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Magnetostatic response and field-controlled haloing in binary superparamagnetic mixtures
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Nowadays, magnetoresponsive soft materials, based not simply on magnetic nanoparticles but rather on mul-
tiple components with distinct sizes and magnetic properties in both liquid and polymeric carriers, are becoming
more and more widespread due to their unique and versatile macroscopic response to an applied magnetic field.
The variability of the latter is related to a complex interplay of the magnetic interactions in a highly nonuniform
internal field caused by spatial inhomogeneity in multicomponent systems. In this work, we present a combined
analytical and simulation study of binary superparamagnetic systems containing nanoclusters and dispersed
single-domain nanoparticles in both liquid and solid carrier matrices. We investigate the equilibrium magnetic
response of these systems for wide ranges of concentrations and interaction energies. It turns out that, while the
magnetization of a binary solid can be both above and below that of an ideal superparamagnetic gas, depending
on the concentration of the dispersed phase and the interparticle interactions, the system in a liquid carrier
is highly magnetically responsive. In liquid, a spatial redistribution of the initially homogeneously dispersed
phase in the vicinity of the nanocluster is observed, an effect that is reminiscent of the so-called haloing effect
previously observed experimentally on micro- and milliscales.
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I. INTRODUCTION

Magnetic soft matter is a family of artificially synthesized
materials based on a distributed system of magnetic particles
embedded in a nonmagnetic carrier matrix. Notable mem-
bers of this family are ferrofluids [1], magnetorheological
fluids [2], ferrogels [3], and magnetoactive elasomers [4]. The
behavior and properties of these systems can be controlled us-
ing applied magnetic fields, which makes them highly attrac-
tive in various branches of nanotechnology and nanomedicine.
Examples of applications include soft crawling robots [5], tis-
sue engineering scaffolds [6], adaptive dampers and seals [7],
ferrofluid cooling systems [8], magnetic lubricants [9], tar-
geted drug delivery systems [10], magnetic hyperthermia of
cancer [11], and magnetic particle imaging [12].

Modern methods of magnetic soft matter synthesis have
achieved tremendous success. In particular, particles can
vary greatly in size and can have very different internal
magnetic structures. The common types of particles are
single-domain ferro- and ferrimagnetic nanoparticles with
linear sizes ∼10 nm [13], dense clusters of single-domain
nanocrystals (magnetic “nanoflowers” [14] and “multicore
nanoparticles” [15,16] with a size of the order of ∼102

nm), and multidomain microparticles with low or high
coercivity [17]. Recently, multicomponent systems, which
simultaneously employ several types of magnetic particles,
attracted a lot of scientific attention. For instance, these are
hybrid elastomers containing both magnetically soft and hard
microparticles [18]. Reportedly, they allow for a much larger
degree of magnetomechanical fine tuning than analogous one-
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component systems [19]. In Ref. [20], an elastic sphere filled
with magnetically saturated colloidal particles of two different
sizes was considered; it was shown that for certain spatial
arrangements of particles, variation in the quantitative ra-
tio between small and large particles can lead to qualitative
changes in the system’s overall deformation response. An-
other example is bimodal magnetorheological fluids, which
consist of magnetic microparticles submerged in a nanodis-
persed ferrofluid [21]. They are considered to be an improved
substitution for conventional magnetorheological fluids due
to their superior colloidal stability and sedimentation be-
havior [22,23]. Recently, a novel type of binary ferrofluid
containing a mixture of magnetically hard and magnetically
soft nanoclusters was experimentally investigated in Ref. [24].
Even some samples of traditional ferrofluids are known to
contain a fraction of large nanoclusters, which results in a
substantial alteration of their magnetic, mass-transport, and
rheological properties [25–28].

The more magnetic soft matter systems that contain two
types of magnetic components are developed, the clearer
the demand to understand the fundamental interplay between
interactions of those components and their impact on the
system’s overall magnetic response becomes. The latter is of
particular importance because it forms the basis for efficient
usage of these materials.

