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Physical limits on galvanotaxis
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Eukaryotic cells can polarize and migrate in response to electric fields via “galvanotaxis,” which aids
wound healing. Experimental evidence suggests cells sense electric fields via molecules on the cell’s surface
redistributing via electrophoresis and electroosmosis, though the sensing species has not yet been conclusively
identified. We develop a model that links sensor redistribution and galvanotaxis using maximum likelihood
estimation. Our model predicts a single universal curve for how galvanotactic directionality depends on field
strength. We can collapse measurements of galvanotaxis in keratocytes, neural crest cells, and granulocytes to
this curve, suggesting that stochasticity due to the finite number of sensors may limit galvanotactic accuracy. We
find cells can achieve experimentally observed directionalities with either a few (∼100) highly polarized sensors
or many (∼104) sensors with an ∼6–10% change in concentration across the cell. We also identify additional
signatures of galvanotaxis via sensor redistribution, including the presence of a tradeoff between accuracy and
variance in cells being controlled by rapidly switching fields. Our approach shows how the physics of noise at
the molecular scale can limit cell-scale galvanotaxis, providing important constraints on sensor properties and
allowing for new tests to determine the specific molecules underlying galvanotaxis.
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I. INTRODUCTION

Eukaryotic cells will migrate singly or in groups in
response to an applied electrical field—a process called “gal-
vanotaxis” or “electrotaxis” [1–9]. Response to electric fields
helps give directionality to wound healing [10] and immune
response [11], overriding other guidance cues [12]. While
galvanotactic responses have been measured for decades,
understanding of the mechanisms of galvanotaxis pale in
comparison to chemotaxis, where cells respond to chemical
gradients [1]. The current best-supported theory is that galvan-
otaxis arises because of migration of a sensor species on the
surface of the cell in response to the electric field [13–15] (cil-
iated cells may have an alternate behavior [16]). Single-cell
galvanotaxis has been modeled phenomenologically [17–21]
but these models do not connect galvanotaxis to sensor
rearrangements.

There is strong evidence that both eukaryotic cells and
bacteria can sense chemicals at nearly the limits imposed on
them by basic physical and statistical principles [22–28] and
broader interest in finding fundamental physical bounds for
accuracy [29–35]. Here, we ask the following: how precisely
can a cell sense the direction of an applied electrical field?
Our strategy will be to write a model for the probability of ob-
serving a sensor configuration in the field and then determine
how the cell can estimate the field angle by choosing an esti-
mated direction ψ̂ that maximizes the likelihood of observing
this configuration. This approach builds off past maximum-
likelihood estimation (MLE) results that established optimal
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ways to sense chemical concentrations and gradients [34,36–
40]. We derive results bounding the best possible estimation
cells can make of the field orientation given the unavoidable
randomness in sensor positions.

II. SENSOR MIGRATION MODEL

We apply a simple model, assuming that a receptor—or
other charged molecule—migrates on the surface of the cell
in response to an electric field. We call this molecule a sen-
sor. The prevailing consensus is that sensor redistribution via
electrophoresis and electro-osmosis is necessary for a galvan-
otactic response [13–15,41,42]. Other proposed mechanisms
such as asymmetric opening of voltage gated ion channels are
not supported by evidence on, e.g., changing the viscosity of
the medium surrounding the cells [13,14].

We assume the sensor species travels along the cell mem-
brane with a velocity v that is proportional to the component
of electric field in the membrane’s tangent plane [41]. For
many different assumptions about the cell and membrane
properties, this leads to an “effective mobility” μ, where the
sensor velocity is v‖ = μE‖, i.e., v = μ[E − (E · n̂)n̂], where
n̂ is a local normal to the surface of the cell and E is the
applied electric field. The parameter μ, which can be positive
or negative, includes the effect of electrophoresis and electro-
osmotic flow and the effect of the cell on the electric field
(see Appendix A) and can be estimated from microscopic
properties of the sensor and environment [14,15,41]; we will
interpret μ as purely a phenomenological value.

The steady-state probability distribution of sensor locations
arises from competition between sensor advection due to the
field and diffusion tending to spread the sensors out. The
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(a) (b)

FIG. 1. Illustration of sensors on surface of cell and schematic of sensor distributions. (a) The cell uses the stochastic locations of sensors
(θ1, θ2, . . . , θN ) to make a noisy estimate ψ̂ of the field’s true direction ψ . Sensors travel with velocity v proportional to the component of
the electric field tangential to the membrane. (b) Stochastic simulation of N = 30 sensor positions for different field strengths, generated by
drawing sensor positions independently from the distribution p(θ ) ∼ exp[κ cos(θ − ψ )].

probability flux from sensor migration and diffusion on the
cell surface is J = vp − D∇S p, where p is the probability
density on the surface, D is the sensor diffusion coefficient,
and ∇S is the surface gradient. The continuity equation is
then ∂ p

∂t = −∇S · J. We initially consider a two-dimensional
model of a cell as a circle. Positions on the cell surface
are parametrized by an angle θ and ∇S → 1

R∂θ . For our cir-
cle, the velocity is v = μ[E − (E · n̂)n̂] = μ(E · θ̂)θ̂, where
θ̂ = (− sin θ, cos θ ) is the local tangent. Our continuity equa-
tion becomes, if the electrical field is in the ψ direction,

∂

∂t
p(θ, t ) = − 1

R

∂

∂θ
[−μE sin(θ − ψ )p(θ, t )]

+ D

R2

∂2

∂θ2
p(θ, t ). (1)

The steady-state solution of this equation is

p(θ ) = Z−1eκ cos (θ−ψ ), (2)

where ψ is the field’s orientation relative to the x axis and
κ = μER/D, given the field strength E , cell radius R, and
diffusion constant D. Z is a normalizing factor. p(θ ) is a
von Mises distribution—a generalization of a Gaussian dis-
tribution to a periodic domain [43]. κ can be interpreted as
a Péclet number [44], the ratio between the timescales of
diffusive spreading versus advective transport via the electric
field. Increasing κ , e.g., by making the field larger, or the
diffusion coefficient of the sensor smaller, means sensors are
more localized (more front-back polarization). In the limit of
κ � 1, Eq. (2) becomes a Gaussian with variance 1/κ . We
will often think about how cell responses depend on electric
field, so we also define β = μR/D so κ = βE . 1/β is the elec-
tric field at which the cathode-anode ratio p(ψ )/p(ψ + π )
reaches e2 ≈ 7.4. Sensor positions arising from this p(θ ) as
βE is increased are plotted in Fig. 1(b). We also solve for p in
a spherical geometry (Appendix B).

III. ESTIMATING FIELD DIRECTIONS USING
MAXIMUM LIKELIHOOD

We assume the cell chooses an orientation ψ that max-
imizes the likelihood L(ψ, E ; θ) = p(θ|ψ, E ) given the

N observed sensor locations θ = (θ1, θ2, θ3, . . . , θN ). If
the sensor positions are independent, then L(ψ, E ; θ) =∏N

i=1 p(θi|ψ, E ), or

lnL(ψ, E ; θ) = −N ln Z + κ

N∑
i=1

cos(θi − ψ ) (3)

= −N ln Z + βE · ρ, (4)

where ρ = ∑
i(cos θi, sin θi ) is the sum of sensor positions

and the field E = E (cos ψ, sin ψ ). Given θ, the direction ψ

that maximizes lnL is the maximum likelihood estimator of
the field direction ψ ; we call this estimator ψ̂ . We can see
directly from Eq. (4) that log likelihood is maximized if E is
in the direction of the sum of sensor locations ρ, i.e.,

tan ψ̂ =
∑

i sin θi∑
i cos θi

, (5)

if β > 0 (Appendix C). An analogous result can be derived
for a sphere (Appendix B).

