribution approaches the character for solid (dry,
Coulomb) friction, which features a cusp at v = 0. The expo-
nential tails dominate. Contrarily, for increasing values of F ,
the central Gaussian character broadens and the exponential
tails are pushed further out. In Fig. 1(c), we rescale the ve-
locity v by its root-mean-squared value vrms, to better fit the
different curves into one diagram. Accordingly, we multiply
fv,st (v) by vrms to preserve normalization.

For later reference, we define a temperaturelike variable Tv

for the object as its mean-squared velocity, Tv := 〈v2〉st , where
〈·〉st = ∫ ∞

−∞ ... fv,st (v)dv; see Eqs. (4). We obtain

Tv (F ) = 1

2
ψ (1)

(
F

2

)
, (5)

where ψ (1)(z) = d2 ln �(z)/dz2 is the second polygamma
function, also called the trigamma function; see Appendix B.

At low temperatures, the object mainly probes the regime
of small speed. There, friction depends approximately lin-
early on velocity v. We obtain the corresponding frictional
form −Fv in the limit of small magnitudes of velocity from
our friction of the Coulomb-tanh type −F tanh(v). Again, F
parameterizes the strength of the frictional force. From the
appropriate replacement of −F tanh(v) by −Fv in Eq. (2),
we obtain the corresponding stationary velocity distribution
f lin
v,st (v). It is of Gaussian shape and reads

f lin
v,st (v) =

√
F

2π
exp

(
−Fv2

2

)
, (6)

see Fig. 1(b). Based on this stationary velocity distribution,
we find the temperature

T lin
v (F ) = 〈v2〉lin

st = 1

F
. (7)

Contrarily, at high temperatures, large values of the speed
of the object dominate. In this limit of large magnitudes of
velocity v, the frictional form of the Coulomb-tanh type turns
into −Fσ (v), associated with the leveling off in the frictional
force. Here, σ (v) denotes the sign function, where σ (0) = 0.
This functional form is identical to the case of solid (dry,
Coulomb) friction. Again, substituting the frictional term in
Eq. (2) accordingly, we find the associated stationary velocity
distribution f dry

v,st (v). It is of exponential shape,

f dry
v,st (v) = F

2
exp(−F |v|). (8)

Figure 1(b) illustrates the corresponding result. Using this sta-
tionary velocity distribution, the associated temperature reads

T dry
v (F ) = 〈v2〉dry

st = 2

F 2
. (9)

The trigamma function ψ (1)(F/2) in Eq. (5) for positive F
decreases with increasing force parameter F . Therefore, from
Eq. (5), we infer that large values of F � 1 are related to
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FIG. 2. Effective temperature Tv (F ) as a function of the strength
F for Coulomb-tanh friction −F tanh v (blue, solid), when com-
pared to temperatures T lin

v (F ) for linear friction −Fv (green, dashed)
and T dry

v (F ) for solid (dry, Coulomb) friction −Fσ (v) (orange,
dash-dotted). The asymptotic behavior at small and large F is well
reproduced.

small temperatures Tv (F ). In this regime, the object mainly
attains small speeds and therefore predominantly probes the
regime of linear friction −Fv. From the asymptotic behav-
ior of the trigamma function, we observe in this case that
for F � 1, the temperature decreases with increasing F as
Tv (F ) ≈ F−1. This is the same functional form as for the
temperature T lin

v (F ) in the case of linear friction; see Eq. (7).
Conversely, small values of F 	 1 are related to high tem-
peratures Tv (F ). Then, the object is mostly found at large
speeds, where friction resembles the solid (dry, Coulomb)

type −Fσ (v). From the asymptotic behavior of the trigamma
function, we find that for these values of F 	 1, tempera-
ture decreases as Tv (F ) ≈ 2F−2. This recovers the functional
dependence of the temperature T dry

v (F ) in the case of solid
(dry, Coulomb) friction; see Eq. (9). The asymptotic behavior
is illustrated in Fig. 2. We compare the stationary velocity
distributions for the different types of friction to each other at
different temperatures in Fig. 3.

