
PHYSICAL REVIEW E 108, 064604 (2023)
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We study self-assembly in a colloidal suspension of magnetic particles by performing comprehensive molec-
ular dynamics simulations of the Stockmayer (SM) model, which comprises spherical particles decorated by a
magnetic moment. The SM potential incorporates dipole-dipole interactions along with the usual Lennard-Jones
interaction and exhibits a gas-liquid phase coexistence observed experimentally in magnetic fluids. When this
system is quenched from the high-temperature homogeneous phase to the coexistence region, the nonequilibrium
evolution to the condensed phase proceeds with the development of spatial as well as magnetic order. We observe
density-dependent coarsening mechanisms—a diffusive growth law �(t ) ∼ t1/3 in the nucleation regime and
hydrodynamics-driven inertial growth law �(t ) ∼ t2/3 in the spinodal regimes. [�(t ) is the average size of the
condensate at time t after the quench.] While the spatial growth is governed by the expected conserved order
parameter dynamics, the growth of magnetic order in the spinodal regime exhibits unexpected nonconserved
dynamics. The asymptotic morphologies have density-dependent shapes which typically include the isotropic
sphere and spherical bubble morphologies in the nucleation region, and the anisotropic cylinder, planar slab,
cylindrical bubble morphologies in the spinodal region. The structures are robust and nonvolatile, and exhibit
characteristic magnetic properties. For example, the oppositely magnetized hemispheres in the spherical mor-
phology impart the characteristics of a Janus particle to it. The observed structures have versatile applications in
catalysis, drug delivery systems, memory devices, and magnetic photonic crystals, to name a few.
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I. INTRODUCTION

Magnetic fluids, also referred to as ferrofluids, are com-
prised of single-domain magnetic particles dispersed in a
carrier liquid [1–3]. The magnetic inclusions interact via
dipole-dipole interactions which are anisotropic and long-
range. They form aggregates of unusual shapes that exhibit
magnetic order even in the absence of external fields [4–10].
The application of an external field provides additional control
that can be used to switch or modify the statistical states
of the fluid [10–12]. The twin properties of fluidity and
magnetism impart unique characteristics, with many open
questions in their equilibrium and nonequilibrium behavior.
So, there is need to address them from the point of view of
fundamental physics and promising applications. For exam-
ple, self-assembled magnetic chains and rings are being used
as a basis to understand equilibrium polymerization, dynamic
heterogeneities in glass formers, loopless branched structures
and gels, phase behavior in network fluids, etc. [13–16].
Compact aggregates, on the other hand, are also capturing
great interest because of their high surface to volume ratio,
large pore volume, and low density [17]. These features are
being exploited in controlled encapsulation-release of drugs
and medical diagnostics, energy storage, and conversion, cre-
ation of molecular biomaterials such as fibers and tubes, the
building of nanostructures and nanodevices, etc. [18–20].

Nonpolar fluids have been widely modeled by the Lennard-
Jones (LJ) potential that includes a repulsive and attractive
term [21,22]. Particles of a dipolar fluid have a magnetic mo-
ment, so it is imperative to include dipole-dipole interaction
in addition to the LJ potential for their theoretical studies.
The Stockmayer (SM) model has been popularly used to

capture the essential features of magnetic fluids, namely, the
observation of the gas-liquid (GL) coexistence phase in the
density-temperature (ρ − T ) space [23–31]. Understanding
the GL diagram of fluids has been an important topic of study.
The coexistence regime of the LJ fluid is well-studied via
Monte Carlo (MC) and molecular dynamics (MD) simulations
[32–38]. They have revealed that the competition between
the various terms in energy yields condensates with distinct
shapes, e.g., spheres, cylinders, planar slabs, etc., for different
values of ρ. Similar but sporadic observations have also been
made in the context of the SM fluid. In addition to having
distinct shapes, we can also anticipate in them a characteristic
magnetic order due to the anisotropic dipole-dipole interac-
tions. Although the dual characteristics of self-assembly and
magnetism have exciting fundamental physics and technolog-
ical applications, a methodical study identifying the density
intervals for the different self-assembled shapes, the influence
of temperature on the internal structure, and their magnetic
properties are missing in the literature. In the present paper,
we fill these lacunae with the help of comprehensive MD
simulations of the SM model.

Our starting point is a quench from the high-temperature
isotropic gas phase into the GL coexistence region. The simu-
lations have been performed for a SM gas with a prototypical
value of magnetic moment μ = 2.5 with a critical point ρc =
0.29(1), Tc = 2.63(1) in LJ units. In a recent paper [39], we
studied the approach to equilibrium in the spinodal regime
and observed an inertial growth �s(t ) ∼ t2/3, where �s(t ) is
the typical length scale of the condensate at time t . Though
predicted by Furukawa in 1985 [40], the inertial growth
law was never observed in MD simulations, and this made
our observation significant. Additionally, we find that the
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magnetic order is triggered after the onset of condensation (or
spatial order). The present paper focuses on the asymptotic
structures (t → ∞) as a sequel to our nonequilibrium studies.
We concentrate on the structural and magnetic properties of
these morphologies by a systematic variation of parameters in
the ρ − T plane. The main observations from our paper are as
follows: (i) The nonequilibrium evolution is distinct in the nu-
cleation and spinodal regimes. The asymptotic structures have
density-dependent shapes with characteristic spatial and mag-
netic order. They are isotropic in the nucleation regime but
anisotropic in the spinodal regime. (ii) We identify density in-
tervals which yield a sphere, cylinder, slab, cylindrical bubble,
and spherical bubble. Naturally, these are minimum energy
shapes for the corresponding densities. (iii) The magnetic
moments always coalign with the surface. Consequently, the
morphologies have unusual magnetic features even in the ab-
sence of external fields. For instance, the sphere is a magnetic
Janus particle due to oppositely magnetized hemispheres. The
spherical bubble, on the other hand, has large magnetization
on the surface which gradually reduces at the center. (iv)
The anisotropic condensates are comprised of dipole chains
along the direction of anisotropy. They exhibit perfect mag-
netic order (M � 1) even in the liquid state (T � 1.05) as the
dipole-dipole interactions overwhelm the thermal energy. (v)
For lower temperatures (T � 1.0), the structures solidify, and
exhibit quasi-long-range order which is predominantly face-
centered. (vi) At still lower temperatures (T � 0.9), there is
neither long-range spatial nor magnetic order. The aggregates
are glassy with M � 0 and an Edwards-Anderson spin-glass
order parameter qEA � 1.