Here, we will focus mainly on composite materials that are
based on single-domain fine particles. It is known that if the
internal anisotropy energy of such particles is comparable to
or smaller than the energy of thermal fluctuations (which is
common for iron oxide nanoparticles [13]), then the average
ensemble magnetization in zero field is zero. As the field
increases, the magnetization will nonlinearly and reversibly
grow towards the saturation value. Such behavior is known
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as “superparamagnetism,” and corresponding materials can
be referred to as “superparamagnetic” [29]. While interac-
tions in one-component superparamagnetic systems are very
important, in both liquid [30,31] and solid [32,33] carriers,
the situation becomes even more complex if the material is
multicomponent. Clear evidence of this is the direct and in-
verse ferrofluid emulsions that are binary systems with only
one magnetic component [34–37]. Here, the nonuniformity
of the internal magnetic field inside the sample leads to a
very sophisticated magnetic response. It is, however, clear
that the internal field gradients will become even stronger
and more important if a true binary magnetic material is
addressed. So far, a detailed description, as well as a funda-
mental understanding of the magnetization processes in such
materials, is not available in the scientific literature. This
work aims at filling this gap and puts forward a combined
analytical-computational study of a system containing both
large superparamagnetic nanoclusters (the sources of strong
internal field and spatial inhomogeneity) and a dispersed
phase of single-domain superparamagnetic particles that are
forced to react to the perturbations created by the cluster. As
long as we expect a drastic change depending on the carrier,
we investigate two extreme cases: the disperse phase is either
frozen in space, maintaining only the rotational degrees of
freedom, mimicking a material based on a rubber-like rigid
matrix, or the whole system is immersed in a liquid where the
disperse phase can freely diffuse. It turns out that in the latter,
a pronounced gathering of the dispersed phase in the vicinity
of the nanocluster is observed, causing qualitative changes in
the magnetization behavior.

This paper is organized as follows. First, we describe the
model in detail in Sec. II. In Sec. III, we adapt the analytical
approach developed by Subbotin [35,36] and calculate the
magnetization of our binary system. The results and discus-
sion in Sec. IV are split according to the carrier: we discuss
a solid matrix in Sec. IV A; a liquid carrier is studied in
Secs. IV B and IV C. In particular, spatial redistribution of the
dispersed phase is investigated in Sec. IV C. The summary and
a short outlook are provided in Sec. V.

II. MODEL OF A BINARY SUPERPARAMAGNETIC
MIXTURE

The system under consideration is an isolated magnetic
nanocluster embedded in a superparamagnetic medium (see
Fig. 1). The system is subjected to an external uniform mag-
netic field �H0 and thermostated at a constant temperature T .
The nanocluster is modeled as a sphere of diameter Dcl filled
with Nin spherical magnetic particles of diameter d . Particles
are distributed within the cluster randomly and uniformly,
without overlapping; their volume fraction is

ϕin = Nin
v

Vcl
= Nin

(
d

Dcl

)3

, (1)

where v = (π/6)d3 and Vcl = (π/6)D3
cl are volumes of

the particle and the nanocluster, respectively. Positions of
particles within the nanocluster are rigidly fixed. Particles
are assumed to be single domain and magnetically isotropic
(the validity of this approximation is commented on in

FIG. 1. Schematic representation of the investigated system.

Appendix A). Each particle has a magnetic moment �m whose
magnitude is fixed, but its orientation can change under the
influence of an applied magnetic field, dipolar magnetic fields
created by other magnetic moments in the system, and ther-
mal fluctuations. As a result, the nanocluster as a whole will
exhibit superparamagnetic behavior according to the defini-
tion introduced in the previous section. It does not have a
net magnetic moment in the absence of an applied field but
will be nonlinearly magnetized if the field is turned on [38].
The superparamagnetic medium surrounding the nanocluster
is modeled in a similar fashion. It consists of Nex magnetically
isotropic spherical single-domain particles, which are exactly
the same as particles that constitute the cluster; that is, they
also have diameter d and rotatable magnetic moment �m. The
particle volume fraction in the medium is

ϕex = Nex
v

Vtot − Vcl
, (2)

where Vtot is the total system volume. Magnetic nanoparti-
cles in the medium always retain their rotational degrees of
freedom.

The interaction of magnetic moments with the external
field is governed by the Zeeman potential

UZ = −μ0( �m · �H0), (3)

where μ0 is the magnetic permeability of the vacuum. Ad-
ditionally, each pair of particles interacts via the magnetic
dipole-dipole potential

Udd (i, j) = μ0

4π

[(
�mi · �mj

)
r3

i j

− 3
(
�mi · �ri j

)(
�mj · �ri j

)
r5

i j

]
, (4)

where �mi and �mj are magnetic moments of two particles and
�ri j is the vector connecting their centers. We use two di-
mensionless energy parameters to characterize these magnetic
interactions. The first one is the Langevin parameter

ξ0 = μ0mH0

kBT
, (5)
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which is the ratio of the Zeeman energy to the thermal en-
ergy kBT , where kB is the Boltzmann constant and m = | �mi|.
For a 10 nm magnetite grain (with saturation magnetiza-
tion Ms = 450 kA/m), ξ0 = 1 corresponds to H � 14 kA/m
at room temperature. The second parameter is the so-called
dipolar coupling constant

λ = μ0

4π

m2

d3kBT
, (6)

which is the characteristic energy scale of two adjacent par-
ticles whose dipoles are aligned head to tail divided by kBT
and calculated per particle. At T = 300 K, this parameter for a
pair of magnetite grains will roughly go from λ ∼ 1 to λ ∼ 10
as their diameter increases from 10 to 20 nm.