IV. TIME EVOLUTION OF VELOCITY STATISTICS

In search of an analytical approach to Eq. (3), we turn to
the eigenfunctions of the operator on its right-hand side. Mul-
tiplying the equation by f −1/2

v,st (v) from the left and using the
substitution gv := f −1/2

v,st fv , we eliminate the first derivative ∂v

and render the operator Hermitian. The resulting equation then
resembles a quantum mechanical Schrödinger equation,

∂t gv =
{

−F 2

4
+ F (F + 2)

4 cosh2 v
+ ∂2

v

}
gv. (10)

To address its time evolution, we introduce the ansatz
gv (v, t ) = ψ (v) exp{−(2E + F 2/4)t} and find

Eψ (v) =
{

−1

2
∂2
v − F (F + 2)

8 cosh2 v

}
ψ (v). (11)

This equation actually is formally equivalent to a time-
independent quantum mechanical Schrödinger equation, here
in one-dimensional velocity space. −∂2

v /2 is identified with
the momentum operator and the term containing F with the
external potential. Indeed, if we define λ := F/2, we recover

FIG. 3. (a),(b) Stationary velocity distributions fv,st (v), f lin
v,st (v), and f dry

v,st (v) [see Eqs. (4), (6), and (10), respectively], and (c),(d) functional
forms of the frictional force for Coulomb-tanh friction −F tanh(v) (blue, solid), linear friction −Fv (green, dashed), and solid (dry, Coulomb)
friction −Fσ (v) (orange, dash-dotted), at different effective temperatures (a),(c) Tv (2) ≈ T lin

v (1.22) ≈ T dry
v (1.56) ≈ 0.82 and (b),(d) Tv (0.2) ≈

T lin
v (0.0197) ≈ T dry

v (0.199) ≈ 50.72; see Eqs. (5), (7), and (9). The values of F for the different frictional forces were adjusted as listed in
(c) and (d) to render the temperatures for all frictional cases equal in (a),(c) and (b),(d). At small temperature (a),(c), the stationary velocity
distribution fv,st (v) for the Coulomb-tanh type resembles the Gaussian shape of f lin

v,st (v) for linear friction. Conversely, at large temperature

(b),(d), it approaches the shape of f dry
v,st (v) for solid (dry, Coulomb) friction of dominating exponential character.
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the Schrödinger equation for the so-called Pöschl-Teller po-
tential, V (v) = −λ(λ + 1)/2 cosh2 v [20].

On the one hand, for positive integer values of λ = l > 0,
the discrete eigenvalues of this Schrödinger equation are E =
−m2/2 < 0 for m = 1, 2, . . . , l , with the bound eigenfunc-
tions being the associated Legendre polynomials Pm

l (tanh v).
Using the orthogonality relation∫ 1

−1

Pm
l (x)Pn

l (x)

1 − x2
dx = (l + m)!

m(l − m)!
δmn, (12)

they can be normalized to

ψm(v) =
√

m(l − m)!

(l + m)!
Pm

l (tanh v). (13)

In particular, identifying F = 2l , we find

ψl (v) = (−1)l

√
(2l )! l

2l l!
cosh−l (v) = (−1)l

√
fv,st (v). (14)

On the other hand, for positive E = k2/2 > 0, with k being
a real number, we turn to the associated Legendre functions.
They can be extended to complex orders Pik

l (tanh v), which
gives rise to a continuum of scattering states. A normalization
is imposed by considering the asymptotic behavior at v →
±∞, where the potential vanishes and the eigenfunctions turn
into those of a free particle; see Appendix C. In this way, we
obtain corresponding eigenfunctions,

ψik (v) = �(1 − ik)√
2π

Pik
l (tanh v). (15)

In combination, we may rewrite the operator on the right-hand
side of Eq. (3) according to its spectral decomposition. Then,
the equation reads

∂t | fv〉 = f 1/2
v,st

{ ∑
m

(m2 − l2)|ψm〉〈ψm|

−
∫ ∞

−∞
dk (l2 + k2)|ψik〉〈ψik|

}
f −1/2
v,st | fv〉. (16)

V. DIFFUSION COEFFICIENT

Through Einstein’s equation, the diffusion coefficient can
be calculated using the velocity autocorrelation function
[3,21]. The expression can be decomposed into the eigenfunc-
tions and then, again identifying F = 2l , reads

D =
∫ ∞

0
〈v(0)v(t )〉dt

=
odd∑
m

∣∣〈ψl |v|ψm〉∣∣2

l2 − m2
+

∫ ∞

−∞
dk

∣∣〈ψl |v|ψik〉
∣∣2

l2 + k2
. (17)

Here, only ψm(v) of odd parity contribute to the sum because
v is odd and ψl (v) = (−1)l

√
fv,st (v) is even.