In what follows, we will focus on understanding the inter-
play of the short-range steric repulsion and long-range dipolar
interactions along with the inherent magnetism of the SM
particles in the self-assembled condensates. Our paper is or-
ganized as follows. Section II provides the model and tools
for characterizing the structural and magnetic properties of
the SM condensates. The simulation details and numerical
results are provided in Sec. III. These include a comprehen-
sive analysis of the structural and magnetic properties of the
condensates for a range of temperatures to access the liquid,
solid, and glass phases. In Sec. IV, we provide observations of
the nonequilibrium evolution of spatial and magnetic order in
the nucleation regime. Finally, Sec. V contains the conclusion
with a summary of results and discussion.

II. MODEL AND METHODOLOGY

A. Stockmayer model

The SM model mimics fluids composed of spherical par-
ticles with magnetic moments embedded at their center. Let
us consider N particles with magnetic moment �μ = μμ̂. The
SM potential between particles i and j separated by a distance
�ri j = ri j r̂i j is given by [25]

U ( �ri j, μ̂i, μ̂ j )=4ε
∑
i, j

[(
σ

ri j

)12

−
(

σ

ri j

)6]

+μ0μ
2

4π

∑
i, j

[
μ̂i.μ̂ j −3(μ̂i.r̂i j )(μ̂ j .r̂i j )

r3
i j

]
. (1)

The first two terms correspond to the LJ potential that de-
scribes the short-ranged steric repulsion and the weak van
der Waal’s attraction. The parameters σ and ε are the particle
diameter and depth of the attractive potential. They set the
spatial and energy scales in the system. The third term repre-
sents the dipole-dipole interactions which are significant up to
large distances and can be 0 or ±, depending on the position
and orientation of the dipoles i and j. Clearly, the head-to-tail
orientation of dipole moments has maximum attraction while
head-to-head orientation corresponds to maximum repulsion.
The perpendicular orientation of dipole moments is equiv-
alent to the LJ potential. The SM particles thus experience
isotropic short-range interactions as well as anisotropic long-
range dipolar interactions.

The condensation of a liquid drop from the vapor phase and
its subsequent nonequilibrium growth is a problem of utmost
importance in phase transformations. An intriguing aspect
of dipolar fluids is the existence of a magnetic fluid phase
in the absence of an applied field [4–10]. Consequently, the
GL coexistence region of magnetic fluids is a topic of much
theoretical and experimental research. When cooled below the
critical temperature Tc, the SM model exhibits a phase transi-
tion from a paramagnetic gas phase to a GL coexistence phase.
Other models that have been popularly used to study magnetic
fluids comprise of dipolar soft spheres or dipolar hard spheres
which include only the steric repulsion part [41,42]. These
models favor the formation of chains, but they do not exhibit
GL phase coexistence that has been observed experimentally
in magnetic colloids and ferrofluids [43–45]. The SM model,
on the other hand, captures the essential features of magnetic
fluids and is therefore more representative of them. The GL
phase diagram in the ρ − T plane is conventionally obtained
from the equation of state [46], but computer simulations
provide an alternative route, especially when interactions are
complex. The coexistence phase diagram of the SM fluid is
well-studied and is believed to occur for all dipole strengths.
It has been determined for a range of μ values using MC
and MD simulations [23–25,27,28,47–49]. The primary effect
of increasing μ is to shift the critical point (ρc, Tc) upwards,
thereby enlarging the GL coexistence region.

B. Methodology

When a system is quenched from high-temperature dis-
ordered state (T > Tc) to a low-temperature ordered phase
(T < Tc), there is a formation of the condensed phase that
coarsens with time to yield another asymptotic state. As the
SM fluid has both spatial and magnetic order, we use a variety
of tools to understand the nonequilibrium evolution and the
organization in these self-assemblies.

1. Pair correlation function

The standard probe to envisage the internal arrangements
of particles within the condensed phase is the pair correlation
function (PCF). It measures the probability of finding two
molecules separated by distance r relative to that in an ideal
gas: g(r) = 〈ρ(r)〉/ρ0, where ρ0 = N/V is the density of the
ideal gas and ρ(r) is the average density of the system around
r. The numerical evaluation is facilitated by the following
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formula [50,51]:

g(r) = 1

Nρ0

〈 N∑
i, j

i 	= j

δ(r − ri j )

(4/3)π [(r + �r)3 − r3]

〉
. (2)

The δ- function is unity if ri j falls within the shell centered on
r and is zero otherwise. The division by N ensures that g(r) is
normalized to a per-particle function. By construction, g(r) =
1 for an ideal gas, and any deviation implies correlations be-
tween the particles due to the interparticle interactions. In the
liquid phase, g(r) exhibits a large peak at small r, signifying
nearest-neighbor correlations followed by small oscillations
which eventually approach 1 at large r. (The latter signifies
loss of correlations at large r). The solid phase is characterized
by several sharp peaks at values of r that correspond to the
lattice spacing of crystal structures.

A natural evaluation in the context of the SM fluid is
the magnetization which measures the alignment of dipoles:
M = ∑N

i=1 �μi/N = Mm̂. A perfect ferromagnetic order cor-
responds to M = 1, and the paramagnetic or disordered state
is characterized by M = 0. In the presence of an anisotropy
direction such as m̂, it is appropriate to evaluate the directional
PCF [50]:

g‖(r‖) = 1

Nρ0

〈 N∑
i, j

i 	= j

δ(r‖ − ri j,‖)θ (σ/2 − ri j,⊥)

π (σ/2)2h

〉
, (3)

where ri j,‖ = | �ri j .m̂| is the separation of particles along the
direction of the anisotropy (magnetization) axis and ri j,⊥ =
| �ri j − ( �ri j .m̂)m̂| is the separation in the perpendicular direc-
tion. The step function θ (x) ensures that the cylinder of radius
r = σ/2 has a height h that is used for the discretization of
the simulation box. The PCF in the perpendicular direction,
g⊥(r⊥), can be evaluated analogously.

