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Mean-field theory approach to three-dimensional nematic phase transitions in microtubules
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Microtubules are dynamic intracellular fibers that have been observed experimentally to undergo spontaneous
self-alignment. We formulate a three-dimensional (3D) mean-field theory model to analyze the nematic phase
transition of microtubules growing and interacting within a 3D space, then make a comparison with computa-
tional simulations. We identify a control parameter Geff and predict a unique critical value Geff = 1.56 for which
a phase transition can occur. Furthermore, we show both analytically and using simulations that this predicted
critical value does not depend on the presence of zippering. The mean-field theory developed here provides an
analytical estimate of microtubule patterning characteristics without running time-consuming simulations and is
a step towards bridging scales from microtubule behavior to multicellular simulations.
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I. INTRODUCTION

Microtubules are long filamentous fibers found in almost
all eukaryotic cells [1] and are vital for many processes at the
cell level that are in turn essential for the survival and devel-
opment of cells and the larger organism [2]. These processes
include cell expansion and division [3–5], internal transporta-
tion such as nucleus repositioning before cell division or
cellulose deposition to grow cells [6–8], fertilization [9], and
providing mechanical structure in animal cells [2].

Microtubules form one part of the cytoskeleton (the in-
tracellular dynamic fiber network) that also consists of actin
fibers and, in animal cells, intermediate filaments [10,11].
Microtubules continuously grow and shrink via the assembly
and disassembly of the protein tubulin [12]. They undergo
local stochastic behaviors such as spontaneous catastrophe,
rescue, and nucleation. Microtubules interact with each other,
displaying behaviors via zippering predominantly at small
angle interactions, induced catastrophe predominantly at large
angle interactions [13,14], and crossover severing [15]. These
complex behaviors make them very interesting systems to
study from both a physical and mathematical perspective.

Microtubules typically nucleate from γ -tubulin complexes
found on centrosomes in animal systems [16] or from the
cortex in plant cells [17]. However, microtubules have also
been observed nucleating in the cytoplasm of neurons [18] and
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the moss Physcomitrella patens [19], as well as nucleating by
branching off existing microtubules [20], demonstrating the
need for a microtubule model incorporating three-dimensional
(3D) microtubule nucleation and orientation.

Microtubule networks can be viewed as analogous to the
condensed matter system of nematic liquid crystals [21,22], as
they can both be described as systems of many hard interact-
ing rods. Furthermore, high levels of spontaneous alignment
have been observed experimentally in microtubule systems,
which are qualitatively similar to phase transitions in nematic
liquid crystals [23]. A primary use of this comparison has been
the standard use of the nematic order parameter as a measure
of the orientational alignment of microtubules, which will be
used in this paper.

Many different computational models have been used
to simulate microtubule dynamics [24–26]. CORTICALSIM

[27,28] is an example of an efficient event-driven model for
modeling microtubules restricted to a plane. It has been used
to show, for example, that the co-alignment of microtubules
nucleating from parent microtubules supports whole network
alignment [29]. A different model CYTOSIM [30] is a 3D
force-based microtubule model used, for example, to consider
how molecular motor patterns can direct filament directions
[31]. A third example is TUBULATON [32,33], a 3D rule-based
model used, for example, to study the importance of the
crossover-severing protein katanin to microtubule ordering in
plant protoplasts, as observed in experiments [34].

Similarly, several mathematical models have been pro-
posed to analyze cytoskeletal dynamics [35–38]. One useful
continuum theory approach is mean-field theory, which is
used extensively to model condensed matter systems [39].
Mean-field theory in the context of cytoskeletal dynamics
was, to our knowledge, introduced by Dogterom and Leibler
[40]. They derived governing differential equations which
incorporated the fundamental microtubule properties of
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growing, shrinking, catastrophe, and rescue. This model
was later expanded to include more complex microtubule
behaviors [26,40–44]. This was extended to the first two-
dimensional (2D) mean-field theory model [26], with sub-
sequent models introducing more complex microtubule be-
haviors, such as induced catastrophes in Hawkins et al. [44],
where they showed the existence of a phase transition under
certain assumptions.

There is only one extension of mean field to 3D of which
the authors are aware [45]. That model is restricted to the
specific case of microtubules only nucleating radially from a
prescribed central centrosome within a bounded domain, with
the model including interaction dynamics between micro-
tubules and the cell boundary, but not between microtubules
themselves. In this paper, the 2D mean-field model of [44]
is extended to 3D by incorporating microtubule interaction
dynamics in the different setup of microtubules nucleating
randomly within a 3D domain. The differences and simi-
larities between 2D and 3D are then highlighted and the
theoretical predictions of the 3D model are compared to re-
sults obtained from 3D simulations from TUBULATON [32].
This paper is organized as follows. The models are outlined
in Sec. II. Specifically, in Sec. II A, the 3D mean-field the-
ory model is derived, and in Sec. II B, the computational
model TUBULATON used to validate the mean-field model is
described. The results are presented in Sec. III. In Sec. III A,
the constraints on the system that allow for a phase transi-
tion in 3D are determined. In Sec. III B, we compare our
3D mean-field model with the previous 2D mean-field theory
model from Hawkins et al. [44]. Finally, the predictions of
the mean-field theory model are compared to the results of
the computational simulations in Sec. III C, with the effects of
severing considered in Sec. III D, and to experimental values
from the literature in Sec. III E before concluding in Sec. IV.

II. MODELS

Here, the 3D mean-field mathematical model is formulated
and the computational model is briefly outlined. Throughout
this paper, spherical polar coordinates are used to describe
directions in 3D space, with (θ, φ) representing polar and
azimuthal angles, respectively.

A. Mean-field theory

Each microtubule is modeled as a series of straight seg-
ments, with a new segment created each time the microtubule
changes direction. It is assumed that unhindered microtubules
grow in a straight line, but when a microtubule collides with
another microtubule, it can change direction to align with
the collided microtubule with a prescribed angle-dependent
probability in a process called zippering [Fig. 1(b)(iii)]. When
the microtubule changes direction, the old segment becomes
static (neither growing nor shrinking) and a new segment
starts growing in the new direction, anchored to the previous
segment. The microtubules grow (and shrink) in segments,
with joints allowing each segment to be oriented in a different
direction.

It is assumed that that microtubules isotropically nucleate
everywhere in 3D space at a constant rate rn, initiating in a
growing state with static minus end and growing plus end.

(a)

(b) (ii) (b) (iii)

(b) (i)

FIG. 1. Illustration of different microtubule interactions. These
behaviors are included in both the mean-field model and the simu-
lations. (a) Initial collision where the growing microtubule segment
collides with another microtubule at angle σ . (b) Different responses
to the collision: (i) Crossover: the growing segment continues to
grow unhindered. (ii) Induced catastrophe: the segment switches
from growing to shrinking. (iii) Zippering: the segment starts to grow
parallel to the segment with which it collides.

Microtubules are always static at the minus end and are either
growing or shrinking at the plus end with speed v+ or v−,
respectively. The plus end changes from shrinking to growing
via spontaneous rescue with rate rr and changes from growing
to shrinking via spontaneous catastrophe with rate rc.

When a growing segment collides with another micro-
tubule, either there is an induced catastrophe (it starts
shrinking), crossover (it keeps growing unhindered), or zip-
pering (it starts growing parallel to the second segment) with
respective probabilities Pc(σ ), Px(σ ), and Pz(σ ) all written as
functions of the collision angle σ (Fig. 1).

1. Master equations

In this section, the governing 3D mean-field differential
equations are derived, following a similar argument to that
outlined in detail for a 2D framework [44].

The domain within which the microtubules exist is
taken as 3D and unbounded, which is consistent with
assuming spatial homogeneity. Additionally, the density
of microtubules is assumed to be large enough for this
discrete system to be accurately approximated by contin-
uous variables in a coarse-grained description. Therefore,
m{+,−,0}

i (l, θ, φ, t ) for j = {+,−, 0} is defined as the den-
sity of microtubule segments in direction (θ, φ) of length
l at time t , with +, −, and 0 indicating a growing,
shrinking, and inactive segment, respectively, and “i” index-
ing the segments (letting i=1 index the segment that has
nucleated).