We confirm Eq. (17) by comparison with the corre-
sponding results for asymptotic values of the mean-squared
displacement 〈x2(t )〉 obtained from agent-based simulations
of Eqs. (1). For this purpose, the equations of motion were
discretized in time using the Euler method. Unless remarked

FIG. 4. Mean-squared displacement 〈x2(t )〉 over time on a
double-logarithmic scale for different strengths F of the Coulomb-
tanh frictional force, as obtained from agent-based simulations of
Eqs. (1). Averages are obtained for simulations of N = 105 objects
over a total time tmax = 1000 with a discrete time step dt = 10−3. As
a visual guide, we include the black dashed line, which corresponds
to a linear increase of 〈x2(t )〉 ∝ t . We observe that stronger friction
tends to support the approach of 〈x2(t )〉 to this regime.

otherwise, the time step was chosen as dt = 10−3. An ensem-
ble of N = 105 objects was considered. As initial conditions,
we randomly sampled the velocities and space positions of
these objects from the initial velocity and spatial distribu-
tions detailed in Sec. VI. We draw the stochastic force γ (t )
independently at each time step and for each object from
a Gaussian distribution of vanishing mean using, as an un-
derlying (pseudo)random number generator, the Mersenne
twister [22]. The variance of the Gaussian distribution is
set by 〈γ (t )γ (t ′)〉 = 2δ(t − t ′) in dimensionless units and
discretized form. To this end, the correlation 〈γ (t )γ (t ′)〉 is
integrated over one time step dt and γ (t ) is assumed to be
constant during that period.

Examples for 〈x2(t )〉 over time are shown in Fig. 4 (see
the caption for parameter settings in the simulations). First,
in Fig. 4, we address the same values of F = 0.2 and F = 2
as used for our illustrations in Fig. 3. We recall that the
other values of F listed in Fig. 3 refer to the other types of
considered friction for identical effective temperature Tv of
the moving objects. Additionally, we increase the strength of
the frictional force up to F = 10 to demonstrate the agreement
between the results obtained via Eq. (17) and the agent-based
simulations.

The resulting diffusion coefficients for both approaches are
compared in Table I. We obtained the diffusion coefficients
Dsim from the simulations via linear fits to 〈x2(t )〉 within the
time interval 50 < t < 1000, when the initial effects have
decayed. The double integral for the analytical solution in
Eq. (17) was computed using Mathematica [23]. Deviations
are smaller than 1%.

In the cases of linear and solid (dry, Coulomb) friction,
we expect an initially quadratic dependence D ∝ T 2

v based
on dimensional analysis. As explained above, friction of the
Coulomb-tanh type interpolates between these two limiting
cases when turning from small speeds, or low Tv , to larger
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TABLE I. Comparison of diffusion coefficients at different force
parameters F resulting in different temperatures Tv . The diffusion
coefficients obtained by agent-based simulation Dsim agree well with
the theoretically predicted results D from Eq. (17).

F 2 4 6 8 10
Dsim 0.717 0.106 0.0392 0.0203 0.0122
D 0.712 0.106 0.0393 0.0202 0.0123
Tv 0.823 0.323 0.198 0.142 0.111

speeds, or elevated Tv . Indeed, we find corresponding behav-
ior; see Fig. 5.

VI. TIME EVOLUTION OF THE SPATIAL STATISTICS

To obtain the spatial distribution function fx(x, t ), it is nec-
essary to solve the entire Fokker-Planck equation (2) for the
complete distribution function f (x, v, t ). From there, we find
fx(x, t ) by integrating out the velocity component, fx(x, t ) =∫ ∞
−∞ f (x, v, t )dv. We performed this task numerically using

Mathematica [23].
Apart from that, we again carried out agent-based simu-

lations of the Langevin equations (1) (see Sec. V), now for
an ensemble of N = 107 objects. We compare the results ob-
tained from the two methods, that is, from the solution of the
Fokker-Planck equation (2) using Mathematica [23] and from
the agent-based simulations of the Langevin equations (1). To
facilitate comparison between the results obtained by the two
different approaches, we chose as an initial condition an iden-
tical product of a spatial distribution function and a velocity