2. Bond order parameter

The local crystalline order in undercooled liquids and
solids can be conveniently obtained using the local bond order
parameter (BOP) q4 and q6 evaluated from Refs. [52–55]:

ql (i) =
√√√√ 4π

2l + 1

l∑
m=−l

|q̄lm(i)|2, (4)

with

q̄lm(i) = 1

Nn(i) + 1

Nn(i)∑
k=0

qlm(k), (5)

and

qlm(i) = 1

Nb(i)

Nb(i)∑
j=1

Ylm(ri j ). (6)

In Eq. (5), Nn(i) includes all the nearest neighbors of particle
i [= Nb(i) in Eq. (6)], and the particle i itself. Ylm(ri j )’s are
the spherical harmonics, with l as a free integer parameter
and m = −l, ··, l . The BOPs or the ql (i)’s have characteristic
values for different structures and are indicated in Table I.

TABLE I. Values of q4 and q6 for the perfectly symmetric con-
figurations [52,55].

Structures q4 q6

Simple cubic (SC) 0.764 0.354
Body-centered cubic (BCC) 0.509 0.629
Face-centered cubic (FCC) 0.190 0.575
Hexagonal close-packed (HCP) 0.097 0.484

3. Edwards-Anderson order parameter

In the coexistence region, the dipolar particles form long
chains that coalign to form ordered domains. At lower tem-
peratures, these domains are smaller and randomly oriented
due to freezing of the moments. An appropriate order param-
eter for capturing the arrangements of dipolar particles inside
the local frozen domains is Edward Anderson’s (EA) order
parameter defined as [56,57],

qEA = [〈μi〉2]av, (7)

where 〈〉 is the thermal or dynamic average that yields a
nonzero value for frozen dipolar particles and [...]av is an
ensemble average. In the paramagnetic phase, qEA = 0 along
with the M = 0. In the ferromagnetic phase, qEA 	= 0 and
M 	= 0. In the frozen (glassy) phase on the other hand, qEA 	=
0 but M � 0.

4. Correlation function

The time evolution of morphologies via domain growth is
well-captured by the two-point equal-time correlation func-
tion C(�r, t ) defined as [58,59]

C(�ri, �r j, t ) = 〈ψ (�ri ).ψ ( �r j )〉 − 〈ψ (�ri )〉〈ψ ( �r j )〉, (8)

where ψ (�r) is the appropriate order parameter and the angular
bracket denotes an ensemble average. If the system is isotropic
and is characterized by a unique length scale �(t ), the correla-
tion function obeys dynamical scaling form [60]

C(r, t ) ≡ f (r/�), (9)

where f (x) is the scaling function. The characteristic length
scale �(t ) is defined as the distance over which the correlation
function decays to (say) 0.5 of its maximum value. Small-
angle scattering experiments yield the structure factor, which
is the Fourier transform of the correlation function [59]

S(�k, t ) =
∫

d�re−i�k.�rC(�r, t ), (10)

where �k is the wave vector of the scattered beam. The corre-
sponding scaling form is given by

S(k, t ) ≡ �d g(k�). (11)

The tail of the structure factor conveys information about
defects in the morphologies. For a d-dimensional system
with an n-component of order parameter, S(k) ∼ k−(n+d ) as
k → ∞. For n = 1, the scattering is off smooth interfaces
and the corresponding scattering function is called the Porod
law [58,59]. For n > 1, the scattering is from the different
topological defects such as vortices (n = 2, d = 2), strings
(n = 2, d = 3), and monopoles or hedgehogs (n = 3, d = 3).
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5. Domain growth laws

The growth of the ordered phase or domains proceeds via
the annihilation of defects [58,59]. The determination of the
domain growth law �(t ) ∼ t is an important evaluation in
phase ordering experiments as it reveals details of the free-
energy landscape and relaxation time scales in the system.
For example, phase separating solid mixtures with noncon-
served dynamics obey the Lifshitz-Allen-Cahn law [61,62]:
�(t ) ∼ t1/2. On the other hand, solid mixtures with conserved
kinetics and diffusive transport follow the Lifshitz-Slyozov
law [63]: �(t ) ∼ t1/3. These growth laws are characteristic of
systems with no energy barriers to coarsening and a unique
relaxation timescale. In phase-separating fluids however, the
evolution to the equilibrium state is dominated by capillary
forces, viscous dissipation, and fluid inertia. The coexisting
phases or domains grow with time via the process of nucle-
ation or spinodal decomposition as the case may be [59,64]. In
fluids and polymers, however, hydrodynamic effects become
important after the initial diffusive regime. A dimensional
analysis leads to the following additional growth regimes:
�(t ) ∼ t for �(t )  �∗

i ; �(t ) ∼ t2/3 �(t ) � �∗
i . The inertial

length scale �∗
i = η2/σ̃ρ, where σ̃ is the interfacial tension,

ρ is the fluid density, and η is the shear viscosity. It marks
the crossover from a low-Reynolds number (R = ρ/η�) vis-
cous hydrodynamic regime to an inertial regime [65]. Domain
growth is even more complicated in disordered systems due
to the pinning of interfaces at disorder sites and their subse-
quent roughening. Such systems exhibit logarithmic growth
signifying a multitude of length scales, energy barriers, and
relaxation times [66–68].

III. SIMULATION DETAILS AND ASYMPTOTIC STATES

We have performed MD simulations (d = 3) of the SM
fluid in the canonical (NVT) ensemble using periodic bound-
ary conditions. The magnetic particles interact via long-range
dipolar interactions, so a truncation of the range of interaction
leads to inaccurate results. To prevent this, we repeat the
simulation cell periodically and use the Ewald summation
technique [69]. So, the simulations represent the thermo-
dynamic limit that brings out the effect of the long-range
dipole-dipole interactions without interruptions from systemic
length scales. The long-time evolutions have been performed
using the Langevin thermostat, which ensures that the tem-
perature of the system has only small fluctuations about the
desired fixed value [70]. For the nonequilibrium studies of
domain growth, it is essential to incorporate hydrodynamics.
We use the Nosé-Hoover thermostat for this purpose, which
is known to preserve the relevant feature of hydrodynamics
for domain growth [71–73]. The asymptotic structures are
statistically identical for either choice of thermostat.

