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Biphasic amplitude oscillator characterized by distinct dynamics of trough and crest
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Biphasic amplitude dynamics (BAD) of oscillation have been observed in many biological systems. However,
the specific topology structure and regulatory mechanisms underlying these biphasic amplitude dynamics remain
elusive. Here, we searched all possible two-node circuit topologies and identified the core oscillator that enables
robust oscillation. This core oscillator consists of a negative feedback loop between two nodes and a self-positive
feedback loop of the input node, which result in the fast and slow dynamics of the two nodes, thereby achieving
relaxation oscillation. Landscape theory was employed to study the stochastic dynamics and global stability
of the system, allowing us to quantitatively describe the diverse positions and sizes of the Mexican hat. With
increasing input strength, the size of the Mexican hat exhibits a gradual increase followed by a subsequent
decrease. The self-activation of input node and the negative feedback on input node, which dominate the fast
dynamics of the input node, were observed to regulate BAD in a bell-shaped manner. Both deterministic and
statistical analysis results reveal that BAD is characterized by the linear and nonlinear dependence of the
oscillation trough and crest on the input strength. In addition, combining with computational and theoretical
analysis, we addressed that the linear response of trough to input is predominantly governed by the negative
feedback, while the nonlinear response of crest is jointly regulated by the negative feedback loop and the
self-positive feedback loop within the oscillator. Overall, this study provides a natural and physical basis for
comprehending the occurrence of BAD in oscillatory systems, yielding guidance for the design of BAD in
synthetic biology applications.
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I. INTRODUCTION

Oscillatory signals are ubiquitous in various biological sys-
tems ranging from bacteria, fungi, to humans [1–4]. These
signals are involved in numerous physiological processes,
such as cellular metabolism, cell division, hormone secretion,
circadian rhythm, heartbeat, muscle contraction, and so on
[5–12]. These processes are regulated by biological oscillators
[13], which exhibit diverse oscillatory features to play essen-
tial roles in gene regulation [14], protein expression [15], or
stimuli transduction [16]. Biological systems have been ob-
served to frequently exhibit a nonmonotonic response to input
strength [17–20]. In oscillatory systems, it has been widely
reported in experiments that amplitude presents a biphasic
response to the strength of stimuli. Chen et al. [21] found
that emodin can bidirectionally regulate the contractility of
jejunal smooth muscle. Kaur et al. [22] and Chavan et al.
[23] observed that the amplitude of phosphorylated KaiC and
KaiB first increases and then decreases with the increase of
KaiA concentration. Jeong et al. [24] also reported that the
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amplitude of KaiC phosphorylation oscillation is biphasically
regulated by magnesium ions. Møller et al. [25] showed that
the effect of the magnetic flux density on the O2-oscillation
amplitude is biphasic in peroxidase-oxidase reaction. Bipha-
sic behaviors related to oscillation amplitude have also been
observed in neurophysiology signals [26–28]. Recently, Liu
et al. [29] showed that the degradation rate of frq mRNA
could biphasically regulate its amplitude through the circadian
negative feedback loop.

To explore how complex behaviors emerge from biologi-
cal networks, a large number of theoretical and experimental
studies have been performed. Recent studies suggested that
core motifs play a crucial role in determining the properties
of biological function, despite the presence of dozens of com-
ponents and interactions in networks [30–32]. Various motifs
that perform specific biological functions have been widely
determined, including reliable cell decision [33], faithful noise
resistance [34], robust biological oscillations [35–39], optimal
fold-change detection [40,41], cell adaptation [42], cell polar-
ization [43], cell fate decision [44–48], and dual function of
adaptation and noise attenuation [49]. In addition to identify-
ing key motifs, the regulation and free-energy consumption of
specific biological functions was also extensively investigated.
For example, incoherent inputs were found that can enhance
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the robustness of biological oscillators [31]. Oberreiter et al.
[50] conjectured a universal bound to answer the question of
the minimum amount of free-energy consumption required
for a certain number of coherent oscillations. The dissocia-
tion constant was also demonstrated to biphasically regulate
oscillation amplitude in a protein-protein interaction network
[51].

As an essential biological behavior, how the properties of
the biphasic amplitude dynamics (BAD) of oscillation are
characterized by specific structure and components remains
unclear. Here, we aimed to demonstrate the design principles
of BAD in natural systems. Through searching all possible
two-node topologies, we determined the core oscillators that
enable robust oscillation and identified relaxation oscillation
as the essential mechanism. From the viewpoint of landscape,
the stochastic dynamic and global stability of the BAD con-
trolled by the input strength was investigated. Further analysis
reveals the mechanism behind the BAD is linear and nonlin-
ear dependence of the oscillation trough and crest on input
strength. Overall, these findings provide better understanding
and theoretical guidance for the design of the diverse oscilla-
tory behaviors in synthetic biology applications.

II. MODEL AND METHOD

To investigate the network topology capable of achieving
BAD of oscillation, we considered a two-node system (X,Y).
Node X receives external signals, while node Y transmits the
system’s output. The dynamics of the system can be described
by the following two coupled ordinary differential equations
(ODEs):

dX

dt
= F1(X,Y ) = I (1 − X ) + FXX + FY X − kinhX X, (1)

dY

dt
= F2(X,Y ) = FXY + FYY − kinhY Y, (2)

where

FMN =

⎧⎪⎪⎨
⎪⎪⎩

kiM
(1−N )n

Jn
i +(1−N )n , M activates N

0 , no interaction

−kiM
Nn

Jn
i +Nn , M inhibits N.

, M, N ∈ {X,Y }

The first term on the right-hand side of Eq. (1) represents
the activation term of X induced by external input signal I. The
last terms on the right-hand side of Eqs. (1) and (2) correspond
to the self-inactivation of X and Y, respectively. In Eqs. (1)
and (2), the rest terms on the right-hand side represent the
feedback action of M on N, denoted as FMN (M,N�{X,Y}).
There are four feedback interactions in total (i.e., FXX , FXY ,
FY X , and FYY ). The total amount of each species is normalized
to 1, giving the inactivation amount of species N to be 1−N.
The Hill equation has been widely employed for describ-
ing multistep, complicated, or not fully understood reaction
processes [44,52]. If variable M activates variable N, the inac-
tivation amount of variable N is 1−N, which is then activated
by M. Thus, the Hill term kiM

(1−N )n

Jn
i +(1−N )n was employed to

describe the positive feedback effect of M on N. Conversely,
if variable M inhibits variable N, it means that the activation

amount of species N will be inhibited. In this case, the Hill
term −kiM

Nn

Jn
i +Nn was used to indicate the negative feedback

effect of M on N. n denotes the Hill coefficient, ki denotes
the feedback strength, and Ji denotes the Michaelis-Menten
constant.

The phenomenological model was developed based
on well-established approaches used in previous studies
[36,42,43], with the variables normalized in equations. The
two nodes can represent different signal transducers under
specific biological conditions. For the extracellular inputs sig-
nal, node X could represent the receptors on the cell membrane
for receiving inputs, while node Y represents the downstream
proteins recruited by the receptors. In the case of the intra-
cellular inputs signal, node X serves as the signal transducer
for activating node Y, which could be the effector proteins.
Additionally, the two nodes can also represent the regulatory
relationship between two genes in the nucleus. The unit of the
two variables is an arbitrary unit.

A Latin hypercube sampling method [53] is employed to
randomly scan the model parameters in the wide parameter
space for evaluating the robust oscillation behavior of the
systems. The input signal strength I is in the range of 0–1. ki,
the rate constant for activation or inhibition, is in the range of
10−1–103. Ji, the Michaelis-Menten constant, is in the range
of 10−3–101. kinh, the rate constant of inactivation, is in the
range of 10−3–101. The Hill coefficient ni is a random integer
sampling with 1–4. All the parameters and Hill coefficient ni

of the model are sampled within the proper ranges based on
previous studies [31,42].