Modeling of different carriers will be done by changing
the way we treat the translational degrees of freedom of our
particles. In a solid carrier matrix (SCM), single-domain par-
ticles surrounding the cluster will be randomly distributed in
the medium and would not be able to move (just like the par-
ticles that constitute the nanocluster itself). In a liquid carrier
matrix (LCM), particles will be subjected to a translational
Brownian motion and could change their position relative to
the nanocluster. They are assumed to be sterically stabilized
and are not allowed to overlap. Of course, in a liquid the
nanocluster should undergo the Brownian motion as well.
However, we can make use of the fact that the characteristic
timescales for three-dimensional (3D) Brownian motion of
a cluster and a particle, τcl = 3ηVcl/kBT and τp = 3ηv/kBT ,
respectively (η is the carrier viscosity), are very different.
Indeed, if Dcl/d ∼ 10, the cluster motion is three orders of
magnitude slower than that of surrounding particles. Thus, in
LCM simulations the cluster will be treated as if its position
is fixed.

Our main quantities of interest in this work are the normal-
ized equilibrium magnetic moment of the nanocluster

�Mcl =
〈

Nin∑
i=1

�mi

〉
1

mNin
(7)

and the total normalized magnetic moment of the whole
system

�Mtot =
〈

Ntot∑
i=1

�mi

〉
1

mNtot
, (8)

where Ntot = Nin + Nex is the total number of particles in the
system and 〈· · · 〉 denotes an ensemble average.

In this work, we use both analytical theory (Sec. III) and
Langevin dynamics simulations (for details, see Appendix B).
However, already at this point, it is important to specify that
the system in simulations is subjected to 3D periodic boundary
conditions. It approximately corresponds to a suspension of
nanoclusters with a nanocluster volume fraction

�cl = Vcl

Vtot
=

(
1 + ϕin

ϕex

Nex

Nin

)−1

. (9)

We will consider systems with Nin = 500 and Nex = 2500.
Particle concentration in the cluster is always ϕin = 0.3
(correspondingly, Dcl � 12d), while the concentration of the
surrounding medium will be changed from a small value

of ϕex = 0.002 to ϕex = 0.15. Correspondingly, the cluster
concentration will change from �cl � 0.0013 to �cl � 0.09.
Magnetic interaction parameters will also vary over wide
ranges: 1 � λ � 5 and 0 � ξ0 � 5.

III. MAGNETIC RESPONSE THEORY

In this section, we will summarize the works of Subbotin
on inverse ferroemulsions [35,36] and adapt them to binary
superparamagnetic mixtures. Let us consider a suspension of
spherical magnetizable bodies (clusters) in a magnetizable
medium with a relative magnetic permeability μex. Assume
that the volume fraction of clusters is �cl and they are made
of some material with relative magnetic permeability μin.
According to Refs. [35,36], the field inside clusters is ho-
mogeneous and parallel to the external field; its magnitude is
given by

Hin = H0
1

1 + (1 − �cl )κ
(

μin

μex
− 1

) , (10)

where κ is the cluster demagnetization factor. For a sphere,
κ = 1/3. The field in the surrounding medium is

Hex = H0

[
1 +

�clκ
(

μin

μex
− 1

)
1 + (1 − �cl )κ

(
μin

μex
− 1

)
]
. (11)

Permeabilities, in general, can be considered nonlinear func-
tions of the field:

μin = 1 + Min(Hin )

Hin
, (12)

μex = 1 + Mex(Hex)

Hex
, (13)

where Min and Mex are magnetizations of the cluster material
and of the medium, respectively. The total magnetization of
the system is

Mtot = �clMin(Hin ) + (1 − �cl )Mex(Hex). (14)

Normalized magnetic moments then can be found as

Mcl = MinVcl

mNin
, 0 � Mcl � 1, (15)

Mtot = MtotVtot

mNtot
, 0 � Mtot � 1. (16)

Later on, the set of equations (10)–(16) will be referred to as
the binary mixture magnetization (BMM) model.

The key assumption of the BMM is that magnetic field
in the medium Hex is a sum of the external field H0 and
some average field that is created by all magnetized clus-
ters, distributed in the system. This latter field is assumed
to be uniform, and so is Hex itself. However, it is known
that the local magnetic field (and subsequently μex) in the
vicinity of a magnetized spherical body is nonuniform [13].
Thus, Eqs. (10) and (11) are only an approximation. The
BMM, however, converges to a well-known Maxwell-Wagner
formula for the initial permeability of a binary dielectric
mixture [39]. In the weak-field limit, it also shows good agree-
ment with experimental data on the effective permeability of
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FIG. 2. Equilibrium magnetization curves of a superparamagnetic mixture in a solid carrier. The top row demonstrates dependences of
a normalized magnetization (or, identically, of a normalized magnetic moment) of the whole system Mtot on the Langevin parameter ξ0.
Insets in [(a)–(c)] show the difference between Mtot values from the corresponding panels and the Langevin function L(ξ0). The latter is
indicated in the main panels with dotted lines. The bottom row shows corresponding values of the cluster normalized magnetic moment Mcl.
Different columns correspond to different dipolar coupling parameters: (a) and (d) λ = 1, (b) and (e) λ = 3, and (c) and (f) λ = 5. The particle
volume fraction in the surrounding medium ϕex is indicated by color (see the color bar). Simulation results are shown by circles (transparent
lines connecting them are guides for the eye), and solid lines are predictions from the BMM model [Eqs. (10)–(16)] combined with MMF
expressions for magnetic permeabilities [Eqs. (20) and (21)]. Dashed lines are “corrected” BMM predictions with permeability values directly
extracted from auxiliary simulations of one-component superparamagnetic systems rather than from MMF.