The MD simulations were performed using LAMMPS
[74]. We have taken 4000 particles in a cubic box whose
length is adjusted according to the desired system density.
The time evolution of positions and velocities of the particles
has been implemented using the velocity-Verlet algorithm
with simulation time step �t = 0.002. All the calculations are
performed in reduced LJ units by defining T ∗ = kBT/ε, ρ∗ =
Nσ 3/V , μ∗ = μ/

√
εσ 3, �t∗ = �t/

√
mσ 3/ε, where N is the

total number of particles, V is the volume of the simulation
box, and kB is the Boltzmann constant. (The star is dropped in
the subsequent discussions.) Starting from a homogeneous gas
of SM particles at high temperature T = 5 (in LJ units), the
system is first allowed to stabilize at high temperature and then
once again after another quench in the GL coexistence regime.
Before making the production runs, we confirm that the sys-
tem has reached the asymptotic state by ensuring that the
energy fluctuations about the mean value are small. Finally,
a run of 106 steps was performed, in which the system config-
urations were measured at intervals of 500 steps. All the data
presented has been averaged over 20 independent samples.

A. The ρ − T plane

Let us refer to the GL coexistence curve shown in Fig. 1(a)
for μ = 2.5. (This data has been read from Ref. [10].) Start-
ing from an initial (t = 0) isotropic state at T = 5.0, let us
examine the condensation initiated by quenches to T = 1.05
for ρ = 0.05 [Qn] and ρ = 0.2 [Qs] shown by the arrows. Fig-
ure 1(b) shows the typical evolution snapshots for Qn. Clearly,
the growth is via nucleation and subsequent coalescence. We
observe a similar scenario for quench points just below the
coexistence curve and demarcate this region by the dashed
line or the spinodal curve. Figure 1(c) show the evolution
for Qs. The bicontinuous morphology at intermediate times is
typical of phase separation via spinodal decomposition. This
route for phase separation is observed for all data points in
the spinodal region below the spinodal curve. It is important
to point out here that in an infinite system, the bicontinuous
patterns will persist forever. The coarsening system is affected
by the finite size L of the box and settles into a morphology
that does not evolve further in time. The asymptotic patterns
that we will discuss arise in this finite-size limit.

So, what are the long-time structures that are observed in
the SM fluid at different values of ρ and T ? The system is
then left to evolve for long times ∼O(106) after the quench
till when the energy fluctuations are tiny as compared to the
average energy. Figure 2 shows the emergent morphologies
at T = 1.05 for representative values of density: (a) ρ = 0.1:
sphere; (b) ρ = 0.2: cylinder; (c) ρ = 0.4: slab; (d) ρ = 0.65:
cylindrical bubble; (e) ρ = 0.75: spherical bubble. Figure 2(f)
shows the evolution of the energy Ē (t ) vs t for each value of ρ.
The bar indicates an average over 20 different initial states. We
repeat this exercise for all the points in Fig. 1(a) and indicate
the emerging structures by different colors: sphere (magenta),
cylinder (violet), slab (green), cylindrical bubble (brown), and
spherical bubble (cyan). The data points in orange near the
binodal line are rare at an early stage of phase separation. Be-
cause of the small quantity of the liquid state, the form of the
condensate is nearly isotropic. The dashed lines separating the
structural phases are a guide to the eye and roughly indicate
the regions where the indicated structures will be observed.
(The precise determination of these boundaries will require
extensive free energy computations which is beyond the scope
of this paper.)

There are some important points that should be noted
in the context of the above morphologies: (i) It should be
pointed out that the chain formation and ferromagnetic order
in the asymptotic morphologies is a consequence of the un-
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FIG. 1. (a) Regions corresponding to different asymptotic structures in the GL coexistence region of SM fluid for μ = 2.5. The coexistence
curve (solid line) in reduced LJ units is read from Ref. [10]. The colored squares indicate the different structures that emerge after a quench from
T = 5.0 to these points: sphere ( ), cylinder ( ), planar slab ( ), cylindrical bubble ( ), spherical bubble ( ), see Fig. 2 for the asymptotic
structures. The orange squares at high temperatures correspond to a nearly isotropic state since the condensed liquid phase here is tiny amounts.
The filled blue squares indicate states with random spatial arrangement and magnetic orientation of the dipoles. The dashed and dotted lines
demarcating the regions with distinct structures are a guide to the eye. The arrows from Qn and Qs (red squares) represent quenches from
T = 5 to T = 1.05 in the nucleation region (ρ = 0.05) and the spinodal region (ρ = 0.2). (b) Evolution morphologies corresponding to Qn

demonstrating nucleation and subsequent growth by diffusion and coalescence. (c) Evolution morphologies corresponding to Qs exhibiting
bicontinuous structures characteristic of spinodal decomposition.

interrupted long-range dipole-dipole interactions realized in
our simulations due to the imposition of periodic boundary
conditions and the Ewald summation. (With short range inter-
actions, on the other hand, an antiferromagnetic alignment of
dipolar chains is energetically favorable.) (ii) The asymptotic
structures assume shapes with minimum surface energy. This
can be checked by evaluating the fraction of the liquid (say,
x = Vl/V ) at any value of ρ and T using Gibb’s lever rule.
Simple algebra then provides the structures with the least sur-
face area for specific values of ρ and T . These evaluations for
the morphologies in Fig. 2 have been provided in Appendix in
Table II. The size dependence of these structures on ρ and L
is also provided in Table IV. (iii) The critical quench and the
region close to it, indicated by the green squares in Fig. 1(a),
yields a slab of dipoles. It is interesting to note that the
structures formed for density intervals on either side exhibit
complementary assemblies, e.g., cylinder-cylindrical bubble
(violet and brown squares) and sphere-spherical bubble (ma-
genta and cyan squares). We mention here that the cylinder
(and the complementary cylindrical bubble) can have the long
axis along any one of the edges (x, y, or z) of the simulation
box. Similarly, the slab width could lie in any of the planes

(xy, yz, or xz). (iv) The structures formed in the nucleation
region (magenta and cyan) are isotropic while those in the
spinodal region (violet, green, and brown) are anisotropic. We
will see in Sec. IV that the growth laws in the two regimes,
which lead to these structures, are also distinct.

