
PHYSICAL REVIEW E 108, 064410 (2023)

Violations of the fluctuation-dissipation theorem reveal distinct nonequilibrium
dynamics of brain states
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The brain is a nonequilibrium system whose dynamics change in different brain states, such as wakefulness
and deep sleep. Thermodynamics provides the tools for revealing these nonequilibrium dynamics. We used
violations of the fluctuation-dissipation theorem to describe the hierarchy of nonequilibrium dynamics associated
with different brain states. Together with a whole-brain model fitted to empirical human neuroimaging data,
and deriving the appropriate analytical expressions, we were able to capture the deviation from equilibrium in
different brain states that arises from asymmetric interactions and hierarchical organization.
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I. INTRODUCTION

A key unsolved question in neuroscience is how different
brain states such as wakefulness and deep sleep are associ-
ated with different levels of nonequilibrium brain dynamics
[1,2]. Given that nonequilibrium is intrinsically linked to
irreversibility and entropy production [3], thermodynamics
has shown great promise for characterizing the hierarchical
dynamics of brain states over time [4]. Here, we present
a framework that uses the violations of the fluctuation-
dissipation theorem (FDT) to describe the nonequilibrium
dynamics associated with a given brain state. Specifically, we
show that perturbing a generative whole-brain model can be
used to quantify the level of nonequilibrium through viola-
tions of the FDT in empirical neuroimaging data from human
participants during different brain states (wakefulness, deep
sleep, and cognitive tasks).

This provides a different way to quantify the systemwide
response of the brain to targeted perturbations and a solid
theoretical framework needed for a highly influential set
of neuroscience experiments that used direct perturbations
of the brain in different states to measure the fluctuations
and dissipation of brain activity after perturbations [2,5,6].
In order to assess the brainwide spatiotemporal propagation
of external stimulation the authors introduced the perturba-
tional complexity index (PCI), which measures the amount
of information contained in the amplitude of the average
perturbation-evoked responses by calculating the Lempel-Ziv
complexity of the binary matrix describing the statistically
significant sources, in space and time, of the electroen-
cephalogram (EEG) signals [2]. PCI has been successfully

used for separation of brain states in healthy subjects dur-
ing wakefulness, dreaming, sleep, under different levels of
anesthesia, and in coma [2,5,6]. However, here we propose
that these results are best understood in terms of violations of
the FDT.

The present framework is related to recent advances in
using thermodynamics to describe whole-brain dynamics
[1,4,7,8], which has started to identify important changes in
the hierarchical organization and orchestration in different
brain states. Specifically, by quantifying the arrow of time,
one can directly measure the “breaking of the detailed bal-
ance” in nonequilibrium brain systems and thereby assess the
asymmetry in the flow of information. In the brain, a useful
definition of hierarchy is the asymmetrical relationship be-
tween feed-forward and feed-backward interactions between
brain regions. As such, a flat hierarchy is symmetric (resulting
in an equilibrium system with reversible dynamics), while a
hierarchical system has asymmetric interactions (resulting in
irreversible dynamics that break detailed balance and diverge
from equilibrium).

Here, we move beyond these model-free measures of irre-
versibility to create a model-based FDT framework, offering
a complementary thermodynamic perspective for describing
whole-brain dynamics. The FDT framework naturally uses
perturbations to quantify the degree of nonequilibrium and
consequently the hierarchical organization of brain state dy-
namics. Furthermore, our unique framework allows us to
estimate the asymmetry in the generators of the brain dynam-
ics. This is important since asymmetry cannot be established
from conventional measures, such as functional connectivity,
which are symmetric by definition and do not provide any
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insights into the generative mechanisms underlying brain dy-
namics.

Overall, building on previous empirical research quan-
tifying brain states measured with electroencephalography
following transcranial magnetic stimulation (TMS) [2,5,6],
the proposed FDT framework quantifies a brain state based
on empirical functional magnetic resonance imaging (fMRI)
data without any need for empirical stimulation. Instead, the
FDT framework creates a whole-brain model of this empiri-
cal data, which can then be exhaustively stimulated in silico
in the whole-brain model and thus provide insight into the
generative mechanisms of brain dynamics, allowing for clear
differentiation of brain states.

II. VIOLATIONS OF FLUCTUATION-DISSIPATION
THEOREM

In this section we describe how to measure the violations
of FDT to quantify nonequilibrium dynamics.