To check whether the output oscillation signals are truly
effective and robust, the criteria are defined as follows [31,45]:

(H1):
std(Yi)

mean(Yi )
< 10−2,

std(ti+1 − ti )

mean(ti+1 − ti )
< 10−2,

(H2):
Ymax − Ymin

maximum expression amount
> 0.01,

where ti and Yi represent the moment when the ith peak occurs
and its output signal, respectively. mean and std represent the
value of mean and standard deviation, respectively. In (H2),
Ymax represents the maximum value of the output signal, corre-
sponding to the oscillation crest. Ymin represents the minimum
value of the output, corresponding to the oscillation trough.
We used the odeint function in the Scipy library to simulate
the mathematical model. The evolution time of the system
under any set of parameters ranges from 0 to 5000 min. The
sampled systems require at least five consecutive peaks to
meet the conditions (H1) and (H2).

Biochemical reactions in natural systems are usually in-
fluenced by intrinsic or external fluctuations [54,55]. The
stochastic dynamics can be described by a Langevin equa-
tion, i.e., dCi(t )/dt = Fi(C) + ηi(t ), where Ci represents the
concentration of species. Fi(C) represents the driving force
that describes the dynamics of the system. The term ηi(t )
represents fluctuation or noise force, which obeys Gaus-
sian distribution with correlation function 〈ηi(t )η j (t ′)〉 =
2Dijδijδ(t−t ′), where δij is the Dirac delta function and D is
the diffusion coefficient matrix characterizing the strength of
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the fluctuations. Here, we assumed the isotropic and homo-
geneous case D11 = D22. The probability evolution P for the
system can be reflected by the Fokker-Planck equation

∂P(C, t )

∂t
= −

∑
i

∂

∂Ci
[Fi(C)P(C, t )] +

∑
i

Di
∂2

∂C2
i

P(C, t ).

(3)

The global steady-state probability distribution Pss of the
state space can be obtained by solving the steady-state solu-
tion of the above Fokker-Planck equation. The corresponding
dimensionless potential U can be calculated by the Boltzmann
relation, U = −ln(Pss).

III. RESULTS

A. Three out of nineteen topologies can exhibit
oscillatory behavior

The procedure for searching oscillatory behavior in a two-
node system is illustrated in Fig. 1(a). In our model, the
interaction FXY between X and Y in Eq. (2), where X is the
input node and Y is the output node, is fixed as an activation
process [left panel of Fig. 1(a)]. Hence, taking into account
three possible interaction scenarios (activation, inhibition, or
no interaction) for each of the three remaining interactions
(FXX , FY X , and FYY ) in Eqs. (1) and (2), there are 33 = 27
kinds of topologies in total for the two-node system. Previous
studies have demonstrated that the existence of at least one

negative feedback loop is the necessary condition to produce
robust oscillation [10,35,56,57]. We further ruled out eight
topologies without any negative feedback loop. Thus, there
are 19 possible oscillatory topologies in two-node networks
[Fig. 1(b)].

To determine whether a topology can achieve robust oscil-
lation, we generated 106 sets of randomly selected parameters
for each topology using a Latin hypercube sampling method,
within the meaningful parameter space [31,42] [Fig. 1(a)].
For sampling uniformity, we used logarithmic sampling for
parameters ki, Ji, and kinh, and linear sampling for parameter
I. Ymax represents the maximum value of the output node,
which corresponds to the oscillation crest. Ymin represents
the minimum value of the output, which corresponds to the
oscillation trough [right panel in Fig. 1(a)]. We recorded the
set number among 106 tests for each topology and detected
oscillation dynamics. From the time series of X and Y in
Fig. 1(b), we observed that only three topologies (i.e., M10,
M14, and M19) can generate robust oscillation and their cor-
responding oscillation probabilities (OSC prob.) are shown in
Fig. 1(c). It can be observed that topology M10 exhibits the
highest oscillation probability, followed by M14 and M19. It
is suggested that the addition of autoregulation at node Y will
reduce the probability of oscillation for M10.

Next, we aimed to investigate why the remaining 16
topologies are not capable of generating robust oscillations.
Firstly, for topologies M1, M2, M3, M4, M5, M6, M9, M12,
M13, and M15, which have no self-activation for both nodes
X and Y, choosing a Dulac function B(X,Y ) = 1, we have

∂ (BF1)

∂X
+ ∂ (BF2)

∂Y
= −I − kinhX − kinhY + ∂FXX

∂X
+ ∂FY X

∂X
+ ∂FXY

∂Y
+ ∂FYY

∂Y

= −I − kinhX − kinhY − k3X
n3(1 − Y )n3−1Jn3

3[
(1 − Y )n3 + Jn3

3

]2 + ∂FXX

∂X
+ ∂FY X

∂X
+ ∂FYY

∂Y
, (4)

where the interaction

FXX = 0 or − k1X
X n1

X n1 + Jn1
1

,

FY X = 0,−k2Y
X n2

X n2 + Jn2
2

or k2Y
(1 − X )n2

(1 − X )n2 + Jn2
2

,

FYY = 0 or − k4Y
Y n4

Y n4 + Jn4
4

. (5)

The following Lemma 1 is needed as well:

d

dx

(
xn

xn + Jn

)
= nxn−1Jn

(xn + Jn)2 ,
d

dx

(
xn+1

xn + Jn

)
= x2n + (n + 1)xnJn

(xn + Jn)2 ,

d

dx

(
(1 − x)n

(1 − x)n + Jn

)
= − n(1 − x)n−1Jn

[(1 − x)n + Jn]2 ,
d

dx

(
1

x

(1 − x)n

(1 − x)n + Jn

)
= −nx(1 − x)n−1Jn + (1 − x)n[(1 − x)n + Jn]

[(1 − x)n + Jn]2 x2
. (6)
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FIG. 1. Identifying the core oscillator in two-node systems with random circuit analysis. (a) Schematic of the workflow. Left panel:
enumeration of topologies with two nodes. Node X is used to receive the input signals and node Y is the output. Middle panel: stochastic
analysis of the Latin hypercube sampling procedure is used to produce random parameter sets for each topology. Right panel: The robust
oscillation signal of the node Y is detected numerically. Ymax and Ymin are the oscillation crest and trough of Y, respectively. (b) Time series
of a representative deterministic model for each of the 19 possible topologies, M1–M19. (c) Probabilities of parameter sets that yield robust
oscillations for the topologies of M10, M14, and M19.
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Substituting Eq. (5) into Eq. (4) and applying Lemma 1, it yields

∂ (BF1)

∂X
+ ∂ (BF2)

∂Y
< 0.

Then, for topologies M8, M11, M17, and M18, which have self-activation only for node Y, choosing a Dulac function
B(X,Y ) = 1/Y , we have

∂ (BF1)

∂X
+ ∂ (BF2)

∂Y
= − I + kinhX

Y
+ ∂

∂X

(
FXX

Y

)
+ ∂

∂X

(
FY X

Y

)
+ ∂

∂Y

(
FXY

Y

)
+ ∂

∂Y

(
FYY

Y

)

= − I + kinhX

Y
− k3X

n3Y (1 − Y )n3−1Jn3
3 + (1 − Y )n3

[
(1 − Y )n3 + Jn3

3

]
[
(1 − Y )n3 + Jn3

3

]2
Y 2

− k4
n4(1 − Y )n4−1Jn4

4[
(1 − Y )n4 + Jn4

4

]2 + 1

Y

∂FXX

∂X
+ ∂

∂X

(
FY X

Y

)
, (7)

where the interaction

FXX = 0 or − k1X
X n1

X n1 + Jn1
1

,

FY X = 0,−k2Y
X n2

X n2 + Jn2
2

or k2Y
(1 − X )n2

(1 − X )n2 + Jn2
2

. (8)

Substituting Eq. (8) into Eq. (7) and applying Lemma 1, it yields

∂ (BF1)

∂X
+ ∂ (BF2)

∂Y
< 0.

Finally, for topologies M7 and M16, which have self-activation only for node X, choosing a Dulac function B(X,Y ) = 1/X ,
we have

∂ (BF1)

∂X
+ ∂ (BF2)

∂Y
= − I

X 2
− kinhY

X
+ ∂

∂X

(
FXX

X

)
+ ∂

∂X

(
FY X

X

)
+ ∂

∂Y

(
FXY

X

)
+ ∂

∂Y

(
FYY

X

)

= − I + kinhY X

X 2
− k1n1(1 − X )n1−1Jn1

1[
(1 − X )n1 + Jn1

1

]2 − k3n3(1 − Y )n3−1Jn3
3[

(1 − Y )n3 + Jn3
3

]2 − k4
Y 2n4 + (n4 + 1)Y n4 Jn4

4

X (Y n4 + J4)2 + ∂

∂X

(
FY X

X

)
,

(9)

where the interaction

FY X = 0 or k2Y
(1 − X )n2

(1 − X )n2 + Jn2
2

. (10)

Substituting Eq. (10) into Eq. (9) and applying Lemma 1,
it also yields

∂ (BF1)

∂X
+ ∂ (BF2)

∂Y
< 0.