Let us investigate the physical state of the condensates as
a function of T . At each of the points shown in Fig. 1(a), we
evaluate the PCF g(r) vs r using Eq. (2) to check for the gas,
liquid, or solid phase. Figure 3(a) shows a prototypical evalua-
tion for ρ = 0.4 for four values of temperature T = 2.0, 1.05,
1.0, and 0.8. As discussed in Sec. II B 1, g(r) = 1 for the ideal
gas and any deviations imply correlations due to the interpar-
ticle interactions. In Fig. 3(a), the evaluation at T = 2.0 shows
the signature of the gas phase. For T = 1.05, g(r) exhibits a
large peak at small r, signifying nearest-neighbor correlations
followed by small oscillations typical of the liquid phase. The
evaluations for T = 1.0 and 0.8 have the characteristics of the
solid phase with several new peaks indicating spatial corre-
lations at values of r that correspond to the lattice spacing.
The development of magnetic order at different temperatures,
M(T ) vs T , can be seen in Fig. 3(b) for ρ = 0.1, 0.2, 0.4, 0.65,
and 0.75. As the temperature is reduced, the dipole-dipole
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FIG. 2. Typical asymptotic morphology shapes that are observed
after a quench from T = 5.0 to T = 1.05: (a) sphere (ρ = 0.1),
(b) cylinder (ρ = 0.2), (c) planar slab (ρ = 0.4), (d) cylindrical bub-
ble (ρ = 0.65), (e) spherical bubble (ρ = 0.75). The yellow color
in (d) and (e) indicate the hollow region. The large black arrows
represent the direction of the average magnetization M. (f) Evolution
of the ensemble averaged total energy Ē vs t for the morphologies in
[(a)–(e)].

interactions dominate and the magnetization builds up due to
the formation of chains of dipoles which coalign parallel to
the surface. At very low temperatures, the magnetization goes
down, presumably due to freezing of the magnetic moments.
To understand this aspect, Fig. 3(c) shows a typical snapshot
at T = 0.8 for ρ = 0.4 at the latest time t = 106 in our sim-
ulation. As anticipated, the system gets stuck in a metastable
state that lacks long-range spatial as well as magnetic order.
(The expected asymptotic structure for this density is a slab.)
This is further emphasized in the xy slice through the center
(z = L/2) shown in Fig. 3(d). To confirm the nature of this
phase, we evaluate the mean square displacement �r2(t ) =
〈(r(t ) − r(t0))2〉 of the dipoles. Figure 3(e) shows �r2(t ) vs t
for T = 2.0, 1.05, 1.0, and 0.8. At higher temperatures (T =
2.0, 1.05), the dipoles exhibit ballistic diffusion, while there is
a clear plateau at lower values, signifying trapping of dipoles.
Further insights can also be obtained from the evaluation of
the spin glass Edwards-Anderson order parameter defined by
Eq. (7). Figure 3(f) shows qEA vs T for the specified values of

FIG. 3. (a) Plot of the PCF for the asymptotic morphologies at
ρ = 0.4 at T = 2.0 (isotropic state), T = 1.05 (liquid state), T =
1.05 (solid state), and Ts = 1.0 (frozen state). (b) Variation of the
ensemble averaged magnetization with temperature, M̄ vs T , for ρ

= 0.1, 0.2, 0.4, 0.65, and 0.75. (c) A typical frozen morphology
(ρ = 0.4) at temperature T = 0.8 and (d) the corresponding xy
projection. (e) Mean square displacement for T =2.0, 1.05, 1.0, and
0.8. (f) Variation of the Edwards-Anderson order parameter with
temperature, qEA vs T , at specified densities. The dashed and solid
lines in (b) and (f) are at T = 1.0 (solid state) and T = 1.05 (liquid
state).

ρ. The low-T condensates exhibit qEA → 1 whereas M → 0
[Fig. 3(b)], which is a characteristic signature of glassy order.
Our exercise thus allows us to classify the condensates in
the ρ − T plane to be in the liquid above Tl � 1.05 [unfilled
squares in Fig. 1(a)], solid state with quasi-long-range order
close to Ts � 1.0 [filled magenta, purple, green, brown, and
cyan squares in Fig. 1(a)], and a frozen state for T � 0.9
[filled blue squares in Fig. 1(a)]. This phase, with particles in
random locations and random orientations, has been observed
in experiments [75–79] as well as computations [80–83]. The
reported slow relaxation and aging have led to the frozen
disorder being called spin glass [80], super spin glass [75],
dipolar glass [81], structural glass, and sometimes simply the
frozen ferrofluid [76,79]. However, even to provide the correct
nomenclature, a careful investigation is required to understand
the development of this phase and the ferro to glass phase
transition if any.
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(a) (b)

(c)

ρρ

ρ ρ(d)

(e) (f)

ρ ρq4 q6 q4 q6

FIG. 4. Plot of longitudinal PCF along M̄ in the nucleation region
for ρ = 0.1, and 0.75 at (a) T = 1.05 and (b) T = 1.0. Correspond-
ing PCF in spinodal region for densities ρ = 0.2, 0.4, and 0.65 at
(c) T = 1.05 and (d) T = 1.0. The scatter plot of local BOP q4 and
q6 for ρ = 0.1, 0.2, 0.4, 0.65, and 0.75 at (e) T = 1.05 (liquid state)
and (f) T = 1.0 (solid state). The average values of q4 and q6 for each
density are also indicated.

