
PHYSICAL REVIEW E 108, 064601 (2023)

Kinetic temperature and pressure of an active Tonks gas
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Using computer simulation and analytical theory, we study an active analog of the well-known Tonks gas,
where active Brownian particles are confined to a periodic one-dimensional (1D) channel. By introducing the
notion of a kinetic temperature, we derive an accurate analytical expression for the pressure and clarify the
paradoxical behavior where active Brownian particles confined to 1D exhibit anomalous clustering but no
motility-induced phase transition. More generally, this work provides a deeper understanding of pressure in
active systems as we uncover a unique link between the kinetic temperature and swim pressure valid for active
Brownian particles in higher dimensions.

DOI: 10.1103/PhysRevE.108.064601

I. INTRODUCTION

A fundamental model for understanding the behavior of
liquids is the one-dimensional (1D) hard rod fluid or Tonks
gas [1], where purely repulsive particles are confined to move
in a 1D channel. The statistical mechanics of this system can
be solved exactly, and many of its equilibrium properties are
derivable in a closed analytical form [1–8]. There is a rich
history in statistical physics of studying the Tonks gas and
its variations to validate theories and approximation [9–16].
More recently, 1D models have achieved elevated importance
as meaningful representations of physical systems, including
the single-file diffusion of colloids in microfluidic channels,
ion transport across cellular membranes, and the clustering of
red blood cells in microcapillary flows [17–25].

Here, we focus on an active variant of the Tonks gas
where active Brownian particles are restricted to move in
a narrow channel. Active Brownian particles (ABPs) are a
popular minimal model for self-propelled particles as their
collective behavior captures many of the features exhibited by
active suspensions [26–33]. Understanding the active Tonks
gas is paramount, as many of the proposed applications of
microscopic active matter will operate in highly confined
environments. Examples include targeted drug delivery to spe-
cific cellular targets [34–36] and the autonomous exploration
of porous media [37,38]. Also, active particles tend to accu-
mulate on surfaces, leading to the formation of 1D boundary
layers [39–48].

Surprisingly, there is little work exploring the role of pres-
sure in 1D active systems. Nevertheless, pressure is critical
in characterizing the behavior of active systems [49–61], and
has aided in explaining a variety of phenomena, including
motility-induced phase separation [62–72], active particle mo-
tion within vesicles and droplets [73–80] and the dynamics
of passive colloidal structures in an active bath [81–99]. In
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this work, we introduce the concept of a kinetic temperature
to aid in deriving an accurate analytical expression for the
pressure of an active Tonks gas. Inspiration is taken from the
study of granular matter, where a granular temperature can be
defined to account for the inelastic nature of collisions [16].
We find excellent agreement between our analytical result
and numerical simulation. In addition, we derive an exact
relation between the kinetic temperature and the so-called
swim pressure [52,65] valid for ABPs in any dimension. To
conclude, we explain the unusual clustering observed in 1D
active systems and the absence of a motility-induced phase
transition.

II. MODEL

To model the active Tonks gas or 1D-ABP system, we
consider N purely-repulsive active Brownian disks confined
to a periodic 1D channel of length L as shown in Fig. 1. An
active force Fa = γUa cos θ is applied to each particle where
θ is the angle between the positive x axis and the particle’s
orientation vector, γ the translation drag coefficient, and Ua

the constant self-propelling speed. All particles undergo ro-
tational Brownian motion with a characteristic reorientation
time τR, where the particle’s orientation vector is restricted to
the 2D plane parallel to the channel. Thus, the motion of each
particle is governed by the overdamped set of equations

v = ẋ = γ −1(Fa + Fc) = Ua cos(θ ) + γ −1Fc, (1a)

θ̇ = ξ (t ), (1b)

where Fc is the interparticle force and ξ (t ) is Gaus-
sian white noise characterized by 〈ξ (t )〉 = 0 and
〈ξ (t )ξ (t ′)〉 = (2/τR)δ(t − t ′). We consider the limit where
the effects of translational Brownian motion are nominal. The
interparticle force Fc arises from a Weeks-Chandler-Anderson
potential characterized by a potential depth ε and
Lennard-Jones diameter σ [100]. As our active force is
bounded, a sufficiently steep potential mimics a hard-particle
interaction. A choice of ε/(Faσ ) = 100 results in hard
particle statistics with a particle length of σp = 21/6σ . Using
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FIG. 1. Schematic of 1D-ABP system. Each purely repulsive
particle moves at a speed Ua cos θ while undergoing rotational Brow-
nian motion with reorientation time τR.

the HOOMD-blue software package [101], all simulations
were conducted with 1000 particles and run for a minimum
duration of 5000 σ/U0.

