
PHYSICAL REVIEW E 108, 064605 (2023)

Simulations and integral-equation theories for dipolar density interacting disks

Elena Rufeil-Fiori * and Adolfo J. Banchio †

Facultad de Matemática, Astronomía, Física y Computación, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
and Instituto de Física Enrique Gaviola, CONICET-UNC, Córdoba X5000HUA, Argentina

(Received 30 August 2023; accepted 14 November 2023; published 12 December 2023)

Integral equation theories (IETs) based on the Ornstein-Zernike (OZ) relation can be used as an analytical
tool to predict structural and thermodynamic properties and phase behavior of fluids with low numerical cost.
However, there are no studies of the IETs for the dipolar density interaction potential in two-dimensional systems,
a relevant interdomain interaction in lipid monolayers with phase coexistence. This repulsive interaction arises
due to the excess dipole density of the domains, which are aligned perpendicular to the interface. This work
studies the performance of three closures of the OZ equation for this novel system: Rogers-Young (RY), modified
hypernetted chain (MHNC), and variational modified hypernetted chain (VMHNC). For the last two closures
the bridge function of a reference system is required, with the hard disk being the most convenient reference
system. Given that in two dimensions there is no analytical expressions for the hard disk correlation functions,
two different approximations are proposed: one based on the Percus-Yevick (PY) approximation, and the other
based on an extension of the hard spheres Verlet-Weis-Henderson-Grundke (LB) parametrization. The accuracy
of the five approaches is evaluated by comparison of the pair correlation function and the structure factor with
Monte Carlo simulation data. The results show that RY closure is satisfactory only for low-structured regimes.
MHNC and VMHNC closures perform globally well, and there are no significant differences between them.
However, the reference system in some cases affects their performance; when the pair correlation function serves
as the measure, the LB-based closures quantitatively outperform the PY ones. From the point of view of its
applicability, LB-based closures do not have a solution for all studied interaction strength parameters, and, in
general, PY-based closures are numerically preferable.

DOI: 10.1103/PhysRevE.108.064605

I. INTRODUCTION

In the context of lipid monolayers with phase coexistence,
electrostatic interdomain interactions [1–3] in two- and quasi-
two-dimensional systems play an important role in the lateral
organization of the monolayer [4]. These interdomain inter-
actions affect the motion of domains [5] as well as that of
other molecules present in the monolayer [6,7]. Among these
interactions, the dipolar density repulsion between domains
is particularly relevant because it is always present. It arises
from the excess dipolar density, which is perpendicular to the
monolayer plane, of the ordered phase of the domains with
respect to the continuous phase of the surroundings. Usually,
this interaction is simplified by adopting the point-dipole ap-
proximation [5,8–10]. This approach, however, is valid only
for very dilute systems [8].

Integral equation theories (IETs) of the fluid state repre-
sent an alternative, analytical tool to predict structural and
thermodynamic properties as well as the phase behavior of
fluids [11–13]. As well, they provide a numerically low-cost
approach in comparison with numerical simulations.

The most used IETs are those based on the Ornstein-
Zernike (OZ) relation associated with an approximate closure
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relation (OZ-IETs). Previous works in the literature have ex-
plored the performance of a few different closures to the OZ
equation for the point-dipole interaction in two-dimensional
(2D) systems [10,14,15]. However, as far as we know, there
are no OZ-IETs studies on the dipolar density interaction.
Because membrane systems are ubiquitous in biological com-
plexes, finding closures to the OZ equation for the 2D dipolar
density interaction is essential to develop theoretical models
that efficiently predict their thermodynamic properties.

Adequate closures to the OZ equation can help us under-
stand how long-range dipolar interactions affect the structure
of the system. They can also be used to conceive new compu-
tational methods and algorithms to simulate these models and
predict, for instance, the dipolar density strength of a mono-
layer [8]. In mode-coupling schemes [16–19], used for the
study of the dynamics and glass transition, and density func-
tional theory [15,20], chosen for studying inhomogeneous
fluids, two-particle correlation functions of the systems under
consideration are needed. For this reason, these theories bene-
fit from an IET capable of generating accurate pair correlation
functions. Finally, an adequate closure can also be used in an
inverse protocol [21] to study new interdomain pair potentials
that could be acting in lipid monolayers.

In this work, we study three main closures of the
OZ equation: Rogers-Young (RY), modified hypernetted
chain (MHNC), and variational modified hypernetted chain
(VMHNC). MHNC and VMHNC closures depend on a
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reference system, being hard spheres (HS), the most used
in three-dimensional (3D) systems. In two dimensions there
is no analytical expression for the correlation functions
of a hard disk (HD) system. Hence, for each studied
closure we consider two different approximations for the
HD reference system; one based on the Percus-Yevick (PY)
approximation and the other based on HD extension of the HS
Verlet-Weis-Henderson-Grundke (VWHG) parametrization
[22,23], suggested by Law and Buzza [24], that we name
LB. Thus we are left with five different approaches whose
accuracy is evaluated via direct Monte Carlo simulations.

Based on the comparison with the simulations, we have
found that there is no major difference in performance be-
tween MHNC and VMHNC. We found that the reference
system influences the accuracy of the results. When measured
by the pair correlation function, the LB consistently represents
a better choice than PY. However, when the structure factor
is used as the measure of accuracy, the reference system that
performs better depends on the particular region of the phase
diagram. The closures based on LB do not present a solution
for all the studied interaction strength parameter range, which
limits the applicability of this reference system. Finally, for
low structured systems RY presents the better performance.
However, its accuracy worsens with increasing interaction
strength.