Next, let us understand the circumstances that lead to the
large magnetic order in the structures obtained at T = 1.05
and 1.0. We evaluate the directional PCF g‖(r‖) vs r‖ along m̂,
the direction of anisotropy. The first row of Fig. 4 show this
evaluation for ρ = 0.1 (sphere) and 0.75 (spherical bubble) at
(a) T = 1.05 and (b) T = 1.0. The peaks are sharper and more
in number for the solid phase. These features are pronounced
in the corresponding evaluations shown in Figs. 4(c) and 4(d)
for the anisotropic structures obtained for ρ = 0.2 (cylinder),
0.4 (slab), and 0.65 (cylindrical bubble). Next, we evaluate
the BOP using Eq. (4) to obtain information about the local
neighborhood of a particle in the condensate. The evaluations
of q4 and q6 corresponding to different values of ρ are shown
in Figs. 4(e) and 4(f) for T = 1.05 and 1.0. The average values
of q4 and q6 for each ρ are also indicated. The evaluations
for T = 1.05 clearly suggest that there is no local spatial
order in the liquid state, although there is magnetic order.
In the solid state for T = 1.0, it is interesting to note that
while the isotropic structures do not exhibit crystalline order,

FIG. 5. (a) Morphology of the isotropic sphere for ρ = 0.1 at
T = 1.0 (solid state). The colors indicates the magnitude of the
y-component of dipole moments μ = 2.5, and can be read from
the color bar. (b) Corresponding xy-projected view of morphology.
(c) Variation of average magnetization m̄yz vs rx at T = 1.05 (liquid
state) and T = 1.0 (solid state). (d) Corresponding comparison for
dipole moments μ = 1.5, 2.0, and 2.5.

the anisotropic structures are close-packed with FCC order
dominating over HCP.

We now concentrate on unearthing some interesting mag-
netic properties that develop in the condensates due to the
interplay of the surface energy and the dipole-dipole interac-
tions. When the latter dominate over the disordering effects
of temperature, the magnetic moments form long chains that
align along the surface, and this leads to some unusual char-
acteristics. Figure 5(a) shows the components of the magnetic
moment along the magnetization axis m̂ (or, say, y axis) for
the isotropic sphere. The magnitude of dipole moments μy

is provided by the adjacent color bar. Figure 5(b) shows the
corresponding slice for clarity in the alignment of magnetic
moments. They coalign along the surface. Figure 5(c) shows
the variation of the average magnetization in the yz slice (m̄yz)
as we move along the x direction for both T = 1.05 (liquid)
and T = 1.0 (solid). The organization of the magnetic mo-
ments in the sphere is unusual: As is evident from the red and
blue sections in Fig. 5(a), we have a magnetic Janus sphere
[84] composed of two hemispherical domains with opposite
magnetic orientations. Further, there is no significant change
in the m̄yz vs rx behavior for the condensate in the solid or
liquid state. Figure 5(d), which shows the magnetization scans
for different values of μ, suggests that the magnetization is
only enhanced for larger values of the magnetic moment.

Figures 6(a) and 6(b) show the cross sections correspond-
ing to the anisotropic cylinder and slab for T = 1.0. The
moments align along the surface to form long chains. The
average magnetization of the slices along specified directions
is shown in Figs. 6(c) and 6(d) for both T = 1.0 and 1.05.
The cylinder and slab morphologies thus provide uniformly
magnetized self-assemblies. Their size can be manipulated by
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FIG. 6. Slices of (a) cylinder (ρ = 0.2) and (b) slab (ρ = 0.4) at
temperature T = 1.0. The color coding indicates the magnitude of
μz. (c) Variation of the average magnetization m̄zx vs ry for cylinder
at T = 1.05 and 1.0. (d) Variation of m̄yz vs rx for the planar slab at
T = 1.05 and 1.0.

the density ρ and the size L of the simulation box; please
see Appendix for the details providing the dependence on
parameters. As an illustration, for ρ = 0.2, L = 20, the radius
of the cylinder rc = 5.41. On the other hand, L = 40 results
in rc = 10.83, while L = 80 results in rc = 21.65. We show
the slices of the cylindrical and spherical bubbles in Figs. 7(a)
and 7(b). The average magnetization within the bubbles is also
shown in Figs. 7(c) and 7(d). As with the other condensates,

FIG. 7. Slices of (a) cylindrical bubble (ρ = 0.65) and (b) spher-
ical bubble (ρ = 0.75) at T = 1.0. The color coding indicates the
magnitude of μx in (a) and μy in (b). (c) Variation of m̄xy vs rz for
the cylindrical bubble for T = 1.05 and 1.0. (d) Variation of m̄yz vs
rx for the spherical bubble for T = 1.05 and 1.0.

the size of the bubbles can also be tailored by adjusting L and
ρ; please see Appendix for useful information.

IV. NONEQUILIBRIUM EVOLUTION

Finally, we also study the nonequilibrium evolution to
understand the dominant transport at different densities. As
discussed in Sec. II B 4, a useful tool in this context is the
equal-time correlation function defined by Eq. (8). The evolv-
ing morphologies develop spatial as well as magnetic order,
so it is essential to evaluate the spatial correlation length scale
�s as well as the magnetic correlation length scale �M . For this
evaluation, we map the continuum system onto a spin-lattice
by discretizing the volume V into subboxes of size 23. (Our
results do not depend on the size of the subbox.) A subbox i
centered at �ri with density ρi > ρ is identified as a liquid phase
with ψs(�ri ) = 1. On the other hand, ρi < ρ is identified as the
gas phase with ψs(�ri) = −1. For the magnetic order in the
liquid phase, the order parameter ψM (ri ) is the average dipole
moment of the particles in subbox i. Figure 8(a) shows the
scaled correlation function Cs(r, t ) vs r/�s for ρ = 0.05, 0.2,
0.3, 0.4, and specified values t . (We do not have data for higher
densities because the required computational cost is beyond
our available resources.) The average domain length for the
liquid phase �s is defined as the first zero crossing of the cor-
relation function Cs(r, t ). This value for each data set has been
specified in Fig. 8(a). The small dip in C(r) is characteristic of
periodic modulations in bicontinuous morphologies [58,59].
The system exhibits dynamical scaling for all values of ρ

indicating the presence of a unique length scale. The data also
scale for the different values of ρ which span the nucleation as
well as the spinodal regime. The corresponding scaled struc-
ture factor �−3

s Ss(k, t ) vs k�s shown in Fig. 8(b) has a Porod
tail, Ss(k) ∼ k−4 due to scattering from smooth GL interfaces.