Then, the master equations governing the evolution of the
system can be expressed in terms of flux terms denoted �event

as
∂t m

+
i (l, θ, φ, t ) = �growth + �rescue − �spontcat

− �inducedcat − �zipper,

∂t m
−
i (l, θ, φ, t ) = �shrinkage − �rescue + �spontcat

+ �inducedcat + �reactivation,
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∂t m
0
i (l, θ, φ, t ) = �zipper − �reactivation, (1)

where ∂x denotes partial differentiation with respect to x.
Explicit expressions for the fluxes corresponding to behaviors
independent of microtubule interactions follow from the
physical definitions as

�growth ≡ (∂t l )[∂lm
+
i (l, θ, φ, t )] = −v+∂lm

+
i (l, θ, φ, t ),

�shrinkage ≡ (∂t l )[∂lm
−
i (l, θ, φ, t )] = v−∂lm

−
i (l, θ, φ, t ),

�rescue ≡ rrm
−
i (l, θ, φ, t ),

�spontcat ≡ rcm+
i (l, θ, φ, t ). (2)

Flux terms associated with microtubule interactions
have more complex formulations. The length density of
microtubules pointing in direction (θ, φ) is

k(θ, φ, t ) ≡
∞∑

i=1

∫
dl

[
m+

i (l, θ, φ, t ) + m−
i (l, θ, φ, t )

+ m0
i (l, θ, φ, t )

]
l. (3)

The diameter of the microtubules is defined as dm. The
induced catastrophe flux term is given by

�inducedcat ≡ dmv+m+
i (l, θ, φ, t )

∫
dθ ′

∫
dφ′ sin(θ ′)

× c(θ, θ ′, φ − φ′)k(θ ′, φ′, t ), (4)

where it is defined that

c(θ, θ ′, φ − φ′) ≡ | sin(σ )|Pc[σ (θ, θ ′, φ − φ′)], (5)

where the angle between the two directions (θ, φ) and (θ ′, φ′)
has been denoted as

σ ≡ arccos[sin(θ ) sin(θ ′) cos(φ − φ′) + cos(θ ) cos(θ ′)].
(6)

This flux term represents the rate at which a microtubule
of length l growing in direction (θ, φ) collides with an ob-
structing microtubule oriented in any direction. A significant
difference from the 2D case is the factor of dm in Eq. (4).
In 2D, two thin infinite lines will always collide if they are
not parallel. However, in 3D, two thin nonparallel rods can
pass over each other without colliding. This difference in the
3D case can be addressed by considering two microtubules
to collide when they are within a distance of the microtubule
diameter dm of each other in the direction orthogonal to both
microtubules (Fig. 2). The | sin(σ )| factor in Eq. (5) projects
the length density k(θ ′, φ′) to a plane perpendicular to the
direction (θ, φ) of an incoming microtubule. The microtubule
diameter dm is included as a distance in the direction perpen-
dicular to both microtubules below which two microtubules
interact. Note that the introduction of a factor of dm in the
flux term ensures that both sides of Eq. (4) have the same
dimensionality (Length−4 × Time−1).

The flux term for zippering, �zipper, is defined similarly
to �inducedcat in Eq. (4), but with c replaced by z (each of
which contains a factor of Pc and Pz, respectively). A de-
tailed discussion of the segment reactivation flux, �reactivation,
is given in Appendix A, where it is shown that in the steady

FIG. 2. A graphical representation of Eq. (4). A second micro-
tubule obstructs an incoming microtubule at an angle of σ . When
the obstructing microtubule is projected onto the plane orthogonal to
the incoming microtubule, we consider collisions as occurring in a
length of the microtubule diameter dm in the direction orthogonal to
both microtubules

state,

�reactivation ≡ �zipper. (7)

2. Control parameter

An important parameter of the system [26,44] is

g = rr/v
− − rc/v

+. (8)

Physically, g corresponds to the noninteracting behavior of the
microtubules. The limit g → −∞ corresponds to the average
length of the microtubules tending to zero, resulting in a
completely isotropic system, while g → ∞ corresponds to the
average length of the microtubules tending to infinity, result-
ing in a completely ordered (anisotropic) system. Following
the earlier analogy to a phase transition in a liquid crystal
system, this control parameter g is analogous to temperature
in liquid crystals [21,22]. In 2D, the existence of an orienta-
tional phase transition as g increases from negative infinity has
been shown [44]. Importantly, both here and in 2D, the only
physically realizable values of g are negative since positive g
corresponds to unbounded growth.

3. Steady-state system

Here, the previously derived master equations [Eq. (1)] are
reduced to the steady-state case. The arguments are similar to
the 2D derivation [44].

First, for simplification, it is noted that expressions such
as Eq. (4) can be summarized by defining the dimensionless
linear operator,

F [h](θ, φ)

≡ dm

l0

∫ π

0
dθ ′

∫ 2π

0
dφ′ sin(θ ′) f [σ (θ, θ ′, φ − φ′)]h(θ ′, φ′),

(9)

for f ∈ [c, z] (defined in Eq. (5)) corresponding to F ∈ [C, Z],
respectively, and for h any function of (θ, φ). The parameter
σ was defined in Eq. (6), and l0 is a length scale used for
nondimensionalization.

In the steady state, Eqs. (1) all equal zero. Summing the
three equations gives �growth + �shrink = 0, leading to

v−∂lm
−
i (l, θ, φ, t ) = v+∂lm

+
i (l, θ, φ, t ). (10)
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This leads to the solution

v−m−
i (l, θ, φ, t ) = v+m+

i (l, θ, φ, t ), (11)

where the constant of integration is constrained to be zero by
requiring zero densities for l → ∞. Setting the first of Eqs. (1)
to zero in the steady state, then rewriting m−

i in terms of m+
i

using Eq. (11), gives

∂lm
+
i (l, θ, φ)

= m+
i (l, θ, φ){g − l0Z[k](θ, φ) − l0C[k](θ, φ)}. (12)

By integrating, m+
i can be written as

m+
i (l, θ, φ) ≡ m̃+

i (θ, φ)exp(−l/l̄ ), (13)

where the tilde indicates the length-independent density com-
ponent, and the average segment length l̄ (θ, φ) in the direction
(θ, φ) is defined by

1

l̄ (θ, φ)
≡ − g + l0Z[k](θ, φ) + l0C[k](θ, φ). (14)

Using Eq. (9), an equation can be written to reflect static
segments arising as growing segments zipper, weighted by the
average length they survive,

m0
i (l, θ, φ) = v+l0Z[kτ ]m+

i (l, θ, φ), (15)

where τ (θ, φ) is the average segment lifetime, i.e., the average
time a segment takes to shrink back to zero length, which
will not depend on the segment number. Therefore, since
length dependence within the right-hand side of Eq. (15) is
completely contained within m+

i (l, θ, φ), Eq. (13) leads to

m0
i (l, θ, φ) = m̃0

i (θ, φ)exp(−l/l̄ ). (16)

In the steady-state system with bounded growth, the density
of active segments r(θ, φ) in the direction (θ, φ) is

r(θ, φ) ≡
(

1 + v+

v−

)
l̄ (θ, φ)

∞∑
i=1

m̃+
i (θ, φ). (17)

The summation in Eq. (17) can be evaluated using the
equations describing how new segments are created. Initial
segments are created when new microtubules nucleate at a rate
rn per solid angle so

v+m̃+
1 (θ, φ) = rn

4π
. (18)

Note that rn is normalized by 4π (obtained by integrating the
differential solid angle sin(θ )dθdφ over all (θ, φ)) in 3D, in
contrast with normalizing by 2π in 2D. Later segments are
created via zippering so

m̃+
i�2(θ, φ) = k(θ, φ)l0Z[l̄ m̃+

i-1](θ, φ). (19)

Using Eqs. (18) and (19) to sum over i � 1 allows Eq. (17) to
be evaluated as

r(θ, φ) =
(

1 + v+

v−

)
l̄ m̃+

1 (θ, φ) + k(θ, φ)l̄ l0Z[r](θ, φ).