FIG. 5. Diffusion coefficients for friction of the Coulomb-tanh
type (blue), solid (dry, Coulomb) friction (orange), and linear friction
(green) over a logarithmic temperature scale. The data were obtained
using agent-based simulations for N = 104 objects (time step of
dt = 10−4). We determined the diffusion coefficients via linear fits
to the mean-squared displacements in the time interval 50 < t < 104.
Error bars result from splitting the fitting interval into multiple time
intervals and computing the standard deviation of the slopes of the
mean-squared displacement obtained in the different time intervals.
Theoretical values for purely linear and purely solid (dry, Coulomb)
friction are shown as dashed lines; see Appendix D. As a guide to
the eye, the data for Coulomb-tanh friction were fitted by a sigmoidal
function {1 + sigm[α ln(Tv/Tc )]/4}T 2

v with fit parameters α and Tc.

FIG. 6. (a) Spatial distribution fx (x, t ) at different times t , start-
ing at time t = 0 from a Gaussian distribution of standard deviation
σx = 1 concerning the spatial component, multiplied by the station-
ary velocity distribution fv,st (v) as given by Eq. (3). The scale on the
ordinate is logarithmic and the strength of the Coulomb-tanh fric-
tional force was set to F = 2. Lines represent results as obtained by
numerical solution of the Fokker-Planck Eq. (2) using Mathematica
[22]. Dots mark results calculated through agent-based simulations
of the Langevin Eqs. (1) from ensembles of N = 107 objects (time
step dt = 10−3). The spatial distributions in the agent-based simu-
lations were determined using spatial bins of width dx = 0.1. For
better visibility, not all bin values are shown. (b) Time evolution of
the excess kurtosis 〈x4(t )〉/〈x2(t )〉2 − 3 as extracted from the agent-
based simulations, measuring the deviation of the kurtosis from that
of a Gaussian distribution. Colored lines mark the instants of the
snapshots in (a), except for time t = 0. Intermediate departure from
the Gaussian value is largest around t ≈ 5, when simultaneously we
observe pronounced non-Gaussian tails in (a).

distribution function. The former was selected of Gaussian
shape with standard deviation σx = 1, and the latter as the
stationary velocity distribution fv,st (v); see Eqs. (4).

Spatial distributions fx(x, t ) at different times t as ob-
tained from both methods are shown and compared with each
other in Fig. 6(a). The results from the two approaches agree
very well. Particularly, we observe pronounced non-Gaussian,
rather exponential tails on intermediate timescales. Those tails
are absent in the initial condition of a narrow Gaussian form
concerning the spatial component. Thus, they are related and
develop due to the action of the nonlinear Coulomb-tanh
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frictional force. The tails are pushed outward during the fur-
ther course of time evolution.

In addition, to further quantify the non-Gaussian charac-
ter of the spatial distributions at intermediate timescales, we
include in Fig. 6(b) the excess kurtosis 〈x4(t )〉/〈x2(t )〉2 − 3
as extracted from the agent-based simulations. It vanishes for
spatial distributions of Gaussian form, here at t = 0. In our
case, it shows a maximum at around t ≈ 5. Afterwards, it
decreases again with proceeding time t . This temporal devel-
opment is in line with our observations in Fig. 6(a).

Furthermore, Fig. 7 illustrates at some times the com-
plete probability distribution function f (x, v, t ) as obtained
by numerical solution of the Fokker-Planck equation (2), us-
ing Mathematica [23]. At intermediate times, the distribution
function becomes nonsymmetric with respect to the lines x =
0 and v = 0; see Figs. 7(a) and 7(b). Thus, spatial and velocity
components couple to each other and the factorization into
a space- and velocity-dependent contribution inherent to the
initial condition is lost. At late times [see Fig. 7(c)], symme-
try is roughly restored so that a factorization again becomes
conceivable.