The precision with which a cell can sense the direction ψ

is limited by the Fisher information I (ψ ) = −〈 ∂2 lnL
∂ψ2 〉 [45],

which can be computed as I (ψ ) = κ
∑N

i=1〈cos(θi − ψ )〉. We
find

I (ψ ) = Nκ
I1(κ )

I0(κ )
(circle), (6)

where Iν (x) is a modified Bessel function of the first kind.
This is also a known result for independent von Mises mea-
surements [43]. We can also compute the Fisher information
and maximum likelihood estimators for sensors on a sphere,
assuming the cell only estimates the azimuthal field angle,
using its substrate to constrain the field’s plane (Appendix B):

I (ψ ) = N (κ coth κ − 1) (sphere). (7)

The accuracy of unbiased estimators ψ̂ of a parameter ψ is
limited by the Cramer-Rao bound [45],

〈(ψ̂ − ψ )2〉 � I (ψ )−1 (Cramer-Rao). (8)

However, this bound can be incorrect when estimating a direc-
tion like ψ when I (ψ ) is small. The Cramer-Rao definition of
an unbiased estimator is that 〈ψ̂〉 = ψ . Angles, though, may
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FIG. 2. Accuracy of galvanotaxis plotted as circular variance
V = 2[1 − 〈cos(ψ̂ − ψ )〉]. Accuracy can be increased by increasing
the number of sensors N or making the sensors more polarized across
the cell (increasing βE ). Solid lines are the periodic bound [Eq. (9)],
dashed lines are the normal Cramer-Rao bound [Eq. (8)], and sym-
bols are stochastic simulation. d = 2 shown here; see Appendix B for
sphere. Inset shows zoomed in region in linear scale: MLE variance
systematically exceeds Eq. (9).

vary by factors of 2π—e.g., an estimator with 〈ψ̂〉 = ψ + 2π

would be biased in the usual definition, but unbiased in a
circular sense, requiring generalizations of the Cramer-Rao
bound [43]. We find a bound for circularly defined variables
(Appendix D):

〈cos(ψ̂ − ψ )〉 �
√

I (ψ )

1 + I (ψ )
(periodic Cramer-Rao). (9)

Galvanotaxing cells are more accurate in their field sensing
when the field strength E is increased, or if there are more
sensors (larger N), or if the sensors are more susceptible to
the field (larger β) (Fig. 2). We plot the circular equivalent
of the variance V ≡ 2[1 − 〈cos(ψ̂ − ψ )〉]; when |ψ̂ − ψ | 

2π , V reduces to the ordinary variance, as can be seen via
Taylor expansion. We show the periodic Cramer-Rao bound,
Eq. (9) (solid lines), and V computed by stochastic simulation
(symbols).

To verify our results on the variance of the maximum-
likelihood estimator shown in Fig. 2, we use stochastic
simulation. To do this, we draw each sensor position inde-
pendently from the distribution p(θ ) ∼ eκ cos(θ−ψ ). Then, for
each sensor configuration of N sensors, we determine the
maximum-likelihood direction ψ̂ by computing the sum of
sensor positions ρ. We then compute the average V = 2[1 −
〈cos(ψ̂ − ψ )〉] over 5000 generated sensor configurations.

The simulated circular variance V agrees well with the
ordinary Cramer-Rao bound at asymptotically large fields
[dashed line, Eq. (8)], with V ≈ 1/I (ψ ). Given less infor-
mation about field direction, 1/I (ψ ) exceeds the maximum
possible V = 2 and the periodic Cramer-Rao bound is a better
measure of the simulated variance. The bound in Eq. (9) is not
“tight”—the maximum likelihood estimator does not achieve
the bound at βE 
 1 (Fig. 2 inset), though it is efficient at
large E . This may occur because the bound in Eq. (9) could
be improved or MLE is not efficient for this problem [45].

FIG. 3. Electric field dependence of experiments roughly col-
lapse to predicted curve with one fit parameter γ . γ values are
2 × 10−3 mm/mV, 2.8 × 10−3 mm/mV, and 1.7 × 10−3 mm/mV for
keratocytes [2], neural crest (Fig. 1 of [19]), and granulocytes [20],
respectively. Granulocyte error bars are unknown.

IV. UNIVERSAL CURVE DESCRIBES SENSING ACROSS
CELL TYPES

In the limit of weakly polarized cells (κ � 1), which we
think is likely experimentally relevant (see next section),
we can make a particularly simple prediction. In this limit,
I (ψ ) ≈ Nκ2/d , with d = 2, 3 for circle and sphere, respec-
tively. If cells perform near their ideal abilities [Eq. (9)], the
dependence of directionality on electric field will then be

〈cos(ψ̂ − ψ )〉 =
√

Nκ2d−1

1 + Nκ2d−1
(10)

≡
√

γ 2E2

1 + γ 2E2
, (11)

where we have collected all the unknowns into γ 2 ≡ Nβ2/d ,
a single remaining fit parameter. 1/γ is the field at which the
best possible directionality is 1/

√
2 ≈ 0.7. Equation (11) is

also appropriate if there are multiple sensor types, though with
a generalized γ (Appendix E).

We test this prediction in Fig. 3, which shows three ex-
perimental measurements of galvanotaxis in different cell
types: keratocytes [2], neural crest [19], and granulocytes
[20]. These experiments observe the cosine of the angle of
cell velocity relative to the electric field—we write this “di-
rectionality” as 〈cos(ψ̂ − ψ )〉, which assumes that the cell’s
velocity is its best estimate of the field direction. (We address
generalizations of this assumption in Appendix F.) The ex-
perimental measurements can be reasonably collapsed onto
our prediction of Eq. (11), fitting γ for each cell type. We see
some deviations from the model at large electric fields (gran-
ulocytes) and small electric fields (neural crest). Large-field
deviations may arise from heating and membrane damage
[13,46]. Alternate fits including additional sources of error
like downstream noise in cell motility [22] are discussed in
Appendix F, along with potential reasons for the neural crest
deviation. A similar collapse of neural crest and granulo-
cyte data was discovered by [19], though without identifying
Eq. (11).

The data in Fig. 3 provides a tantalizing suggestion that
fluctuations in sensor positions may limit galvanotactic ac-
curacy at low field strengths, akin to earlier results on
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information limitation in chemotaxis [22,25]. However, a full
test of this idea would require a more confident identification
of a putative sensor—fixing β and N—or more precise mea-
surements to test the shape of the curve in Fig. 3. Currently, it
is impossible to rule out a model in which cells can sense the
electric field nearly perfectly—but choose to respond to it in a
noisy way (Appendix F).

V. MODEL CONSTRAINS SENSOR PROPERTIES

What do the fit values of γ =
√

Nβ2/d from Fig. 3 tell
us about the sensor? Are these parameters plausible? The key
unknowns are β and the number of sensors N . Without an
established identity of the sensor, estimating N is difficult.
Receptors like EGFR which may play a role in galvanotaxis
[47] can have expression levels of ∼5 × 104 receptors per cell
[48]; other (larger) putative sensors [49] might be fewer in
number, while ConA receptors may be much denser with N ∼
108 [50]. We can find β for a molecule given its distribution
in an electric field p(θ ). Recent work measured redistribu-
tion of fluorescent tdTomato-GPI in an electric field, finding
a cathode-anode fluorescence ratio of roughly 2.0 at E =
1000 mV/mm [15]. This ratio’s dependence on field strength
was consistent with electromigration [14,15,41]. In our elec-
tromigration model the ratio between cathodal-side and
anodal-side probability density is e2κ . The data on tdTomato-
GPI then shows e2κ = 2, or κ ≈ 0.35 at E = 1000 mV/mm,
or β ≈ (0.35)/(1000 mV/mm) ≈ 3.5 × 10−4 mm/mV. This
supports our assumption that κ � 1 in the previous section:
1000 mV/mm is a strong field, as some cells migrate direc-
tionally in fields of ∼10 mV/mm [19]. Fields in vivo have
been measured at 40–200 mV/mm (mammalian wounds [51])
and 27–40 mV/mm (Xenopus embryonic development [52]).

Because the only relevant fitting parameter is γ 2 ≡ Nβ2/d ,
we cannot separately determine N and β—i.e., we cannot tell
how much of the cell’s accuracy is driven by having a large
number of sensors vs sensors that are highly polarized. If we
use β ≈ 3.5 × 10−4 mm/mV appropriate to tdTomato-GPI
experiments on CHO cells and d = 3, all three cell types
must have roughly 70–200 sensors. By contrast, if we assume
that the field sensor is expressed at a level similar to typical
chemoattractant receptors, guessing N ≈ 104, then we find
β ≈ (3–5) × 10−5 mm/mV for the cell types studied here.
This would correspond to a cathode-anode fluorescence ra-
tio of e2βE ≈ 1.06–1.10 at E = 1000 mV/mm. This implies
that the sensor need not be strongly polarized, even at large
fields—similar to the observation that as few as a hundred
bound receptors’ difference between front and back may lead
to chemotactic migration [27].