inverse ferroemulsions. This model, however, overestimates
experimental results slightly as the applied field increases. The
applicability of the BMM to our system is to be determined.

In order to close the set of BMM equations, some ex-
plicit expressions for magnetization curves Min = Min(Hin )
and Mex = Mex(Hex) are required. For this purpose, the so-
called modified mean-field (MMF) theory can be used. It was
initially developed to describe static magnetic properties of
concentrated ferrofluids [40,41]. Subsequently, the approach
was extended for the description of the ferrofluid dynamic
response [31] as well as magnetic properties of single-domain
nanoparticle ensembles immobilized in a solid nonmagnetic
matrix [32]. Reference [36] also used the first-order MMF to
describe the magnetic component of an inverse ferroemulsion.
Within a more accurate second-order MMF approach [42],
magnetization of a one-component superparamagnetic mate-
rial can be written as

M(H ) = MsL

[
ξeff

(
μ0mH

kBT
, χL

)]
, (17)

ξeff (ξ, χL ) = ξ + χL[1 + χLL′(ξ )/16]L(ξ ), (18)

L(ξ ) = coth ξ − 1/ξ, (19)

where Ms = (6/πd3)mϕ is the material saturation magneti-
zation, ϕ is the particle volume fraction, χL = 8λϕ is the
so-called Langevin susceptibility, L(ξ ) is the Langevin func-
tion that describes the magnetic response of an ensemble of
noninteracting dipoles (i.e., at χL � 1), L′(ξ ) = dL(ξ )/dξ ,
ξeff is the effective dimensionless field that acts locally on an
arbitrary chosen particle in an ensemble with dipole-dipole
interactions. If we assume that both components of our binary
mixture can be described by the MMF, permeabilities can be
written down as

μin = 1 + 3χ in
L

L
(
ξeff

(
ξin, χ

in
L

))
ξin

, (20)

μex = 1 + 3χ ex
L

L
(
ξeff

(
ξex, χ

ex
L )

)

ξex
, (21)

where χ in
L = 8λϕin, χ ex

L = 8λϕex, ξin = μ0mHin/kBT , and
ξex = μ0mHex/kBT .
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IV. RESULTS AND DISCUSSION

A. Equilibrium magnetization of a mixture in a solid carrier

Magnetization curves for a superparamagnetic cluster em-
bedded in a solid matrix with immobilized nanoparticles are
shown in Fig. 2 for different values of λ and ϕex. The first
noticeable feature of magnetization curves is that at any given
λ an increase in ϕex leads to a qualitative change in how
the system magnetization relates to the Langevin function.
Langevin magnetization corresponds to a system of non-
interacting dipoles. So if the normalized magnetization is
lower than corresponding Langevin value, dipole-dipole in-
teractions hinder the overall magnetic response. Conversely,
magnetization higher than the Langevin value indicates that
dipole-dipole interactions play a reinforcing role. It is known
that the equilibrium magnetostatic response of superparam-
agnetic clusters in an empty space always lies below the
Langevin curve [38]; this is the result of the demagnetiza-
tion effect. Similar behavior is observed in our system for a
cluster in a diluted medium with ϕex = 0.002. However, as
the concentration of particles in the surrounding medium in-
creases (and as the magnetic permeability of the medium μex

becomes closer to the permeability of the cluster μin), demag-
netization effects slowly disappear—magnetization of both
the cluster and the mixture eventually becomes larger than
the Langevin value. Interestingly enough, at ϕex � 0.05 and
λ � 3 the impact of dipole-dipole interactions on the mixture
magnetization depends nonmonotonically on the field; while
the initial section of the magnetization curve is larger than
that of the Langevin function, simulation points eventually fall
below L(ξ ) in the saturation regime.

As for the theoretical predictions, it is seen that the combi-
nation of the BMM and MMF gives very accurate predictions
for the initial slope of magnetization curves in the whole
investigated parameter range. However, as the field increases,
theory and simulation data start to diverge rapidly. The larger
ϕex and/or λ reinforce the discrepancy. Theoretical (solid)
curves in Fig. 2 are always above simulation points at ξ0 > 1.
At ϕex = 0.15 and λ = 5, the error between numerical and
theoretical values of the mixture magnetization reaches almost
20% of the corresponding saturation value.