(20)

Segments indexed by (i + 1) are created by zippering seg-
ments indexed by (i), which can be written mathematically

as ∫
dl ′(m0

i+1(l ′, θ ′, φ′) + m+
i+1(l ′, θ ′, φ′) + m−

i+1(l ′, θ ′, φ′)
)

= l0v
+τ (θ ′, φ′)k(θ ′, φ′)

∫
dlZ[m+

i ](l, θ ′, φ′). (21)

The ratio of inactive (static at both ends) to active (both grow-
ing and shrinking) segments in the direction (θ, φ) is given
by

Qi(θ, φ) ≡ m̃0
i (θ, φ)

m̃+
i (θ, φ) + m̃−

i (θ, φ)
. (22)

Using Eq. (15), Qi(θ, φ) can be written as

Qi(θ, φ) = m̃0
i (θ, φ)(

1 + v+

v−
)
m̃+

i (θ, φ)
= v+l0Z[kτ ](θ, φ)(

1 + v+

v−
) . (23)

Then, substituting for τ using Eq. (21), integrating using
Eqs. (13) and (16), and simplifying with Eq. (19) results in

Qi(θ, φ) = l0Z[l̄k(1 + Qi+1)](θ, φ). (24)

Using the expressions Eqs. (13) and (16), the expression in
Eq. (3) can be integrated by parts to obtain

k(θ, φ) =
(

1 + v+

v−

)
l̄2(θ, φ)[1 + Q(θ, φ)]

∑
i

m̃+
i (θ, φ).

(25)

To formulate nondimensional steady-state equations, a
variable l0 is defined with dimensions of length

l0 = ±
[(

1

v+
+ 1

v−

)
rn

4π

]− 1
4

, (26)

which is used to nondimensionalize parameters and variables.
The dimensionless length ratio α, defined by

α ≡ dm/l0, (27)

will be an important quantity used to simplify the equations.
This is the multiplicative factor in Eq. (9). The dimensionless
quantities are then G ≡ gl0, L ≡ l̄ l−1

0 , K ≡ kl2
0 , and R ≡ rl3

0 .
The control parameter for this system is therefore the

nondimensional form of g, which is explicitly

G = ∓
[

4πv+v−

rn(v+ + v−)

] 1
4 ( rr

v− − rc

v+

)
. (28)

Using these simplifications and the nondimensional variables,
the steady-state equations (14), (25), (24), and (20) become,
respectively,

1

L(θ, φ)
= −G + C[K](θ, φ) + Z[K](θ, φ), (29a)

K (θ, φ) = L(θ, φ)[1 + Q(θ, φ)]R(θ, φ), (29b)

Q(θ, φ) = Z[LK (1 + Q)](θ, φ), (29c)

R(θ, φ) = L(θ, φ) + L(θ, φ)K (θ, φ)Z[R](θ, φ). (29d)

There is a symmetry in Eqs. (29) under l0 → −l0, under
which {Q, K, α} are even and {Z,C, G, L, R} are odd. This
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arises as Eq. (26) has a positive and negative root. Since l0
can be either positive or negative and g < 0 for a physically
realizable system, any nonzero real G ≡ gl0 describes a phys-
ically realizable system. Therefore, without loss of generality,
throughout this paper, we choose l0 < 0 so that g < 0 corre-
sponds to G > 0.

4. Isotropic solution

Next, the solution of the steady-state equations just derived
[Eqs. (29)] will be calculated in the isotropic case. This will
use the spherical harmonic functions Y m

� (θ, φ) that form the
complete set of orthogonal functions defined on the surface of
a sphere with two indices (� and m). The associated Legendre
polynomials Pm

� will also be utilized. Further details of these
functions are in Appendix B.

The spherical harmonics defined by Eq. (B1) provide an
orthonormal basis of eigenfunctions of the linear operator
defined in Eq. (9), with the eigenvalue equation

F
[
Y m

� (θ, φ)
] = 4παF�

(2� + 1)
Y m

� (θ, φ), (30)

where a functional redefinition of the form F[cos(σ )] ≡ f (σ )
has been introduced, where f ∈ [c, z] [defined in Eq. (5)]
corresponds to both F ∈ [C, Z] and F ∈ [C,Z], respectively,
and with σ defined in Eq. (6).

To prove Eq. (30), first note that the Legendre polynomials
P�(x) defined in Eq. (B3) form a complete set of orthogonal
functions P�(x) : R → R, and a (unique) Legendre expansion
is given by

F(cos(σ )) =
∞∑

�=0

F�P�(cos(σ )), (31)

where F� = 2� + 1

2

∫ 1

−1
F(x)P�(x)dx. (32)

Then, the spherical harmonic addition theorem [46,47],

P�(cos(σ )) = 4π

2� + 1

�∑
m=−�

Y m
� (θ, φ)Y †m

� (θ ′, φ′), (33)

where † denotes complex conjugation, can be used to rewrite
Eq. (31) as

f (σ ) =
∞∑

�=0

4π

2� + 1

�∑
m=−�

F�Y
m
� (θ, φ)Y †m

� (θ ′, φ′). (34)

Substituting this expression for f (σ ) into Eq. (9) with the
spherical harmonic Y m

� as the argument of F gives

F [Y m
� (θ, φ)] = α

∫ π

0
dθ ′

∫ 2π

0
dφ′sin(θ ′)

∞∑
n=0

n∑
p-=n

× 4πFn

2n + 1
Y p

n (θ, φ)Y †p
n(θ ′, φ′)Y m

� (θ ′, φ′).

(35)

Using the standard orthogonality relation of spherical har-
monics,∫ π

0
dθ ′

∫ 2π

0
dφ′ sin(θ ′)Y m

� (θ ′, φ′)Y m′
�′ (θ ′, φ′) = δll’δmm’,

(36)

where the Kronecker delta δab takes the value 1 iff a ≡ b and
0 otherwise, simplifies Eq. (35) to

F
[
Y m

� (θ, φ)
] =

∞∑
n=0

n∑
p=−n

4παFn

2n + 1
Y p

n (θ, φ)δnlδpm, (37)

which is equivalent to Eq. (30).
Using this, the isotropic solution can now be calculated. In

the isotropic (and stationary) state of the system, which will
be denoted by overbars, all angular dependence drops out and
Eqs. (29) become

1

L̄
= −G + 4πα(C0 + Z0)K̄, (38a)

K̄ = L̄(1 + Q̄)R̄, (38b)

Q̄ = 4παZ0L̄K̄ (1 + Q̄), (38c)

R̄ = L̄ + 4παZ0L̄K̄R̄, (38d)

where the identity F [1] = 4παF0 was used, which arises from
setting � = m = 0 in Eq. (30).

Substituting and rearranging Eqs. (38) reduces to the ex-
pression

K̄ (4παC0K̄ − G)2 = 1, (39)

with a full derivation given in Appendix C. The quantity K̄ is
always positive. C0 is also taken to be positive and it will be
shown in Sec. III B that this agrees well with the experimental
values. If α < 0 and G > 0, then Eq. (39) gives an expression
for G in terms of K̄ as

G = 4παC0K̄ + K̄− 1
2 . (40)

For given values of α < 0 and C0, there is clearly a uniquely
determined value of G for each value of K̄ . The converse
holds since the right-hand side of Eq. (40) is a strictly de-
creasing function of positive K̄ , which tends to ∞ for K̄ → 0
and tends to −∞ for K̄ → ∞. Furthermore, G > 0 gives us
the constraint K̄ < |4παC0|−2/3 (the value of K̄ for which
G = 0).

An identical argument for G < 0, α > 0 leads to the same
conclusions, giving the general constraint that holds for both
cases (α < 0, G > 0) and (α > 0, G < 0) as

0 < K̄ < |4παC0|− 2
3 . (41)

Therefore, there is a density limit to the system above which
it is not possible to have an isotropic system. This density
limit decreases with increasing dm (which is equivalent to
increasing |α|). This makes sense physically since increas-
ing dm increases the range of interaction between segments,
therefore preventing an isotropic solution at lower density
systems.
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Additionally, as it will be needed in Sec. III B, note that
Eqs. (38) also lead to the expression

G = 4πα(C0 + Z0)N̄ − 1

N̄
1
3 (4παZ0N̄ − 1)

2
3

, (42)

where N ≡ LK , with the detailed derivation provided in
Appendix C.