VI. MODEL SUGGESTS ACCURACY MODERATELY
DEPENDS ON CELL SIZE

In the experimentally relevant range of fields, I (ψ ) ∼
κ2 ∼ R2 depends on radius. Is this size dependence de-
tectable? The best-available data on accuracy as a function of
cell size is [2] on keratocytes. However, in these experiments,
cell areas vary only ∼twofold. In Fig. 4 we compare our
bound [Eq. (9)] with data from [2]. We start with γ fit for
keratocytes from Fig. 3. Since we cannot separate β and N

FIG. 4. Directionality varies with cell radius in the model; ex-
perimental data are not as clear. Lines are the bound [Eq. (9) with
Eq. (6)]; symbols are experimental data on keratocytes from [2].
Error bars are standard error. γ = 0.002 mm/mV is the value fit from
Fig. 3 for keratocytes (no additional fit is done in this figure) and
E = 600 mV/mm. d = 2. The broad distribution of directionalities
seen in experiment, including points near ±1, is expected and also
seen in our simulations (Appendix I).

in our fit, we pick N = 104 and set β0 = γ
√

d/N = μR0/D,
where R0 is an average keratocyte radius for the experiments
in Fig. 4. We plot directionality 〈cos(ψ̂ − ψ )〉 as a function
of increasing radius R relative to R0. This result is insensitive
to N (Appendix G). We also plot experimental measurements
[2], computing effective radius as R = √

A/π and defining
R0 as the average keratocyte radius. The experimental data is
scattered and does not show a clear increase with radius, even
when averaged into two groups (above- and below-average
size cells). However, the experimental results are also too
noisy to rule out our predicted size dependence. We have
held N constant while varying R in Fig. 4; we see a slightly
stronger dependence on R if sensor density N/(4πR2) is
held constant (Appendix H). κ 
 1 in Fig. 4 and so, as in
Fig. 2, 〈cos(ψ̂ − ψ )〉 for the maximum likelihood estimator
is smaller than Eq. (9), but has a similar dependence on R
(Appendix G).

Additional measurements of directionality as a function of
cell size would provide a rigorous check on our predictions.
However, because of the relatively small range of sizes seen in
the keratocyte experiments, the difference between direction-
ality of small and large cells will be small. For the parameters
in Fig. 4, the predicted difference between the directionality
of a cell with radius 14 microns (the larger group average)
and a directionality of a cell with radius 10.5 microns (the
smaller group average) is at most 0.11 across the reasonable
range of electric fields. Since measurements of keratocyte di-
rectionality typically have error bars of ∼ ± 0.1 for ∼50 cells,
we would expect to need >100 cells per group to show that
large cells are more directed than small cells. Distinguishing
different scaling laws (e.g., in Appendix H) would require
even more data.

Cell-size dependence of responses has also been observed
in a different context—the time taken to respond to a changed
signal [13].

VII. BROWNIAN DYNAMICS SIMULATION OF SENSOR
DIFFUSION AND ELECTROMIGRATION

To understand how the cell will respond to dynamic
signals, or to understand how the cell’s directionality is
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correlated over time, we will need to simulate how the sen-
sor configuration evolves over time—to generate stochastic
trajectories of sensors on the surface of the cell. To do
this, we will use the stochastic differential equation corre-
sponding to Eq. (1). First, we rescale our units of time to
t̃ = t/τforget, where τforget ≡ R2/D is the time for proteins to
spread over the cell by diffusion in the absence of a field,
finding

∂

∂ t̃
p(θ, t̃ ) = − ∂

∂θ
[−κ sin(θ − ψ )p(θ, t̃ )] + ∂2

∂θ2
p(θ, t̃ ),

(12)
where κ = μER/D. We will work in these rescaled units,
always considering averaging times or exposure times relative
to the forgetting time τforget, which is the relevant timescale in
the problem. The stochastic differential equation (“Langevin
equation”) corresponding to Eq. (12) is

d

dt̃
θi(t̃ ) = −κ sin[θi(t̃ ) − ψ (t̃ )] + ξ (t̃ ), (13)

where ξ (t̃ ) is a Gaussian Langevin noise with 〈ξ (t̃ )ξ (t̃ ′)〉 =
2δ(t̃ − t̃ ′) and the field direction ψ (t̃ ) can change with time.
The sensor positions will, once simulated for a long enough
time in a constant field, have a steady-state probability distri-
bution p(θ ) given by Eq. (2). We then simulate N independent
sensors diffusing in the presence of the electric field by in-
tegrating Eq. (13) with the Euler-Maruyama method. Unless
stated elsewhere, we use time step 
t̃ = 0.001.

VIII. CELLS BENEFIT FROM TIME AVERAGING OVER
TIMES T > R2/D

Cells or groups of cells sensing chemical concentrations
or gradients may improve accuracy by integrating multiple
measurements of the signal over a time T [23,37–40,53,54],
reducing variance by Nmeas ∼ T/τcorr, where τcorr is the mea-
surement correlation time. We suspect the relevant correlation
time for galvanotaxis is τforget ≡ R2/D. To test the effect of
integrating multiple measurements in galvanotaxis, we use
Brownian dynamics simulations using Eq. (13). We then com-
pute the time-averaged direction of the estimator of the field
as ρT ≡ 1

T

∫ t+T
t dt ′ρ(t ′), where ρ(t ) = ∑

i[cos θi(t ), sin θi(t )]
is the sum of sensor positions. From the estimator of the
field direction ρT (t ), we compute the circular variance VT of
the directions of the time-averaged estimator. Averaging does
decrease error over a broad range of βE [Fig. 5(a)], though for
βE � 0.05 this may be masked, since even with averaging,
VT is near its maximum of 2. As expected, for T 
 τforget, the
circular variance VT limits back to the case of zero averaging
time [Fig. 5(b)]. For T � τforget, VT ∼ τforget/T , as we would
expect if VT ≈ VT =0/Nmeas with the number of independent
measurements Nmeas ∼ T/τforget.

In strong contrast to chemotaxis and concentration sensing,
it may be difficult for galvanotaxing cells to gain accuracy
by time averaging over T � τforget. Keratocytes have τforget ∼
15 min [13], making time averaging unlikely as keratocytes
respond to field changes within a few minutes [13]. By
comparison, estimates of averaging time for Dictyostelium
chemotaxis range from 2 to 20 s [22,26,28]. However, in
vivo, fibroblasts can take hours to respond to electric fields

(a) (b)

FIG. 5. To reduce error, cells must average over times long com-
pared with τforget. (a) Circular variance VT as a function of κ = βE
for several averaging times T . (b) VT rescaled by its snapshot value
VT =0 behaves as ∼τforget/T at large T . Lines are an average of 10 sim-
ulations of length 1000τforget, with 
t = 0.01τforget. We can capture
most time-averaging effects by a scaling form VT

VT =0
= (1 + T

2τforget
)−1,

which we chose to match the expected asymptotic forms. Here VT =0

is the circular variance with no time averaging. This collapse fails
at small κ because VT reaches its maximum value of 2. Simulation
length was set to (0.1T/τforget ) × 1000τforget for T/τforget > 10, cap-
ping at 5000τforget.

from wounds [55], making large T plausible, while smaller-
radius cell types have shorter τforget = R2/D. The utility of
time averaging is context and cell-type dependent. Our re-
sults show that the constraints on useful time averaging
are qualitatively different for galvanotaxing cells than for
chemotaxing cells.

IX. SWITCHING FIELDS PRESENT TRADEOFF
BETWEEN ACCURACY AND VARIANCE

So far, we have studied cells in constant electric fields,
but controlling precisely where a cell goes may require more
complex, changing fields. We are motivated in particular by
the work of Zajdel et al., who developed an experimental setup
for galvanotaxis with two pairs of electrodes, allowing for
application of electric fields in two perpendicular directions
[3]. By rapidly switching the electric field between the +x and
+y direction every 10 s, Zajdel et al. found that cells could be
guided along the 45◦ diagonal [3]. How does the large time
for sensors to diffuse across the cell τforget influence responses
to rapidly switched fields? Using our Brownian dynamics
simulations, we switch field direction ψ (t ) over two orthogo-
nal directions, ±π/4, varying the “exposure time” (ET) over
which the field is constant [Fig. 6(a)]. For ET 
 τforget, sen-
sors cannot rearrange on the cell surface as quickly as the
field switches, leading the cell to compromise between the two
directions ψ = ±π/4 and travel in the average field direction
ψ = 0—precisely as found in experiments controlling groups
of keratinocytes [see Fig. 4(d) of [3]].