Hence, according to the Bendixson-Dulac criterion [58],
these 16 topologies have no periodic solutions and cannot
generate oscillation.

B. Relaxation oscillation determined by the fast and slow
dynamics of the two nodes

After identifying the three oscillators, the next aim is to
explore the control mechanism behind the generation of these
oscillation behaviors. The probability distributions for the pa-
rameters related to the interactions are shown in Fig. 2(a),
revealing that oscillations are more easily observed in certain
parameter regions. The probability distributions for the same
parameters of the three oscillators (M10, M14, and M19)

exhibit consensus features. Specifically, the rate constant k1,
which characterizes the process of self-activation of X, tends
to be at an intermediate value to promote the occurrence of
oscillation. The rate constant k2, representing the inhibition
strength of X by Y, tends to be large. Moreover, the interaction
strengths of X activating Y (k3) and the self-action of Y (k4) are
typically small.

The probability distribution of k2 is generally large, indi-
cating that the process of Y inhibiting X occurs rapidly. A
small value of k3 and k4 suggests weak interaction strengths
on Y, potentially leading to a slow dynamics of Y. Although k1

(self-activation of X) tends to be at an intermediate value, k1 is
more than 100 times greater than k3 and k4. This also confirms
that the self-activation of X is a rapid process compared to
the dynamics of Y. Three representative dynamics of X and
Y, individually selected from the three oscillators (M10, M14,
and M19), are displayed in the top panel of Fig. 2(b). These
dynamics intuitively illustrate the fast and slow oscillation
dynamics of X and Y. To quantify the fast/slow dynamics, we
further employed the ratio of the full width at half maximum
(FWHM [59]) to the oscillation period. The ratio falls within
the open interval of (0,1), and a smaller value indicates faster
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FIG. 2. Identification of the essence for oscillation in two-node oscillators. (a) Parameter distributions of all the identified deterministic
models that can produce oscillation in topologies M10, M14, and M19. (b) Three representative time series of nodes X and Y selected from
oscillators M10, M14, and M19 (top panels), along with the violin plot of the ratio, which is defined as FWHM/period of nodes X and Y
(bottom panels). The top and bottom of the gray box denote the 75th and 25th percentiles, respectively. The black point within the gray box
represents the mean value. The peripheral curve of the violin plot describes the probability density distribution, and also the maximum and
minimum values. (c) The schematic diagram of the essence of three oscillators. Here, the dynamics of activator X is significantly faster than
repressor Y. The thick red lines indicate the fast dynamics, and the thin black line indicates the slow dynamics. The dashed-line circle indicates
the self-action of node Y that may be activation, inhibition, or absent.

dynamic. As depicted in the bottom panel of Fig. 2(b), the
statistical results indicate that these three oscillators share
a common feature, confirming that the dynamics of X are
significantly faster than Y.

Hence, these three oscillators are characterized by the same
core structure [Fig. 2(c)]. The self-activation of X and the in-
hibition of X by Y, represented by the thick red lines, dominate
the fast dynamics of X. The activation of Y by X, represented
by the thin black line, determines the slow dynamics of Y.
This specific type of oscillation is classified as a relaxation
oscillation. It is characterized by a limit cycle that involves
a slow and gradual buildup, followed by a sudden discharge,
and then another slow buildup, and so on [60].

C. BAD induced by distinct responses of trough and crest,
from a global stability viewpoint

Having determined the core structure and essence for oscil-
lation, we next sought to explore how the properties of BAD of
oscillation are characterized. Due to its core structure and the
highest probability for oscillation among the three topologies
(M10, M14, and M19), M10 was chosen as a representative
example topology for further analysis. For simplification, we
initially randomly selected a deterministic model parame-
ter set of Eq. (11) that satisfied the criterion of BAD with

topology M10, as shown below:

dX

dt
= I (1 − X ) + 1.49 ∗ X

1 − X

1 − X + 0.04

− 1.36 ∗ Y
X 2

X 2 + 0.00142 − 0.003 ∗ X,

dY

dt
= 0.93 ∗ X

(1 − Y )3

(1 − Y )3 + 0.043 − 0.34 ∗ Y. (11)

As the results show in Fig. 3(a), the amplitude of Y is
biphasically regulated by the input strength. The coefficient
H, which is defined as H = (Ypeak − YES)/Ytot to quantify the
scale of BAD. Ypeak refers to the highest level of amplitude
reached by Y, while YES represents the amplitude of Y under
the maximum input strength. Ytot is the total amount of node Y.
The three representative time series of the system’s oscillation
are displayed in Fig. 3(b). The results highlight that as input
strength increases, both trough and crest exhibit an upward
trend, but the amplitude initially increases and then decreases,
resulting in the occurrence of BAD.

To systematically study the stochastic properties of M10
oscillation, the generalized potential landscape [61,62] that
describes the global dynamic behavior of the system in phase
space is employed. The dimensionless potential U and the
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FIG. 3. A concrete example of a deterministic model of topology M10 to characterize BAD of oscillation. (a) The variation of oscillation
amplitude Y with input I increases in a deterministic oscillation model. (b) Time series of Y when I = 0.1, 0.4, and 0.7 in the deterministic
oscillation model. (c) The potential landscape of the system when I = 0.1, 0.4, and 0.7, respectively (top panels), and the corresponding
vertical views of the landscapes (bottom panels). The vector field is indicated by the black arrows. The trajectories with red arrows show that
the solutions converge to a limit-cycle oscillation after initial transient. The oscillation crest and trough of Y in the trajectories are represented
by magenta squares and black circles, respectively. (d) Crest Ymax and trough Ymin of Y change as the increase of input I. € Analysis of the core
parameters k1, k2, and k3 in regulating H/BAD. (f) Phase diagram of H in k1−k2 parameter spaces.

steady-state probability distribution Pss of the system are given
by the Boltzmann relation, i.e., U = −ln(Pss). The potential
landscapes that mapped onto the X-Y phase space under three
typical input strengths are shown in Fig. 3(c). The yellow
region represents higher potential or lower probability, and the
blue region represents lower potential or higher probability.

The system consistently exhibits Mexican hat landscapes
under various input strengths [top panels in Fig. 3(c)]. The
system evolves into a unique annular valley from any initial
values, indicating that there is a unique limit cycle in the X-Y
phase space under certain input strength. As the red trajecto-
ries show in the bottom panels in Fig. 3(c), the system will
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FIG. 4. Statistical analysis of 104 deterministic models that satisfy the criterion of BAD for topology M10. (a) The distributions of
oscillation amplitude of Y under different input strength. (b) Bar chart of the oscillation crest Ymax and trough Ymin at oscillation-starting
stimulus (SS), medium stimulus strength (MS), and oscillation-ending stimulus (ES) for topology M10, respectively (bottom panels). (c)
Different oscillation behaviors of Y in response to different input strengths. SOSS, small oscillation at small stimulus strength; LOMS, large
oscillation at medium stimulus strength; SOLS, small oscillation at large stimulus strength. (d) A special case to illustrate the time courses of
Y responding to input with the intensity I = 0.004t . (e) The violin plots of statistical results of oscillation crest Ymax and trough Ymin on more
than 104 parameter sets of topology M10, respectively. The mean of the trough Ymin increase linearly with the increasing stimulation intensity,
while the mean of the crest Ymax increase nonlinearly.

eventually evolve into the ring trap oscillation after an initial
transient. The vector field is indicated by the black arrows.
The differences among these landscapes under different input
strength lie in the positions and sizes of the Mexican hat. With
increasing input strength, the size of the limit cycles exhibits
a gradual increase followed by a subsequent decrease [bottom
panels in Fig. 3(c)]. This modulation indicates that the am-
plitude is biphasically regulated by the input strength. Then,
the oscillation crest (magenta squares) and trough (black cir-
cles) of Y on the limit cycle were calculated. As shown in
Fig. 3(d), as the input strength increases, the oscillation trough
Ymin exhibits a linear increase, while the oscillation crest Ymax

demonstrates a nonlinear growth that eventually saturates. The
distinct responses of oscillation trough and crest to changes in
input strength serve as triggers for the emergence of BAD. To
minimize the dependence on a specific deterministic model
with particular parameters, we randomly selected another
deterministic oscillation model parameter set that met the cri-
terion of BAD. Similar dynamics, topological landscapes, and
conclusions were also observed (see Supplemental Material,
Fig. S1 [63]).