B. Simulation

The predictions from the 3D mean-field theory mathemat-
ical model just derived will later be validated against 3D
microtubule simulations using TUBULATON [32], which will be
briefly explained here. TUBULATON uses a discretized model
of microtubule dynamics modeling each microtubule individ-
ually as a line of end-to-end unit vectors, each corresponding
to 8 nm and representing a single ring of tubulin. Microtubules
grow and shrink via the addition or removal of unit vectors
at their ends. Microtubule interaction dynamics such as zip-
pering and induced catastrophe (Fig. 1) are incorporated, as
well as individual microtubule dynamic behaviors such as nu-
cleation and spontaneous catastrophe. An external membrane
is prescribed within which microtubules remain. Previous
papers have provided a detailed description of TUBULATON

[33,34], so here we focus on specific changes and additions
that have been made with the purpose of comparing to the
mean-field theory model.

To reflect mean-field theory defined within an infinite
volume without a boundary, we construct three spheres of
decreasing radii all centered on the same point. This setup
was chosen instead of periodic boundary conditions to avoid
complications arising from how microtubules would interact
with each other at the boundary. The largest sphere forms the
external boundary of the system, the middle sphere defines the
region where microtubules nucleate randomly (both spatially
and directionally), and the smallest sphere is the region within
which we calculate the level of anisotropy.

TUBULATON was extended to improve the originally en-
coded assumption that the probabilities of induced catastrophe
and zippering are fixed above and below a threshold angle
(normally prescribed as 40 degrees). For this work, they are
varied as a function of collision angle. This reflects experi-
mental observations [13] and the mean-field assumptions. For
our simulations including the effects of zippering, we match
experimental observations [13] (described later in detail and
illustrated by Fig. 4) or we set it equal to zero for all angles to
remove the effects of zippering.

The ability to vary rc and rn was already incorporated
into TUBULATON. Effects of spontaneous rescue are not in-
cluded, but these are unnecessary since the regime of interest
is negative g (noting that G can be either positive or nega-
tive) and varying rc, while rr = 0 in Eq. (8) gives the full
range of negative values of g, which is still the case when
we take v+ = v− for all our simulations. However, the region
of values (rc, rn) within which we performed simulations was
restricted by convergence and computational time. At low rc,
we observed slower convergence and very large fluctuations
in segment density for small changes in rn. On the other hand,
at large rc, we observed that the value of rn required for a

FIG. 3. Snapshot from two TUBULATON simulations showing the
microtubules and sphere boundaries. The three shaded spheres rep-
resent the external membrane (1000 unit radius), nucleation region
(700 unit radius), and anisotropy analysis region (400 unit radius).
Simulations are with zippering where (a) rc = 3.5 × 10−3, rn = 4 ×
10−10, and (b) rc = 10−3, rn = 6 × 10−11. Other important parameter
values can be found in Table II.

steady-state density grew sharply, leading to long computa-
tional times.

Details of the parameter values used in the simulations are
included in Appendix F and shown in Table II. Within the
limit of 10 000 time steps (15–30 minutes of simulated time),
the number of microtubule segments converged (Fig. 9) so
simulations are expected to have reached a steady state as was
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FIG. 4. Probability of induced catastrophe (Pc), induced zipper-
ing (Pz), and crossover (Px = 1 − Pc − Pz) as a function of collision
angle σ used in our analytical calculation and computational simu-
lations reflecting experimental observations. The point of maximum
Pc is at (π/2, π/4).

assumed in the mean-field theory analysis. Snapshots of two
different TUBULATON simulations are illustrated in Fig. 3.

C. Order parameter

Following earlier comparisons to nematic liquid crystals,
the standard nematic order parameter [21,22,48] is used to
quantify the alignment of the microtubules in the system.
In D dimensions, this is a unique tensor up to an overall
factor, which is normalized by setting it equal to unity in the
completely anisotropic state. It is defined as

Sab =
〈

D

D − 1
nanb − 1

D − 1
δab

〉
, (43)

where 〈·〉 denotes taking a weighted average over every mi-
crotubule segment, each of which is parameterized by the
D-dimensional unit vector n and weighted by the segment
length. Performing this averaging using an integral weighted
by the microtubule length density in each direction (with
D = 3) gives the 3 × 3 matrix with components (with i, j =
1, 2, 3),

Si j =
∫ π

0 dθ
∫ 2π

0 dφ sin(θ )K (θ, φ)
(

3
2 n ⊗ n − 1

2I
)

i j∫ π

0 dθ
∫ 2π

0 dφ sin(θ )K (θ, φ)
, (44)

where ⊗ is the outer product. For calculating the order pa-
rameter S in simulations, the discretized form of Eq. (44) is
used,

Si j =
∑

μ

(
3
2 nμ ⊗ nμ − 1

2I
)

i j∑
μ 1

, (45)

where μ labels each microtubule segment, each of which is
associated to a unit direction vector nμ.

This matrix with components Si j has three eigenvalues,
which are all zero if and only if the system is in its completely
isotropic state. We define S as the maximal absolute value of
the eigenvalue of this matrix. A larger value of S indicates a
higher level of anisotropy, so an increasing S indicates that a
system is changing from an isotropic state to an anisotropic
state [49].

III. RESULTS

A. Conditions for a phase transition

Here, we consider constraints on microtubule properties
which allow for a change from disorder to order as g is
increased in order to determine the conditions for a phase
transition to occur. Throughout this paper, an asterisk (∗)
denotes a quantity taken at the location of the phase transition.
It is assumed that the order parameter changes continuously
as a function of the control parameter. Thus, when the order
parameter transitions from zero to small and nonzero, the
steady-state solution will be a small perturbation from the
isotropic solution. Therefore, we will perturb the isotropic so-
lution from Sec. II A 4 and determine what conditions allow a
solution to exist with small order parameter. The perturbative
solution of Eqs. (29) is derived in Appendix D and results in
the eigenvalue equation

(1 − 4παZ0N̄ )κ (θ, φ) = −2N̄C[κ (θ, φ)], (46)

where N̄ = L̄K̄ and K = K̄ (1 + κ ) defines the first-order per-
turbation κ (θ, φ). This eigenvalue equation is a special case of
Eq. (30) so the spherical harmonics defined in Eq. (B1) form
an orthonormal basis of eigenfunctions. Since the eigenvalues
in Eq. (30) depend only on the lower index � of the spherical
harmonics, each � determines a different value of N̄ , each
denoted by N̄∗

� , given explicitly by

N̄∗
� =

(
4παZ0 − 8πα

2� + 1
C�

)−1

, (47)

for which there is a potential phase transition. Directly
substituting these values of N̄ into Eq. (42) gives us the corre-
sponding values of G as

G∗
� =

[
1 + (2l + 1)C0

2C�

][
−8παC�

2l + 1

] 1
3

, (48)

which, by extension, are also indexed by �.
The location of the possible phase transition is independent

of the zippering probability function since there is no depen-
dence on Z� in Eq. (48). This is similar to the 2D case [44].
The critical value G∗

� in Eq. (48) depends on the catastrophe
probability function through C�, which can be written as

C� = 2� + 1

2

∫ π

0
sin2(y)Pc(y) P�[cos(y)]dy, (49)

which is obtained from Eq. (32) through the change of vari-
ables, x ≡ cos(y). In order to explicitly evaluate Eq. (48),
we approximate experimental observations that the catastro-
phe probability increases approximately linearly as a function
of collision angle to around 0.7 at the π/2 collision angle
[13]. Pc(σ ) is therefore chosen to be two concatenated linear
functions through the three points (0,0), ( π

2 , π
4 ), and (π, 0)
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FIG. 5. Effect of varying the Legendre coefficient index � (for even values of � between 0 and 20) of the spherical harmonic perturbation
κ = Y m

� (normalized as in Eq. (B1)) on (a) Legendre coefficients C� as defined in Eq. (49) and (b) corresponding control parameter values G∗
� .