We measure how precisely the cell is following the current
field E(t ) by the instantaneous directionality, the cosine of
the angle between the cell’s direction, and the current field
[Fig. 6(b)]. For rapid switching (ET 
 τforget) the cell has
low accuracy to the instantaneous field direction—but also
relatively low variability, i.e., the cell is going consistently
in one direction, but not the instantaneous field direction
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FIG. 6. Response to switching fields presents tradeoff between accuracy and variability. (a) Schematic of switching fields over time.
(b) Directionality as function of dimensionless time t̃ = t/τforget for different exposure times ET. (c) Standard deviation of instantaneous
directionality σdirectionality (per cell) and time averaged directionality [average of 〈cos(ψ̂ − ψ )〉 from t̃ = 10 to t̃ = 20] vary as ET is varied
(color bar). Averages are over 1000 cells, N = 1000 sensors, and κ = 0.358. An equilibration time of 4τforget in a constant field (ψ = 0) was
simulated prior to collecting data.

ψ (t ) [Fig. 6(b)]. However, at intermediate ET ∼ τforget, larger
oscillations in directionality 〈cos[ψ̂ − ψ (t )]〉 appear as the
sensors have time to repolarize in response to the changed
field [Fig. 6(b)]. In the regime ET � τforget, there is a clear
tradeoff in control: increasing ET increases both directionality
and variability in directionality [Fig. 6(c)]. This means that,
though—on average—the cell is more likely to be going in
the desired direction ψ (t ), the large variation means that it is
also more likely to go in a different direction altogether. This
is not a global tradeoff, though. For ET � τforget, variability
of directionality decreases [Fig. 6(c)]. In this case, the distri-
bution of cos[ψ̂ − ψ (t )] is heavily skewed (Appendix J). We
also find similar results, though with larger fluctuations, when
we switch fields between 0 and π (Appendix J).

The tradeoff between average directionality and variability
of directionality [Fig. 6(c)] and the appearance of large oscil-
lations in the directionality [Fig. 6(b)] are new predictions that
arise as a signature of the long time for sensors to redistribute
across the membrane in the electric field.

X. GALVANOTAXIS AND CHEMOTAXIS MAY SHARE
SIMILAR SENSING STRATEGY

Our results show that circular or spherical cells can mea-
sure the direction of an electrical field by summing the vectors
pointing to their electromobile sensors ρ. This direction can
be found by the cell by local protrusions in the normal direc-
tion; see Appendix K. This method of choosing a direction
is exactly analogous to the estimator for chemotaxis of cir-
cular cells in [37,38], where cells move toward the vector
sum of bound sensors. This is unexpected, given essential
differences between chemotactic and galvanotactic models:
galvanotactic sensors reorganize and chemotactic ones do
not, while galvanotactic sensors do not bind external ligand.
Highly accurate processing of galvanotactic information and
chemotactic information could then be performed by signal-
ing networks shared between galvanotactic and chemotactic
responses. Supporting this idea, chemotactic and galvanotac-
tic response in Dictyostelium share common core elements,
including TORC2 and PI3K [56].

XI. FURTHER EXPERIMENTAL TESTS

A key implication of our modeling is that observed gal-
vanotactic accuracies are physically plausible either with
relatively few sensors (∼100) as responsive as tdTomato-GPI
or with a larger number of sensors whose redistribution need
not be obvious even in strong (1000 mV/mm) electric fields.
Our work provides a natural quantitative route to test a pu-
tative sensor by modifying its abundance (via knockdown or
overexpression) or polarization (via changes in extracellular
viscosity or pH [14,15], or molecular charge) and then mea-
sure the cell’s directionality as a function of field. Our work
provides a quantitative prediction for how cell directionality
depends on sensor abundance and polarization. We can also
predict directionality as a function of cell size (Fig. 4) and
directionality as a function of exposure time in a switching
field (Fig. 6) for any cell type once γ is fit from the universal
directionality-field strength curve (Fig. 3).

XII. SENSOR INTERACTIONS AND CELL SHAPE
CAVEATS

We have neglected sensor-sensor interactions by assuming
that sensor positions are independent from one another. We
believe sensor-sensor interactions are likely to be relevant
only at very large fields E and very large N . If sensors
were uniformly spread over the spherical cap within π/4
of the field (this is more concentrated than κ = 1, corre-
sponding to electric fields much larger than experimentally
reasonable), sensor density would be N/A with A = 2πR2[1 −
cos (π/4)] ≈ 1.8R2 the area of the cap. With N = 104 sensors
and R = 5 μm, typical distance between sensors is

√
A/N ≈

70 nm, beyond typical screening lengths. Hydrodynamic
interactions in a membrane may be long range [57–59],
experimentally measured at micron scale [60]. Including hy-
drodynamic interactions would not alter the steady state p(θ ),
but would lead to correlated sensor diffusion, changing the
time required for a sensor configuration to decorrelate, likely
only altering the timescale τforget.

Changing cell shape would also affect our results, espe-
cially since the electromigration velocity depends on how the
local field is oriented with respect to the membrane surface.
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This will allow elongated cells to have different sensitivities
to fields parallel and perpendicular to them, as in chemotaxis
[38]. Initial calculations with an elliptical geometry, which
will be published in a separate manuscript, show that an el-
lipse with semiminor and semimajor axes R1 and R2 with an
aspect ratio between 2 and 3 will have a Fisher information
within 16–24% of a circular cell with radius (R1 + R2)/2.
Using the full formula for an elliptical cell would not change
the curve in Fig. 3, but would change the fitted β values by
8–11%. We thus expect our approach to be quite acceptable
even for fairly elongated cells.

Data and code required to reproduce all of the figures of
the paper are deposited at Zenodo: [61].
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APPENDIX A: DETAILS OF ELECTRIC FIELD
ASSUMPTIONS

In the main text, we have written our assumption that the
velocity of the sensor is

v = μ[E − (E · n̂)n̂], (A1)

where E is the externally applied field—i.e., the field far away
from the cell—and n the normal to the cell surface. Essen-
tially, this says that the motion of the sensor is only in the
tangential plane of the membrane (we subtract off the normal
component)—which will be true as long as the membrane is
not deforming. μ is an effective mobility akin to that derived
by [41]. This parameter μ could depend on the zeta potential
of the surface and the extracellular piece of the sensor, the
viscosity of the fluid near the membrane, and the membrane
viscosity as well as the sensor geometry. The assumptions
of [41] incorporate both electrophoresis and electro-osmotic
flow. However, our focus is not on the details of these specific
assumptions—we view μ as a phenomenological parameter,
essentially describing the linear response to an electric field,
which we set from experiment. However, we do want to
mention one issue: why have we written this in terms of the
applied electric field E? The electric field near the cell is
not the same as the applied electric field E (Fig. 7), but the
tangential component of the field at the surface of the cell is
proportional to the tangential component of the external field.

For a simple example, let us think about modeling a
circular cell in an applied electric field E0x̂. The potential
V (r, θ ) will obey Laplace’s equation ∇2V = 0 external to
the cell and will have the potential far from the cell go
to V → −E0x = −E0r cos θ . For simplicity, we start with a
boundary condition ∂V/∂r|r=R = 0 (this is used by [41] and
corresponds to an assumption that the cell membrane has neg-
ligible conductivity in comparison to the cell interior and the
fluid outside the cell [62,63]). By using the general solution
to Laplace’s equation in two dimensions [64], we can find
V (r, θ ) = −E0( R2

r + r) cos θ . The electric field as a function

FIG. 7. Field lines and vector fields for electric field around the
boundary of the cell if we assume ∂V/∂r = 0 at the membrane, as in
[41], though this assumption is not necessary (see text).

of position E(r) is then

E = −∇V = −∂V

∂r
r̂ − 1

r

∂V

∂θ
θ̂

= E0

[(
−R2

r2
+ 1

)
cos θ r̂ +

(
R2

r2
+ 1

)
(− sin θ )θ̂

]
.

(A2)

We plot this in Fig. 7. The tangential component (the θ̂ com-
ponent) at the cell boundary is −2E0 sin θ . The tangential part
of the electric field at the cell membrane is thus proportional
to the tangential part of the external field, suggesting our
assumption (v = −μE sin θ θ̂) with E the external electric
field is reasonable. The boundary condition ∂V/∂r|r=R = 0
is the one used by [41], but many different boundary con-
ditions, e.g., a finite conductivity, or treating the cell and its
environment as uniform dielectric materials, will still lead
to proportionality of this sort—but with a different prefactor
(see, e.g., Refs. [64,65] for the sphere case).