The role of interaction terms in mediating BAD was in-
vestigated as well. Among the three interaction terms in M10
[Fig. 2(c)], the self-activation of X (k1) and the inhibition of
X by Y (k2) that dominate the fast dynamics of X, can both

mediate the amplitude of Ypeak and YES, resulting in a bell-
shaped regulation on BAD [Fig. 3(e)]. The activation of Y by
X (k3), which governs the slow dynamics of Y, only exerts
a negative influence on the amplitude of Ypeak. As a result,
k3 negatively regulates BAD. Further two-parameters phase
plane analysis indicates that the maximum value of H is 0.45
when the fold change of k1 and k2 is 1.34 and 1.18, respec-
tively [Fig. 3(f)]. The above results underscore the interactions
(k1 and k2) that dominate the fast dynamics of X, are function-
ally significant for diversely regulating BAD of oscillation.

D. BAD characterized by linear and nonlinear responses
of trough and crest, from a statistical viewpoint

To mitigate the influence of specific parameters and
minimize fortuitous outcomes associated with deterministic
models, a statistical analysis is conducted to delve into the un-
derlying mechanism of BAD of oscillation. We collected more
than 104 parameter sets that satisfy the criterion of BAD using
topology M10. The violin plots in Fig. 4(a) depict the distribu-
tions of Y amplitude across various input strengths. Consistent
with the results of the deterministic model [Fig. 3(a)], the plots
reveal that the mean value of amplitudes exhibit a biphasic
curve as the input strength increases.
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The minimal input strength required to initiate oscillation
is referred to as the oscillation-starting stimulus (SS), whereas
the maximum input strength that leads to the termination of
oscillation is named as the oscillation-ending stimulus (ES)
[top panel in Fig. 4(b)]. The medium stimulus strength is
short for MS. Statistical analysis suggests that as the input
strength increases, both the levels of oscillation trough and
crest exhibit an upward trend [bottom panel in Fig. 4(b)].
Quantitatively, the results reveal that the input-dependent os-
cillation topology transitions from small oscillation at small
stimulus strength (SOSS) to large oscillation at medium stim-
ulus strength (LOMS), and then back to small oscillation at
large stimulus strength (SOLS) [Fig. 4(c)].

We further decomposed the amplitude Y into the difference
between the oscillation crest and trough. To provide a visual
representation of the BAD in the time series, we have plotted
a specific example in Fig. 4(d). As the stimulus gradually
increases over time (I = 0.004t ), the trough of Y (red cir-
cles) exhibits a linear increase, whereas the crest (dark-cyan
squares) shows a nonlinear growth pattern. This is a general
phenomenon, as confirmed by the violin plots of crest Ymax

and trough Ymin shown in Fig. 4(e). Based on these statis-
tical results of BAD, we determined that the mean value of
the trough Ymin (red circles) linearly increases with the input
strength, whereas the mean value of the crest Ymax (dark-cyan
squares) exhibits a nonlinear increase. The linear and nonlin-
ear responses of trough and crest to stimulus intensity were
also respectively observed for M14 and M19 (see Supple-
mental Material, Fig. S2 [63]), revealing that our conclusion
regarding the mechanisms behind the BAD of oscillation is
general.

E. Linear response of trough to input strength dominated
by the negative feedback of Y to X

Our subsequent objective was to investigate the underlying
mechanism responsible for the linear increase of the oscil-
lation trough with the input strength. The dynamics of the
system in topology M10 are governed by the following two
coupled ODEs:

dX

dt
= I (1 − X ) + k1X

(1 − X )n1

(1 − X )n1 + Jn1
1

− k2Y
X n2

X n2 + Jn2
2

− kinhX X, (12)

dY

dt
= k3X

(1 − Y )n3

(1 − Y )n3 + Jn3
3

− kinhY Y. (13)

We collected more than 104 parameter sets that sat-
isfy the criterion of BAD. For these parameter sets, it
was observed that the majority of the values for term
(1 − Ymin)n3/[(1 − Ymin)n3 + Jn3

3 ] are close to 1 [Fig. 5(a) and
Fig. S3(a) in the Supplemental Material [63]].

Given the simplification of term (1−Y )n3/[(1−Y )n3 + Jn3
3 ]

to approximately 1 in our analysis, when Y takes the value
of oscillation trough Ymin, its derivatives are equal to 0. Thus,
near t = TY min, the form of Eq. (13) can be reduced as follows:

k3X − kinhY Y = 0,

that is,

Y = k3

kinhY
X. (14)

Thus, the oscillation trough Ymin can be approximated as
k3 ∗ X_Ymin/kinhY , where X_Ymin represents the value of X
when Y takes Ymin. To validate this deduction, we counted
X_Ymin under different input strengths. The violin distribu-
tions presented in Fig. 5(b) confirm that the mean of X_Ymin

approximately exhibits a linear increase with increasing input
strength. Consequently, the question of why the oscillation
trough Ymin increases linearly with the input strength can be
reframed as a question of why X_Ymin increases linearly with
input strength.

We integrated the information flows of each term on the
right-hand side of Eq. (12) over the interval [TXmin, TY min] to
investigate their contributions to the dynamics of X [Fig. 5(c)].
It is shown that terms k1X (1−X )n1

(1−X )n1 +J
n1
1

and kinhX X have neg-

ligible contributions to X compared to terms I(1−X) and
k2Y

X n2

X n2 +J
n2
2

[Fig. 5(d) and Fig. S3(b) in the Supplemental Ma-

terial [63]]. Ignoring the two terms k1X (1−X )n1

(1−X )n1 +J
n1
1

and kinhX X ,

substituting Eq. (14) into Eq. (12), and simplifying the term
X_Y

n2
min

X_Y
n2

min+J
n2
2

to 1 [Fig. 5(e) and Fig. S3(c) in the Supplemental

Material [63]], we can derive an approximate equation of X:

dX

dt
= I (1 − X ) − k2k3

kinhY
X, (15)

with initial value (TXmin, Xmin). Solving Eq. (15), we obtained

X = I

((
I + k2k3

/
kinhY

)−1

+
(

Xmin − I
(

I + k2k3
/
kinhY

)−1
)/

Ie−(I+ k2k3
kinhY

)(t−TX min )
)

.

(16)

When t is equal to TY min, we have

X_Ymin = I

((
I + k2k3

/
kinhY

)−1

+
(

Xmin − I
(

I + k2k3
/
kinhY

)−1
)/

Ie−(I+ k2k3
kinhY

)∗PD
)

,

(17)

where PD is the phase difference between X and Y. We further
calculated the ratio of the first term to the second term in the
parentheses of Eq. (17) and defined it as K. The probability
distribution shows that the value of K is larger than 10 for
more than 90% of the parameter sets [Fig. 5(f) and Fig. S3(d)
in the Supplemental Material [63]], indicating that the first
term dominates over the second term in a significant majority
of cases. Thus, Eq. (17) can be reduced to

X_Ymin = I

I + k2k3
/
kinhY

. (18)

Subsequently, we examined the distribution of k2k3/kinhY .
As shown in Fig. 5(g), k2k3/kinhY exceeds 1 in more than 98%
of the parameter sets, with more than 82% of the parameter
sets surpassing 5. Comparing with k2k3/kinhY , I ∈ [0, 1] is
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FIG. 5. Mechanism analysis of the linear response of the oscillation trough to the input strength. (a) The probability distribution of term
(1 − Ymin )n3/[(1 − Ymin]n3 + Jn3

3 ) at I = 0.2. (b) The violin plots of X_Ymin under different input strengths. (c) Schematic diagrams of dissecting
the influences of each term on X_Ymin. (d) The violin plots for the area marked with a, b, c, and d in Fig. 5(c), respectively. (e) The probability
distribution of term X_Y n2

min/(X_Y n2
min + Jn2

2 ), showing that most of the values are equal to 1. (f) The probability distribution of K. (g) The
probability distribution of k2k3/kinhY . The left-Y axis indicates probability (bar plot) and the right-Y axis presents the cumulative probability
(blue line plot). (h) The change of RCslope_T (variation of the slope of oscillation trough) with the fold change of k2. (i) Comparison of slope
of the oscillation trough calculated by simulation and theoretical value 1/k2 with more than 104 parameter sets of topology M10. Pearson
correlation coefficient r = 0.99.
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negligibly small. Thus, Eq. (18) can be further simplified as
follows:

X_Ymin = kinhY

k2k3
I. (19)

Substituting Eq. (19) into Eq. (14), we derived

Ymin = k3

kinhY
X_Ymin = k3

kinhY

kinhY

k2k3
I ≈ 1

k2
I. (20)

Ultimately, we established the approximate relationship
between the strength of input I and the trough of Y. The slope
of the trough is primarily determined by the reciprocal of the
negative feedback of Y to X, which is represented by 1/k2.