In (a), the red line shows the analytical upper and lower bounds of the Legendre coefficients, while the black horizontal lines are equal to the
size of these bounds at � = 20 and is included for comparison.

(Fig. 4). Zippering probability is similarly approximated,
with zippering occurring primarily at lower angles, by tak-
ing Pz(σ ) = 1 − Pc(σ ) ∀σ � 0.7, σ � π − 0.7, and Pz(σ ) =
0 otherwise (Fig. 4).

Quantities required to explicitly calculate the possible
phase transition location can now be numerically calculated.
In particular, for Eq. (49), splitting the integral’s domain in
half, making a change of variables in [0, π/2] by y → (π −
y), and using the identity P�(−x) = (−1)�P�(x) results in

C� = (1 + (−1)�)(2� + 1)

2

∫ π
2

0

1

2
y sin2(y)P�[cos(y)]dy.

(50)

The Legendre coefficients C� are fundamental to evaluat-
ing the values of the control parameter which give rise to a
potential phase transition. C� identically vanishes for all odd
�. The values of C� for even � up to � = 20 are plotted in
Fig. 5(a), whose magnitudes decrease in this range. Note that
C0 = 0.43 (2sf) provides a positive value for C0, which was
previously asserted as reasonable for Eq. (39). As shown in
[50] using an improved Bernstein inequality [51,52], there is
a general bound on the Legendre coefficients,

|C�| � 2√
π (2� − 1)

∫ 1

−1

|C′(x)|
(1 − x2)

1
4

dx, (51)

which is plotted in Fig. 5(a). Since the magnitude of the bound
decreases as � increases, the bound at � = 20 shows that C2

must be the largest Legendre coefficient.
A unique value of the control parameter G∗

� corresponds
to each Legendre coefficient [Fig. 5(b)] for even � up to
� = 20 for which the value G∗

� [Eq. (48)] increases mono-
tonically. Since all values of G∗

� are positive, l0 can be taken
to be negative so that g = G/l0 is negative since we only
wish to consider physically realizable solutions with bounded
growth (as discussed in Sec. II A 2). However, no particu-
lar value of G∗

� has been singled out to correspond to a
phase transition. To do this, it is necessary to consider which

perturbations (�) leads to a change in the order parameter
defined in Eq. (44).

The perturbed order parameter can be calculated directly.
Perturbing away from the isotropic case K = K̄ , where
the order parameter is zero, the new variable K ≡ K̄ (1 +∑

�,m βm
� Y m

� ) is defined, where β are taken to be small con-
stants. Expanding Eq. (44) to first order in β, the order
parameter for the perturbed system is

Sβ =
∞∑

�=0

�∑
m=−�

βm
�

∫ π

0 dθ
∫ 2π

0 dφ sin(θ )Y m
�

(
3
2 n ⊗ n − 1

2I
)

∫ π

0 dθ
∫ 2π

0 dφ sin(θ )
.

(52)

The tensor components Qij ≡ ( 3
2 n ⊗ n − 1

2I )ij from Eq. (43)
can be written in terms of only � = 2 spherical harmonics as

Q11 =
√

3π

10

(
Y -2

2 + Y 2
2

) −
√

π

5
Y 0

2 ,

Q22 = −
√

3π

10

(
Y -2

2 + Y 2
2

) −
√

π

5
Y 0

2 ,

Q33 =
√

4π

5
Y 0

2 ,

Q12 =
√

−3π

10

(
Y -2

2 − Y 2
2

)
,

Q13 =
√

3π

10

(
Y -1

2 − Y 1
2

)
,

Q23 =
√

−3π

10

(
Y -1

2 + Y 1
2

)
. (53)

Due to the spherical harmonic orthogonality condition of
Eq. (36), the only nonzero contribution to Eq. (52) is from
βm

2 for m = −2,−1, 0, 1, 2. This claim was verified numer-
ically by calculating the eigenvalues of the order parameter
for perturbations κ = βY m

� for � = 1, . . . , 200 (testing each of
m = −2�, . . . , 2� in turn) for β = 1. All � �= 2 perturbations
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led to zero eigenvalues. The eigenvalues of the order parame-
ter S were (0.77,−0.77, 0) for κ = Y m

2 for m = −2,−1, 1, 2
and (−0.06,−0.06, 0.13) for m = 0. This confirms that only
the � = 2 contribution of perturbations causes disorder in
the system, formed as a linear combination of five functions
indexed by m = −2,−1, 0, 1, 2.

Therefore, evaluating Eq. (48) for � = 2 (using Eq. (50) to
calculate C2 and C0) implies that this mean-field theory model
can only exhibit a phase transition at G∗ ≡ G∗

2 = −1.56α1/3.

B. Comparison to a 2D model

The 3D model presented here is based on, but is different
from, the earlier 2D model [44], and here we highlight three
of the main differences.

First, microtubule collision is different in 3D compared to
2D, as two infinite nonparallel lines will always intersect in
2D but not in 3D; so in a 3D microtubule, thickness plays
a more important role in determining the conditions for a
potential phase transition. Mathematically, this causes the in-
duced catastrophe flux term [Eq. (4)] to be different in 2D
and 3D. In 3D, a new factor of dm is necessary for dimen-
sional agreement and for the effect of microtubule thickness
on collision probability to be reflected in the flux term. Addi-
tionally, the factor | sin(σ )| which adjusts for varying collision
probability on the angle has a different angular dependence,
with the collision angle defined in 3D [Eq. (6)] as σ =
arccos[sin(θ ) sin(θ ′) cos(φ − φ′) + cos(θ ) cos(θ ′)] instead of
σ = (φ − φ′) in 2D [44] with φ defined as the 2D polar angle
in the usual way.

Second, a technical difference is the role that the spherical
harmonic modes have taken in this 3D mean-field theory,
replacing a similar role played by Fourier modes in 2D. The
change is caused by the factor of | sin(σ )| in the catastro-
phe flux term, which significantly changes the calculation in
Sec. II A 4 and leads to a different linear operator defined in
Eq. (9). In 3D, the spherical harmonics provide an orthonor-
mal basis of eigenfunctions, instead of Fourier modes in 2D.
Viewing the spherical harmonics Y m

� : S2 → R as a higher-
dimensional analog of S1 → R Fourier modes [53], this
higher-dimensional generalization is not unexpected. As a re-
sult of this difference, Eq. (38) and Eq. (39) both involve Leg-
endre coefficients in 3D, instead of Fourier coefficients in 2D.

Third, the predicted value of G for which a phase transition
is possible takes a different form in 3D compared to 2D,
although there are subtle similarities. Specifically, G ∝ l0
and, in 3D, l0 itself is a fourth root [Eq. (26)], so taking the
negative solution for l0 results in positive G = gl0 when g is
negative, which is a requirement for bounded growth. The
nondimensional control parameter G has a different form
in 3D and 2D, despite the dimensional control parameter
g = rc/v

− − rr/v
+ remaining the same. This arises as there

are expected differences in the definition of l0, necessary to
ensure it has dimensions of length. There are also differences
in the factors of l0 involved in nondimensionalizing g (to G)
and other variables describing the system. The control pa-
rameter can be modified by multiplying by any dimensionless
function without fundamentally changing the system, but the
expression for the critical value must be correspondingly
updated. Since a dimensionless factor of α1/3 enters the

expression for the critical value of G [Eq. (48)] at which a
phase transition is possible, we define an effective control
parameter Geff ≡ −Gα−1/3 = −gl4/3

0 d−1/3
m . Interestingly,

written in this form, this 3D effective control parameter is
proportional to the 2D control parameter in [44], multiplied
by a factor of d−1/3

m . Since our prediction for Geff is a purely
numerical quantity, due to the critical value G∗ ≡ −1.56α1/3

now being equivalent to G∗
eff = 1.56, this will be used when

we compare to the simulation in the next section. Geff can be
written explicitly as

Geff = −
[

4πv+v−

rn(v+ + v−)

] 1
3 ( rr

v− − rc

v+

)
d

− 1
3

m . (54)

C. Comparison to simulation

Next, we compare our mean-field theory predictions
against computational simulations (described in Sec. II B).
Specifically, we test three mean-field theory predictions:
decreasing Geff causes an increase in anisotropy; a phase
transition is only possible at approximately G∗

eff = 1.56 (3sf);
and the zippering probability function does not affect the other
two predictions.