APPENDIX B: SPHERICAL CELL GEOMETRY

The concentration of sensors on a spherical cell with
an electric field in the z direction is worked out in [41]
as c ∼ eβE cos θ . We can generalize this to a field in an
arbitrary direction as p(θ, φ) ∼ exp(βE · û), where û =
(cos φ sin θ, sin φ sin θ, cos θ ) is the unit vector on the sphere
and the field E = E (cos ψφ sin ψθ, sin ψφ sin ψθ, cos ψθ )—
this is the von Mises–Fisher distribution [43]. To model a
cell on a substrate, where velocities can only be measured in
the plane of the substrate, we will assume explicitly that the
field is in the xy plane (ψθ = π/2). In a three-dimensional
(3D) system, e.g., a single cell in extracellular matrix or in
solution, the cell would have to estimate both the azimuthal
and polar angle of the electric field. However, wound heal-
ing and galvanotaxis are often on flat substrates, where the
cell has other information about the location of the substrate
(e.g., apicobasal polarity in epithelia). Thus we assume that
the polar angle is fixed and the cell only needs to esti-
mate the azimuthal angle ψ . This reduces the estimation on
a sphere to a single 2π -periodic variable, so our modified
Cramer-Rao bound should hold. We can then, considering the
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azimuthal field angle as ψ , write the probability distribution
of a single sensor as p(φ, θ ) = Z−1 exp [κ cos(φ − ψ ) sin θ ].
For

∫
dθ sin θ dφp(φ, θ ) = 1, we have Z = (4π sinh κ )/κ .

Then, the log-likelihood takes the form

lnL(ψ, E ; θ) = N ln
[ κ

4π sinh κ

]

+κ

N∑
i=1

cos(φi − ψ ) sin θi. (B1)

We note that the second term on the right can be rewritten, so
that the log likelihood is

lnL(ψ, E ; θ) = N ln
[ κ

4π sinh κ

]
+ β

N∑
i=1

E · ûxy
i (B2)

= N ln
[ κ

4π sinh κ

]
+ βE · ρxy, (B3)

where ûxy
i = (cos φi sin θi, sin φi sin θi, 0) and ρxy = ∑

i ûxy
i is

the sum of the sensor locations—projected into the xy plane.
The orientation of the field E = E (cos ψ, sin ψ, 0) that max-
imizes the likelihood is the one that puts E in line with ρxy,
exactly as in the 2D circle case (we can also see this by
explicitly differentiating the log likelihood; see Appendix C).

Now we can compute the Fisher information by first calcu-
lating the second derivatives:〈

∂2

∂ψ2
lnL(ψ, E ; θ)

〉
= −κ

N∑
i=1

〈cos(φi − ψ ) sin θi〉, (B4)

〈
∂2

∂ψ ∂E
lnL(ψ, E ; θ)

〉
= β

N∑
i=1

〈sin(φi − ψ ) sin θi〉, (B5)

〈
∂2

∂E2
lnL(ψ, E ; θ)

〉
= −Nβ2 sinh2 κ − κ2

κ2 sinh2 κ
. (B6)

The expectation values 〈cos (φi−ψ ) sin θi〉 = κ−1(κ coth κ −
1) and 〈sin (φi − ψ ) sin θi〉 = 0 by symmetry. By taking the
negatives of the calculated derivatives, this gives us the final
Fisher information matrix I ,

I = N

(
κ coth κ − 1 0

0 β2 sinh2 κ−κ2

κ2 sinh2 κ

)
. (B7)

The upper-left component of the matrix corresponds to I (ψ ),
which was given as Eq. (6) in the main text.

We show the spherical-cell errors as a function of
βE and N in Fig. 8. Here, the stochastic simulation is
done by generating random sensors according to p(φ, θ ) ∼
Z−1 exp[κ cos(φ − ψ ) sin θ ] by rejection sampling [we note
that, to sample from this distribution on the sphere, we are
sampling from p(φ, θ ) sin θ dθ dφ]. For each parameter, we
generate 1000 sensor configurations. For each configuration,
we compute the estimator ψ̂ by summing sensor positions to
find ρxy and then use this to compute V .

APPENDIX C: COMPUTING MAXIMUM LIKELIHOOD
ESTIMATORS FOR FIELD DIRECTION AND STRENGTH

AND CORRESPONDING FISHER INFORMATION

For the circular cell model, the probability density of a
single sensor is p(θ ) = Z−1eκ cos(θ−ψ ). For p(θ ) to integrate to

FIG. 8. Accuracy of galvanotactic estimation as a function of
electric field and number of sensors for a spherical cell. Solid lines
are the simple periodic bound [Eq. (8) in the main text], dashed
lines are the normal Cramer-Rao bound [Eq. (7) in the main text],
and symbols are computed from stochastic simulation. Inset shows
zoomed in region in linear spacing, showing MLE variance is sys-
tematically above the periodic bound.

one, Z = 2π I0(κ ). We note κ = βE . Then the log likelihood
is

lnL(ψ, E ; θ) = −N ln [2π I0(κ )] + κ

N∑
i=1

cos(θi − ψ ).

(C1)
We discuss in the main text that the maximum-likelihood

estimation of the electrical field direction is to sum the vectors
pointing in the direction of their electromobile sensors. Here
we show this a little more explicitly, as well as showing how
estimators for the electric field magnitude can be derived for
the circle and the sphere. The log-likelihood functions for a
circular and spherical cell are given by Eqs. (C1) and (B1),
respectively. To find the maximum likelihood estimator, we
find the value ψ̂ that maximizes these log likelihoods by
differentiating each equation with ψ and setting this equal to
zero,

Circle:
∂

∂ψ
lnL(ψ, E ; θ)

∣∣∣∣
ψ=ψ̂

= κ

N∑
i=1

sin(θi − ψ̂ ) = 0,

(C2)

Sphere:
∂

∂ψ
lnL(ψ, E ; θ)

∣∣∣∣
ψ=ψ̂

= κ

N∑
i=1

sin(φi − ψ̂ ) sin θi

= 0. (C3)

For the circle, we can solve for ψ̂ by using the trigonometric
identity

∑
sin (θi − ψ̂ ) = ∑

(sin θi cos ψ̂ − cos θi sin ψ̂ ) =
0. Separating the two terms allows us to factor out ψ̂ from
the summation: cos ψ̂

∑
sin θi = sin ψ̂

∑
cos θi. From this

juncture, we can then solve for the estimator, ψ̂ , of the field
direction. An analogous calculation can be done for the
sphere. These results are

Circle: tan ψ̂ =
∑N

i=1 sin θi∑N
i=1 cos θi

, (C4)

Sphere: tan ψ̂ =
∑N

i=1 sin φi sin θi∑N
i=1 cos φi sin θi

. (C5)
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We see that the angle of the maximum likelihood estimator is
obtained from the components of the summed vector of the
sensor locations, ρ.

In addition, we can find the maximum likelihood estimator
for the field strength E . Differentiating the log-likelihood
functions for the circle and sphere for the field strength, E ,
yields

Circle:
∂

∂E
lnL(ψ, E ; θ)

∣∣∣∣
E=Ê

= β

N∑
i=1

cos(θi − ψ ) − βN
I1(κ̂ )

I0(κ̂ )
= 0, (C6)

Sphere:
∂

∂E
lnL(ψ, E ; θ)

∣∣∣∣
E=Ê

= β

N∑
i=1

cos(φi − ψ ) sin θi + N

Ê
− Nβ

tanh κ̂
= 0, (C7)

where κ̂ = βÊ . We can then reorganize these equations to
provide formulas for the maximum likelihood estimators:

Circle:
I1(κ̂ )

I0(κ̂ )
= 1

N

N∑
i=1

cos(θi − ψ ), (C8)

Sphere:
1

κ̂
(κ̂ coth κ̂ − 1) = 1

N

N∑
i=1

cos(φi − ψ ) sin θi. (C9)

We cannot analytically solve for the electric field here, but
this provides a straightforward numerical way to find the
maximum likelihood estimator Ê .

In the main paper, we have introduced the Fisher informa-
tion for the field direction only. However, it is straightforward
to extend the results to describe simultaneous estimation of
the field direction and strength. Simultaneously estimating the
field strength does not change the accuracy of the directional
estimate—as we might guess, because the estimator for the
field direction—the sum of sensor directions—does not de-
pend on field strength.

Then we can work out the Fisher information matrix com-
ponents Iαβ = −〈 ∂2 lnL

∂α∂β
〉, where α, β are dummy variables

indicating field magnitude E or angle ψ . To do this, we
compute〈

∂2

∂ψ2
lnL(ψ, E ; θ)

〉
= −κ

N∑
i=1

〈cos(θi − ψ )〉, (C10)

〈
∂2

∂ψ∂E
lnL(ψ, E ; θ)

〉
= β

N∑
i=1

〈sin(θi − ψ )〉, (C11)

〈
∂2

∂E2
lnL(ψ, E ; θ)

〉
= −N

β2

2

[
1 + I2(κ )

I0(κ )
− 2

(
I1(κ )

I0(κ )

)2
]
.