Similarly, Fig. 8(c) shows scaled magnetic correlations
CM (r, t ) vs r/�M . Note that the dip in the correlations is
observed for ρ = 0.05 in the nucleation regime but not for
ρ = 0.2, 0.3, 0.4 in the spinodal regime. The average magnetic
domain size �M is also provided for each value of ρ and t . It is
defined as 0.1 of the maximum value of correlation function
CM (r, t ). This data also exhibits dynamical scaling, but the
scaling functions are distinct for the nucleation regime and
the spinodal regime. The dash-dotted line shows the scaling
function for ρ = 0.2, 0.3, 0.4. The dashed line guides the
data collapse corresponding to ρ = 0.05. Further, this data
also shows a dip seen in systems described by a conserved
order parameter and is consistent with our observation of the
magnetic Janus sphere. The corresponding scaled structure
factor �−3

M SM (k, t ) vs k�M is shown in Fig. 8(d). Interestingly,
S(k) ∼ k−3 for ρ = 0.05 is indicative of the scattering off
the 2-d interface separating the hemispherical domains of up
spins and down spins. For higher densities in the spinodal
regime, the data exhibits a Porod tail S(k) ∼ k−4. It should
be mentioned that for an n-component order parameter, the
tail is expected to obey the generalized Porod law: S(k) ∼
k−d+n ≡ k−6 characteristic of scattering from monopoles and
hedgehogs [58,59]. In our simulations, the morphologies have
smooth GL interfaces. Consequently, the interfacial scattering
SM (k) ∼ k−4 dominates.
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(a) (b)

(c)

ρ

ρρ (d)

(e)

(f)

ρt

t

ℓs

ℓM

FIG. 8. (a) Plots of scaled spatial correlation function Cs(r, t ) vs r/�s for specified values of ρ and t . (b) The corresponding scaled structure
factor Ss(k, t ) vs k�s on a log-log scale. The dashed line denotes the relevant Porod tail. (c) Plots of scaled magnetic correlation function
CM (r, t ) vs r/�M for densities and time as mentioned alongside the plot. The dashed line indicates the scaling function for ρ = 0.05, while
the dash-dotted line is for the other values of ρ. (d) The corresponding scaled structure factor SM (k, t ) vs k�M on a log-log scale. The dashed
line denotes the relevant Porod tail. (e) The characteristic length scale �s(t ) vs t on the log-log scale for nucleation (ρ = 0.05) and spinodal
(ρ = 0.2, 0.3, 0.4) regimes. (f) The characteristic magnetic length scale �M (t ) vs t on the log-log scale for the nucleation and spinodal regimes.
The dashed lines with specified slopes are a guide to the eye. The length scale data has been shifted for clarity.

Let us further quantify the growth of spatial and magnetic
correlations in the condensates. Figure 8(e) shows �s(t ) vs
t for T = 1.05 at densities ρ = 0.05, 0.2, 0.3, and 0.4. The
dashed lines with slopes 1/3 and 2/3 are guides to the eye.
The exponent 1/3 captures the growth in the nucleation
regime indicative of diffusive growth. The bicontinuous
morphologies in the spinodal regime follow a 2/3 growth law.
Thus, the fluid inertia overpowers the capillary and viscous
forces right from the onset. This hydrodynamics-driven
inertial growth has been elusive in MD simulations, and
was observed in our recent study which focused on the
phase ordering in the spinodal regime [39]. We refrain from
reproducing the details to avoid repetition. Figure 8(f) shows
the corresponding variation of �M vs t for the growing
magnetic condensates. The growth of magnetic correlations
is delayed as compared to the spatial correlations, indicating
that they are triggered by condensation. The dashed lines
guiding the eye suggest that the growth exponent is 1/3 in
the nucleation regime. (Larger system sizes will be required
to observe a cleaner growth law.) Here, the magnetic order
parameter exhibits conservation due to the presence of two
oppositely magnetized hemispheres. The growth exponent
∼1 for the bicontinuous morphologies in the spinodal regime
is consistent with observations in dipolar solids, as discussed
in our earlier study [39].

V. CONCLUSION

Let us conclude with a summary and discussion of our
results. We have performed extensive MD simulations to
understand the asymptotic phases and nonequilibrium behav-
ior of the SM, which consists of LJ particles carrying an
embedded point dipole. This simplest polar counterpart of
the LJ fluid exhibits GL coexistence, and is a representative
model to study ferrofluids, magnetorheological fluids, electro-
rheological fluids, dipolar fluids, etc. These systems have
promising applications, as they exhibit the dual properties
of fluidity and magnetism. We performed quenches from a
high temperature (T > Tc) homogeneous gas phase into the
coexistence region (ρ − T plane, T < Tc) and studied the
nonequilibrium evolution for long times to obtain the asymp-
totic morphologies. All simulations were performed using
LAMMPS in the NVT ensemble.

A systematic variation in the ρ − T plane reveals density-
dependent features. For quenches in the nucleation regime,
the growth of the condensed phase is via diffusive motion
of the SM gas particles. The corresponding growth law is
the Lifshitz-Slyozov law �(t ) ∼ t1/3 characteristic of binary
systems described by a conserved order parameter. The typical
self-assemblies are isotropic: lower densities yield a com-
pact sphere while higher densities yield the complementary
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spherical bubble structure. When quenches are in the spinodal
region, the formation of the condensates is driven by the
overpowering fluid hydrodynamics as revealed by the inertial
growth law �(t ) ∼ t2/3 right from the onset of phase separa-
tion. The self-assemblies are anisotropic with shapes ranging
from cylinder, rectangular slab, and cylindrical bubble. The
slightly delayed magnetic order in the condensates shows the
characteristics of a nonconserved order parameter, with the
development of smooth interfaces separating the magnetically
ordered domains (condensates) from the coexisting magnetic
vapour. The SM fluid thereby exhibits unusual aspects with
combine the physics of conserved and nonconserved order
parameters in the spatial as well as magnetic order.