From Eq. (54), Geff ∝ r−1/3
n and Geff ∝ rc, so to vary Geff in

simulations, we directly vary rn and rc. It has been previously
shown that microtubule density can impact the anisotropy
levels of a microtubule network [54]; therefore we make
specific choices of rn and rc to keep the average steady-state
number of microtubule segments in the volume within which
we perform our anisotropy calculation within a fixed range
(Fig. 6). A dimensional argument determines the relationship
between rc and rn required to keep the microtubule segment
density constant. The microtubule lifetime is proportional to
1/rc (this is clearer in the case without rescue), resulting
in a mean microtubule length proportional to v+/rc. The
number of microtubules is proportional to rn/rc for similar
reasons. Therefore, imposing that the total density of micro-
tubule segments be constant is equivalent to the condition that
v+/rc × rn/rc be constant. This suggests that when v+ is kept
constant, rn ∝ r2

c ensures a constant density of microtubule
segments. To test this prediction in simulations (Fig. 6), we
allow sufficient time for the simulations to reach a constant
average density, although stochastic effects cause fluctua-
tions even after average convergence [Fig. 6(c), Appendix E].
We use an (rn, rc) region where density fluctuations (after
converging to a steady-state density) are small and conver-
gence occurs within reasonable computation times, noting that
convergence is slower for lower values of rc so we only con-
sider rc � 0.00025. The (rn, rc) path of constant microtubule
segment density for approximately 42 000 and 16 000 seg-
ments [Fig. 6(b)] both give an approximate power law of
rn ∝ r1.5

c at larger values of rc [Fig. 6(a)], which is similar to
our predicted quadratic power law in the completely isotropic
regime (corresponding to larger rc or, equivalently, higher
Geff). Differences between the simplistic theoretical predic-
tion and computational result could be explained, for example,
by not being in the isotropic limit in the computational simula-
tions or interactions not being included within the theoretical
prediction. Theoretically, our mean-field theory model pre-
dicts an increase in anisotropy for lower rc (corresponding to
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FIG. 6. Paths of constant density in the rn − rc plane. (a) Paths of
approximately constant density for two specified segment numbers.
(b) Associated number of segments obtained from 50 simulations for
each parameter pair from the two paths in (a). Simulation parameter
values are provided in Table II. (c) Convergence of total microtubule
segments over 30 000 time steps for different rc − rn pairs, with rc in
the range from 0.0035 down to 0.00006.

lower Geff), which matches where the theoretically predicted
power law for the completely isotropic system is seen to break
down [Fig. 6(a)].

We now investigate how the anisotropy of the system
changes with varying Geff. The mean-field theory prediction

FIG. 7. Effect of varying effective control parameter Geff on
mean anisotropy S with (blue) and without (red) zippering. Each
point is averaged over 50 simulations. The green line marks the
mean-field theory prediction of the only place a phase transition can
occur at G∗

eff = 1.56. Simulation parameter values are provided in
Table II.

that increasing Geff corresponds to decreasing mean
anisotropy (estimated by S), indicating a change from a more
ordered to less ordered state, is confirmed in the simulations
(Fig. 7). Furthermore, the Geff region for which we are observ-
ing this decrease in microtubule order supports the prediction
of G∗

eff = 1.56 as an order of magnitude estimate for a change
from an isotropic to anisotropic system.

Next, we investigate the effect of zippering on the change
in anisotropy for varying Geff. The similar behavior with
and without zippering verifies the prediction that changing
Pz(σ ) affects neither the orientational dynamics of the system
(Fig. 7) nor the density [Fig. 9(c)], the second of these being
important for a fair comparison. Comparing the simulations
at the lowest and highest values of Geff in Fig. 7 for the
zippering and no-zippering case, we observe a statistically
significant decrease in anisotropy in both cases (using a 2-
sample Kolmogorov-Smirnoff test, p-values 4.89 × 10−4 and
1.98 × 10−2, respectively). This is despite stochastic differ-
ences (Appendix E) in anisotropy between simulations at
each Geff [Fig. 9(a)]. Therefore, our simulations verify the
theoretical prediction of a statistically significant decrease in
anisotropy with increasing Geff, with zippering not affecting
this correspondence as theory additionally predicts.

D. Effect of severing

Through both mean-field theory and simulations, we have
shown that crossover severing is not necessary for the
anisotropy level of our system to increase as we decrease the
control parameter Geff. Introducing the effects of severing into
the mean-field theory framework is beyond the scope of this
paper. However, it is straightforward to incorporate severing
into the simulations to see how it affects the dynamics of
the system. For context, we note that crossover severing has
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FIG. 8. Simulation results showing the effects of severing (zip-
pering is included here). (a) Effect of severing on mean anisotropy
as the control parameter Geff is increased. (b) Associated number of
microtubule segments for each simulation in (a). The case without
severing (black) is repeated from Fig. 7 for comparison. Simulation
results with severing included are plotted (blue), as well as simulation
results with severing included and the segment density kept constant
(red) through changing rn. Simulation parameter values are provided
in Table II.

previously been shown experimentally to influence anisotropy
magnitudes in microtubule systems [34,55,56].

Incorporating severing in simulations leads to a greater
change in anisotropy for the same change in Geff when com-
pared to the no-severing case, as demonstrated by the steeper
gradient in Fig. 8(a). However, the inclusion of severing re-
duces the microtubule segment density [Fig. 8(b)] particularly
at lower values of rc, which results in differing average den-
sities for different values of rc. This can be attributed to
severing breaking a microtubule at a crossover point causing
one section of the microtubule to shrink away and the other
section to treadmill (shrink from one end but still growing
from the other), overall reducing the amount of polymer-
ized microtubule. The difference between densities with and

without severing, but for the same rc, is strongest at low values
of rc, likely due to a reduced catastrophe rate when micro-
tubules collide, allowing for more crossover events so more
opportunities for severing to occur. This reduction in den-
sity coincided with a significant increase in mean anisotropy
[Fig. 8(a)], particularly at lower Geff values which correspond
to lower densities. It has previously been shown in some
systems that decreasing microtubule density can increase the
order of the system [54]. As before, we want to keep a similar
density across parameter values to ensure a fair compari-
son. Therefore, we compensate by changing rn so that the
segment densities remain within a similar range as those of
the no-severing simulation [Fig. 8(b)]. After this adjustment,
increasing Geff still causes a decrease in S, but at a rate
closer to the results from simulations without the adjustment
[Fig. 8(a)].

We conclude that the mean-field theory prediction of
anisotropy increasing for decreasing Geff is robust to the inclu-
sion of severing. Previous theoretical work in the literature has
indicated in 2D that severing can affect microtubule alignment
[57]. Here, the higher increase in anisotropy for decreasing
Geff when severing is included seems to result from the ef-
fect severing has on microtubule segment density. When this
effect is adjusted for, we get similar quantitative behavior
in the simulation results with or without the inclusion of
severing.