The paper is organized as follows: In Sec. II we present
the interdomain interaction, the reduced units, and the
structural quantities of interest. In Sec. III we introduce the
OZ equation and the closure relations that we considered
to study the performance of the OZ-IETs for a 2D system
of hard disks with dipolar density interaction pair potential.
We also describe the basic aspects of numerical calculations.
In Sec. IV we discuss our results, benchmarking our IETs
approach with Monte Carlo simulations. Finally, Sec. V
provides our conclusions.

II. DESCRIPTION OF THE MODEL

A. Dipolar density potential

Dipolar density potential arises naturally in lipid mono-
layers with its two-phase, liquid-condensed (LC), and liquid-
expanded (LE), coexistence region. Here, in general, the LC
phase forms domains in the LE phase, which occupies the
larger area of the monolayer. The lipids forming a monolayer
have associated an electric dipole moment perpendicularly
oriented to the monolayer. Because of the difference in aver-
age area per lipid, the LC domains possess an excess dipolar
density with respect to the surrounding LE phase [25], result-
ing in an interdomain dipolar repulsive interaction.

In order to model the mixed monolayer, we consider it as
a uniform layer with permittivity εm that lies between two
different semi-infinite uniform media (air and water) with
permittivities εa and εw, respectively. This layer is composed
of a 2D monodisperse dispersion of circular domains of radii
R, with condensed area fraction φ = NπR2/A, where N is
the number of domains and A the monolayer area. Each do-
main possesses an effective dipolar density σ perpendicularly
oriented to the interface. The merging mechanism between
domains is not considered in this model, and hence, we

FIG. 1. Two domains of equal radii R and excess dipolar density
σ with center-to-center distance r.

have added a hard-core potential to prevent it. The result-
ing pair potential between domain 1 and domain 2 can be
described by

Ut (r) = Uhc(r) + Ud (r), (1)

where Uhc(r) is the hard-core repulsive potential, and Ud (r) is
the dipolar density potential described by

Ud (r) = f0

∫
A2

∫
A1

dr1 dr2

|r1 − r2 − r|3 , (2)

where Ai denotes the area of domain i, dri its area element,
and ri its position vector respect to the domain center, with
i = 1, 2. r is the vector from the center of domain 1 to the
center of domain 2, as shown in Fig. 1. Here we define the
interaction strength,

f0 = σ 2

4πε0ε∗ , (3)

with ε0 the vacuum permittivity and ε∗ an effective permit-
tivity [26], ε∗ = ε2

m(εw + εa)/(2εwεa). In Eq. (2) the potential
constant was chosen such that the potential tends to zero for
infinite separation.

There is no closed analytic expression for Ud (r), and hence
it must be calculated numerically. However, for the particular
case of monodisperse systems (all domain radii equal to R),
Wurlitzer et al. [27] found the asymptotic behavior of this
potential as

Ud (r)

f0R
≈

{−4π
√

r/R − 2 + C 0 < r/R − 2 � 1

π2 R3

r3 r/R − 2 � 1
, (4)

where the contact value, C, is obtained from the numerical
solution of Eq. (2) with r = 2R, resulting in C ≈ 5.74216
(Appendix B). Note that the derivative of the potential di-
verges when the domains approach contact.

As expected, for large distances it reduces to the interaction
of two point dipoles with dipole moment μ = σπR2:

Up = μ2

4πε0ε∗
1

r3
. (5)

In Fig. 2 we show the numerical solution of Eq. (2) (solid
line) and the asymptotic expressions for short (dotted line) and
long distance (dashed line) given in Eq. (4). The short distance
asymptotic expression approximates Ud up to r/R = 0.0004
within an error of 0.1%, while the long distance asymptote,
the point-dipole approximation, is a good approximation only
for r/R > 40 within the same error.

In certain regions of the monolayer phase diagram, the
characteristic length scale of the system is the mean geometri-
cal distance between domains rm = ρ−1/2 = √

π/φR, where
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FIG. 2. Dipolar density interaction potential Ud (solid violet line)
and the asymptotic expressions for short (dotted-dashed red line) and
long distance (dashed black line) given in Eq. (4). In the inset, the
asymptotic expression for short distances is also shown as a function
of the border-to-border separation r/R − 2.

ρ = N/A is the number density. In these regions, the first
neighbor shell is close to the distance rm.

Using rm as unit length, the dimensionless dipolar potential
takes the form

Ud (r̃)

kBT
= �

φ2

∫
Ã2

∫
Ã1

dr̃1 dr̃2

|r̃1 − r̃2 − r̃|3 , (6)

where r̃ = r/rm, Ãi = Ai/r2
m, and � is a dimensionless inter-

action strength parameter:

� = f0π
2R4

kBT r3
m

. (7)

In these units, the asymptotic point dipole behavior, Eq. (4),
takes the form

Ud (r̃)

kBT
→ �

r̃3
, r̃ � R

rm
. (8)

In dusty plasmas [28] and point dipole monolayers [10,15]
these reduced units are frequently used because in those
systems the resulting dimensionless strength parameter
(analogous to �) describes the full system.