To understand the reason for the discrepancy between
theory and simulations, a set of auxiliary simulations was
performed. We simulated a one-component ensemble of im-
mobilized nanoparticles randomly and uniformly distributed
in a standard cubic box with 3D periodic boundary condi-
tions. An ensemble of N = 2000 particles was considered.
Using simulation data, the nonlinear magnetic permeability
of the ensemble was calculated as a function of the field ξ

at different λ and particle volume fractions ϕ. The results
are demonstrated in Fig. 3 in comparison with MMF predic-
tions. It can be seen that while MMF mostly predicts correct
zero-field permeability values, at large fields it overestimates
μ. In more detail this feature of immobilized superparam-
agnetic ensembles was discussed in Ref. [38]. To take it
into account, the following procedure was performed. The
calculated permeability of a one-component system was in-
terpolated (with cubic splines) and then put in BMM instead
of MMF predictions [Eqs. (20) and (21)]. The results of this
procedure are shown in Fig. 2 with dashed lines. We can see

FIG. 3. Field dependences of the magnetic permeability for
a one-component ensemble of randomly distributed immobilized
magnetic nanoparticles. Solid lines are MMF theory predictions
[Eqs. (17) and (18)], and circles are simulation results. Different
panels correspond to different dipolar coupling constants: (a) λ = 3
and (b) 5. Particle volume fractions are indicated by color.

that the accuracy of BMM with “corrected” permeabilities
improves drastically. New theoretical curves closely follow
Mtot dependences. The magnetization curves for the cluster
still overestimate numerical results, but they are much bet-
ter than the MMF for λ � 3 and ϕex � 0.05. The probable
reason for the remaining discrepancy is the inherent BMM
assumption that the magnetic field Hex and permeability of
the surrounding medium μex are constant and uniform in the
cluster’s vicinity, which is not correct at large enough applied
fields [13]. Thus, the agreement with simulation potentially
can be improved only by directly solving a nonlinear mag-
netostatic boundary-value problem and correctly determining
the magnetic field distribution in the system. However, this
task is beyond the scope of the present paper.

B. Equilibrium magnetization of a mixture in a liquid carrier

Now let us consider a different type of a binary mixture—a
superparamagnetic nanocluster submerged in a suspension of
magnetic nanoparticles in a nonmagnetic liquid matrix. Es-
sentially, a nanocluster in a ferrofluid or in a very loose gel
in which the cluster is too large to diffuse but the dispersed
phase is not constrained [43]. The magnetization curves for
this case are shown in Fig. 4. The first thing that is seen here
is that the magnetization of the mixture and the cluster are
larger than corresponding SCM values for every set of in-
vestigated parameters. A noticeable feature of the previously
considered SCM is that Mtot at large ϕex can be higher than
the corresponding Langevin value in weak fields but smaller
than the Langevin value in strong fields. The role of dipole-
dipole interactions changes as the field increases. For LCM,
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FIG. 4. Equilibrium magnetization curves for a superparamagnetic mixture in a liquid carrier. The notation is identical to that in Fig. 2.
Note that colored solid curves corresponding to MMF predictions are also exactly the same as in Fig. 2.

this feature is no longer present—there is no crossing of the
Langevin curve, at least not at ξ0 � 5.

MMF does not make any distinctions between liquid and
solid superparamagnetic ensembles; thus, theoretical curves in
Fig. 4 are exactly the same as in Fig. 2. At λ = 1, these curves
actually describe simulation data for LCM quite well, better
than the data for SCM [compare insets in Figs. 2(a) and 4(a)].
But already at λ = 3 the agreement breaks down. Surprisingly,
the error does not increase with ϕex as in SCM case—the
strongest disagreement between theory and simulations takes
place at intermediate and low concentrations. For λ = 3 and
ϕex = 0.05, theoretical predictions are incorrect for both the
initial and saturation portions of the LCM magnetization
curve [Figs. 4(b) and 4(e)]. At λ = 5, the strongest disagree-
ment takes place at even smaller concentrations, ϕex = 0.002
[Figs. 4(c) and 4(f)].