A. Fluctuation-dissipation theorem

To investigate the violations of FDT, we follow Onsager,
who proposed a simple derivation using his regression princi-
ple [9–11]. This principle holds that when a system begins
at an initial equilibrium state and is driven by a weak ex-
ternal perturbation to a final equilibrium state, the evolution
of the system can be treated as a spontaneous equilibrium
fluctuation. Specifically, let us assume that a weak external
perturbation ε is coupled to an observable B at time t = 0.
Applying Onsager’s regression principle, one can derive an
expression for the difference between 〈A(t )〉ε (the expectation
value of a second observable A after the perturbation is applied
in B) and 〈A(t )〉0 (the expectation value in the unperturbed
state), which is given, namely, by

〈A(t )〉ε − 〈A(t )〉0 = βε[〈A(t )B(t )〉0 − 〈A(t )B(0)〉0], (1)

where β is the inverse temperature from equilibrium thermo-
dynamics. The time-dependent susceptibility is then given by

χA,B(t ) = ∂〈A(t )〉
∂ε

= lim
ε→0

〈A(t )〉ε − 〈A(t )〉0

ε

= β[〈A(t )B(t )〉0 − 〈A(t )B(0)〉0]. (2)

The static form of the FDT is easily obtained by taking the
limit t → ∞. In this case,

χA,B = β[〈AB〉0 − 〈A〉0〈B〉0], (3)

since correlations factorize for infinitely separated times (see
Appendix B for a detailed derivation for spin systems). Thus,
in equilibrium, we arrive at a correspondence between the
response of a system to perturbation (on the left-hand side)
and its unperturbed correlations (on the right-hand side).

B. Violations of FDT in nonequilibrium

To characterize the level of nonequilibrium, we can exam-
ine the normalized deviation of the system from the FDT:

DA,B = β〈AB〉0 − χA,B

χA,B
, (4)

which is obtained (without loss of generality) by defining the
unperturbed state such that the mean values of the observables
are set to zero; i.e., 〈A〉0 = 〈B〉0 = 0. In the numerator, the
first term, β〈AB〉0, corresponds to unperturbed fluctuations,
while the second term, χA,B = 〈A〉ε/ε, corresponds to the re-
sponse to a small perturbation ε. The total deviation D can
be obtained by averaging DA,B over all observables A and
all perturbation sites B. Hence, the degree of violation of the
FDT, quantified by D, measures the divergence of the system
from equilibrium. In turn, we hypothesize that these violations
of the FDT will result from asymmetries in the interactions
within a system, which can change from one brain state (e.g.,
resting versus performing a cognitive task) to another.

III. MODEL-BASED FDT OF WHOLE-BRAIN
NEUROIMAGING DATA

To test this hypothesis, we investigate the spatiotemporal
dynamics underlying radically different brain states using em-
pirical human neuroimaging data recorded using functional
magnetic resonance imaging (fMRI).

A. Theoretical framework

Figure 1 summarizes the main paradigm. In order to es-
timate the total deviation from the FDT for each participant
in a given brain state, we first construct a whole-brain model
fitting the corresponding functional neuroimaging data. This
allows us to derive analytical expressions for the correlations
between all brain regions under spontaneous fluctuations and
the effect of a perturbation in one brain region on the av-
erage activities of all other regions across the brain. This
whole-brain model-based analytical expression can be used to
derive the total deviation from the FDT. In Eq. (4), D can be
estimated after exhaustively perturbing all brain regions B and
observing the corresponding effects on all brain regions A.

To investigate the systemwide response of neural activity
to targeted perturbations, we require a model of whole-brain
dynamics. Here we build on the rich literature over the
last 10 years linking anatomical structural connectivity and
functional dynamics [12–15]. The anatomical structural con-
nectivity (SC) can be determined in vivo using diffusion MRI
(dMRI) in conjunction with probabilistic tractography, lead-
ing to what is commonly known as the structural connectome.
The whole-brain model of neural activity strikes a compro-
mise between complexity and realism by using the physical
wiring between brain regions (reflected in SC) to reproduce
the empirically measured whole-brain dynamics recorded us-
ing fMRI [15]. Such whole-brain models have had widespread
success in explaining the patterns of spontaneous correlations
between brain regions, forming the so-called resting-state net-
works [16–21].