The advantage of using the mean interparticle distance as
the unit of length in the dipolar density interaction is that the
three-parameter space { f0, ρ, R} is mapped to a two-parameter
space {�, φ}. Note that, in this parameter space, the limit � →
0 keeping φ constant presents the subtlety that the limit f0 →
∞ is implicit (due to the fact that � and φ both depend on ρ).
The same happens with the limit φ → 0 keeping � constant.

As a final note about this system, it is worth mentioning
that in lipid monolayers with phase coexistence, domains of
the liquid-condensed phase always present size polydispersity,
which, in turn, also results in an interaction polydispersity.
Their effects on the structure and the dynamics of these sys-
tems have been studied in a previous work [5]. Here we focus
on the evaluation of the performance of the OZ-based IETs for
the prediction of the structural properties of dipolar density

interacting disks. As a consequence, the study of the effects
of polydispersity is left for future studies.

B. Structural quantities

A key quantity to characterize the structure of the
monolayer is the radial distribution function (RDF) g(r). Con-
sidering a homogeneous isotropic distribution of domains in
the monolayer plane, g(r) represents the probability of finding
a domain at the distance r of another domain chosen as a
reference point:

g(r) = 1

ρ

〈
1

N

N∑
i, j=1
i 	= j

δ(r − ri + r j )

〉
. (9)

Here δ(r) is the Dirac delta function and the angular brackets
indicate an equilibrium ensemble average.

Another quantity to characterize structure properties is the
static structure factor, S(q) in dependence on the (scattering)
wave number q:

S(q) =
〈

1

N

N∑
i, j=1

exp (−iq · [ri − r j])

〉
. (10)

In two dimensions these two quantities are related to each
other by

g(r) = 1 + 1

2πρ

∫ ∞

0
[S(q) − 1]qJ0(qr) dq, (11)

where J0(x) is the zeroth-order Bessel function of the first
kind [29].

III. METHODS

A. Ornstein-Zernike

For homogeneous and isotropic fluid whose particles in-
teract through a pair potential, the Ornstein-Zernike (OZ)
relation [11,30] is defined as

h(r) = c(r) + ρ

∫
c(|r − r′|)h(r′)dr′, (12)

where c(r) denotes the direct correlation function and

h(r) = g(r) − 1, (13)

denotes the total correlation function. Another equation that
relates h(r) to c(r) is the exact nonlinear closure condition

g(r) = exp[−βu(r) + h(r) − c(r) + B(r)], (14)

where B(r) is the bridge function. To close the system of
equations, a formal exact expression for the bridge function
in terms of the correlation functions is needed.

Some useful functions used in this formalism are the indi-
rect correlation function

γ (r) = h(r) − c(r), (15)

and the cavity distribution function [11]

y(r) = exp[βu(r)]g(r). (16)

Both functions, γ (r) and y(r), have the advantage of being
continuous functions of r even when there are discontinuities
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in u(r) and hence in g(r). In terms of these functions, the
bridge function takes the form

B(r) = ln[y(r)] − γ (r). (17)

In default of an exact, closed form expression for B(r),
the bridge function is commonly approximated by a clo-
sure relation. We refer OZ-IET to as the closed integral
equation system consisting of the OZ equation and a clo-
sure relation. The simplest and most frequently used closure
relations are the Percus-Yevick (PY) [11,31] and hypernetted-
chain (HNC) [11,32–38] approximations. The HNC closure
consists in assuming BHNC (r) = 0 while the PY corresponds
to setting

BPY (r) = ln[1 + γ (r)] − γ (r). (18)

The PY theory, in general, produces its best performances
for short-ranged potentials, where it predicts with reasonable
accuracy both structural and thermodynamic properties of
hard sphere systems. On the other hand, HNC works better
for systems with long-range interaction potentials.

Apart from these two approximations, various specific
forms of the bridge function or closure relations have been
proposed in order to improve the performance for differ-
ent interaction potentials, such as Rogers-Young (RY) [39],
Verlet-modified (VM) [40], Martynov-Sarkisov (MS) [41],
Balloni-Pastore-Galli-Gazillo (BPGG) [42], modified hyper-
netted chain (MHNC) [43], reference hypernetted chain
(RHNC) [44–46], and variational modified hypernetted chain
(VMHNC) [47], to name a few.

For the particular case of the dipolar density potential in
two dimensions, to the best of our knowledge, the integral
equation theory has not been used to study this system.

In this work, we selected the following closures to study
their performance for this system.

1. Rogers-Young

The Rogers and Young closure mixes PY closure at short
distances and HNC closure at large distances by defining a
mixing function f (r). The resulting bridge function is given
by [39]

BRY (r) = ln

[
1 + exp[γ (r) f (r)] − 1

f (r)

]
− γ (r), (19)

where f (r) = 1 − exp[−αr], and α is an adjustable parameter
used to force consistency between compressibility and virial
equations of state (see Appendix C).

2. MHNC

The modified hypernetted chain (MHNC) closure [43] pro-
poses to use a parameterized family of bridge functions taken
from a known reference system, invoking the quasiuniversal-
ity of the bridge functions.

In three dimensions the hard sphere system (HS) has been
extensively studied and different analytical expressions for
the correlation functions (from which the bridge function can
be obtained) are available, either within the PY approxima-
tion [48,49] or from phenomenological parametrization of the
“exact” simulation data [22,23,50]. For this reason, the HS
system is the usual choice for the reference system. Also,

the HS system has also the advantage of having only one
parameter that determines the thermodynamic states, namely,
the packing fraction φ. With this reference system, the bridge
function results in

BMHNC(r) = Bref (r; φeff ), (20)

where the parameter φeff is selected by requiring consistency
between the equation of state obtained from the virial and the
compressibility routes [43,47] (see Appendix C).