III. RESULTS AND DISCUSSION

Two dimensionless parameters describe the state of the
purely-repulsive 1D-ABP system: the packing fraction φ =
ρσp where ρ = N/L is the particle line density and the di-
mensionless run-length �0 = (UaτR)/σ . In the limit of small
run-lengths, the behavior of the 1D-ABP system recovers
that of the equilibrium Tonks gas. The emergent behavior
that arises as run-length increases is the formation of large
dynamic clusters. Cluster formation appears to be a universal
feature of 1D active matter systems and has been previously
observed in several studies [102–111]. To quantify cluster
formation, we define an empirical measure of the degree of
clustering � = 1 − 1/〈Nc〉, where 〈Nc〉 is the average number
of particles in a cluster and 〈...〉 denotes a time average. Here,
particles are considered clustered when in contact (i.e., the
separation distance is less than σp). If there are predominately
unclustered particles in the system � ≈ 0, while if all parti-
cles belong to a single cluster � = 1 − 1/N ≈ 1.

In Fig. 2(a), we plot the degree of clustering � for the
1D-ABP system as a function of packing fraction φ for dif-
ferent values of �0. The degree of clustering increases with
the packing fraction and approaches � = 1 at close-packing
(i.e., φ = 1). In the opposite limit as φ → 0, there is little
clustering and � → 0. Yet, it is notable that � can increase
dramatically even at low packing fractions when �0 becomes
large. In the Supplemental Material [112], we include movies
from simulations illustrating the cluster dynamics at different
run-lengths.

A notable observation for the 1D-ABP system is that par-
ticles’ velocities are significantly reduced when clustered. To

FIG. 2. (a) Degree of clustering � and (b) reduced kinetic
temperature Tk as a function of packing fraction φ for different
run-lengths �0.

quantify this reduction in particle speed, we define a reduced
average translational kinetic energy: K = K/K0 = 2〈v2〉/U 2

a ,
where K and K0 are the kinetic energies of the interacting
and ideal 1D-ABP system, respectively. It is worth noting the
reduced average translation kinetic energy K is closely related
to the dissipation or irreversible energy loss typically defined
in stochastic thermodynamics [113,114]. Interestingly, recent
work has linked dissipation to the structure and transport
properties of active liquids [115–117].

For the 1D-ABP system, it is easy to show from Eq. (1)
that K = 1 − 2〈F 2

c 〉/(γUa)2. The second term represents the
reduction in kinetic energy due to interparticle collisions. In
deriving K, we use a unique property of ABPs, which we
prove in the Supplemental Material [112], where 〈vFc〉 = 0.
A consequence of this property is 〈FaFc〉 = −〈F 2

c 〉 for all
packing fractions, run-lengths, and system sizes. Remarkably,
this property is not a result of 1D confinement, but the analog
〈v · Fc〉 = 0 is also true for ABPs in higher dimensions.

For a 1D system in thermal equilibrium, the temperature
T can be obtained by application of the equipartition theorem
to give the well-known result kBT = 2K/N , where kB is the
Boltzmann constant. In a similar spirit, we define a kinetic
temperature for ABPs as Tk = 2K/N , resulting in a reduced
kinetic temperature:

Tk = Tk

T0
= 1 − 2

〈
F 2

c

〉
(γUa)2

, (2)

where T0 is the kinetic temperature of the ideal active system,
and the second term is the relative reduction of the kinetic
temperature due to collisions.

In Fig. 2(b), we plot Tk for the 1D-ABP system. The
reduced kinetic temperature decreases monotonically as the
packing fraction increases and, in agreement with our previ-
ous observation, scales inversely with the degree of clustering
shown in Fig. 2(a). At low packing fraction, Tk approaches
the ideal result, and at close-packing, Tk tends to zero for
all run-lengths. This temperature reduction or kinetic energy
loss is a peculiarity of active Brownian systems. The inelastic
nature of collisions reduces a particle’s velocity during a colli-
sion and, in turn, temporarily removes kinetic energy from the
system.

The utility of Tk is that it can be related directly to the
mechanical pressure. The total pressure for the 1D-ABP sys-
tem is computed via the virial theorem as P = ρ〈xFnet〉 where
Fnet = Fa + Fc is the net force acting on a particle. Here, P
is the average force the ABPs exert on the boundary. The
two contributions to the total pressure P are the collisional
pressure Pc = ρ〈xFc〉 and the swim pressure Ps = ρ〈xFa〉. For
convenience, we use an alternative yet equivalent expression
for the swim pressure valid for ABPs known as the “active
impulse” form given by Ps = ρ〈vFa〉τR [118–120]. The pres-
sure of the ideal 1D-ABP system is P0 = ργU 2

a τR/2, and the
reduced swim pressure of the interacting system is

Ps = Ps

P0
= 1 − 2

〈
F 2

c

〉
(γUa)2

, (3)

where we again use the relation 〈FaFc〉 = −〈F 2
c 〉. Upon com-

parison of Eqs. (2) and (3), we find the two expressions are
identical and arrive at one of the central results of this work,
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FIG. 3. Brownian dynamics simulation results for the reduced (a) swim pressure, (b) collisional pressure, and (c) total pressure as a function
of packing fraction for different run-lengths. The dotted lines correspond to the analytical expressions for the Tonks gas. The dashed curves
are the analytical expression derived based on the scaling argument for the kinetic temperature.