B. Whole-brain model

Here, we modeled the local dynamics of each brain re-
gion as a Stuart-Landau oscillator (i.e., as the normal form
of a supercritical Hopf bifurcation), the standard model for
examining the shift from noisy to oscillatory dynamics [22].
Whole-brain Hopf models have been able to replicate key
aspects of brain dynamics observed in electrophysiology
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FIG. 1. Fluctuation-dissipation theorem (FDT) used on empirical neuroimaging data. (a) As can be seen from the general framework
of FDT in equilibrium (left panel) and nonequilibrium (right panel), this can be used to characterize different brain states. Specifically, the
level of nonequilibrium can be captured as the deviation of FDT and can subsequently be used to describe the orchestration and changes in
hierarchy. (b) Combining FDT with a whole-brain model (linking anatomical connectivity and functional brain connectivity) fitted to empirical
neuroimaging data can precisely describe the overall deviation from FDT as well as the perturbability maps for different brain states.

[23,24], magnetoencephalography [25], and fMRI [26,27].
Specifically, given a parcellation of N regions, the whole-brain
dynamics can be expressed by coupling the local dynamics
of N Stuart-Landau oscillators via the connectivity matrix C,
which is defined by

dz j

dt
= (a j + iω j )z j − |z j |2 z j +

N∑
k=1

Cjk (zk − z j ) + η j, (5)

where the complex variable z j denotes the state (z j = x j +
iy j) of region j, η j is additive uncorrelated Gaussian noise
with variance σ 2 (for all j), ω j is the intrinsic node frequency,
and a j is the node’s bifurcation parameter. The intrinsic fre-
quencies ω j (which lie in the 0.008–0.08 Hz band) were
estimated from the data as the averaged peak frequencies of
the narrowband blood-oxygen-level-dependent (BOLD) sig-
nals of the different brain regions. For aj > 0, the local
dynamics settles into a stable limit cycle, producing self-
sustained oscillations with frequency ω j/(2π ). For a j < 0,
the local dynamics presents a stable spiral point, producing
damped or noisy oscillations in the absence or presence of

noise, respectively. The fMRI signals were modeled by the
real part of the state variables; i.e., x j = Real(z j ).

It has been shown that the best working point for fitting
whole-brain neuroimaging dynamics is at the brink of the
bifurcation, i.e., with a j slightly negative but very near to
zero (usually a j = −0.02) [28]. In other words, the dynam-
ics operates near criticality, consistently with several works
from the statistical [29,30] and dynamical system perspective
[31,32]. In particular, from a statistical perspective, it has
been described that different sleep stages can be characterized
by different critical exponents, but still operating within a
critical regime [33]. From a dynamical system view it has
also demonstrated that whole models operating close to the
critical point are the best option to capture the dynamics of
wakefulness and sleep stages represented by differences in
bifurcation parameters [34,35]. This proximity to criticality
is crucial, because it allows a linearization of the dynamics,
which, in turn, permits an analytical solution for the functional
connectivity matrix FC, given by the Pearson correlations
between all pairs of brain regions. We can estimate the func-
tional correlations of the whole-brain network using a linear
noise approximation (LNA). Hence, the dynamical system of
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N nodes [Eq. (5)] can be rewritten in vector form as

dz

dt
= (a − S + iω) � z − (z � z̄)z + Cz + η, (6)

where z = [z1, . . . , zN ]T , a = [a1, . . . , aN ]T , ω =
[ω1, . . . , ωN ]T , η = [η1, . . . , ηN ]T , and S = [S1, . . . , SN ]T

is a vector containing the connectivity strength of each
node; i.e., Si = ∑

j Ci j . The superscript [· · · ]T represents the
transpose, � is the Hadamard elementwise product, and z̄
is the complex conjugate of z. This equation describes the
linear fluctuations around the fixed point z = 0, which is the
solution of dz

dt = 0. Separating the real and imaginary parts
of the state variables, and discarding the higher-order terms
(z � z̄)z, the evolution of the linear fluctuations follows a
Langevin stochastic linear equation:

d

dt
δu = Jδu + η, (7)

where the 2N-dimensional vector δu = [δx, δy]T =
[δx1, . . . , δxN , δy1, . . . , δyN ]T contains the fluctuations of
real and imaginary state variables. The 2N × 2N matrix J is
the Jacobian of the system evaluated at the fixed point, which
can be written as a block matrix,

J =
[

Jxx Jxy

Jyx Jyy

]
, (8)

where Jxx, Jxy, Jyx, Jyy are N × N matrices Jxx =
Jyy = diag(a − S) + C and Jxy = −Jyx = diag(ω), where
diag(v) is the diagonal matrix whose diagonal is the vector
v. We note that the above linearization is only valid if z = 0
is a stable solution of the system; i.e., if all eigenvalues of J
have a negative real part.