In 2D systems, there is no analytical solution for the PY
approximation of hard disks (PYHD). However, Adda-Bedia
and coworkers [51] developed a semianalytic method to solve
the PYHD equation and numerically computed the first 20
virial coefficients from the virial and compressibility routes of
the equation of state. For the purpose of this work, analytic ex-
pressions for the correlation functions (to compute the bridge
function) are desired, since they need to be evaluated within
the iterative solution of the OZ equation. Different approxi-
mate expressions for cPY (r) or gPY (r) have been proposed in
the literature [52–58]. Recently, Mier-y-Terán et al. [59] com-
pared three of these approximations (Refs. [52,54,55]) and
have shown that the Baus and Colot Ansatz for cPY (r) gives
the closest approximation to the PY structure, measured by its
radial distribution function. With the aim of using the PYHD
as a reference system, we computed the PY bridge function
based on the Baus and Colot Ansatz, but using the numerically
computed PY virial coefficients obtained by Adda-Bedia et al.
(see Appendix D). We will refer to this implementation of the
MHNC closure as MHNC-PY.

On the other hand, analogous to the HS VWHG
parametrizations [22,23], Law and Buzza [24] suggested an
extension of this approach to parametrize the correlation func-
tions of hard disks. Note, however, that the g(r) resulting
from these parametrizations do not fit simulation data as in
the 3D Verlet-Weis approximation and other extensions [55].
Using these expressions we computed the “exact” HD bridge
function of the reference system (see Appendix D for details).
This implementation of the MHNC closure will be referred to
as MHNC-LB.

3. VMHNC

The variational modified hypernetted chain (VMHNC)
closure [47] differs from the MHNC closure only in the pro-
cedure to determine the parameters of the reference system.

In this scheme, and using HD as the reference system,
the φeff is obtained by minimizing the VMHNC free energy
functional [47]. It can be shown that the requested extremum
condition is satisfied when [47]

dδ(φeff )

dφ
− ρ

2

∫
[g(r) − gref (r; φeff )]

∂Bref (r; φeff )

∂φ
dr = 0.

(21)

Here δ(φ) is a fitting function to improve the VMHNC
approach [47]. For the particular case of the 3D PY hard
sphere reference system, Rosenfeld [47] obtained an accurate
estimate of δ(φ), given by the simple expression

δ(φ) = fCS (φ) − fPY HSv (φ), (22)
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where fCS (φ) and fPY HSv (φ) are the empirical Carnahan-
Starling [50] free energy and the Percus-Yevick virial free
energy, respectively. Rosenfeld [47] further suggests using
this fitting function, Eq. (22), for any interaction potential. For
2D systems, we extended the previous result using the accu-
rate equation of state proposed by Santos et al. [60] and the
PY virial coefficients computed by Adda-Beddia et al. [51].
Following Rosenfeld [47], we define the fitting function as

δ(φ) = fS (φ) − fPYHDv(φ), (23)

where fS (φ) is the Helmholtz free energy obtained from the
empirical Santos [60] equation of state, and the Percus-Yevick
virial free energy, fPYHDv(φ), is calculated using the 20 first
virial coefficient obtained by Adda-Bedia [51]. The scheme
resulting from Eqs. (21) and (23) will be referred to as
VMHNC-PY.

If instead of using the PY approximations for the HD
reference system, the parameterized “exact” HD expressions
are used, this closure reduces to Eq. (21) with δ(φ) = 0 and
will be referred as VMHNC-LB. Note that this scheme is
also known in the literature as reference hypernetted chain
(RHNC) [45,46,61].

B. Simulations and numerical methods

We compare the results of the different OZ-IETs with
Metropolis Monte Carlo (MC) simulations. The simulated
systems consisted of N = 1024 disks of radius R under
periodic boundary conditions, using the minimum image con-
vention. The size of the simulation box, L, was determined
using the expression of the condensed area fraction φ =
NπR2/L2. The disks interact under a dipolar density pair
potential. For the typical experimental parameters range, the
first coordination shell is located outside the region where any
of the asymptotic expressions, Eq. (4), are valid. Therefore,
we work with the full expression of the potential, Eq. (2). In
order to compute it, the 4D integral is reduced to a single
integral that involves an elliptic function, as it is shown in
Appendix B). The energies are calculated using Eq. (B1).
To update the position of each disk (randomly chosen), we
randomly set a trial 2D displacement, accepted according to
Metropolis rules. To compute the thermal averages of the
structural observables, first, we run 4 × 105 Monte Carlo steps
(MCSs) to thermalize and then use 8 × 105 MCSs to measure
the quantities, computing these quantities every 500 MCSs
and averaging them.

The OZ integral equation is numerically solved using the
Ng fast-converging iteration scheme [62] with five parame-
ters. Fourier transformations are computed using the Lado
algorithm [29], which imposes a discretization of the r space
given by the roots of the zeroth-order Bessel function of the
first kind, J0(x), scaled to cover the interval [0, rcut], with
the cutoff distance, rcut, sufficiently large to assume that the
integrals (and transforms) may be truncated at rcut. Integrals
are performed using the trapezoidal rule (with unequal inter-
vals), taking into account discontinuities of the integrands by
splitting the integration interval and extrapolating to obtain
the values at the discontinuity. For improving the convergence
of the iteration scheme, the number density of the system was
linearly increased (using between 10 to 40 steps) from zero to

the desired value, solving the OZ equation at each density us-
ing the solution of the previous density as the initial guess. In
the present work, N = 8000 discretization points were used,
and the cutoff distance, rcut = 45 × rm, was chosen. Here rm

represents the mean geometrical distance.