VII. CONCLUSIONS

In summary, using statistical approaches, we investigated
the stochastically driven motion of an object under Coulomb-
tanh friction. This frictional force interpolates between linear
friction at small speeds and solid (dry, Coulomb) friction at
larger speeds, which is also reflected by the velocity distribu-
tion functions and diffusion coefficients for smaller and larger
magnitudes of stochastic driving, respectively. Our specific
motivation originates from stochastically driven objects that
in addition to the driving mechanism, are subject to nonlinear
frictional forces. Here, we consider the case of a frictional
force that increases less substantially with speed at larger
magnitudes of velocity. Such a situation occurs in scenarios
of shear thinning. For instance, in that case, the environment
may contain a surrounding shear-thinning viscous fluid or a
subjacent shear-thinning layer deposited between an object
and the supporting substrate. Depending on the specific char-
acteristics of the employed materials, the situation would then,
to a certain degree, be reflected by a frictional force of the
Coulomb-tanh type.

It turns out that in one spatial dimension, the purely
velocity-dependent part of the associated Fokker-Planck equa-
tion can be mapped onto a Schrödinger equation. There, the
potential is of Pöschl-Teller form. In this way, we were able to
treat the velocity-dependent part of the statistical equation as
well as the calculation of the diffusion coefficient analytically.
Agent-based simulations were performed for comparison and
confirmed our analytical results and numerical solution of the
associated Fokker-Planck equation.

Our study can be extended in various directions. First,
naturally, consequences for the physics in more than one
spatial dimension should be evaluated. Here, we considered a
one-dimensional situation because our focus was on the possi-
bility of an analytical solution and on pointing out the relation
to the quantum mechanical situation. In two (or even three)
dimensions, the approach may still be valid, if the described
dynamics is evaluated along the resulting one-dimensional

FIG. 7. Color plots of the full probability distribution function
f (x, v, t ) at different times (a) t = 3, (b) t = 10, and (c) t = 300,
as obtained by numerical solution of the Fokker-Planck Eq. (2),
under the conditions already stated in the caption of Fig. 6 using
Mathematica [23]. We stress the different scalings of both the ab-
scissae and color scale bars due to the significant broadening of the
distribution function along the space direction over time.

trajectories. To this end, we assume a preferred body-fixed
axis of the moving object, along which friction with the sub-
strate is significantly lower than perpendicular to it [21]. Then,
motion is mainly confined to directions along the present
orientation of this axis. An additional equation of motion may
apply for the dynamics of the axial orientation, yet it must not
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affect the translational dynamics along the one-dimensional
trajectory for our description to remain valid.

Second, one could address the consequences of an ad-
ditional linear friction term if added to the Langevin
equation [5,6,21]. Such a situation could result, for in-
stance, if the motion of submillimeter particles takes place at
the interface between two fluids, one of them viscous and the
other one shear thinning. External stochastic driving could be
imposed in an experiment, for instance, by optical tweezers or,
for magnetic particles, by external magnetic field gradients.

A specific example in this context is self-propelled parti-
cles or other objects that by themselves feature an independent
active driving. Physical examples are hoppers on vibrating
surfaces [3,17,24–27] or colloidal particles featuring a cer-
tain driving mechanism in liquid suspension [28–31]. The
dynamics of such objects have been addressed theoretically
by setting the coefficient of the just-mentioned linear fric-
tion to negative values [32–38]. Yet, higher-order nonlinear
friction terms then are required for stabilization. Likewise,
self-propulsion of individual objects is frequently introduced
in theoretical studies by including an active forcing of con-
stant magnitude [39–43]. We can interpret this type of active
driving as solid (dry, Coulomb) friction of negative friction
coefficient. Its consequences have been studied in detail [21].
In our situation, such a description would be stable, as long as
the constant active driving is less in magnitude than the value
at which the Coulomb-tanh friction term levels off or if, again,
a contribution of linear friction is added.
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APPENDIX A: EVALUATION OF THE INTEGRAL FOR
NORMALIZATION IN EQ. (4a)

In this Appendix, we solve the integral appearing in the
denominator of Eq. (4a), that is, we determine the normaliza-
tion coefficient of the stationary velocity distribution function
fv,st (v) leading to Eq. (4b). To this end, for F > 0, we define

Z (F ) :=
∫ ∞

−∞

1

coshF (v)
dv. (A1)

First, we prove a recursion formula from Z (F ) to Z (F + 2)
using integration by parts and trigonometric identities,

Z (F + 2) =
∫ ∞

−∞

1

coshF+2(v)
dv

=
[

tanh(v)

coshF (v)