In order to improve the agreement, the same procedure
was employed as for SCM. Namely, an auxiliary set of
simulations of a one-component superparamagnetic system
was performed. This time, the one-component system was
a liquid suspension of single-domain particles. The results
for a nonlinear magnetic permeability of this system at
different particle concentrations and dipolar coupling con-
stants are given in Fig. 5. Comparing Fig. 5 to Fig. 3, we
can see that the relations between actual permeability and
MMF predictions for liquid and solid one-component su-
perparamagnets are completely opposite. For solid systems,
zero-field permeabilities are correctly described by MMF, but

the theory overestimates the magnetic response as the field
increases. These features of solid superparamagnets are well
documented in the literature [38,44]. For a liquid, zero-field
permeabilities are larger than MMF predictions, but in strong
fields the agreement significantly improves. This behavior
can be attributed to the particle self-assembly, which is not
taken into account within the MMF framework. It is known
that magnetic particles with sufficiently strong dipole-dipole
interactions tend to form chain-like aggregates in viscous [45]
and even soft elastic environments [46]. In monodisperse fer-
rofluids, the chain formation increases the initial magnetic
response [47], but under the saturation condition the influence
of chains on the magnetization reduces [48].

Once again, numerically obtained permeability curves
were interpolated with cubic splines and then used within
the BMM approach instead of MMF predictions [Eqs. (20)
and (21)]. The results of this correction are shown in Fig. 4
with dashed lines. Unfortunately, the correction no longer
gives the same accuracy boost as for SCM. In fact, it improves
only the initial slope of the magnetization curves. But at large
fields, simulation results persistently lie above the predictions
of the corrected BMM. This is most clearly demonstrated
by Mtot and Mcl dependences for λ = 5 and ϕex = 0.002
[Figs. 4(c) and 4(f)].

So it can be deduced that some qualitative change is hap-
pening in LCM system as the field increases:

(i) This change leads to a significant increase of normalized
magnetic moments Mtot and Mcl.
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FIG. 5. Field dependences of the magnetic permeability for a
one-component ensemble of magnetic nanoparticles suspended in a
liquid matrix (i.e., particles are subjected to a translational Brownian
motion). The notation is identical to that in Fig. 3.

(ii) It cannot be explained within the BMM approach.
(iii) It is more pronounced at larger λ and smaller ϕex.
(iv) It does not take place in the SCM.
To get a better understanding of what is happening here,

a deeper analysis of the system microstructure is presented
below.

C. Field-controlled haloing in a liquid carrier

Let us look closely at the behavior of the simulated LCM
system at λ = 5 and ϕex = 0.002, i.e., in the parameter ranges
where the deviations from theoretical magnetization curves
are most pronounced. Corresponding simulation snapshots are
collected in Fig. 6 for different values of the applied field
strength. At a relatively small field, ξ0 = 1, free nanoparticles
form chain-like structures, as expected at λ = 5 [47]. The
presence of a cluster does not produce any clearly visible
effects on the system microstructure. However, already at

ξ0 = 2 and, especially, at ξ0 = 4, a significant change takes
place: particles (or, rather, particle chains) start to concentrate
near the nanocluster poles, forming clouds stretched along the
field direction.

The described phenomenon is qualitatively reminiscent of
the so-called haloing effect, experimentally observed in bi-
modal magnetorheological fluids [21,49]. The only difference
is that in the latter systems superparamagnetic nanoclus-
ters form thick clouds (or halos) around a magnetizable
microsphere. On an even larger scale the phenomenon was re-
produced in Ref. [50]: the authors observed the condensation
of drop-like aggregates of a phase-separated ferrofluid on the
surface of a millimeter-sized iron sphere. The physical reason
behind this halo formation in both cases is the phenomenon of
magnetophoresis, i.e., the motion of magnetic nanoparticles in
a gradient magnetic field [27,51]. The source of the inhomoge-
neous field in our problem is the magnetized nanocluster [13].
The stronger the applied field is, the stronger the cluster’s own
field gradient is. This gradient is directed towards poles of the
cluster, where free nanoparticles and nanoparticle chains tend
to accumulate.

It is known that the transport of magnetic nanoparticles in
a viscous medium is affected strongly by interparticle interac-
tions [52,53]. Namely, dipole-dipole interactions, controlled
by λ, act as effective attraction between particles. They de-
crease the gradient diffusion coefficient of the system and
make it much easier to create a highly inhomogeneous par-
ticle distribution with a given applied field. The effect of
dipole-dipole interactions on particle transport is typically
most pronounced at intermediate average concentrations ϕ �
0.1. In denser systems, the steric repulsion (i.e., the excluded
volume effect) starts to dominate and substantially increases
the gradient diffusion coefficient. To put it simply, it is hard
to create a noticeable concentration gradient in a highly con-
centrated system. All these theoretical considerations are well
illustrated and validated by the LCM concentration maps
shown in Fig. 7. First, halo concentration increases with λ.
At ϕex = 0.002 and λ = 5, the local concentration of parti-
cles near cluster poles is actually comparable to the cluster
concentration itself (ϕin = 0.3) and two orders of magnitude
higher than near the cluster “flanks.” Thus, the situation can
be interpreted as follows: the cluster, which is spherical in
small fields, starts to absorb free particles with increasing ξ0

and turns into an elongated aggregate aligned with the field.
As the aggregate shape changes, its demagnetization factor