IV. RESULTS AND DISCUSSION

We now illustrate the results of the different closures de-
scribed above: RY, MHNC-PY, MHNC-LB, VMHNC-PY,
and VMHNC-LB. We compare them with MC simulations for
a set of state points that both belong to the fluid region of the
φ−� phase diagram, and the interaction is strong enough that
the disks do not come into contact. The performance of these
closures is assessed in terms of the radial distribution function
and the structure factor.

A. Radial distribution function

The calculated radial distribution functions, g(r), are
shown in Fig. 3 for φ = 0.15 and � = 0.5, 2.0, 4.0, and 6.0.

For the less structured system, � = 0.5, all closures re-
produce globally well the simulations results as shown in
Fig. 3(a). There are slightly differences in the performance
of the studied closures only around the first peak, where the
RY approach performs very well.

For larger values of the coupling parameter, �, the RY
approach starts to deviate from the MC results. Already at
� = 2 [Fig. 3(b)], there are appreciable differences, not only
at the first peak but also at the first minimum and second peak.
The performance becomes even worse for more structured
systems [Figs. 3(c) and 3(d)], showing large discrepancies
with the MC data around peaks and minima.

The results obtained with the MHNC-LB closure are glob-
ally in good agreement with MC data. On closer inspection,
the agreement of the first peak height improves with increas-
ing �. In particular, for � = 4 this closure results the best
in comparison with the other closures under consideration.
Note that, as in other schemes based on VWHG parametriza-
tions of the pair correlation and the cavity functions, a
small unphysical shoulder appears on the left of the second
peak [46].

Similarly to the MHNC-LB, the VMHNC-LB closure
presents good global performance, but only up to � ≈ 3.5.
For larger coupling parameter values, Eq. (21) can no longer
be satisfied. This closure is also based on a VWHG-like
parametrization, and for this reason, the pair correlation func-
tion presents an unphysical shoulder.

In contrast to the closures based on VWHG-like
parametrizations, the schemes that use the HDPY reference
system, MHNC-PY and VMHNC-PY, have a solution in the
entire studied parameter range.

MHNC-PY and VMHNC-PY results are globally in quite
good agreement with the MC data for the studied systems
[Figs. 3(a)–3(d)], except for the first two peaks regions. There
they slightly overestimate the peak values systematically, with
the VMHNC-PY closer to the MC results.

A qualitative difference between the MC results and the
MHNC-LB, VMHNC-LB, and VMHNC-PY approaches can
be observed in the more structured systems [Figs. 3(c) and
3(d)]. There the shape of the second and third peaks tends to
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FIG. 3. Radial distribution functions for φ = 0.15 and � = 0.5, 2.0, 4.0, and 6.0 in panels (a), (b), (c), and (d), respectively. Circles
correspond to MC simulations and solid lines to RY (violet), MHNC-PY (red), MHNC-LB (blue), VMHNC-PY (green), and VMHNC-LB
(orange) closures. The symbols in the IETs results were plotted at arbitrary data intervals as a guide to the eye.

lean to the right, which leads to the position of their maxima
also shifting to the right.

Note that, for a given reference system, PY or LB, the
radial distribution functions obtained using the MHNC and
VMHNC closures are very similar. For PY-based closures the
percentage difference around the first peak is ≈2%. At this
point, it is worth mentioning that the LB-based schemes are
more numerically sensitive for quite structured systems. The
numerical derivative of the virial pressure (MHNC) and the
bridge function (VMHNC) need to be carefully calculated,
implying that the number of points in the discretization might
need to be adjusted or the increment in the finite differ-
ence derivative carefully selected. For these schemes, we also
found that within the range of parameters that we have con-
sidered, there is not always a solution, and eventually, close to
where the solution is lost, more than one solution might exist
(the one with a lower effective area fraction was selected).
The PY-based approaches, on the other hand, are numerically
preferable, and for the VMHNC case having an analytical
implementation of the derivative of the bridge function is an
advantage.

Regarding the computational cost, we have observed that
for highly structured systems caution must be taken to ensure
convergence. This, eventually, may have an impact on the
computational cost.

Other systems in the liquid region were studied, giving
similar results. Radial distribution functions for φ = 0.05 and
0.25 and different � values are shown in Appendix A. There
we also consider a particular case where the contact value is
different from zero.

B. Structure factor

The results obtained for the structure factor, S(q), are pre-
sented in Fig. 4 for the systems shown above. We first note that
the statistical error of the MC data for S(q) is much larger than
the obtained for the pair correlation function, as s expected,
since the structure factor cannot be calculated averaging over
all particles, as in the g(r) computation.

In Fig. 4(a) we observe that all closures perform very well
within the statistical error of the MC simulation data. At the
first peak, the RY closure slightly underestimates the MC
results, while the other closures are almost indistinguishable.

The same good agreement is observed for � = 2.0
[Fig. 4(b)] except for the RY closure, which already at
this level of structure, S(qm) ≈ 2, has a poor performance.
For more structured systems [see Figs. 4(c) and 4(d)], the
RY performance continues to deteriorate.