To test the conclusion of the above theoretical analysis,
single-parameter sensitivity is conducted for the interac-
tion parameters in topology M10. The change rate of slope
(RCslope) is defined as follows:

RCslope = slopevar − slopesta

slopesta
∗ 100%, (21)

where slopesta refers to the slope obtained under the standard
parameter value, while slopevar is the slope obtained after the
parameter changes. As the statistical results show in Fig. 5(h),
k2 exhibits a clear negative linear correlation with the slope of
the oscillation trough (RCslope_T ), while the other parameters
have negligible influences compared to k2 [see Supplemental
Material, Fig. S3(e) [63]]. Furthermore, we calculated the
slope of the oscillation trough with each parameter set and
observed that their Pearson correlation coefficients with the
theoretical value of 1/k2 exceeds 0.99 [Fig. 5(i)].

F. Nonlinear response of crest to input strength jointly governed
by the core interactions

We next tried to explore the nonlinear response of os-
cillation crest Ymax to input strength. Similarly, for these
collected 104 parameter sets that satisfy the criterion of BAD,
it was observed that the majority of the values for term
(1 − Ymax)n3/[(1 − Ymax)n3 + Jn3

3 ] are close to 1 in Eq. (13)
[Fig. 6(a) and Fig. S4(a) in the Supplemental Material [63]].
We thus simplified the term (1−Y )n3/[(1−Y )n3 + Jn3

3 ] to 1
in our analysis. Then, the oscillation crest Ymax has a linear
relationship with its corresponding X (i.e., X_Ymax) based on
Eq. (14). Statistical results confirm that X_Ymax also exhibits a
nonlinear increase with increasing input strength [Fig. 6(b)].

Subsequently, we also integrated the information flows of
each term on the right-hand side of Eq. (12) in the inter-
val [TY min, TY max] to investigate their influences on X_Ymax

[Fig. 6(c)]. As the results show [Fig. 6(d) and Fig. S4(b) in
the Supplemental Material [63]], the term kinhX X is negligibly
small and has little contribution to X_Ymax compared with the
terms I(1−X), k1X (1−X )n1

(1−X )n1 +J
n1
1

and k2Y
X n2

X n2 +J
n2
2

. Ignoring term

kinhX X , substituting the linear relationship between X_Ymax

and Ymax into Eq. (12), and approximating term X_Y
n2

max

X_Y
n2

max+J
n2
2

to 1

[Fig. 6(e) and Fig. S4(c) in the Supplemental Material [63]],
the following equation of X in the small interval [TY min, TY max]
can be obtained:

dX

dt
= I (1 − X ) + k1X

(1 − X )n1

(1 − X )n1 + Jn1
1

− k2
k3

kinhY
X. (22)

Compared with Eq. (15), Eq. (22) exhibits strong nonlin-
earity, making it difficult for both theoretical analysis and
finding approximate solutions. Thus, we conducted parameter
sensitivity analysis to numerically identify the interactions
that have a major impact on the oscillation crest under varying
input strengths. By varying each rate parameter in topology
M10, including the self-activation of X (k1), the inhibition of
X by Y (k2), the activation of Y by X (k3), the inactivation of X
(kinhX ), and the inactivation of Y (kinhY ) by ±5% and ±10%,
the relative percentage change of the slope of the oscillation
crest at the oscillation-starting stimulus (RCslope_SS) and the
oscillation-ending stimulus (RCslope_ES) was recorded. The
sensitivity spectrums for these parameters are depicted in
Figs. 6(f) and 6(g).

Figure 6(f) shows that an increase of k1 significantly shifts
the distribution position of RCslope_SS upwards, while an in-
crease in k2 and k3 shifts the distribution position downwards.
Changes in kinhX , and kinhY do not have a significant influence
on the distribution position. This indicates that the oscilla-
tion crest around the oscillation-starting stimulus is positively
regulated by the self-activation rate of X (k1) and negatively
regulated by the inhibition of X by Y (k2) and the activation of
Y by X (k3). The interactions related to k1, k2, k3, and kinhY have
great influences on the oscillation crest around the oscillation-
ending stimulus [Fig. 6(g)]. The different trends observed in
the distributions between Figs. 6(f) and 6(g) suggest that each
interaction has an opposite effect on the slope of the crest at
the oscillation-starting stimulus compared to the oscillation-
ending stimulus. Therefore, the above analysis confirms that
the oscillation crest to input strength are jointly determined by
the core interactions. The interplay between these interactions
contributes to the observed nonlinear behavior of the crest and
further shapes the BAD of oscillation in the system.

IV. DISCUSSION

Biological oscillators are considered a fundamental charac-
teristic of vital movement, regulating important physiological
functions such as the cell cycle, circadian rhythm, and em-
bryonic development [64–66]. In addition, biphasic behavior,
characterized by distinct phases or responses, is observed
in various biological processes including cell differentia-
tion, proliferation, and death [67–69]. While the regulatory
mechanisms of oscillation and biphasic behavior have been
extensively studied in different biological systems, the charac-
terization of BAD of oscillation remains unclear. The goal of
this study is to find the minimal topological structures that can
generate BAD of oscillation and dissect the underlying design
principles. Firstly, stochastic analysis of a Latin hypercube
sampling method was used to search two-node topologies
that can realize oscillation, the prerequisite of BAD. We
generated 106 sets of randomly selected model parameters
for each of the 19 possible topologies, and found that only
three topologies, M10, M14, and M19 can robustly oscillate
with probabilities of 5.9‰, 3.7‰, and 1.5‰, respectively
[Fig. 1(c)]. To avoid omitting topologies capable of generating
robust oscillation in numerical simulations, we theoretically
derived a general conclusion using the Bendixson-Dulac the-
orem: the remaining 16 topologies cannot generate oscillation,
regardless of parameter choices. To clearly illustrate the
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FIG. 6. Analysis of the nonlinear response of the oscillation crest to the input strength. (a) The probability distribution of term
(1 − Ymax)n3/[(1 − Ymax)n3 + Jn3

3 ] at I = 0.2. (b) The violin plots of X_Ymax under different input strengths. (c) Schematic diagrams of
dissecting the influences of each term on X_Ymax. (d) The violin plots for the areas marked with e, f, g, and h in Fig. 6(c), respectively.
(e) The probability distribution of term X_Y n2

max/(X_Y n2
max + Jn2

2 ), showing that most of the values are equal to 1. (f) and (g) The changes of
RCslope_SS (variation rate of the slope of the oscillation crest at the oscillation-start stimulus) and (variation rate of the slope of the oscillation
crest at the oscillation-ending stimulus) with the fold change of each parameter.

aforementioned results, we selected a specific set of model
parameters for each topology as a representative example, and
their corresponding time series are shown in Fig. 1(b). Then,
by individually calculating the parameter distributions of all

the identified deterministic models that can produce oscilla-
tions in topologies M10, M14, and M19 [Fig. 2(a)], we arrived
at a general conclusion: oscillations in these three topologies
are characterized by the same core structure [Fig. 2(c)], which
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governs the fast and slow dynamics of the two signal nodes
[Fig. 2(b)]. Using a deterministic model of the core structure
M10, which can induce BAD by the input, we found a special
result: with the increase of input intensity, the oscillation
trough increases linearly, and the crest rises nonlinearly. This
leads to an initial increase and subsequent decrease in ampli-
tude, resulting in the occurrence of BAD (Fig. 3). To achieve
a more general conclusion, we collected more than 104 sets of
model parameters, i.e., 104 deterministic models for topology
M10 that satisfy the criterion of BAD (Fig. 4). Statistical
analysis of all these 104 deterministic models confirms that the
linear and nonlinear responses of the oscillation trough and
crest to input are the general physical mechanism for BAD
dynamics [Fig. 4(e)]. Finally, combining statistical analysis
of these 104 deterministic models with theoretical analysis,
we determined that the physical mechanisms behind BAD
dynamics are as follows: the linear response of the trough to
input is governed by the negative feedback of the output node
on the input node (Fig. 5), while the nonlinear response of the
crest is jointly dominated by the negative feedback loop and
the self-positive feedback loop on the input node (Fig. 6).