C. Quantifying violations of model-based FDT

To examine the violations of FDT, we must first com-
pute the covariance matrix K = 〈δuδuT 〉. We begin by
writing Eq. (7) as dδu = Jδudt + dW , where dW is a 2N-
dimensional Wiener process with covariance 〈dW dW T 〉 =
Qdt and Q is the noise covariance matrix (which is diagonal if
the noise is uncorrelated). Using Itô’s stochastic calculus, we
get d (δuδuT ) = d (δu)δuT + δud (δuT ) + d (δu)d (δuT ). Tak-
ing expectations, keeping terms to first order in the differential
dt , and noting that 〈δudW T 〉 = 0, we obtain

dK
dt

= JK + KJT + Q. (9)

Hence, the stationary covariances (for which dK
dt = 0) can

be obtained by solving the following analytic equation:

JK + KJT + Q = 0. (10)

This Lyapunov equation can be solved using the eigende-
composition of the Jacobian matrix J [36]. We then obtained
the simulated functional connectivity FCmodel from the first
N rows and columns of the covariance K, which corresponds
to the real part of the dynamics (precisely representing the
BOLD fMRI signal).

Still, even if the analytical solution is possible, in or-
der to fit the model to the empirical data (BOLD fMRI

of each participant in each brain state), for the optimiza-
tion of the coupling connectivity matrix C, similar to the
work of Gilson and colleagues, here it proved more ro-
bust to estimate this numerically by using a pseudogradient
descent procedure [37,38]. Specifically, we fit C such that
the model optimally reproduces the empirically measured
covariances FCempirical (i.e., the normalized covariance ma-
trix of the functional neuroimaging data) and the empirical
time-shifted covariances FSempirical(τ ), where τ is the time
lag, which are normalized for each pair of regions i and j

by
√

KSempirical
ii (0)KSempirical

j j (0). We selected the parameter
τ , which led to a decrease in the averaged autocorrelation.
We note that fitting the time-shifted correlations can lead
to asymmetries in the connectivity C, which, in turn, can
produce nonequilibrium dynamics and violations of the FDT.
These normalized time-shifted covariance matrices are gen-
erated by taking the shifted covariance matrix KSempirical(τ )

and dividing each pair (i, j) by
√

KSempirical
ii (0)KSempirical

j j (0).
Note that these normalized time-shifted covariances break the
symmetry of the couplings and thus improve the level of
fitting [39]. Importantly, the linear approximation allows us
an analytical derivation, which means that the estimation of all
the functional observables is directly derived without explicit
simulation of the time dynamics, that is equivalent to a numer-
ical simulation of infinite duration. We fitted the exact model’s
parameters to the corresponding empirical observables.

Using a heuristic pseudogradient algorithm, we proceeded
to update the C until the fit is fully optimized. More specifi-
cally, the updating uses the following form:

Ci j = Ci j + α
(
FCempirical

i j − FCmodel
i j

)
+ ς

[
FSempirical

i j (τ ) − FSmodel
i j (τ )

]
, (11)

where FSmodel
i j (τ ) is defined similar to FSempirical

i j (τ ). In other
words it is given by the first N rows and columns of
the simulated τ time-shifted covariances KSmodel(τ ) normal-
ized by dividing each pair (i, j) by

√
KSmodel

ii (0)KSmodel
j j (0),

KSmodel(τ ) being the shifted simulated covariance matrix
computed as follows:

KSmodel(τ ) = exp (τJ) K. (12)

Note that KSmodel(0) = K. The model was run repeatedly
with the updated C until the fit converges toward a stable
value. We initialized C using the anatomical connectivity
(obtained with probabilistic tractography from dMRI) and
only update known existing connections from this matrix
(in either hemisphere). However, there is one exception to
this rule which is that the algorithm also updates homologue
connections between the same regions in either hemisphere,
given that tractography is known to be less accurate when
accounting for this connectivity. For the Stuart-Landau model,
we used α = ς = 0.000 01 and continue until the algorithm
converges. For each iteration we compute the model results as
the average over as many simulations as there are participants.
Overall, we use the term generative effective connectivity
(GEC) for the optimized C [40]. Note that this generative
matrix is asymmetric, since it is able to describe the breaking
of the detailed balance in the empirical data. In contrast, the
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original anatomical SC and functional FC matrices are by
definition symmetric and do not provide information on the
generative principles. Instead, the FDT framework is captur-
ing the asymmetry of the underlying information flow through
the GEC generating brain dynamics in any given brain state.