On the other hand, for � = 2.0 [Fig. 4(b)] the other clo-
sures under consideration are in relatively good agreement
with the MC results. The first peak height is well captured by
MHNC-LB, VMHNC-LB, and VMHNC-PY, while MHNC-
PY slightly overestimates it. At the first minimum, these
closures underestimate the MC data by a very small mar-
gin. A qualitative difference, even though slight, is observed
in the second peak, where the peak position of these clo-
sures is at smaller q values, and the shape is asymmetric
with respect to its maximum. This skewed shape is more
noticeable than that found in g(r). For larger coupling pa-
rameter values [Figs. 4(c) and 4(d)], this difference becomes
more pronounced, and the second peak height is overesti-
mated. Analogous differences are visible in the third peak.
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FIG. 4. Structured factors for φ = 0.15 and � = 0.5, 2.0, 4.0, and 6.0 in panels (a), (b), (c), and (d), respectively. Circles correspond to
MC simulations and solid lines to RY (violet), MHNC-PY (red), MHNC-LB (blue), VMHNC-PY (green), and VMHNC-LB (orange) closures.
The symbols in the IETs results were plotted at arbitrary data intervals as a guide to the eye.

At the same time, the first peak height tends to be slightly
underestimated.

Analogous to the case of the g(r), the results obtained using
the MHNC and VMHNC closures are very similar. Further-
more, the PY-based closures have solutions for all the studied
systems.

Similar results were found for φ = 0.05 and 0.25, with
different � values, which are shown in Appendix A.

V. CONCLUSIONS

In this work we investigated the performance of Ornstein-
Zernike-based integral equation theories for the dipolar
density interaction in 2D systems. We have studied three
closures of the Ornstein-Zernike equation: Rogers-Young
(RY), modified hypernetted chain (MHNC), and variational
modified hypernetted chain (VMHNC). As well, two approxi-
mations of the hard disk reference system for these last two
closures were considered; one based on the Percus-Yevick
(PY) approximation, and the other based on an extension
of the hard spheres Verlet-Weis-Henderson-Grundke (LB)
parametrization. The performance of each closure was eval-
uated by comparing the results with Monte Carlo simulations
in terms of the radial distribution function and the structure
factor.

The results showed that, for the less structured system, all
closures reproduce the simulations globally well, with only
slight differences around the first peak, where the RY accu-
rately reproduces the g(r) but slightly underestimates the peak
height of S(q). For more structured systems, the RY approach
starts to deviate from the MC results, and already systems

with S(qm) ≈ 2 (g(rm) ≈ 2) have a poor performance. This
is in accordance with the results obtained for point dipole
interacting colloids in two dimensions by Hoffmann et al.
[10]. There the RY closure performs very well for a system
with g(rm) ≈ 1.5, and it presents a poor performance for the
system with g(rm) ≈ 2.6.

For more structured systems, the other closures under
consideration—MHNC-LB, MHNC-PY, VMHNC-LB, and
VMHNC-PY—are in relatively good agreement with the MC
results. There are four key points about these closures that
should be highlighted. First, up to a certain structure, the clo-
sures that use LB as a reference system perform well globally,
but for larger coupling parameters values, the thermodynamic
consistency (in the case of MHNC-LB) or Eq. (21) (in the case
of VMHNC-LB) cannot be satisfied. Second, the pair correla-
tion function and the structure factor of the LB-based closures
exhibit an unphysical shoulder in the second peak, as expected
for any closures based on a VWHG-like parametrization.
Third, for a given reference system, PY or LB, g(r) and
S(q) obtained using the MHNC and VMHNC closures are
fairly similar. Fourth, in the more structured system under
consideration, there is a qualitative difference, even though
slight, between the MC results and these closures; the second
and third peaks tend to have a rightward lean in the case of
g(r) and a leftward lean in the case of S(q). These qualitative
differences are expected to worsen for even more structured
systems.

On closer examination, when measured by the pair corre-
lation function, it becomes clear that LB-based closures are
preferable to PY ones. However, when the structure factor is
employed as a measure, the reference system that performs
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FIG. 5. Radial distribution functions for φ = 0.05 and � = 0.5, 1.0, 2.0, 4.0, 6.0, and 8.0 in panels (a), (b), (c), (d), (e), and (f), respectively.
Circles correspond to MC simulations and solid lines to RY (violet), MHNC-PY (red), MHNC-LB (blue), VMHNC-PY (green), and
VMHNC-LB (orange) closures. The symbols in the IETs results were plotted at arbitrary data intervals as a guide to the eye.

better depends on the specific region of the phase diagram
under consideration.

These results show that, at least, in a great part of the
phase diagram of dipolar density interacting disks monolayers
the MHNC and VMHNC OZ-IETs perform quite accurately,
becoming an interesting tool for systematic studies of this
system or for producing structural data needed as input for
other theories.

ACKNOWLEDGMENTS

The authors acknowledge financial support from Fondo
para la Investigación Científica y Tecnológica, Argentina
(FonCyT), under Grants No. PICT2015-0735 and No.
PICT2020-SerieA-02931, and Secretaría de Ciencia y
Técnica de la Universidad Nacional de Córdoba, Argentina
(SECyT-UNC), under Grant No. 33620180100018CB. The
authors thank Marco Heinen for valuable discussions at
the beginning of the project, and Martin Buzza for helpful
discussions regarding the parameterized hard disk correlation
functions (Ref. [24]). E.R.-F. acknowledges support from the

International Center of Theoretical Physics (ICTP) through
the Associates Programme (2022-2027).