E. Comparison to experiment

The properties of microtubules have been experimentally
measured in different systems, with some examples from the
literature shown in Table I. From these values, we can calcu-
late Geff using Eq. (54). For example, for tobacco interphase
microtubules [58], we obtain

Geff = −
(

4π × 18.36 µm/min × 4.59 µm/min

18.36 µm/min + 4.59 µm/min

)1/3

×
(

60 × 0.051/min

18.36 µm/min
− 60 × 0.015/min

4.59 µm/min

)

× (0.024 µm)−1/3 × (rn)−1/3

= 0.37(rn)−1/3, (55)

with the microtubule diameter dm estimated as 24 nm [59].
Here, the negative value of g corresponds to bounded (and
therefore physically realistic) growth in the mean-field theory
model. Using our prediction of G∗

eff = 1.56 from mean-field
theory gives an order of magnitude estimate for the nucle-
ation rate at which anisotropy enters the system of rn ≈
0.013/µm3/min. A similar calculation for another type of to-
bacco cell [58] and for in vitro experiments [60] gives rn

estimates of 0.029 and 0.0073, respectively (Table I). These
3D estimates using experimental data are of comparable order
of magnitude to 2D nucleation rates used in simulations of
0.06/µm2/min [28] and 0.02/µm2/min [19]. It is difficult to
compare our estimated nucleation rates to nucleation rates
observed in experiments from the literature as we have found
very few experimental studies which report nucleation rates,
and when nucleation rates are reported per region they are es-
sentially always in 2D (normally on surfaces). One of the few
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FIG. 9. Variation in simulation results for (i) with and (ii) without zippering as discussed in Appendix E. (a) Box plots showing variation in
anisotropy measure S across all 50 simulation results for each parameter pair (using the data from Fig. 7). (b) Variation in time convergence of
total microtubule segments for each of five different simulations with the same parameters where rc = 0.0015. (c) Total number of microtubule
segments in simulations for increasing Geff. Simulation parameter values are provided in Table II.

TABLE I. Experimental values from the literature for microtubule growth conditions and our mean-field theory prediction of rn at which
the phase transition to order occurs. Growth speeds are stated in units of µm/min, catastrophe and rescue rates in units of /s, and rn in /µm3/min.
Estimates of catastrophe and rescue rates from [60] are obtained by modeling microtubule dynamics as Bernoulli trials, assuming a 0.5 chance
of rescue after two shrink events and an average of 10 growth events before a catastrophe to reach 20 µm reported average length.

Source v+ v− rr rc Prediction

Tobacco interphase [58] 4.59 18.36 0.051 0.015 0.013
Tobacco preprophase [58] 6.88 17.89 0.065 0.029 0.029
Suspension in vitro [60] 1.9 9.7 ≈0.005 estimate ≈0.002 estimate 0.0073
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examples in which a surface nucleation rate per unit area can
be estimated from experiments is Piehl et al. [16] where, from
the measured number of nucleations and centrosome size, we
estimate rn ≈ 40/µm2/min (although note that a centrosome
will also give a very different microtubule structure). This 2D
value is significantly above the 3D rn threshold for order that
we calculated for microtubule order in other systems (Table I).

IV. DISCUSSION AND OUTLOOK

In this work, we have developed a 3D mean-field theory
model for an interacting system of microtubules. Having es-
tablished an isotropic solution to this model, we showed that
a perturbative solution and therefore a phase transition can
only exist for one value of the effective control parameter
G∗

eff = 1.56 (3sf). The existence and uniqueness of G∗
eff was

established analytically, then its value was numerically cal-
culated with input from experimental estimates for collision
event probabilities. We then utilized simulations to verify that
anisotropy increased for decreasing Geff, and the region in
which we observe this decrease coincides with the mean-field
theory prediction for the phase transition G∗

eff = 1.56, sug-
gesting this is a reasonable order of magnitude estimate for
anisotropy entering the system.

The mean-field theory model furthermore predicts that the
critical value G∗

eff only depends on the induced catastrophe
probability function, not the zippering probability function,
with our simulations verifying that zippering did not affect
how anisotropy depends on G∗

eff. In simulations, crossover
severing did not affect the decrease in anisotropy for increas-
ing Geff, provided microtubule segment density was accounted
for. Analyzing the relationship between crossover severing,
microtubule density, and anisotropy further, either through
extending mean-field theory or experiments, is an interesting
future challenge.

There are several ways in which the 3D mean-field theory
model introduced in this paper could be developed further.
First, the effects of crossover severing [15] could be included
within the framework of mean-field theory. We propose that
incorporating severing may be possible by altering the length

density function by weighting towards shorter microtubule
lengths (perhaps by adding another flux term to the master
equations), constrained by the conservation of microtubule
length upon splitting. Second, a hard boundary could be in-
troduced to the mean-field theory model to allow the study
of different cell geometries. Previously, this has been studied
in a mean-field theory model for the specific case of micro-
tubules nucleating off a centrosome within an ellipsoid [45].
However, a more general setup would be more challenging,
primarily due to having to incorporate spatial dependence.
A third potential direction is solving the full nonperturba-
tive steady-state equations (29) analytically or numerically.
This would provide a better understanding of the depen-
dence of anisotropy on the model parameters and the nature
of the phase transition. Mean-field theory is an interesting
mathematical framework to further explore and analyze mi-
crotubules in contrast to computationally intense simulations
and time-consuming experiments and is a step to bridge scales
from analyzing local microtubule behaviors to multicellular
simulations.

All numerical work and graphing in Sec. III was performed
using MATLAB R2021A or PYTHON 3. Simulations were visu-
alized using PARAVIEW 5.0.1. TUBULATON, along with scripts
to run the microtubule simulations, is available online at [32].
A detailed description on reproducing our results along with
associated scripts is available online at [61], including scripts
to calculate the relevant Legendre coefficients and control
parameters, and for plotting TUBULATON output. For spherical
harmonics, the harmonicY function [62] was used.
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APPENDIX A: REACTIVATION FLUX TERM

Following [44], the reactivation flux can be written as

�reactivation =
∫

dθ ′
∫

dφ′ sin(θ ′)
{
v−m−

i+1(l ′ = 0, θ ′, φ′, t )
∫ t

0
dτ

[
pi+1

origin(t − τ |θ ′, t )

× v+m+
i (l, θ, φ, t − τ )z(θ, θ ′, φ − φ′)k(θ ′, φ′, t − τ )∫

dl ′′ ∫ dθ ′′ ∫ dφ′′ sin(θ ′′)v+m+
i (l ′′, θ ′′, φ′′, t − τ ) z(θ ′′, θ ′, φ′′ − φ′)k(θ ′, φ′, t − τ )

]}
, (A1)

where the originating time distribution pi+1
origin(t − τ |θ ′, t ) reflects microtubules that have zippered at time (t − τ ) into an (i + 1)th

segment and then undergone catastrophe to return to the zippering location in time τ , which is the stochastic variable over which
we integrate. The only fact that is needed is that the integral of this distribution over τ tends to unity in the steady state by
definition. The expression on the numerator of the last two lines is the distribution of microtubules with length l and orientation
(θ, φ) that zipper into the direction (θ ′, φ′). Therefore, the last three lines together are the normalized probability that a shrinking
microtubule at an angle (θ ′, φ′) will reactivate an inactive segment of length l at an angle of (θ, φ). Therefore, multiplying by
the flux of shrinking microtubules gives an expression for �reactivation in Eq. (A1).

In the steady state, this expression can be simplified. The t dependence drops out of all functions and the integral over τ of
porigin tends to 1 as t → ∞ in the steady-state limit by definition. Then, m− can be substituted for m+ using Eq. (11) and the
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integration with respect to l ′′ is done using Eqs. (13) and (16) so that

�reactivation =
∫

dθ ′
∫

dφ′ sin(θ ′)

×
{

v+m+
i+1(l ′ = 0, θ ′, φ′)

[
v+m+

i (l, θ, φ)z(θ, θ ′, φ − φ′)k(θ ′, φ′)∫
dθ ′′ ∫ dφ′′ sin(θ ′′)l̄ (θ ′′, φ′′)v+m̃+

i (θ ′′, φ′′) z(θ ′, θ ′′, φ′ − φ′′)k(θ ′, φ′)

]}
. (A2)

This can be further simplified using Eq. (19) to give

�reactivation =
∫

dθ ′
∫

dφ′ sin(θ ′)

{
v+k(θ ′, φ′)l0Z[l̄ m̃+

i ](θ ′ φ′)
v+m+

i (l, θ, φ)z(θ, θ ′, φ − φ′)k(θ ′, φ′)
v+k(θ ′, φ′)l0Z[l̄ m̃+

i ](θ ′, φ′)

}
. (A3)

This simplifies to

�reactivation = v+m+
i Z[k], (A4)

which is exactly the form of �zipper as expected since the third
and final master equation in Eqs. (1) must equal 0 in the steady
state.