]∞

−∞
+ F

∫ ∞

−∞

sinh2(v)

coshF+2(v)
dv

= F
∫ ∞

−∞

1

coshF (v)
dv

− F
∫ ∞

−∞

1

coshF+2(v)
dv

= F

F + 1

∫ ∞

−∞

1

coshF (v)
dv. (A2)

Hence, we reach the recursion formula

Z (F + 2) = F

F + 1
Z (F ). (A3)

We can evaluate the base case explicitly to Z (2) = 2.
The same recursion relation applies to the expression

2
2 · 4 · . . . · (F − 2)

3 · 5 · . . . · (F − 1)
. (A4)

Moreover, it equally evaluates to 2 when we set F = 2. There-
fore, the expression in Eq. (A4) can be identified with Z (F )
for all positive, even integer values of F . It can be rewritten as

Z (F ) = 2
(F − 2)!!

(F − 1)!!
= 2F+1(F/2)!2

F !F
, (A5)

where n!! denotes the double factorial, that is, the product of
all positive integers of the same parity as n.

Yet, in our case, we remain with even-integer-valued
parameters F because, in that case, the Schrödinger
equation (11) is analytically solvable. Introducing the Gamma
function � in this situation, Eq. (A5) is identical to the
expression

Z (F ) =
√

π �
(

F
2

)
�
(

F+1
2

) . (A6)

This concludes our proof of Eq. (4b) and its derivation from
Eq. (4a).

APPENDIX B: EVALUATION OF 〈v2〉st TO FIND EQ. (5)

Next, we compute the expression of the temperaturelike
variable Tv listed in Eq. (5). It is given by the mean-squared
velocity in the stationary state as introduced before this equa-
tion.

In parallel to the integral Z (F ) in Eq. (A1), we define

S(F ) :=
∫ ∞

−∞

v2

coshF (v)
dv. (B1)

It allows us to rewrite the expression for Tv = 〈v2〉st as

Tv (F ) = 〈v2〉st =
∫ ∞

−∞
v2 fv,st (v) dv = S(F )

Z (F )
. (B2)

Building on Appendix A, we first derive a recursion formula
from S(F ) and Z (F ) to S(F + 2) using integration by parts
and trigonometric identities,

S(F + 2) =
∫ ∞

−∞

v2

coshF+2(v)
dv

=
[
v2 tanh(v)

coshF (v)

]∞

−∞

−
∫ ∞

−∞

(
2v

coshF (v)
− F

v2 sinh(v)

coshF+1(v)

)
tanh(v) dv

= − 2
∫ ∞

−∞
v

tanh(v)

coshF (v)
dv
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+ F
∫ ∞

−∞

v2[cosh2(v) − 1]

coshF+2(v)
dv

= 2

[
v

F coshF (v)

]∞

−∞
− 2

F

∫ ∞

−∞

1

coshF (v)
dv

+ F
∫ ∞

−∞

v2

coshF (v)
dv − F

∫ ∞

−∞

v2

coshF+2(v)
dv

= FS(F ) − 2

F
Z (F ) − FS(F + 2). (B3)

From there, it follows that

S(F + 2) = F

F + 1
S(F ) − 2

F (F + 1)
Z (F ). (B4)

Together with the recursion formula for Z (F ) in Eq. (A3), we
deduce a recursion relation for Tv ,

Tv (F + 2) = S(F + 2)

Z (F + 2)

= F

F + 1

S(F )

Z (F + 2)
− 2Z (F )

F (F + 1)Z (F + 2)

= Tv (F ) − 2

F 2
. (B5)

For F = 2, the integral can be evaluated explicitly to Tv (2) =
π2/12, which would already suffice to inductively deduce the
value Tv (F ) for all even-integer-valued parameters F .

We note that the same recursion relation as in Eq. (B5)
follows, if we define

Tv (F ) := 1

2
ψ (1)

(
F

2

)
(B6)

for positive values of F > 0. More precisely, we remain in our
analytical considerations with positive, even integer values of
F , as explained above. ψ (1) is the second polygamma func-
tion, also known as the trigamma function. This identification
also reproduces the base case Tv (2) = π2/12. Therefore,
Eq. (B6) gives the correct expression in our description. Thus,
we have demonstrated the validity of Eq. (5).