Studies on several biological oscillators such as cell death,
cell cycles, and quorum sensing, have shown that only a lim-
ited number of topologies are capable of robustly executing
oscillation [45,70,71]. Through searching all possible two-
node topologies, we determined that only three topologies
can exhibit oscillatory behavior. These three oscillators are
characterized by the same core structure, including a negative
feedback loop between two nodes and a self-positive feedback
loop of the input node. This is supported by the previous find-
ings that although a negative feedback loop is necessary for
oscillation, it alone is not sufficient [35,72]. The presence of
an additional positive feedback loop, which can induce a delay
kinetic [35,72], is crucial for robust oscillation. Similar core
structures for generating oscillation have been observed in
studies on cell death signaling and quorum sensing signaling
[45,70]. Besides focusing on the core structure, the functional
role of auxiliary structures in oscillators has also been high-
lighted. For example, Li et al. validated that the robustness
of biological oscillators is enhanced by the incoherent inputs
[31]. Recently, the design principle for robust oscillatory be-
haviors with respect to noise has also been demonstrated [73].
Here, our result demonstrated that adding a self-positive or
self-negative feedback loop of the output node to the core
structure (M14 or M19) significantly reduces the probability
of oscillation [Fig. 1(c)]. This observation suggests that robust
oscillators are obtained by augmenting the number of both
negative feedback loops and positive self-regulations while
maintaining an appropriate balance between positive and neg-
ative interactions [74].

Positive and negative feedback loops are crucial for the
generation and regulation of oscillation. Previous findings by
Zhang et al. highlighted that the p53-Mdm2 and ATM-p53-
Wip1 negative feedback loops are responsible for p53 pulses,
while the switchlike behaviors of p53 manifest when the p53-
PTEN-Akt-Mdm2 positive feedback loop becomes dominant
[75]. Besides, their work revealed that enhancing the positive
feedback can either promote or suppress oscillations, depend-
ing on the strength of both feedback loops, emphasizing the
crucial role of the interplay between positive and negative

feedback in the transitions between oscillation and bistability
[76]. Natural selection may favor a robust network structure.
While analyzing two topologically equivalent genetic circuits
with coupled positive and negative feedback loops, Zhang
et al. emphasized the reasons why a specific circuit topol-
ogy exists in a cell, even though the same function could
theoretically be achieved with an alternative architecture
[77]. They also illustrated how distinct cis-regulatory mod-
ules fundamentally influence the cellular patterns of genetic
oscillators, encompassing complete synchronization, diverse
cluster-balanced states, and several cluster-nonbalanced states
[78]. In our identified core structure [Fig. 2(c)], a posi-
tive feedback loop and negative feedback loop on the input
node (topology M10) are essential for achieving the sys-
tem’s relaxation oscillation. In comparison to M10, oscillation
probability significantly diminishes when considering the ad-
ditional feedback of self-activation (M19) or self-inhibition
(M14) of the output node [Fig. 1(c)]. Therefore, our analysis
suggests that both positive and negative feedback of the output
node can suppress the occurrence probability of oscillation,
suggesting that additional feedback is not always beneficial to
oscillation.

The essential structure for achieving biphasic dynamics has
also been widely explored. We previously found the bipha-
sic dynamics of PhoP phosphorylation regulated by PhoQ
in bacteria [20], as well as the biphasic dynamics of CRY2
controlled by blue light in Arabidopsis [79]. In addition, the
principle for the design of network topologies that robustly
achieve adaptation, which is a typical biphasic behavior, was
successfully dissected [42]. Here, we found the core struc-
ture that can simultaneously generate oscillation and biphasic
dynamics, resulting in the BAD of oscillation. Oscillation is
induced by the fast and slow dynamics of the two nodes, while
biphasic dynamics of amplitude is determined by the linear
and nonlinear responses of trough and crest. The observed
mechanism of biphasic dynamics aligns with our most recent
study on cell death signaling. We found that in necroptosis,
RIP1 biphasically regulates RIP3 phosphorylation, and the
underlying mechanism involves the linear and nonlinear re-
cruitment of caspase-8 and RIP3 to necrosome [46]. These
findings prompt further investigation to explore whether linear
and nonlinear responses represent a generalizable design prin-
ciple for robustly executing biphasic dynamics in biological
systems.

Despite the apparent complexity of cell signaling networks,
numerous studies have supported the idea that only a limited
number of network topologies are capable of robustly exe-
cuting particular biological functions. The topological design
principles of natural capable of oscillation [36], adaptation
[42] and self-organizing cell polarization [43] have been ex-
tensively studied. Considering the primary focus of this study
is to investigate the topological design principles of BAD
of oscillation, we thus proposed a phenomenological model
based on well-established approaches used in previous studies
[36,42,43], rather than a comprehensive biochemical reac-
tions model to precisely evaluate each biological process. Our
coarse-grained model is a phenomenological model that char-
acterizes the regulatory relationship between signal nodes.
Many intermediate products and reaction processes have been
simplified and integrated into the model. When dealing with a
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specific biological system, it is essential to consider a compre-
hensive model that incorporates detailed biological reactions.
Nevertheless, our conclusion regarding the identified essential
topological structure for BAD of oscillation should hold in
a general context. We hope our results can be found in an
increasing number of future experimental observations.

Biological oscillation signals carry important information
regarding both amplitude and period, enabling organisms to
identify, encode, and transmit different biological information
and execute various responses through oscillatory signal-
ing [80,81]. Different types of oscillation signals selectively
perform diverse biological functions. In the case of BAD,
although amplitude is biphasically controlled, both trough
and crest increase with the input strength. The topography
of the landscape enables us to identify detailed dynamical
properties of the system, such as the position and depth of
the Mexican hat, and to further uncover the roles of input in
regulating oscillation crest and trough. The recently developed
non-Markovian theoretical modeling approach, opening up a
new avenue of research [82], may also extend the generaliz-
ability of our results derived from the Fokker-Planck equation
[Eq. (3)]. The landscapes depicted in Fig. 3(c) demonstrate
diverse positions and sizes of the Mexican hat, leading to

three distinct oscillation behaviors as illustrated in Fig. 4(c).
Despite having similar amplitudes, the trough and crest at
high input strengths are significantly larger than those at low
strengths. An urgent question arises regarding how different
oscillation behaviors can exert similar or distinct biological
functions. Moreover, aside from BAD of oscillation, Stricker
et al. observed the biphasic regulation of period by varying the
Isopropyl ß-D-1-thiogalactopyranoside (IPTG) concentration
in an oscillator of Escherichia coli [83]. The explicit mech-
anisms underlying the biphasic regulation of period is also a
fundamental issue that needs to be explored in future research.

The ODE model is developed and simulated with PYTHON

3.8.2. Zipped mathematical code files of the model to generate
the results in this study are available on GitHub [84].

ACKNOWLEDGMENTS

This work was supported by National Natural Science
Foundation of China (Grant No. 12090052), Natural Sci-
ence Foundation of Fujian Province of China (Grant No.
2023J05002), and the Fundamental Research Funds for the
Central Universities (Grant No. 20720230017).