which is the equivalence of the reduced swim pressure and
reduced kinetic temperature: Ps = Tk . This equivalence can
be easily extended to ABPs in higher dimensions, as shown
in the Supplemental Material [112]. In Fig. 3(a), we plot Ps

computed from simulation and validate Ps = Tk by compari-
son with Fig. 2(b). A practical outcome of Ps = Tk is that the
kinetic temperature offers a convenient method of computing
the swim pressure of ABPs as particle velocities are readily
available from simulation.

We derive an analytical expression for the reduced kinetic
temperature using a simple scaling argument predicated on
the dynamics of an individual particle. There are two rele-
vant time scales for a given particle: the average duration of
a collision τC and the average time between collisions τF .
The reduced kinetic temperature can be estimated as Tk =
[(1)τF + (0)τC]/(τF + τC ) = 1/(1 + τC/τF ), where between
collisions Tk = 1 as particle motion is unimpeded and during
a collision Tk = 0. We approximate the duration of a collision
as being comparable to the reorientation time of a particle:
τC ∼ τR. While the time between collision scales as τF ∼
λ/Ua, where λ is the mean free path and Ua is the intrinsic
speed of a particle. The mean free path in the limit of small
run-length is λ = (1 − φ)/ρ as particles are nearly uniformly
distributed. For the more general case, λ ∼ (1 − φ)/(ρ

√
Tk )

as clustering increases the distance a particle must travel be-
tween collisions (see Supplemental Material [112]). A full
discussion of the dependence of τC and τF will be published
separately.

This expression captures the asymptotic behavior of the
reduced kinetic temperature in Fig. 2(b) (i.e., Tk → 1 as
τC/τF → 0 and Tk → 0 as τC/τF → ∞). We expect the ex-
act value of the kinetic temperature will be sensitive to the
assumption that particle velocities are exactly zero when clus-
tered. We recognize this is not strictly true as we observe
that clusters retain a small drift velocity. To account for
this drift behavior and the approximation of τC and τF , we
introduce a correction factor α, to be determined a posteri-
ori, and obtain an algebraic equation for the reduced kinetic
temperature:

Tk =
(

1 + α
τC

τF

)−1

=
(

1 + α�0
φ

1 − φ

√
Tk

)−1

. (4)

By solving Eq. (4) (see Supplemental Material [112]), we
obtain the following analytical expression for Tk:

Tk = 1

9b2

[
2 cos

(
1

3
arccos

(
27

2
b2 − 1

))
− 1

]2

, (5)

where b = α�0φ/(1 − φ). In Fig. 3(a), we find excellent
agreement between simulation results and our analytical so-
lution for Tk or equivalently Ps. As expected, α exhibits a
weak dependence on �0 and can be approximated by α =
c/(1 + �0)d where c = 1.1 and d = 0.05.

We now derive an analytical expression for the collisional
pressure of the 1D-ABP system. As the run-length decreases,
the collisional pressure [Fig. 3(b)] approaches the known
analytical result for the equilibrium system: Pc = Pc/P0 =
φ/(1 − φ). For particles interacting through an additive pair-
wise potential, the collisional pressure can be expressed as
Pc = ρ〈xi jFi j〉/2 where xi j = x j − xi is the distance between
the ith and jth particles and Fi j is the resulting force between
the pair. As we consider nearly hard particle interactions,
a suggestive scaling for the collisional pressure is Pc =
ρ〈xi jFi j〉/2 ∼ ρ(σpF i j )/2, where F i j is the average magni-
tude of the force experienced between a pair of particles.
To recover the equilibrium result in the limit of small run-
lengths, it is required F i j = γU 2

a τR[ρ/(1 − φ)] = FaτC/τF ,
where Fa = γUa. This expression for F i j can be generalized
to large run-lengths by replacing the force scale Fa by a
more appropriate force scale Fa = γUa

√
Tk , which captures

the observed reduction in Pc as �0 is increased [see trend in
Fig. 3(b)]. Thus, an expression for Pc valid for all run-lengths
is