(C12)

The expectation of the cosine is 〈cos(θi − ψ )〉 = I1(κ )/I0(κ )
and 〈sin(θi − ψ )〉 = 0 by symmetry.

This gives us the final Fisher information matrix I ,

I = N

(
κ I1(κ )

I0(κ ) 0

0 β2

2

[
1 + I2(κ )

I0(κ ) − 2
( I1(κ )

I0(κ )

)2]
)

. (C13)

These results are known as the Fisher information associated
with multiple samples of a von Mises distribution [43].

APPENDIX D: PERIODIC GENERALIZATION
OF THE CRAMER-RAO BOUND

We show here a brief derivation of the periodic Cramer-
Rao bound of Eq. (8) in the main text. This result can also
be directly derived from a variant of the periodic Cramer-Rao
bound found in [43], Chap. 5, but we show a derivation here
because it is relatively straightforward but not well known in
the physics literature. We start with a standard derivation of
the ordinary Cramer-Rao bound, similar to, e.g., Ref. [45].
We use this here to show how the derivation of the periodic
Cramer-Rao bound follows from similar logic.

1. Ordinary Cramer-Rao bound derivation

If we have a parameter ψ that we want to estimate from
data x, we can construct an estimator ψ̂ (x). If the data is gen-
erated from a process with a probability density for the data
given the parameter p(x|ψ ), then requiring that the estimator
is unbiased is requiring 〈ψ̂〉 = ψ for all ψ , i.e.,∫

dx[ψ̂ (x) − ψ]p(x|ψ ) = 0. (D1)

Because Eq. (D1) is true for all values of the parameter ψ , we
can take a derivative of Eq. (D1), finding∫

dx[ψ̂ (x) − ψ]
∂

∂ψ
p(x|ψ ) −

∫
dx p(x|ψ ) = 0. (D2)

The second term is just 1, since the probability density is
normalized, so

1 =
∫

dx[ψ̂ (x) − ψ]
∂

∂ψ
p(x|ψ ), (D3)

1 =
∫

dx[ψ̂ (x) − ψ]p(x|ψ )
∂

∂ψ
ln p(x|ψ ), (D4)

12 =
[∫

dx[ψ̂ (x) − ψ]p(x|ψ )
∂

∂ψ
ln p(x|ψ )

]2

, (D5)

1 =
[∫

dx{
√

p(x|ψ )[ψ̂ (x) − ψ]}

×
{√

p(x|ψ )
∂

∂ψ
ln p(x|ψ )

}]2

. (D6)

In the last line we have split p into
√

p
√

p. Then we can
apply the Cauchy-Schwarz inequality, (

∫
dx f (x)g(x))2 �

(
∫

dx f (x)2)(
∫

dx g(x)2), which gives

1 �
[∫

dx p(x|ψ )[ψ̂ (x) − ψ]2

]

×
[∫

dx p(x|ψ )

(
∂

∂ψ
ln p(x|ψ )

)2
]
. (D7)

Rearranging, this is

〈(ψ̂ − ψ )2〉 � 1〈(
∂

∂ψ
ln p(x|ψ )

)2〉 . (D8)
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The value 〈( ∂
∂ψ

ln p(x|ψ ))2〉 is I (ψ ), the Fisher information

for ψ , and can be equivalently written as 〈( ∂
∂ψ

lnL)2〉 =
−〈 ∂2

∂ψ2 lnL〉, where L(ψ ; x) = p(x|ψ ) is the likelihood [45].
This establishes the ordinary Cramer-Rao bound [Eq. (7) in
the main text].

2. Generalization to periodic variables

The ordinary Cramer-Rao bound fails for periodic vari-
ables in part because the normal definition of an unbiased
estimator, 〈ψ̂〉 = ψ , will not be reasonable when the vari-
able to be estimated is only defined modulo 2π : 2π + ψ is
just as good an estimate for ψ as ψ itself. We can define a
generalized sense of “unbiased,” for a periodic variable, defin-
ing unbiased estimators ψ̂ as having 〈sin(ψ̂ − ψ )〉 = 0 [43].
While we note that any estimator we can think of as having
an unbiased direction will have 〈sin(ψ̂ − ψ )〉, it would be
possible to construct an estimator where ψ̂ = ψ + π that also
satisfies this constraint. Other periodic generalizations of the
Cramer-Rao bound exist, with different definitions of periodic
unbiasedness, e.g., Ref. [66]. However, these generally require
knowledge of the distribution of the estimator ψ̂ in order to
construct the bound, making them less useful in our context.
The bound we will derive here, while correct, may be able to
be improved.

Beginning with this definition of an unbiased estimator,∫
dx sin[ψ̂ (x) − ψ]p(x|ψ ) = 0. (D9)

We can take a derivative with respect to the parameter ψ :∫
dx sin[ψ̂ (x) − ψ]

∂

∂ψ
p(x|ψ )

−
∫

dx p(x|ψ ) cos[ψ̂ (x) − ψ] = 0. (D10)

The second term is just −〈cos(ψ̂ − ψ )〉. We can then follow
a similar approach to the previous section,∫

dx sin[ψ̂ (x) − ψ]p(x|ψ )
∂

∂ψ
ln p(x|ψ ) = 〈cos(ψ̂ − ψ )〉,

(D11)[∫
dx

√
p(x|ψ ) sin[ψ̂ (x) − ψ]

√
p(x|ψ )

∂

∂ψ
ln p(x|ψ )

]2

= 〈cos(ψ̂ − ψ )〉2. (D12)

Applying Cauchy-Schwarz,

〈cos(ψ̂ − ψ )〉2 �
[∫

dx p(x|ψ ) sin2[ψ̂ (x) − ψ]

]

×
[∫

dx p(x|ψ )

(
∂

∂ψ
ln p(x|ψ )

)2
]
,

(D13)

〈cos(ψ̂ − ψ )〉2 � 〈sin2(ψ̂ − ψ )〉I (ψ ). (D14)

This bound is the analogous bound to the Cramer-Rao bound,
but unfortunately this bound depends not only on the Fisher
information I (ψ ) but also 〈sin2(ψ̂ − ψ )〉—making it difficult

to apply when we do not know the distribution of ψ̂ . We can
get a more easily applied result—at the cost of weakening
the bound slightly. We start by rewriting 〈sin2(ψ̂ − ψ )〉 =
1 − 〈cos2(ψ̂ − ψ )〉. Then

〈cos(ψ̂ − ψ )〉2 � (1 − 〈cos2(ψ̂ − ψ )〉)I (ψ ). (D15)

Because 〈cos2(ψ̂ − ψ )〉 � 〈cos(ψ̂ − ψ )〉2 (by the positivity
of the variance or the Cauchy-Schwarz inequality again),

〈cos(ψ̂ − ψ )〉2 � (1 − 〈cos(ψ̂ − ψ )〉2)I (ψ ), (D16)

[1 + I (ψ )]〈cos(ψ̂ − ψ )〉2 � I (ψ ), (D17)

〈cos(ψ̂ − ψ )〉 �
√

I (ψ )

1 + I (ψ )
. (D18)

This is Eq. (8) in the main text. This reduces to the or-
dinary Cramer-Rao bound in the limit of large I (ψ ), in
which case we expect the distribution of ψ̂ becomes closely
localized to ψ , so 〈cos(ψ̂ − ψ )〉 ≈ 1 − 1

2 〈(ψ̂ − ψ )2〉. Simul-

taneously,
√
I/(1 + I ) =

√
1/(I−1 + 1) ≈ 1 − 1

2I , so the
bound Eq. (8) becomes Eq. (7).