[1] P. E. Rapp, J. Exp. Biol. 81, 281 (1979).
[2] J. W. Shuai and P. Jung, Phys. Rev. Lett. 88, 068102 (2002).
[3] A. Weber, W. Zuschratter, and M. J. Hauser, Sci. Rep. 10, 19714

(2020).
[4] L. Wettmann and K. Kruse, Philos. Trans. R. Soc., B 373,

20170111 (2018).
[5] A. Goldbeter, Biochemical Oscillations and Cellular Rhythms:

The Molecular Bases of Periodic and Chaotic Behaviour
(Cambridge University Press, Cambridge, UK, 1997).

[6] E. Sel’Kov, Eur. J. Biochem. 4, 79 (1968).
[7] A. Boiteux, A. Goldbeter, and B. Hess, Proc. Natl. Acad. Sci.

USA 72, 3829 (1975).
[8] M. Nakajima, K. Imai, H. Ito, T. Nishiwaki, Y. Murayama, H.

Iwasaki, T. Oyama, and T. Kondo, Science 308, 414 (2005).
[9] J. J. Tyson, Proc. Natl. Acad. Sci. USA 88, 7328 (1991).

[10] J. E. Ferrell, Jr., T. Y.-C. Tsai, and Q. Yang, Cell 144, 874
(2011).

[11] X. Li, Y. Wu, X. Gao, M. Cai, and J. Shuai, Phys. Rev. E 97,
012406 (2018).

[12] Y. Chen, H. Qi, X. Li, M. Cai, X. Chen, W. Liu, and J. Shuai,
Phys. Rev. E 94, 022411 (2016).

[13] B.-W. Qin, L. Zhao, and W. Lin, Nat. Commun. 12, 5894
(2021).

[14] L. Cai, C. K. Dalal, and M. B. Elowitz, Nature (London) 455,
485 (2008).

[15] V. D. Longo and S. Panda, Cell Metab. 23, 1048 (2016).
[16] N. Hao and E. K. O’shea, Nat. Struct. Mol. Biol. 19, 31 (2012).
[17] J. Jodynis-Liebert and M. Kujawska, J. Clin. Med. 9, 718

(2020).
[18] T. M. Varusai and L. K. Nguyen, Sci. Rep. 8, 643 (2018).
[19] L. Mackay, N. Mikolajewicz, S. V. Komarova, and A. Khadra,

Front. Physiol. 7, 1 (2016).

[20] W. Liu, X. Li, H. Qi, Y. Wu, J. Qu, Z. Yin, X. Gao, A. Han, and
J. Shuai, Bioinformatics 37, 2682 (2021).

[21] D. Chen, Y. Xiong, L. Wang, B. Lv, and Y. Lin, Can. J. Physiol.
Pharmacol. 90, 455 (2012).

[22] M. Kaur, A. Ng, P. Kim, C. Diekman, and Y.-I. Kim, J. Biol.
Rhythms 34, 218 (2019).

[23] A. G. Chavan, J. A. Swan, J. Heisler, C. Sancar, D. C. Ernst, M.
Fang, J. G. Palacios, R. K. Spangler, C. R. Bagshaw, S. Tripathi
et al., Science 374, eabd4453 (2021).

[24] Y. M. Jeong, C. Dias, C. Diekman, H. Brochon, P. Kim, M.
Kaur, Y.-S. Kim, H.-I. Jang, and Y.-I. Kim, J. Biol. Rhythms
34, 380 (2019).

[25] A. C. Møller, A. Lunding, and L. F. Olsen, Phys. Chem. Chem.
Phys. 2, 3443 (2000).

[26] Q. Nai, H.-W. Dong, A. Hayar, C. Linster, and M. Ennis,
J. Neurophysiol. 101, 2472 (2009).

[27] N. Nada, E. Kolkaila, P. Schendzielorz, and T. El Mahallawi,
Egypt. J. Otolaryngology 38, 1 (2022).

[28] Y. Develle and H. Leblond, Front. Cell. Neurosci. 13, 1
(2020).

[29] X. Liu, A. Chen, A. Caicedo-Casso, G. Cui, M. Du, Q. He, S.
Lim, J. K. Hang, I. H. Christian, Y. Liu, Nat. Commun. 10, 4352
(2019).

[30] F. R. Cross, N. E. Buchler, and J. M. Skotheim, Philos. Trans.
R. Soc., B 366, 3532 (2011).

[31] Z. Li, S. Liu, and Q. Yang, Cell Syst. 5, 72 (2017).
[32] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii,

and U. Alon, Science 298, 824 (2002).
[33] O. Brandman, J. E. Ferrell, Jr., R. Li, and T. Meyer, Science

310, 496 (2005).
[34] G. Hornung and N. Barkai, PLoS Comput. Biol. 4, e8

(2008).

064412-14

https://doi.org/10.1242/jeb.81.1.281
https://doi.org/10.1103/PhysRevLett.88.068102
https://doi.org/10.1038/s41598-020-76242-8
https://doi.org/10.1098/rstb.2017.0111
https://doi.org/10.1111/j.1432-1033.1968.tb00175.x
https://doi.org/10.1073/pnas.72.10.3829
https://doi.org/10.1126/science.1108451
https://doi.org/10.1073/pnas.88.16.7328
https://doi.org/10.1016/j.cell.2011.03.006
https://doi.org/10.1103/PhysRevE.97.012406
https://doi.org/10.1103/PhysRevE.94.022411
https://doi.org/10.1038/s41467-021-26182-2
https://doi.org/10.1038/nature07292
https://doi.org/10.1016/j.cmet.2016.06.001
https://doi.org/10.1038/nsmb.2192
https://doi.org/10.3390/jcm9030718
https://doi.org/10.1038/s41598-017-18400-z
https://doi.org/10.3389/fphys.2016.00525
https://doi.org/10.1093/bioinformatics/btab138
https://doi.org/10.1139/y2012-004
https://doi.org/10.1177/0748730419828068
https://doi.org/10.1126/science.abd4453
https://doi.org/10.1177/0748730419851655
https://doi.org/10.1039/b003641m
https://doi.org/10.1152/jn.91187.2008
https://doi.org/10.1186/s43163-022-00259-1
https://doi.org/10.3389/fncel.2019.00573
https://doi.org/10.1038/s41467-019-12239-w
https://doi.org/10.1098/rstb.2011.0078
https://doi.org/10.1016/j.cels.2017.06.013
https://doi.org/10.1126/science.298.5594.824
https://doi.org/10.1126/science.1113834
https://doi.org/10.1371/journal.pcbi.0040008


BIPHASIC AMPLITUDE OSCILLATOR CHARACTERIZED … PHYSICAL REVIEW E 108, 064412 (2023)

[35] B. Novák and J. J. Tyson, Nat. Rev. Mol. Cell Biol. 9, 981
(2008).

[36] T. Y.-C. Tsai, Y. S. Choi, W. Ma, J. R. Pomerening, C. Tang,
and J. E. Ferrell Jr., Science 321, 126 (2008).

[37] Z.-B. Zhang, Q.-Y. Wang, Y.-X. Ke, S.-Y. Liu, J.-Q. Ju, W. A.
Lim, C. Tang, and P. Wei, Cell Syst. 5, 460 (2017).

[38] H. Qi, G. Xu, X.-L. Peng, X. Li, J. Shuai, and R. Xu, Phys. Rev.
E 102, 062422 (2020).

[39] C. del Junco and S. Vaikuntanathan, Phys. Rev. E 101, 012410
(2020).

[40] M. Adler, P. Szekely, A. Mayo, and U. Alon, Cell Syst. 4, 171
(2017).

[41] L. Goentoro, O. Shoval, M. W. Kirschner, and U. Alon,
Mol. Cell 36, 894 (2009).

[42] W. Ma, A. Trusina, H. El-Samad, W. A. Lim, and C. Tang,
Cell 138, 760 (2009).

[43] A. H. Chau, J. M. Walter, J. Gerardin, C. Tang, and W. A. Lim,
Cell 151, 320 (2012).

[44] Y. Li, Y. Jiang, J. Paxman, R. O. Richard, S. Klepin, Y. Zhu,
L. Pillus, L. S. Tsimring, J. Hasty, N. Hao, Science 369, 325
(2020).

[45] F. Xu, Z. Yin, L. Zhu, J. Jin, Q. He, X. Li, and J. Shuai, Front.
Phys. 9, 726638 (2021).

[46] X. Li, C. Q. Zhong, R. Wu, X. Xu, Z. H. Yang, S. Cai, X. Wu,
X. Chen, Z. Yin, Q. He, D. Li et al., Protein Cell 12, 858 (2021).