APPENDIX B: SPHERICAL HARMONICS AND
ASSOCIATE LEGENDRE POLYNOMIALS

For completeness, this Appendix provides a full definition
of the spherical harmonics and associated Legendre polyno-
mials which are initially introduced in Sec. II A 4. Spherical
harmonics [46,47] are a complete set of orthogonal functions
defined on the surface of a sphere with two indices (� and m),
which can be defined by the real-valued functions,

Y m
� (θ, φ)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(−1)m+1
√

2�+1
2π

(�−|m|)!
(�+|m|)! P

−m
� (cos θ ) sin(mφ), m < 0,√

2�+1
4π

P0
� (cos θ ), m = 0,

(−1)m
√

2�+1
2π

(�−m)!
(�+m)! P

m
� (cos θ ) cos(mφ), m > 0.

(B1)

Here, Pm
� are the associated Legendre polynomials, defined in

terms of the standard Legendre polynomials P� as

Pm
� (cos θ ) = (−1)m(sin θ )m dm

d (cos θ )m
[P�(cos θ )], (B2)

where

P�(x) = 1

2�l!

d�

dx�
(x2 − 1)�. (B3)

APPENDIX C: RELATING ISOTROPIC VARIABLES TO G

Here, proofs of Eq. (39) and Eq. (42) are given, similar to
[44].

Equation (38d) can be rewritten in the form

R̄ = L̄

1 − 4παZ0L̄K̄
. (C1)

Equation (38c) can also be rewritten as

1 + Q̄ = 1

1 − 4παZ0L̄K̄
. (C2)

Substituting this expression for 1 + Q̄ into Eq. (38b) results in

K̄ = L̄2

(1 − 4παZ0L̄K̄ )2
. (C3)

Comparing Eq. (C1) and Eq. (C3) leads to the relation

K̄ = R̄2. (C4)

T̄ from Eq. (38d) can be substituted into the reciprocal of this
identity to obtain

1

K̄
= 1

R̄2
=

(
1

L̄
− 4παZ0K̄

)2

. (C5)

Substituting for the expression in parentheses using Eq. (38a)
leads to

1

K̄
= (4παC0K̄ − G)2. (C6)

Thus, an expression equivalent to Eq. (39) is obtained. Equa-
tion (C3) can be rewritten as

N̄ (1 − 4παZ0N̄ )2 = L̄3. (C7)

Equation (38a) can also be rewritten,

L̄ = [4πα(Z0 + C0)N̄ − 1]2

G
. (C8)

Substituting this expression for L̄ into Eq. (C7) and rearrang-
ing for G3 leads to

G3 = [4πα(Z0 + C0)N̄ − 1]3

N̄ (1 − 4παZ0N̄ )2
. (C9)

This is equivalent to Eq. (42).

APPENDIX D: EIGENVALUE EQUATION FOR
FIRST-ORDER PERTURBATIONS

Here, a proof of Eq. (48) is provided, similar to [44]. Small
perturbations λ(θ, φ), κ (θ, φ), χ (θ, φ), ρ(θ, φ) to the steady-
state isotropic system are defined with

L = L̄(1 + λ),

K = K̄ (1 + κ ),

Q = Q̄(1 + χ ),

R = R̄(1 + ρ). (D1)

Inserting Eqs. (D1) into Eq. (29b) leads to

K̄ + K̄κ = (L̄ + L̄λ)(R̄ + R̄ρ)(1 + Q̄ + Q̄χ ). (D2)
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TABLE II. List of default parameters for the TUBULATON simulations.

Parameter Value

Zippering angle 0.7 radians
Boundary zippering angle threshold 0.7 radians
Interaction distance 49 nm
Probability of induced catastrophe Pc(σ ) = σ/2 ∀σ � π/2 and Pc(σ ) = π/2 − σ/2 o/w
Probability of zippering Pz(σ ) = 1 − Pc(σ ) ∀σ � 0.7, σ � π − 0.7 and Pz(σ ) = 0 o/w
Probability of spontaneous catastrophe (0.06–3.5) × 10−3 per time step
Probability of cutting crossing microtubule 0.005
Random microtubule shrinkage from either end 0
Nucleation rate (0.145–5.8) × 10−1 per time step
Initial nucleations 0
Minus/plus end shrink/growth speed, respectively 0.08–0.04 µm s−1

Boundary sphere radius 1000 units (8 µm)
Nucleation sphere radius 700 units (5.6 µm)
Analysis sphere radius 400 units (4 µm)
Number of time steps 10 000
Number of repeats 50

Substituting for (1 + Q̄) from Eq. (38b) leads to

K̄ + K̄κ = (L̄R̄ + L̄R̄(λ + ρ) + O(λρ))

(
K̄

L̄R̄
+ Q̄χ

)
.

(D3)

Disregarding second (and higher)-order terms, this rearranges
to

κ = λ + ρ +
(

Q̄

K̄
L̄R̄χ

)
. (D4)

Substituting for Q̄/K̄ from Eq. (38c) divided by Eq. (38b)
results in

κ = λ + ρ + 4παZ0L̄K̄χ. (D5)

This directly implies that

Z[κ] = Z[λ + ρ + 4παZ0L̄K̄χ ]. (D6)

Inserting Eqs. (D1) into (29c) and disregarding second-order
terms gives

Q̄ + Q̄χ = L̄K̄ (1 + Q̄)Z[1 + λ + κ + χ ] + L̄K̄Q̄Z[χ ].
(D7)

Subtracting Eq. (38c) and dividing through by Q̄ leaves

χ = L̄K̄

(
1 + Q̄

Q̄

)
Z[λ + κ] + L̄K̄Z[χ ]. (D8)

Substituting for (1 + Q̄)/Q̄ from Eq. (38c) gives

χ = 1

4παZ0
Z[λ + κ + 4παZ0L̄K̄χ ]. (D9)

Inserting Eqs. (D1) into Eq. (29d) and subtracting Eq. (38d)
gives

ρ =
(

L̄

R̄

)
λ + 4παZ0L̄K̄ (λ + κ ) + L̄K̄Z[ρ]. (D10)

Using Eq. (38d) again to rewrite the coefficient of λ leads to

ρ = λ + L̄K̄ (4παZ0κ + Z[ρ]). (D11)

From (D6), (D9), and (D11), the following expression for
Z[κ] can be obtained:

Z[κ] = 1

2

(
ρ − λ

L̄K̄
+ 4παZ0(χ − κ )

)
. (D12)

Inserting Eqs. (D1) into Eq. (29a), subtracting Eq. (38a),
and taking the first-order approximation (1 + λ)−1 ≈ 1 − λ

results in

λ = −L̄K̄ (C[κ] + Z[κ]). (D13)

Equation (D12) can be substituted into (D13) to obtain

2λ = −2L̄K̄C[κ] − ρ + λ − 4παZ0L̄K̄χ + 4παZ0L̄K̄κ.

(D14)

Finally, substituting κ for the expression in Eq. (D5) leads to

−2L̄K̄C[κ] = (1 − 4παZ0L̄K̄ )κ. (D15)

APPENDIX E: VARIATION AND CONVERGENCE
OF SIMULATIONS

Stochastic features of the simulations lead to variation
between simulations with the same input parameters and fluc-
tuations within any single simulation, even at large times
when the average behavior appears to have converged. For the
simulations with and without zippering, the mean anisotropy
shows a clear trend (Fig. 7), but within each single parameter
pair we observe substantial variation in the anisotropy that
is reached [Fig. 9(a)]. We similarly see variation between
simulations in the total number of segments reached, which
can in part be attributed to the fluctuations which remain after
the average behavior has converged, as shown in Fig. 9(b).
Visually, this convergence has occurred well before the 10 000
time steps limit that we use for comparing average behaviors
throughout this paper. However, convergence is slower for
lower values of rc. For low values of rc, there is no con-
vergence even within 30 000 time steps [Fig. 6(c)], so we
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only consider rc � 0.00025 where we observe convergence
in 10 000 time steps. Comparing with and without zippering
(Fig. 9), we see similar trends as well as no effect on to-
tal segment number, further supporting the limited effect of
zippering.

APPENDIX F: SIMULATION PARAMETER VALUES

Default parameter values used for the TUBULATON simula-
tions are listed here in Table II.
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