FIG. 6. Simulation snapshots of the system in a liquid carrier at ϕex = 0.002 and λ = 5. Different panels correspond to different Langevin
parameters: (a) ξ0 = 1, (b) 2, and (c) 4. Applied field is oriented vertically.
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FIG. 7. Local particle volume fraction ϕex, loc in the vicinity of the cluster at ξ0 = 3. Numerical values of ϕex, loc are indicated by the color
(see color bar); the cluster itself is colored gray. Maps are constructed using space- and time-averaged data from 3D Langevin dynamics
simulations. They are plotted in cylindrical coordinates (R, Z) with the origin at the cluster center. Only the top right corner is shown due to
the system symmetry. The field is directed along the Z axis. The dipolar coupling constant increases from left to right: (a), (d), and (g) λ = 1;
(b), (e), and (h) λ = 3; and (c), (f), and (i) λ = 5. The average volume fraction of particles increases from top to bottom: [(a)–(c)] ϕex = 0.002,
[(d)–(f)] ϕex = 0.05, and [(g)–(i)] ϕex = 0.15.

[κ in Eqs. (10) and (11)] decreases. This is very similar to the
behavior of magnetic droplets in ferroemulsions [34] and can
explain the anomalous increase of the cluster magnetization
seen in Fig. 4(f). The haloing is still present at larger average
concentrations. However, an important difference is that at
higher average volume fractions the inhomogeneity of the
local concentration decreases. In the densest environment with
average particle concentration ϕex = 0.15, the local particle
concentration near the cluster surface is always ϕex, loc � 0.1.
Correspondingly, variations of μex in the vicinity of the cluster
get smaller. As a result, BMM (which assumes system homo-
geneity) works much better for concentrated LCM samples.

V. CONCLUSIONS

In this work, the equilibrium magnetic response of a binary
superparamagnetic mixture was studied both theoretically and

numerically (with the help of Langevin dynamic simulations).
One component of the mixture is a spherical nanocluster, con-
sisting of immobilized magnetically isotropic single-domain
particles. The cluster is submerged in a superparamagnetic
medium, which itself constitutes an ensemble of single-
domain particles in a nonmagnetic matrix. Two cases were
considered separately. In the first case (SCM), particles of the
surrounding medium were spatially immobilized, although
they fully retained rotational degrees of freedom. This case
allowed us to neglect possible effects of Brownian motion
and particle aggregation. In the second case (LCM), particles
in the medium had both translation and rotational degrees of
freedom. It was shown that the magnetostatic response of the
SCM system can be accurately described theoretically within
the BMM approach [Eqs. (10)–(16)] if the nonlinear perme-
abilities of individual mixture components are known. It was
also shown that MMF predictions for permeabilities [Eqs. (20)
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and (21)] give an accurate description of the simulation data
only at relatively small values of the dipolar coupling constant
(λ � 1). The situation changes qualitatively for the LCM sys-
tem. If the average particle concentration in the medium is
low enough, magnetization of the mixture grows anomalously
fast with the field (compared to BMM prediction). The ap-
parent reason for this growth is the so-called haloing effect:
the gradient field of the magnetized nanocluster leads to the
local redistribution of particles in the surrounding medium. It
was shown that particles form concentrated clouds near the
cluster poles, effectively reducing the demagnetization effect
and making it more susceptible to the applied field. A strong
dependence of the haloing effect on the intensity of dipole-
dipole interactions was revealed.

We can conclude that an accurate theoretical description
of the magnetostatic response of a binary superparamagnetic
mixture at λ > 1 cannot simply assume spatial homogeneity
of the system’s magnetic properties. The local inhomogeneity
of the cluster field and the subsequent drift-diffusion particle
transport must be explicitly taken into account. In practice,
it will require the solution of a combined magnetodiffusive
boundary-value problem similar to those previously consid-
ered in Refs. [54,55]. The solution of this problem is left for
future studies.

ACKNOWLEDGMENTS

This study was funded by RFBR, Project No. 19-31-60036.
All computations were performed at the Ural Federal Uni-
versity cluster. S.S.K. acknowledges the support from FWF
Project SAM P 33748.

The authors declare no conflicts of interest.

APPENDIX A: APPROXIMATION OF MAGNETICALLY
ISOTROPIC NANOPARTICLES

Let us give here a more detailed explanation of our particles
being “magnetically isotropic.”

The simplest and most common model for internal mag-
netic anisotropy of single-domain particles is the easy axis
anisotropy [56]. It assumes that the particle possesses a special
internal direction (easy axis) which can be characterized by a
unit vector n̂. The orientational coupling between the axis and
the magnetic moment of any given particle is described by the
potential

Ua = −Kv(m̂ · n̂)2, (A1)

where K is the particle anisotropy constant, m̂ = �m/m.
The interplay between anisotropy and thermal fluctuations is
described by the dimensionless anisotropy parameter

σ = Kv

kBT
. (A2)

For a 10 nm particle with K ∼ 104 J/m3, the anisotropy pa-
rameter is σ ∼ 1.