APPENDIX A: PAIR CORRELATION FUNCTION
AND STRUCTURE FACTOR FOR AREA FRACTIONS

φ = 0.05 AND φ = 0.25

Results for the pair correlation function and the structure
factor for φ = 0.05 are shown in Figs. 5 and 6, respectively.
For the area fraction φ = 0.25 the corresponding results are
shown in Figs. 7 and 8.

APPENDIX B: DIPOLAR DENSITY INTEGRAL

The dipolar density energy is given by Eq. (2). For
monodisperse systems (all domain radii equal to R),
Wurlitzer et al. [27] found that it can be expressed in terms
of a single integral:

Ud (r) = f0

∫ 2R

0

4r′

(r′ + r)(r′ − r)2
E

[
4r′r

(r′ + r)2

]
p(r′) dr′,

(B1)
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FIG. 6. Structured factors for φ = 0.05 and � = 0.5, 1.0, 2.0, 4.0, 6.0, and 8.0 in panels (a), (b), (c), (d), (e), and (f), respectively. Circles
correspond to MC simulations and solid lines to RY (violet), MHNC-PY (red), MHNC-LB (blue), VMHNC-PY (green), and VMHNC-LB
(orange) closures. The symbols in the IETs results were plotted at arbitrary data intervals as a guide to the eye.

where E (q) = ∫ π/2
0

√
1 − q sin2 θ dθ is the complete elliptic

integral of second kind and

p(r) = −r
√

R2 − (r/2)2 + 2R2
[π

2
− arcsin

( r

2R

)]
. (B2)

In order to obtain the potential constant C appearing in Eq. (4),
we make the numerical integration of Eq. (B1) with r = 2R.

APPENDIX C: THERMODYNAMIC INCONSISTENCIES
IN THE OZ-IET FORMALISM

As a consequence of the absence of exact expressions
for the bridge function, or equivalently the use of
approximate closure relations, inconsistencies appear in
the thermodynamic quantities calculated within the OZ-IET
formalism (OZ + closure). The equation of state (EOS)
obtained from different “routes” in general will differ. The
most common routes, particularized for a 2D system, are the
following:

Virial route
The virial compressibility factor is given by

Zv (ρ, β ) ≡ βPv

ρ

= 1 − πβρ

2

∫ ∞

0
g(r)

∂u(r)

∂r
r2 dr. (C1)

Here u(r) is the interparticle pair potential. The corresponding
virial EOS is then straightforwardly obtained. The subscript v

indicates that the corresponding quantity is obtained through
the virial route.

Compressibility route
From the compressibility equation, the thermal compress-

ibility can be written as

χc(ρ, β ) ≡
(

β
∂Pc

∂ρ

)−1

T

= 1 + 2πρ

∫ ∞

0
h(r)r dr. (C2)
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FIG. 7. Radial distribution functions for φ = 0.25 and � = 0.1, 0.5, 1.0, 2.0, 3.0, and 5.0 in panels (a), (b), (c), (d), (e), and (f), respectively.
Circles correspond to MC simulations and solid lines to RY (violet), MHNC-PY (red), MHNC-LB (blue), VMHNC-PY (green), and
VMHNC-LB (orange) closures. The symbols in the IETs results were plotted at arbitrary data intervals as a guide to the eye. Panel (a) shows
that the closures maintain their excellent performance even when the hard core potential is relevant, i.e., the contact value is different from
zero.

Then the compressibility factor Zc(ρ, β ) can be determined
by integrating 1/χc with respect to the density and along an
isothermal path. This determines the compressibility EOS.
In Eq. (C2) the subscript c emphasizes that it is obtained
through the compressibility route. Invoking the OZ equation,
the compressibility equation can be conveniently written in
terms of c(r) as

χ−1
c (ρ, β ) = 1 − 2πρ

∫ ∞

0
c(r)r dr. (C3)

Energy route
The internal energy per particle is given by

U

N
= 1

β
+ πρ

∫ ∞

0
g(r)u(r)r dr. (C4)

Since

U =
(

∂βF

∂β

)
V

, (C5)

the Helmholtz free energy, F , can be obtained by inte-
grating U with respect to the inverse temperature β along an
isochore path. Here V denotes the area. Then the pressure Pe,
and consequently the energy EOS, is obtained as

Pe = −
(

∂F

∂V

)
T

. (C6)

From which the energy compressibility factor, Ze(ρ, β ), is
straightforwardly obtained. The subscript e indicates that the
corresponding quantity is obtained through the energy route.

The subscript e indicates that the corresponding quantity is
obtained through the energy route.

The different ways of obtaining the compressibility factor
(or the EOS) are equivalent if the exact correlation functions
for the system are used. However, as mentioned above, for
approximate correlation functions, in general they are not, and
so they are thermodynamically inconsistent.
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FIG. 8. Structured factors for φ = 0.25 and � = 0.1, 0.5, 1.0, 2.0, 3.0, and 5.0 in panels (a), (b), (c), (d), (e), and (f), respectively. Circles
correspond to MC simulations and solid lines to RY (violet), MHNC-PY (red), MHNC-LB (blue), VMHNC-PY (green), and VMHNC-LB
(orange) closures. The symbols in the IETs results were plotted at arbitrary data intervals as a guide to the eye. From panel (a) it can be
observed that the closures continue to perform very good even when the hard core potential is relevant.