Pc = ρ

2

(
σpγUa

√
Tk

τC

τF

)
= Ps

[
φ

1 − φ

]
. (6)

In Fig. 3(b), we see excellent agreement between simula-
tion results and the analytical expression Pc =Tk[φ/(1 − φ)].
Remarkably, the reduced collisional pressure is simply the
product of Tk and the equilibrium collisional pressure of the
Tonks gas. A unique feature of the 1D-ABP system, high-
lighted in Fig. 4(a), is the ratio of the collisional and swim
pressure collapses onto a universal curve given by Pc/Ps =
φ/(1 − φ). This behavior is a direct result of the single-file
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FIG. 4. The ratio of the collisional pressure Pc to the swim
pressure Ps for the 1D-ABP system collapse onto a universal curve
Pc/Ps = φ/(1 − φ). (b) The compressibility as a function of packing
fraction for various run-lengths. The dotted line corresponds to the
reduced compressibility of the equilibrium Tonks gas X = (1 − φ)2.
The dashed line traces out the location of the maximum of the
reduced compressibility Xm.

confinement and not observed for ABPs in higher dimensions
[121–125].

By combining our results for the swim and collisional pres-
sure, we achieve our primary aim of an analytical expression
for the total pressure of the 1D-ABP system:

P = Ps + Pc = Tk

[
1 + φ

1 − φ

]
= Tk

[
1

1 − φ

]
. (7)

In Fig. 3(c), we find excellent agreement between our analyt-
ical expression for P and simulation results. In the limit of
small run-lengths, Eq. (7) reproduces the analytical result for
the equilibrium Tonks gas: P = 1/(1 − φ). We also identify
an analog to the Boyle temperature of an equilibrium system,
which we call the Boyle run-length, where the second virial
coefficient is zero and P ≈ 1. The Boyle run-length occurs at
�0 ≈ 1 and indicates a crossover from a regime where the in-
teraction between particles are predominantly repulsive to one
where there is an effective attraction between particles. This
crossover is consistent with the activity-induced clustering
shown in Fig. 2(a). It is straightforward to show from Eq. (7)
that the single homogeneous phase for the 1D-ABP system
is always mechanically stable (i.e., (∂P/∂ρ)�0 > 0). These
findings provide a mechanical interpretation to prior studies
on 1D active systems where there was found to be clustering
but no motility-induced phase separation [102–111].

We can further quantify the clustering behavior by
investigating the constant run-length compressibility – a ther-
modynamiclike response function that provides a measure
of clustering and local density fluctuations [126,127]. In

Fig. 4(b), the reduced constant run-length compressibility was
calculated from Eq. (7) as

X = χa

χ0
=

[ Tk

(1 − φ)2
+ φ

1 − φ

(
∂Tk

∂φ

)]−1

, (8)

where χa = (∂ ln ρ/∂P)�0 and χ0 = 1/P0 are the compress-
ibility for the interacting and ideal system, respectively. In the
limit of small run-lengths, the 1D-ABP system approaches
the result of the equilibrium Tonks gas X = (1 − φ)2 and
in the ideal limit where φ → 0, X → 1. Above the Boyle
run-length, X is no longer monotonic but exhibits a maximum
Xm. The existence of this maximum suggests a structural
transition or weak thermodynamic singularity similar to the
Frenkel or Widom line of supercritical fluids [128–131] and
will be characterized in future work.

In the limit of large run-length, the location of Xm be-
comes independent of �0 and analytically can be shown to
asymptotically approach a packing fraction φ = 1/3 as shown
by the dashed line in Fig. 4(b). For these large values of
the run-length, Xm exhibits a power law dependence given
by Xm ≈ 0.9(�0)19/30. If we consider X /Xm for these large
run-lengths (See Supplemental Material [112]), we observe
a collapse onto a universal curve similar in shape to that of
�0 = 50 in Fig. 4(b). The 1D-ABP system has the interesting
property that the compressibility can be made arbitrarily large
by increasing the run-length, but there is no emergent singu-
larity consistent with a critical point as the shape of X stops
evolving in the limit of large run-lengths. A physical interpre-
tation of this behavior is that density fluctuations and clusters
can become arbitrarily large, but it is impossible to form a
large stable cluster that would give rise to a new dense phase.

IV. CONCLUSIONS

This work derives an accurate analytical expression for the
mechanical pressure of a purely-repulsive 1D-ABP system
using the concept of kinetic temperature. By analyzing trends
in the pressure, we obtain a mechanical interpretation for
the phase behavior of the 1D-ABP system and the lack of
a motility-induced phase transition. Further investigation is
warranted to establish when the concept of a kinetic tempera-
ture can be extended to other active particle models, including
those with hydrodynamic or electrostatic interactions.
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