[47] X. Li, P. Zhang, Z. Yin, F. Xu, Z. H. Yang, J. Jin, J. Qu, Z. Liu,
H. Qi, C. Yao et al., Research 2022, 9838341 (2022).

[48] L. Zhu, X. Li, F. Xu, Z. Yin, J. Jin, Z. Liu, H. Qi, and J. Shuai,
Q Chaos, Solitons Fractals 155, 111724 (2022).

[49] L. Qiao, W. Zhao, C. Tang, Q. Nie, and L. Zhang, Cell Syst. 9,
271 (2019).

[50] L. Oberreiter, U. Seifert, and A. C. Barato, Phys. Rev. E 106,
014106 (2022).

[51] T. M. Varusai, W. Kolch, B. N. Kholodenko, and L. K. Nguyen,
Mol. Biosyst. 11, 2750 (2015).

[52] J. Shu et al., Cell 153, 963 (2013).
[53] R. L. Iman, J. C. Helton, and J. E. Campbell, J. Qual. Technol.

13, 174 (1981).
[54] N. Eling, M. D. Morgan, and J. C. Marioni, Nat. Rev. Genet. 20,

536 (2019).
[55] N. Engberg, M. Kahn, D. R. Petersen, M. Hansson, and P.

Serup, Stem Cells 28, 1498 (2010).
[56] X.-J. Tian, X.-P. Zhang, F. Liu, and W. Wang, Phys. Rev. E 80,

011926 (2009).
[57] K. Maeda and H. Kurata, J. Theor. Biol. 440, 21 (2018).
[58] S. Busenberg and P. Vandendriessche, J. Math. Anal. Appl. 172,

463 (1993).
[59] N. S. Ginzburg, L. A. Yurovskiy, A. S. Sergeev, I. V. Zotova,

and A. M. Malkin, Phys. Rev. E 104, 034218 (2021).

[60] S. H. Strogatz, Nonlinear Dynamics and Chaos: With Appli-
cations to Physics, Biology, Chemistry, and Engineering (CRC
Press, Boca Raton, FL, 2018).

[61] J. Wang, Adv. Phys. 64, 1 (2015).
[62] J. Wang, L. Xu, and E. Wang, Proc. Natl. Acad. Sci. USA 105,

12271 (2008).
[63] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevE.108.064412 for more information about the
content mentioned at the corresponding location in the text.

[64] G. Wang and C. S. Peskin, Phys. Rev. E 97, 062416
(2018).

[65] J. R. Pomerening, E. D. Sontag, and J. E. Ferrell, Nat. Cell Biol.
5, 346 (2003).

[66] K. Yagita et al., Proc. Nat. Acad. Sci. USA 107, 3846 (2010).
[67] T. Nagashima, H. Shimodaira, K. Ide, T. Nakakuki, Y. Tani, K.

Takahashi, N. Yumoto, and M. Hatakeyama, J. Biol. Chem. 282,
4045 (2007).

[68] D. Shin, I. S. Kim, J. M. Lee, S.-Y. Shin, J.-H. Lee, S. H. Baek,
and K.-H. Cho, J. Mol. Cell Biol. 6, 338 (2014).

[69] S.-Y. Shin, T. Kim, H.-S. Lee, J. H. Kang, J. Y. Lee, K.-H. Cho,
and D. H. Kim, Nat. Commun. 5, 5777 (2014).

[70] X. Li, J. Jin, X. Zhang, F. Xu, J. Zhong, Z. Yin, H. Qi, Z. Wang,
and J. Shuai, npj Syst. Biol. Appl. 7, 35 (2021).

[71] Y. Zhao, D. D. Wang, Z. W. Zhang, Y. Lu, X. J. Yang, Q.
Ouyang, C. Tang, and F. T. Li, Phys. Rev. E 101, 042405 (2020).

[72] U. Alon, An Introduction to Systems Biology: Design Pinciples
of Biological Circuits (Chapman and Hall/CRC, London, 2006).

[73] L. Qiao, Z.-B. Zhang, W. Zhao, P. Wei, and L. Zhang, eLife 11,
e76188 (2022).

[74] S. M. Castillo-Hair, E. R. Villota, and A. M. Coronado, Syst.
Synth. Biol. 9, 125 (2015).

[75] X.-P. Zhang, F. Liu, and W. Wang, Proc. Natl. Acad. Sci. USA
108, 8990 (2011).

[76] L.-S. Wang, N.-X. Li, J.-J. Chen, X.-P. Zhang, F. Liu, and W.
Wang, Phys. Rev. E 97, 042412 (2018).

[77] J. Zhang, Z. Yuan, H.-X. Li, and T. Zhou, Biophys. J. 99, 1034
(2010).

[78] J. Zhang, Z. Yuan, and T. Zhou, Phys. Rev. E 79, 041903
(2009).

[79] Y. Wu, Q. Wang, J. Qu, W. Liu, X. Gao, X. Li, X. Ouyang, C.
Lin, and J. Shuai, Plant Cell Environ. 44, 1802 (2021).

[80] A. M. Corrigan and J. R. Chubb, Curr. Biol. 24, 205 (2014).
[81] P. Paszek, D. A. Jackson, and M. R. H. White, Curr. Opin.

Genet. Dev. 20, 670 (2010).
[82] J. Zhang and T. Zhou, Proc. Natl. Acad. Sci. USA 116, 23542

(2019).
[83] J. Stricker, S. Cookson, M. R. Bennett, W. H. Mather, L. S.

Tsimring, and J. Hasty, Nature (London) 456, 516 (2008).
[84] https://github.com/little-jun/BAD-main.

064412-15

https://doi.org/10.1038/nrm2530
https://doi.org/10.1126/science.1156951
https://doi.org/10.1016/j.cels.2017.09.016
https://doi.org/10.1103/PhysRevE.102.062422
https://doi.org/10.1103/PhysRevE.101.012410
https://doi.org/10.1016/j.cels.2016.12.009
https://doi.org/10.1016/j.molcel.2009.11.018
https://doi.org/10.1016/j.cell.2009.06.013
https://doi.org/10.1016/j.cell.2012.08.040
https://doi.org/10.1126/science.aax9552
https://doi.org/10.3389/fphy.2021.726638
https://doi.org/10.1007/s13238-020-00810-x
https://doi.org/10.1016/j.chaos.2021.111724
https://doi.org/10.1016/j.cels.2019.08.006
https://doi.org/10.1103/PhysRevE.106.014106
https://doi.org/10.1039/C5MB00385G
https://doi.org/10.1016/j.cell.2013.05.001
https://doi.org/10.1080/00224065.1981.11978748
https://doi.org/10.1038/s41576-019-0130-6
https://doi.org/10.1002/stem.479
https://doi.org/10.1103/PhysRevE.80.011926
https://doi.org/10.1016/j.jtbi.2017.12.014
https://doi.org/10.1006/jmaa.1993.1037
https://doi.org/10.1103/PhysRevE.104.034218
https://doi.org/10.1080/00018732.2015.1037068
https://doi.org/10.1073/pnas.0800579105
http://link.aps.org/supplemental/10.1103/PhysRevE.108.064412
https://doi.org/10.1103/PhysRevE.97.062416
https://doi.org/10.1038/ncb954
https://doi.org/10.1073/pnas.0913256107
https://doi.org/10.1074/jbc.M608653200
https://doi.org/10.1093/jmcb/mju023
https://doi.org/10.1038/ncomms6777
https://doi.org/10.1038/s41540-021-00196-4
https://doi.org/10.1103/PhysRevE.101.042405
https://doi.org/10.7554/eLife.76188
https://doi.org/10.1007/s11693-015-9178-6
https://doi.org/10.1073/pnas.1100600108
https://doi.org/10.1103/PhysRevE.97.042412
https://doi.org/10.1016/j.bpj.2010.05.036
https://doi.org/10.1103/PhysRevE.79.041903
https://doi.org/10.1111/pce.14038
https://doi.org/10.1016/j.cub.2013.12.011
https://doi.org/10.1016/j.gde.2010.08.004
https://doi.org/10.1073/pnas.1913926116
https://doi.org/10.1038/nature07389
https://github.com/little-jun/BAD-main