After fitting an individualized coupling matrix C for each
participant and each brain state, we derived an analytical form
for the deviation from the FDT [corresponding to Eq. (4)].
First, we derive the expectation values of the state variables
〈δu〉ε j

when a perturbation ε is applied to the component j.

From Eq. (7), we have the relationship d
dt 〈δu〉ε j

= J〈δu〉ε j
+

h j = 0, where h j is a 2N-dimensional vector of all zeros
except for the j component, which is equal to ε. Solving for
the desired expectation value, we obtain 〈δu〉ε j

= −J−1h j .
Defining 〈δx〉 j = 〈δx〉ε j

/ε, i.e., the real part of 〈δu〉 j , we can
now derive the deviation from the FDT for region i when a
perturbation is applied to region j:

Di, j = 2〈δxiδx〉0/σ
2 − 〈δxi〉 j

〈δxi〉 j
, (13)

where the term 2/σ 2 plays the role of the inverse tempera-
ture β, and the covariance 〈δxiδx〉0 is derived from KSmodel.
For numerical reasons, we quantify the systemwide effect of
perturbing the component j by averaging the numerator and
denominator over the regions; i.e.,

Pj =
1
N

∑
i 2〈δxiδx j〉0/σ

2 − 〈δxi〉 j
1
N

∑
i 〈δxi〉 j

. (14)

The vector P defines a perturbability map over all brain
regions in a given brain state. For each participant, the level
of nonequilibrium D̂ is finally computed by averaging the
deviation from the FDT over all possible perturbations; i.e.,

D̂ = 1

N

∑
j

Pj . (15)

IV. RESULTS ON HUMAN EMPIRICAL
NEUROIMAGING DATA

We applied this FDT framework to two empirical neu-
roimaging datasets in humans, with whole-brain activity
measured using BOLD fMRI. The first dataset consists of 18
human participants whose sleep stages were precisely charac-
terized by two independent neurologists from simultaneous
electroencephalography (EEG) recordings [41]. We consid-
ered two stages of consciousness: wakefulness and deep sleep
(N3) (see Appendix A for details on the experimental setup
and data processing). The second dataset consists of 970
participants from the Human Connectome Project (again, see
Appendix A for details), who were recorded during resting
state and seven different tasks spanning a broad range of
cognitive and emotional processing [42].

A. Wakefulness and deep sleep

First, as shown in Fig. 2(a), we applied the FDT framework
to the sleep dataset and found significant differences in the
deviations from the FDT when comparing deep sleep with
wakefulness (p < 0.001, permutation test). Specifically, we

computed D̂ [from Eq. (15)] for each participant and each
level of consciousness, revealing a decrease in violations of
the FDT (or level of nonequilibrium) during deep sleep com-
pared with wakefulness. This difference can be interpreted as
a flattening of the hierarchical organization during deep sleep,
that is, a brain state with more symmetrical interactions com-
pared with wakefulness. These violations of the FDT can be
clearly visualized using the corresponding perturbability maps
[vector Pj from Eq. (14)], which show more homogeneous and
much lower levels of nonequilibrium responses for deep sleep
compared to wakefulness.

B. Cognitive tasks and resting-state dynamics

Second, as shown in Fig. 2(b), we observed significant dif-
ferences in the violations of the FDT when comparing resting
state with different cognitive tasks across 970 healthy partic-
ipants (p < 0.001 for all comparisons and permutation tests).
Just as in the investigations of sleep states, we computed D̂ for
each participant and each cognitive task (including rest), re-
vealing differences in the nonequilibrium nature of the brain.
For example, the SOCIAL task induced the largest violations
of the FDT, reflecting the highest level of nonequilibrium
[4,7,8]. By contrast, we observed closer agreement with the
FDT for resting compared to each of the cognitive tasks.
Indeed, the perturbability map for rest is more homogeneous
with responses that are closer to equilibrium compared to the
SOCIAL task. These results suggest that violations of the
FDT (and the distance from equilibrium) increase with com-
putational demands. This can be interpreted in terms of the
breaking of the detailed balance, where the flow of informa-
tion requires asymmetric interactions between brain regions.