It is known that the variation in σ strongly affects the
dynamic magnetic response of single-domain particles in
different matrices [57,58]. However, in this work we are in-
terested only in the equilibrium magnetic response to a static
applied field. And it is known that equilibrium magnetization

curves of superparamagnetic particles suspended in a liquid
simply do not depend on σ [32]. The situation becomes more
complicated if particles are immobilized in a solid carrier. In
principle, now one has to take into account the “magnetic
texture” of the system, i.e., the specific orientational distri-
bution of the particles’ easy axes. The texture can be created
by applying a strong field during the synthesis stage and can
have a major impact on the system magnetic response [33,59].
However, nontextured composites with a random and uniform
distribution of easy axes are more similar to liquid super-
paramagnets; their initial magnetic response also does not
depend on the anisotropy parameter σ [32,60]. Increasing σ

can lower the magnetic response at larger fields (at ξ0 > 2),
but it will not affect the magnetization curve qualitatively [38].
Taking all this into consideration, we decided to investigate
here only the limiting case σ � 1; that is, in zero field all
internal orientations of magnetic moments are equiprobable.
This approach allows us to considerably simplify both the
theoretical treatment and the simulation protocol. We believe
that all the results obtained here for magnetically isotropic
systems can be extrapolated to liquids and nontextured solids
with finite σ .

APPENDIX B: SIMULATION DETAILS

In a numerical realization of our mixture model, we con-
sider a cubic simulation box with length l = V 1/3

tot . The cluster
is placed in the center of this box. Its position does not change
during the simulation. Three-dimensional periodic boundary
conditions are imposed on a box. The field is directed along
the Z axis. All the results reported are obtained using the
ESPRESSO 4.1.4 simulation package [61].

Rotational motion of the ith particle is governed by the
Langevin equation

J∗ d �ω∗
i

dt∗ = �τ ∗
i − γ ∗R �ω∗

i + �η∗R
i ,

d �mi

dt∗ = �ω∗
i × �mi. (B1)

For the LCM, translational motion of the ith particle in a
viscous carrier is additionally described by an analogous
equation:

d�v∗
i

dt∗ = �f ∗
i − γ ∗T �v∗

i + �η∗T
i . (B2)

All simulations are performed using reduced quantities,
denoted here by an asterisk. They are formally introduced
through the usage of three parameters: the thermal energy
kBT , the diameter of a single particle d , and the mass of a
single particle M. Specifically, �v∗

i = �vi
√
M/kBT and �ω∗

i =
�ωi

√
Md2/kBT are the reduced linear and angular velocities,

respectively. J∗ = J/Md2 is the reduced moment of inertia,
and γ ∗T = γ T

√
d2/MkBT and γ ∗R = γ R

√
1/d2MkBT are

the reduced translational and rotational friction coefficients.
�η∗R

i and �η∗T
i are the random force and torque, which have zero

mean values and satisfy the standard fluctuation-dissipation
relationship [62]〈

η
∗T (R)
iα (t∗

1 )η∗T (R)
jβ (t∗

2 )
〉 = 2γ ∗T (R)δαβδi jδ

∗(t∗
1 − t∗

2 ), (B3)

where α and β denote Cartesian vector components, δ∗(t∗)
is the Dirac delta function, δi j is the Kronecker delta, and
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the reduced time is t∗ = t
√

kBT/Md2. �τ ∗
i = μ0[ �mi × ( �H0 +

�Hdd (i))]/kBT is the reduced magnetic torque acting on a
given particle, and �Hdd (i) = −(1/μ0)

∑
j �=i ∂Udd (i, j)/∂ �mi is

the sum of all dipolar fields in the particle center. �f ∗
i =

−(d/kBT )
∑

j �=i ∂[Udd (i, j) + UWCA(i, j)]/∂�ri is the total re-
duced force on the particle, where UWCA(i, j) is the Weeks-
Chandler-Andersen (WCA) pair potential that models the
steric repulsion between particles [63]:

UWCA(i, j) =
{

ULJ (ri j ) − ULJ (rcut ), ri j < rcut,

0, ri j � rcut,
(B4)

ULJ (r) = 4ε

[(
d

r

)12

−
(

d

r

)6
]
, (B5)

where ULJ is the Lennard-Jones potential and rcut = 21/6d .
The forces and torques due to long-range dipole-dipole

interactions are computed using the dipolar P3M algorithm
with “metallic” boundary conditions [64]. All the results are
reported for J∗ = γ ∗

R = γ ∗
T = ε∗ = 1, and the simulation time

step is �t∗ = 0.01. Typically, the first 2 × 105 time steps are
used for system equilibration, and the subsequent production
run lasts for at least another 8 × 105 time steps.
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