APPENDIX E: GENERALIZATION TO MULTIPLE
SENSOR TYPES

We briefly mention here the possibility that there are mul-
tiple sensor types with different properties. This would seem
reasonable, as any membrane-bound molecule with charge
could serve as a sensor if the cell can interpret its location
reliably. There are also known multiple receptor types for
chemoattractants like cAMP [67]. If each sensor has its own
value of βi = μiR/Di, then the probability density of a sin-
gle sensor is pi(θ ) = Z−1eκi cos(θ−ψ ) with Z = 2π I0(κi) and
κi = βiE . Then the log likelihood for N sensors is

lnL(ψ, E ; θ) = −
∑

i

ln [2π I0(κi )] +
N∑

i=1

κi cos(θi − ψ )

(E1)
and the Fisher information for the angle is

I (ψ ) = −
〈

d2

dψ2
lnL(ψ, E ; θ)

〉
=

N∑
i=1

κi〈cos(θi − ψ )〉

=
N∑

i=1

κi
I1(κi )

I0(κi )
. (E2)

Importantly, in the limit of weakly polarized cells, i.e., κi 
 1
for all i, we can expand the Bessel functions as before and find

I (ψ ) ≈ 1

2

N∑
i=1

κ2
i = E2

2

N∑
i=1

β2
i . (E3)

This means that even if there are multiple sensors, we should
still expect to see 〈cos(ψ̂ − ψ )〉 ≈

√
γ 2E2/(1 + γ 2E2) if

cells are near their optimal sensing abilities. However, in this
case, γ 2 = ∑N

i=1 β2
i /2 is an effective averaged value for the

different sensors.
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FIG. 9. Alternative fit with model using a maximum value of
∼0.83.

APPENDIX F: EFFECTS OF DOWNSTREAM NOISE AND
ALTERNATE MODELS FOR NEURAL CREST DATA

In the main text, we have essentially assumed that single
cells perfectly follow their estimation of the field direction ψ̂ .
However, we know that there are other sources of noise in
directed cell migration, both in processing the signal [53] and
in stochastic events in motility itself. This will be particularly
important at large field strengths, where the cell gets a large
amount of information from the field—the downstream noise
can be the dominant source of error, as has been observed
in chemotaxis at large gradient strengths [22]. To model this
downstream noise, we assume that the cell, instead of follow-
ing the estimator ψ̂ perfectly, instead travels in a direction
ψv = ψ̂ + δ, where δ is a random noise that is symmetric
around δ = 0 and independent from the sensor locations. If
this is the case, then the directionality of the cell’s velocity ψv

from the true field direction is reduced from our bound,

〈cos (ψv − ψ )〉 = 〈cos (ψ̂ − ψ + δ)〉 (F1)

= 〈cos (ψ̂ − ψ ) cos δ

− sin (ψ̂ − ψ ) sin δ〉 (F2)

= 〈cos (ψ̂ − ψ )〉〈cos δ〉
−〈sin (ψ̂ − ψ )〉〈sin δ〉 (F3)

= 〈cos (ψ̂ − ψ )〉〈cos δ〉, (F4)

where the last step comes from the assumption that the distri-
bution of noise P(δ) is symmetric about δ = 0. If we have
δ uniformly distributed over a range ±
, then 〈cos δ〉 =
sin 
/
. We see from the data in Fig. 3 in the main paper
that directionality, even at large fields, does not exceed a
value of roughly ∼0.8. We thus choose 
 = π/3 or 〈cos δ〉 ≈
0.83 and fit the experimental data to Eq. (F4), assuming that
〈cos (ψ̂ − ψ )〉 is given by the bound of Eq. (8) in the main
text (Fig. 9). The fit quality is similar with this set of assump-
tions to that in Fig. 3. However, if we choose this alternate
assumption, we find different, larger values for γ relative to
Fig. 3 in the main text (γ values are 2.7 × 10−3, 4.4 × 10−3,
and 2.7 × 10−3 mm/mV for keratocytes, neural crest, and
granulocytes, respectively). If we assume (motivated by mea-
surements of the polarity cathode-anode ratio being 2.0) β =
3.5 × 10−4 mm/mV as in the main text, the estimated number
of sensors increases to 170–480. If we assume a fixed number
of 104 sensors, the ratio of cathode-anode concentration at
1000 mV/mm would be 1.10–1.17, i.e., the level of polariza-
tion required to explain the data would increase by about 6%

FIG. 10. First few neural crest data points fit to bound with
downstream noise.

from the previous maximum cathode-anode ratio of 1.10. The
increase in required polarization or sensors when we assume
downstream noise makes sense. Given the downstream noise,
the directionality for a fixed amount of information decreases,
so the cell would need more sensors or be more polarized
(larger β) to achieve the same level of directionality as before.
However, the assumption of downstream noise at these mod-
erate levels does not qualitatively change the core predictions
of the paper that cells may sense with small numbers (a few
hundred) of sensors that are highly polarized or large numbers
of weakly polarized sensors.

1. Neural crest data fit separately

We note that, in particular, the neural crest data in Fig. 3
is not a perfect fit with the curve. This may reflect, to some
extent, systematic or random errors—we view the overall fit
of Fig. 3 as fairly rough. However, an alternate view of this
data is that, because directionality is large even at the lowest
fields (but presumably zero at zero field), the cells must have
near-perfect information at the low fields. In this view, the
deviation from perfect directionality is due to downstream
noise, which could then vary with electric field. To some ex-
tent, an alternative model like this is difficult to disprove—we
can always invoke increasingly complicated downstream pro-
cesses. To be truly convinced of the effect of sensor diffusive
noise, we would need to know what the sensor molecule(s)
are and their concentration. We focus on the first four neu-
ral crest data points, which show the largest deviation from
our original model (Fig. 10). If we assume a downstream
noise so 〈cos δ〉 ≈ 0.37 (
 = e − π/6), we can fit the neu-
ral crest data separately. With this fit, we find a bigger γ

value of 5.2 × 10−2 mm/mV. If we assume β = 3.5 × 10−4

mm/mV, this would correspond to a number of sensors of
about 6.5 × 104—about 50 sensors per square micron on a
10-micron-radius cell. Correspondingly, this γ value would
correspond to a cathode-anode ratio of ∼6 if the number
of sensors is fixed at 104. These values are larger than our
predictions in the main text, but might also be plausible.
Another possibility for the deviation between our model and
the neural crest cell data is that neural crest cell galvanotaxis
is qualitatively different in some way from keratocyte and
granulocyte galvanotaxis. In fact, the paper that originally
measured neural crest galvanotaxis [19] speculates that neural
crest galvanotaxis and granulocyte galvanotaxis occur through
different mechanisms. This is also supported by data showing
that the response of neural crest cells exposed to a field being
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FIG. 11. Dependence of directionality on cell radius. Lines are
the periodic bound with the Fisher information for a circle; symbols
are stochastic simulation. γ 2 = Nβ2/d is fit to the data of [2], γ =
0.002 mm/mV, and the E field used is 600 mV/mm. d = 2.

turned on can be complex, with polarization occurring in two
phases [68]. This two-stage polarization would not be seen in
our model. However, if, for instance, additional sensors are
expressed on the surface in response to fields turning on, this
sort of directionality change might occur.

APPENDIX G: PREDICTION OF SIZE DEPENDENCE
DOES NOT DEPEND ON NUMBER OF SENSORS

In Fig. 4 in the main paper, we plot the directionality as a
function of cell radius predicted by our bound. We did this
by picking a value N = 104, but the results do not depend
on this choice. We show this in Fig. 11. We start with γ

fit for keratocytes from Fig. 3 in the main text: γ = 0.002
mm/mV. Since we cannot separate β and N in our fit, we show
several values of N and then pick the corresponding value of
β at the reference radius, β0 = γ

√
d/N = μR0/D, where R0

is the reference keratocyte radius. As expected, because the
Fisher information only depends on γ in the limit of smaller
electric fields, these lines all collapse (Fig. 11). Similarly, we
can perform stochastic simulations with different numbers of
sensors N with varying β0, and compute the sensor-direction-
sum MLE direction, and see that the directionalities predicted
from these simulations are also independent of the choice of
N . However, because we are in the limit of very weak fields,
as in the inset of Fig. 2, where there are deviations between
the MLE estimator and the best-possible accuracy, these are
systematically below the bound. However, the dependence on
radius is similar. If we fit our data to the MLE instead of to
the bound, we would expect similar values, but a difference of
about a factor of 2 in the predicted number of receptors.

The results on radius dependence can also be generalized to
the spherical cell assumption. We see a near-identical depen-
dence on radius from our model between sphere and circular
cell (Fig. 12). This is, of course, what we would expect given
Fig. 4 in the main text, because the Fisher information I (ψ )
differs only by a constant factor between d = 2 and d = 3
and this factor has been absorbed into γ . We can only extract
γ from the collapsed experimental data, but we also only need
γ to reliably predict the radius dependence.

FIG. 12. Dependence of directionality on cell radius assuming a
spherical cell. Lines are the periodic bound with the Fisher infor-
mation for a sphere; symbols are stochastic simulation. γ 2 = Nβ2/d
is fit to the data of [2], γ = 0.002 mm/mV, and the E field used is
600 mV/mm. d = 3.