C. Hierarchy, asymmetry, and violations of FDT

To investigate the mechanisms underlying violations of the
FDT, and the relationship to the breaking of detailed balance,
we constructed two simple linear models with differing levels
of asymmetry in their interactions. Specifically, to relate the
asymmetry of the underlying coupling matrix to violations of
the FDT, we use a Langevin equation:

db
dt

= Lb + η, (16)

where b = [b1, . . . , bN ]T models the bold signal in a par-
cellation of N regions, L is the coupling matrix, and η =
[η1, . . . , ηN ]T the additive Gaussian noise. We consider two
different models, each generated by fitting the couplings L
to the empirical neural activity during wakefulness to obtain
realistic generative effective connectivity. We first define a
symmetric model that is only fit to the equal-time empirical
correlations, resulting in symmetric effective connectivity L.

We then define an asymmetric model that fit to both the equal-
time and time-delayed correlations, resulting in asymmetric
connectivity.

Figure 3 shows the importance of asymmetric couplings for
violations of the FDT. Specifically, Fig. 3(a) shows how the
linear symmetric model generates a fully symmetric connec-
tivity matrix (left panel), which can be observed by computing
|L − LT | (middle panel). Notably, these symmetric couplings
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FIG. 2. Nonequilibrium fingerprints of brain states captured by deviations from FDT. (a) Significant differences in deviations from FDT
were found when comparing deep sleep with wakefulness in neuroimaging data from 18 healthy participants with precise sleep staging using
polysomnography (p < 0.001). Renderings of the resulting perturbability maps on the human brain (3D views of side and midline as well as
cortical flatmaps) show more homogeneous and much lower levels of nonequilibrium for deep sleep compared to wakefulness. (b) Similarly,
significant differences were observed when comparing resting state with seven different tasks in 970 participants from the Human Connectome
Project (p < 0.001 for all comparisons). As can be seen the perturbability maps are more homogeneous and have much lower levels of
nonequilibrium for rest compared to task (here for the SOCIAL task).

yield fully equilibrium dynamics, and therefore do not gener-
ate any violations of the FDT (right panel).

By contrast, Fig. 3(b) shows the connectivity matrix of the
asymmetric model (left panel), which is asymmetric (middle
panel) and thus induces significant violations of the FDT
(right panel). These differences between the asymmetric and
symmetric models are illustrated in Fig. 3(c). The first panel
shows a scatter plot of the mean regional FDT deviations (i.e.,
averaging over the rows of the deviation matrix Di, j) as a
function of the mean regional connectivity strength (with red
points for the asymmetrical model and black points for the
symmetrical model). In the asymmetric model, we observe a
significant correlation (of 0.77) between the FDT deviations
and the regional connectivity strength, while this correlation
vanishes for the symmetric model. The second panel shows
the scatter plot of the mean perturbation site FDT deviation
(i.e., averaging over the columns of the deviation matrix
Di, j) as a function of the mean perturbation site connectiv-
ity strength, revealing a negative correlation (–0.87) for the
asymmetric model. The third panel shows a violin plot of
the significant mean FDT deviation for the symmetric (gray)
and asymmetric (green) models across all regions and sites
(p < 0.001, permutation testing).

D. Model-based and model-free nonequilibrium metrics

In order to compare our model-based FDT deviation with
model-free measurements of the level of nonequilibrium in
brain dynamics, we used the INSIDEOUT framework for
characterizing the arrow of time in brain signals [8]. Us-
ing large-scale neuroimaging resting-state data from the over
1000 participants in the Human Connectome Project (HCP),
we demonstrated that both measures capture the underlying
breaking of detailed balance in the generative space. The
INSIDEOUT framework aims to measure the arrow of time
and its link with nonequilibrium and time asymmetry. These
ideas from statistical physics are applied to brain signals
to characterize the level of reversibility or nonequilibrium.
Specifically, the measurements are performed directly from
the empirical data without any underlying model assumptions,
using time-shifted correlations.