In practice, the self-consistency conditions are written as
two different equations:(

β
∂Pv

∂ρ

)
T

= χ−1
c (ρ, β ), (C7)

(
1

ρ

∂βPv

∂β

)
ρ

= 1

V

(
∂U

∂ρ

)
T

. (C8)

Here the left-hand sides are meant to be computed using
Eq. (C1), while the right-hand sides are using Eq. (C3) and
Eq. (C4), respectively. The advantage of these equations with
respect to the equations for the compressibility factors is that
one can verify the consistency without the necessity to per-
form integrals over “paths” of thermodynamic states.

The virial-compressibility consistency equation, Eq. (C7),
is used in our implementations of the RY and MHNC
schemes. Note also that for the HNC and VMHNC closures,
the virial route is consistent with the energy route [35,45,47],
i.e., Eq. (C8) is verified.

APPENDIX D: HARD DISK REFERENCE SYSTEMS

The MHNC and VMHNC schemes, presented in Sec. III A,
are based on two parameterized families of bridge functions
(and RDFs in the case of VMHNC) from the HD reference
system.

The different reference system bridge functions (and
RDFs) used here are obtained from either Percus-Yevick
hard disk (PY) or from parametrizations from “exact” hard
disk (LB) approaches. Note that in contrast to the hard
spheres case, in two dimensions the PY solution needs to be
approximated, and there is no unique widely used
parametrization of the “exact” hard disk correlation functions
or EOS.

1. PY: PY hard disks

To approximate cPY HD(r) we have slightly modified the
Baus and Colot [53,54] semiempirical expression by com-
puting the expansion coefficients, cn, in the rescaled and
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truncated virial series of the compressibility factor,

ZN (φ) = 1 + ∑N
n=1 cn φn

(1 − φ)2
, (D1)

using the virial coefficients from the compressibility route
obtained by Adda-Bedia et al. and truncating the series at
N = 19. The coefficients cn are obtained from the PY-virial
coefficients Bi [51] (from the compressibility route) using
Eq. (2.4) and Eqs. (2.15)– (2.17) from Ref. [54].

The explicit form for the direct correlation function
results [54] in

cPY HD(x; φ) = − ∂

∂φ
[φZN (φ)]�(1 − x)

× [1 − a2φ + a2φ ω(x/a)], (D2)

where x = r/(2R) and β = kBT . The function ω(x) is

ω(x) = 2

π
[arccos(x) − x

√
1 − x2], (D3)

and a = a(φ) is a scaling function that can be numerically
obtained from the following algebraic equation:

2

π

[
a2(a2 − 4) arcsin(1/a) − (a2 + 2)

√
a2 − 1

]

= 1

φ2

[
1 − 4φ −

(
∂

∂φ
[φZN (φ)]

)−1
]
. (D4)

With an analytic expression for the direct correlation func-
tion, we proceed to obtain the indirect correlation, γPY HD(r),
using the OZ relation (12) expressed in the Fourier space,

h(q) = c(q) + ρh(q)c(q), (D5)

where h(q) and c(q) are the 2D Fourier transforms of h(r) and
c(r), respectively. From Eq. (D5) and Eq. (15) follows

γ (q) = ρc(q)2

1 − ρc(q)
. (D6)

Then by back transformation γPY HD(r) is obtained, and
the pair correlation function, gPY HD(r), is calculated using

Eq. (15). Here it is important to remark that since cPY HD(x; φ)
is not the exact PY direct correlation function, the gPY HD(r)
obtained does not satisfy gPY HD(r) = 0 for r < 2R. This was
fixed setting gPY HD(r) = 0 in this region. The bridge function
BPY HD is straightforwardly computed using Eq. (18). The
derivative with respect to φ of bridge function, needed for the
VMHNC-PY scheme, is obtained using the expression

∂BPY (r)

∂φ
= −γ (r)

γ (r) + 1

∂γ (r)

∂φ
. (D7)

The derivative of γ (r) is obtained back transforming

∂γ (q)

∂φ
=

{
−1 + 1

[1 − ρc(q)]2

}
∂c(q)

∂φ
, (D8)

where the derivative of c(q), in turn, is calculated by Fourier
transforming ∂c(r)/∂φ. Note that the derivative of c(r) can be
analytically performed and contains a Dirac delta term, which
should be analytically Fourier transformed.

2. LB: Parameterized “exact” hard disks

For this reference system, we followed the procedure de-
scribed in detail by Law and Buzza in the Appendix of
Ref. [24]. They, following Guo and Riebel [58], start also
from the Baus and Colot [54] expression for c(r), but use
the accurate and simple expression proposed by Santos [60]
for the compressibility factor. Then, by using the OZ re-
lation, they obtain the pair correlation function, which is
further corrected by generalizing to two dimensions the Ver-
let and Weis [22] scheme. Finally, they generalize also the
Henderson and Grundke [23] proposal to obtain the cavity
function y(r). At this point, the bridge function could be calcu-
lated, according to Eq. (17), directly using c(r), the corrected
g(r), and the parameterized y(r). However, this would result
in a discontinuity at 2R of γ (r) and consequently of the bridge
function. For this reason, we used the OZ relation one more
time, but now starting from the corrected g(r), to obtain a
continuous γHD(r) and BHD(r). The derivative with respect
to φ of bridge function, needed for the VMHNC-LB scheme,
is obtained using finite differences.
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