The coalignment of the magnetic moments along the
surface imparts unique magnetic properties to the self-
assemblies. For example, the oppositely magnetized hemi-
spheres of the Janus sphere allow for remote manipulation of
headed movement and orientation [85]. It can have many ap-
plications, ranging from elementary building blocks for larger
self-assemblies, active matter, and drug delivery to name a few
[84,86]. Magnetic bubbles have emerged as another class of
materials. The confined hollow geometry and pronouncedly
curved surfaces induce unique physical properties different
from those of flat thin films and solid counterparts [87,88].
The surface modification opens up possible applications in
the areas of catalysis, drug-delivery systems, and magnetic
photonic crystals [89]. Further, the use of magnetic bubbles
as memory devices has been established because of their
nonvolatility and high reliability originating from their robust
structure [90]. Simple energy calculations using the system
density ρ allows us to estimate the dimensions of these struc-
tures accurately. Such precision can allow for control of the
spatial and magnetic properties that are required for the above
applications.

There can be many extensions of our paper with clues
given by earlier works in literature. For example, studies
(d = 2) to see pattern formation in mixtures of magnetic and
nonmagnetic particles, or self-assembly (d = 3) from com-
plex building blocks such as chains, rings, X and Y shapes,
etc. [91–96]. It may be interesting to explore the role of
composition in binary mixtures (d = 3) to obtain wrapped
spheres, cylinders, and slabs or their Janus counterparts for
varied applications or to identify the coexisting phases and
internal organization in self-assembled structures from multi-
particle building blocks. Such studies may have implications
in proposing functional materials and comprehending cellular
organization in bioinspired self-assemblies, for instance. Fur-
ther, insights into the frozen phase can also unfold mysteries.

Experiments with ferrofluids have usually been performed
using dilute samples (ρ � 0.1) in confined environments
which truncate the long-range dipole-dipole interactions
[45,97–101]. At low densities (ρ � 0.1), long chains of
dipoles have been reported in thin samples [97,102,103]. For
higher densities (ρ = 0.3), there are reports of ferromagnetic
fluctuations in zero field as seen from static Susceptibility
measurements [44] as well as ac susceptibility measurements
[104]. These works, however, did not study the shapes of
aggregates and magnetic organization therein. Our simulation
results, on the other hand, mimic large systems which allow
us to see the consequence of long-range interactions. We hope

that our paper will initiate experimental strategies that can
verify our observations because of their exciting physics and
practical utility.
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APPENDIX: SURFACE ENERGY CALCULATIONS OF THE
ASYMPTOTIC MORPHOLOGIES

We have used the GL coexistence phase diagram of the
SM fluid at dipole moments μ = 2.5 that is available in the
literature [10]. Gibb’s lever rule provides the volume fraction
of the liquid (x = Vl/V0) in the coexistence region by the
following expression:

x(T ) = ρ − ρg(T )

ρl (T ) − ρg(T )
, (A1)

where ρ is the system density, Vl is the volume of the liquid
state, while V0 is the volume of the system. We have extracted
the gas and liquid densities ρl (T ) and ρg(T ) using the GL
coexistence phase diagram of the SM fluid for μ = 2.5 from
Ref. [10].

As an example, let us obtain the radius r of the sphere in
terms of x using Gibb’s lever rule:

x(T ) = Vl

V0
=

(
4/3πr3

)
L3

. (A2)

Therefore,

r = L
( 3x

4π

) 1
3
, (A3)

where L = (N/ρ)1/3 is the length of the simulation box. The
surface area of the sphere As = 4πr2 is then evaluated by
substituting for r from Eq. (A3). In Table II, we provide the
evaluations of the radius r (or width bps of the planar slab),
surface area (A), and volume (Vl ) of the observed asymptotic
structures in terms of liquid fraction x and the box dimension
L (V = L3). Table III provides the numerical evaluations of A
from our simulations for T = 1.4 and representative values of
ρ = 0.1, 0.2, 0.3, 0.4, 0.65, and 0.75. The minimum surface
energy for a particular value of ρ is represented in bold.
Table IV shows the effect of increasing L on r.

TABLE II. Evaluation of radius (r), surface area (A), and volume
(Vl ) in terms of x and L for sphere (s), cylinder (c), planar slab (ps),
cylindrical bubble (cb), and spherical bubble (sb).

Structures Radius (r) Surface area (A) Volume (Vl )

s L( 3x
4π

)
1
3 4πL2( 3x

4π
)

2
3 4

3 πr3

c L( x
π

)
1
2 2L2(πx)

1
2 πr2L

ps b = Lx 2L2 L2b

cb L
√

1−x
π

2L2
√

π (1 − x) L3 − πr2L

sb L{ 3(1−x)
4π

} 1
3 4πL2{ 3(1−x)

4π
} 2

3 L3 − 4
3 πr3
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TABLE III. Surface area calculation for all condensates at T =
1.4 and specified values of ρ. The minimum surface energy for a
particular value of ρ is represented in bold.

ρ L x As Ac Aps Acb Asb

0.10 34.20 0.11 1321.85 1393.43 2339.28 3903.99 5220.90
0.20 27.14 0.23 1325.69 1244.10 1473.59 2295.79 3000.62
0.40 21.54 0.45 1323.72 1107.12 928.29 1216.58 1501.03
0.65 18.33 0.74 1323.58 1020.99 671.61 611.48 668.19
0.75 17.47 0.85 1323.43 996.86 610.54 420.41 418.55

TABLE IV. Effect of increasing the box size L on the radius
(width) of the asymptotic morphologies.

L rs rc bps rcb rsb

10 2.97 2.71 4.5 2.88 3.30
20 5.95 5.41 9 5.76 6.59
40 11.89 10.83 18 11.51 13.19
80 23.78 21.65 36 23.02 26.37
160 47.57 43.30 72 46.04 52.75
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