As shown in the scatter plot in Appendix C, we found a
strong correlation of 0.75 (p < 0.001) when comparing all
participants using the FDT and INSIDEOUT frameworks.
Furthermore, we demonstrated that both measures are highly
correlated with the breaking of the detailed balance quantified
by the level of asymmetry in generative space (i.e., GEC)
computed as the mean of |C − CT |. We obtained a correlation
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FIG. 3. Whole-brain models show the importance of asymmet-
ric coupling compared to symmetric coupling. The breaking of the
detailed balance in the brain gives rise to nonequilibrium, linked to
the underlying asymmetric coupling, which can be captured with
deviations from the FDT. (a) The simplest linear symmetric model
generates a generative effective connectivity (GEC) matrix (shown
on the left) which is fully symmetrical (shown by the middle matrix)
and does not generate any deviations from FDT as shown by the
right matrix (level of FDT deviation). (b) In contrast, the asymmetric
model generates a GEC matrix (left) which is asymmetric (middle)
and with significant deviations from FDT (right matrix). (c) The row
shows various measurements of the asymmetry for the asymmetrical
(red points) and symmetrical (black points) models. The first panel
shows a scatter plot of the mean regional FDT deviation as a function
of the mean regional GEC. As can be seen the asymmetrical model
shows a correlation between FDT deviation and the mean regional
GEC, while this is not the case for the symmetrical model. The
second panel shows a scatter plot of the mean perturbation site FDT
deviation as a function of the mean perturbation site GEC. Again, the
asymmetrical model generates a negative correlation between mean
perturbation site FDT deviation and the mean perturbation site GEC.
This is not the case for the symmetrical model. Finally, the right panel
shows a violin plot of the mean FDT deviation for the symmetrical
(gray) and asymmetrical (green) models across all regions and sites.

of 0.91 (p < 0.001) between FDT and the asymmetry of GEC,
and a correlation of 0.82 (p < 0.83) between INSIDEOUT
and the asymmetry of GEC. In summary, we demonstrate that
both the model-based FDT and the model-free INSIDEOUT
framework capture the level of nonequilibrium underlying
empirical neuroimaging data.

V. CONCLUSION

We applied the FDT to neural activity fitted by a
whole-brain model, which allowed us to investigate how
nonequilibrium dynamics are associated with sleep, wakeful-
ness, and seven cognitive tasks. We find that violations of
the FDT (and thus divergences from equilibrium) are driven

by asymmetries in the couplings between brain regions, thus
revealing the role of hierarchical organization in nonequi-
librium dynamics. The largest violations of the FDT were
observed when subjects performed cognitive tasks (with the
SOCIAL task inducing the largest violations), while the neural
dynamics were closer to equilibrium for sleep than wake-
fulness. These differences directly reflect the computational
demands that require asymmetric information flow between
brain regions, thus breaking detailed balance and promoting
nonequilibrium dynamics. Schrödinger hypothesized that this
increasing asymmetrical information flow is important for
sustaining life [43], and here we extend this thermodynamic
principle to neural computations.

Using thermodynamics to describe brain dynamics is an
emerging field [19], which has already yielded important
insights into the nonequilibrium nature of brain function
[1,4,7,8]. Excitingly, these insights include the demonstration
of how the arrow of time, or irreversibility, of brain signals
can shed more light on the definition of brain states [7,8,40].
Interestingly, the FDT was recently derived in a spiking neu-
ron model to assess the statistics of the unknown fluctuations
of the neuronal dynamics [44] and for stochastic oscillators
[45]. Meanwhile, brain dynamics has also been shown to
be turbulent [46,47], allowing the fast information transfer
needed for time-critical decisions in the brain (MEG).

We note that nonequilibrium dynamics are found at differ-
ent spatial and temporal scales [48]. For instance, while larger
and more complex biological structures, such as cells, might
appear to be at equilibrium, they are sustained by nonequi-
librium processes at small scales (e.g., molecules) [49]. In
particular, overwhelming evidence suggests that neural dy-
namics at microscopical and fast timescales are intrinsically
nonequilibrium phenomena based on the fact that cellular
and molecular functions consume energy [50–53]. Despite
the clear importance of nonequilibrium dynamics at this mi-
croscale, the role of broken detailed balance in the brain as
a macroscopic system composed of many interacting com-
ponents has been less investigated. Our approach directly
demonstrates the role of broken detailed balance in the large-
scale whole-brain activity by quantifying the violation of the
FDT, which is independently relevant to the nonequilibrium
dynamics observed at the microscopic and short timescale.