APPENDIX C: NORMALIZATION OF THE SCATTERING
STATES IN EQ. (15)

Here, we explain how to find the expressions of the nor-
malized scattering states ψik (v) in Eq. (15). We rewrite the
associated Legendre functions by means of the hypergeomet-
ric function 2F1,

Pik
l (tanh v) = 1

�(1 − ik)

[
1 + tanh(v)

1 − tanh(v)

]ik/2

× 2F 1

(
−l, l + 1, 1 − ik,

1 − tanh(v)

2

)
.

(C1)

Next, we consider its limit for v → ∞, where we find

lim
v→∞ Pik

l (tanh v)

= 1

�(1 − ik)
eikv

2F 1(−l, l + 1, 1 − ik, 0) = 1

�(1 − ik)
eikv,

(C2)

where � denotes the gamma function. Thus, we obtain a
complex exponential scaled by a factor of �(1 − ik)−1.

The Pöschl-Teller potential has the particular property of
being reflectionless [44]. Therefore, the same amplitude is
expected for v → −∞. If we normalize the scattering states in
a large box and increase the size of the box, the contribution of
the central part, where the potential is most pronounced, van-
ishes. We thus use the normalization factor of free particles.
Consequently, in one spatial dimension, we multiply Eq. (C2)
by �(1 − ik)(2π )−1/2.

APPENDIX D: DIFFUSION COEFFICIENT FOR SOLID
(DRY, COULOMB) FRICTION

Finally, we revisit the derivation of the diffusion coefficient
in the case of pure solid (dry, Coulomb) friction to verify the
results of our simulations, as shown in Fig. 5. In this case, the
Langevin equations, instead of Eqs. (1), read [3]

dv

dt
= −Fσ (v) + γ (t ), (D1a)

dx

dt
= v, (D1b)

where we rescaled all variables to dimensionless quantities as
in Sec. II. Here, F > 0 represents the strength of the frictional
force, and σ (v) = |v|/v with σ (0) = 0 is the sign function.
γ (t ) includes a Gaussian, white stochastic force of zero mean
and correlation in time, 〈γ (t )γ (t ′)〉 = 2δ(t − t ′). Instead of
Eq. (2), this leads us to the Fokker-Planck equation

∂t f (x, v, t ) = {− v∂x + ∂vFσ (v) + ∂2
v

}
f (x, v, t ). (D2)

We integrate this equation over space to obtain

∂t fv (v, t ) = ∂v{Fσ (v) + ∂v} fv (v, t ). (D3)

Setting ∂t fv (v, t ) = 0, we find the stationary velocity distri-
bution fv,st (v) = F exp(−F |v|)/2.

Next, we introduce gv (v, t ) = f −1/2
v,st (v) fv (v, t ). From

Eq. (D4), we obtain, for gv (v, t ), the equation

∂t gv (v, t ) =
{

−F 2

4
+ Fδ(v) + ∂2

v

}
gv (v, t ), (D4)

where δ(v) is the Dirac delta function. The operator on the
right-hand side is Hermitian and we perform spectral decom-
position.

Introducing gv (v, t ) = ∑
k ψk (v) exp(−Ekt ), the only

bound eigenfunction ψ0(v) = f 1/2
v,st (v) is associated with the

eigenvalue E0 = 0. Furthermore, there is a continuum of
scattering states that can be split into even (e) and odd (o)
eigenfunctions for k > 0. These eigenfunctions, respectively,
read

ψk,e(v) = 1√
π

cos

[
k|v| + arctan

(
F

2k

)]
, (D5)

ψk,o(v) = 1√
π

sin(kv). (D6)

They are associated with the eigenvalues Ek = F 2/4 + k2.
Eventually, the diffusion coefficient is calculated in anal-

ogy to Eq. (17). Only the odd eigenfunctions from Eq. (D6)
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contribute due to symmetry, so that after integration over time,
we obtain

D =
∫ ∞

0

|〈ψ0|v|ψk,o〉|2
Ek

dk = πF 3

2

∫ ∞

0

k2 dk(
F 2

4 + k2
)5 = 5

F 4
.

(D7)

Besides, direct calculation leads to Tv = 〈v2〉st = 2/F 2.
Therefore,

D = 5

4
T 2

v . (D8)

The results from our simulations presented in Fig. 5 confirm
this relation.
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