APPENDIX H: ALTERNATE MODEL: CHANGING
SENSOR NUMBER WITH CELL SIZE

In the main text, we have assumed that, in comparing
different cells with different radii, they still have the same
number of sensors. This would be reasonable if, for instance,
the cells have different areas because they have different levels
of spreading on the surface—e.g., if in three dimensions they
have similar volumes and surface areas, but their measured ar-
eas when projected on the 2D substrate are different. However,
if cells have different volumes due to, e.g., being in different
stages in the cell cycle, we might expect different numbers of
sensors. The most natural assumption would be then that the
sensors are at a fixed concentration on the membrane, i.e., that
the number per unit surface area of the cell is fixed (as a side
note, some protein species tend to be kept at a fixed concentra-
tion, but others have concentrations that scale differently with
cell size [69]; this is an active area of research). We show in
Fig. 13 how the results of Fig. 4 in the main text would differ
if we instead assumed that sensor number is proportional to
the cell surface area, e.g., choosing N = (R/R0)2N0. We see

FIG. 13. Comparison between experiment and theory on cell size
dependence using different assumptions about how N scales with
cell size. Lines are the periodic Cramer-Rao bound with the Fisher
information for a circular cell; symbols are experimental data from
[2]. γ = 0.002 mm/mV is the fit to [2] from Fig. 3 in the main text
and E = 600 mV/mm. d = 2.
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FIG. 14. Histogram of cell directionalities over simulation time
course with constant electric field. κ = 0.0168. N = 10 000 sensors.
This corresponds to γ = 0.002 mm/mV, to match the experiment
in Fig. 4. E = 600 mV/mm. This distribution was produced by
first simulating 1000 cells with 10 000 sensors using the Brownian
dynamics model Eq. (13), estimating ψ̂ using Eq. (5), and then
calculating the directionality.

a stronger dependence on R, as we would expect, but again,
because of the relatively small range of radii and the large
error bars, this is not very different in terms of comparison to
experiment.

APPENDIX I: DISTRIBUTION OF CELL
DIRECTIONALITY UNDER CONSTANT FIELDS

In Fig. 4 in the main text, we see a broad distribution of di-
rectionalities from single cells, including directionalities near
−1. This is a common feature of distributions of the cosine
of an angle and are also reproduced in our simulations. We
show in Fig. 14 the distribution of directionality for Brownian
dynamics simulations with parameters appropriate to Fig. 4.
We see that the distribution has peaks at both +1 and −1 and
a broad population of cells with intermediate directionalities.
This is not unique to galvanotaxis, as it is observed in many
experiments on chemotaxis or other single-cell directed motil-
ity (for example, see Fig. 1(c) of [70]).

Fundamentally, the broad distribution of directionalities
in Figs. 14 and 4 arises from changing variables from an
angle x to the cosine of the angle cos x. Even if x is uni-
formly distributed, the distribution P(cos x) is broad and
peaked at cos x = ±1, because cos x is slowly varying when
cos x ≈ ±1. This arises from a Jacobian factor in doing the
change of variables for probability densities (see, e.g., Chap. 2
of [71]).

APPENDIX J: MORE DETAILS OF CELLS
IN SWITCHING FIELDS

We show a simulation using the same setup as Fig. 6 but
switch the field between larger angles, switching between
±π/2 in Fig. 15.

In the main text [Fig. 6(a)] we see the averaged direc-
tionality over 1000 cells as a function of time for different
exposure times (ET) of a switching field. The distribution of
the individual cell directionalities (Fig. 16) reveals that ET
affects the distribution skewness. Lower exposure times have

FIG. 15. Directionality as a function of dimensionless time t̃ for
switching angle ±π/2 for different values of the exposure time ET.
Parameters and simulation setup are the same as in Fig. 6(b) of the
main text.

relatively small skew, which aligns with the rapid oscillation
we see in Fig. 6(a) of the main text that is fairly symmetric.
However, higher ET shows cells spending more and more time
aligned with the field, skewing the directionalities closer to a
value of one.

APPENDIX K: SIMPLE MODEL TO COMPUTE THE
MAXIMUM-LIKELIHOOD ESTIMATOR

The core idea of this simple model is that the cell makes
local protrusions normal to its boundary where there is a high
concentration of local sensor. This is consistent with, e.g.,
recent work showing that local charge actually can regulate
protrusion [72]. The idea that cell direction and shape are
controlled by protrusions normal to the boundary is a classic
one [73,74]. With this idea, we write a force density exerted
by the cell at position θ as

f (θ ) = n̂
N∑

i=1

g(θ − θi ), (K1)

where n̂ = (cos θ, sin θ ) is the local normal. Here, the sum∑N
i=1 g(θ − θi ) is a way to create a smoothed picture of the

local sensors—if g(θ ) were a δ function, this would be spikes
at the location of sensors. We show a sketch of this function

FIG. 16. Histograms of cell directionalities over simulation time
course with switching electric field for different ET.
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FIG. 17. Illustration of local protrusion model. Red line shows
the sum

∑N
i=1 g(θ − θi ) for sensors (black dots).

for a small number of sensors in Fig. 17. The total force
exerted by the cell’s motility around the periphery is then just

F = R
∫

dθ f (θ ) = R
∫

dθ n̂
N∑

i=1

g(θ − θi ). (K2)

We find that the direction of the force applied to the cell
will be in the direction of the maximum-likelihood estimator
of direction ρ as discussed in the main direction. This will
happen with most reasonable functions g(u), if we assume two
very natural properties of the function g(u). First, g should be
symmetric around u = 0—assuming otherwise would create a
local chirality of the cell. Second, g(u) should be 2π periodic,
g(u + 2π ) = g(u). The x component of the force is

Fx = R
∫ 2π

0
dθ cos θ

N∑
i=1

g(θ − θi ) (K3)

= R
N∑

i=1

∫ 2π

0
dθ cos θg(θ − θi ) (K4)

= R
N∑

i=1

∫ 2π−θi

−θi

du cos(u + θi )g(u) (K5)

= R
N∑

i=1

∫ 2π−θi

−θi

du[cos u cos θi − sin u sin θi]g(u), (K6)

where we have made the substitution u = θ − θi and used the
cosine angle addition formula. Then, we find

Fx = R
N∑

i=1

[
cos θi

∫ 2π−θi

−θi

du cos u g(u)

− sin θi

∫ 2π−θi

−θi

du sin u g(u)

]
. (K7)

Assuming the periodicity of g(u), the integrals over the region
[−θi, 0] would be exactly the same as integrating over the
region [2π − θi, 2π ], so we get

Fx = R
N∑

i=1

[
cos θi

∫ 2π

0
du cos ug(u)

− sin θi

∫ 2π

0
du sin ug(u)

]
(K8)

= R
N∑

i=1

cos θi

∫ 2π

0
du cos ug(u) (K9)

= F0

N∑
i=1

cos θi, (K10)

where we have noted that, because g(u) is even and periodic,∫ 2π

0 du sin ug(u) = 0, and F0 = R
∫ 2π

0 du cos ug(u) is a con-
stant. Similarly, for the y component of the force

Fy = R
∫ 2π

0
dθ sin θ

N∑
i=1

g(θ − θi ) (K11)

= R
N∑

i=1

∫ 2π

0
dθ sin θg(θ − θi ) (K12)

= R
N∑

i=1

∫ 2π−θi

−θi

du sin(u + θi )g(u) (K13)

= R
N∑

i=1

∫ 2π−θi

−θi

du[sin u cos θi + cos u sin θi]g(u) (K14)

= R
N∑

i=1

[
cos θi

∫ 2π−θi

−θi

du sin ug(u)

+ sin θi

∫ 2π−θi

−θi

du cos ug(u)

]
(K15)

= R
N∑

i=1

[
cos θi

∫ 2π

0
du sin ug(u)

+ sin θi

∫ 2π

0
du cos ug(u)

]
(K16)

= R
N∑

i=1

sin θi

∫ 2π

0
du cos ug(u) (K17)

= F0

N∑
i=1

sin θi. (K18)

We thus see that the total force applied to the cell will be
in exactly the direction ρ = ∑

i(cos θi, sin θi ). This will then
lead to a motion in the direction ρ; the velocity could be found
by balancing the total exerted force with the drag on the cell,
e.g., as done in a related model for collective chemotaxis [75].
The only requirement is that the cell is able to make local
protrusions in a normal direction. This model is—naturally—
somewhat of an oversimplification, as we have not included
any representations of cell polarity or protrusion dynamics
beyond the simple function g(u). However, we argue that
this model shows the essential plausibility that the cell can
compute the direction ρ.
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