Overall, the model-based FDT approach introduced here
holds great promise for revealing the underlying principles
of nonequilibrium dynamics in the human brain. Specifi-
cally, this approach provides a necessary framework for the
very influential papers by Massimini and colleagues. They
ran a series of groundbreaking experiments using transcra-
nial magnetic stimulation (TMS) and electroencephalography
(EEG) to measure fluctuations and dissipation after perturba-
tions [2,5,6]. The resulting perturbational complexity index
(PCI) measures the amount of information contained in the
amplitude of the average perturbation-evoked responses by
calculating the Lempel-Ziv complexity of the binary matrix
describing the statistically significant sources, in space and
time, of the EEG signals [2]. This PCI measure has been
successfully used for separation of brain states in healthy
subjects during wakefulness, dreaming, sleep, under different
levels of anesthesia, and in coma [2,5,6]. The present work
provides a theoretical framework not only to explain these
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important findings in terms of nonequilibrium dynamics but
also provides principled alternative measurements for pre-
dicting systemwide response of the brain to any targeted
perturbations in the nonequilibrium brain state, whether in
health or disease. The main advantage of the FDT framework
over previous empirical approaches is that it can provide deep
insights into the causal generative mechanisms of brain dy-
namics in any brain state, and avoids expensive experiments,
improves statistical robustness, and minimizes potential ethi-
cal concerns. As such through the use of the FDT framework
on the abundant fMRI data from different brain states, we may
inch closer to a useful definition of brain states and potential
insights into how to transition between them, and thus, for
example, provide useful information on how best to wake
comatose patients.
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APPENDIX A: PARCELLATION

Both datasets used time series from the Mindboggle-
modified Desikan-Killiany parcellation [54] with a total of 62
cortical regions (31 regions per hemisphere).

1. Human Connectome Project: Acquisition and preprocessing

a. Ethics

The Washington University–University of Minnesota
(WU-Minn HCP) Consortium obtained full informed consent
from all participants, and research procedures and ethical
guidelines were followed in accordance with the Washington
University institutional review board approval (Mapping the
Human Connectome: Structure, Function, and Heritability;
IRB No. 201204036).

b. Participants

The dataset used for this investigation was selected
from the March 2017 public data release from the Human
Connectome Project (HCP) where we chose a sample of
1003 participants, all of whom have resting-state data. For

the seven tasks, HCP provides the following numbers of
participants: WM = 999; SOCIAL = 996; MOTOR = 996;
LANGUAGE = 997; GAMBLING = 1000; EMOTION =
992; RELATIONAL = 989. No statistical methods were used
to predetermine sample sizes but our sample sizes are similar
to those reported in previous publications using the full HCP
dataset.

c. HCP task battery of seven tasks

The HCP task battery consists of seven tasks: working
memory, motor, gambling, language, social, emotional, and
relational, which are described in detail on the HCP web-
site [42]. HCP states that the tasks were designed to cover
a broad range of human cognitive abilities in seven major
domains that sample the diversity of neural systems: (1) vi-
sual, motion, somatosensory, and motor systems; (2) working
memory, decision-making, and cognitive control systems; (3)
category-specific representations; (4) language processing; (5)
relational processing; (6) social cognition; and (7) emotion
processing. In addition to resting-state scans, all 1003 HCP
participants performed all tasks in two separate sessions (first
session: working memory, gambling, and motor; second ses-
sion: language, social cognition, relational processing, and
emotion processing).

d. 3-T structural data

The HCP structural data were acquired using a customized
3-T Siemens Connectom Skyra scanner with a standard
Siemens 32-channel rf-receive head coil. For each participant,
at least one three-dimensional (3D) T1w MPRAGE image and
one 3D T2w SPACE image were collected at 0.7 mm isotropic
resolution.

e. 3-T diffusion MRI

In order to reconstruct a high-quality structural connectiv-
ity (SC) matrix for constructing the whole-brain model (using
the DK62 parcellation), we obtained multishell diffusion-
weighted imaging data from 32 participants from the HCP
database (scanned for approximately 89 min). The acquisition
parameters are described in detail on the HCP website [55].
We estimated the connectivity using the method described by
Horn and colleagues [56]. Briefly, the data were processed us-
ing a generalized q-sampling imaging algorithm implemented
in DSI STUDIO [57]. Segmentation of the T2-weighted anatom-
ical images produced a white-matter mask and the images
were coregistered to the b0 image of the diffusion data using
SPM12. In each HCP participant, 200 000 fibers were sampled
within the white-matter mask. Fibers were transformed into
Montreal Neurological Institute (MNI) space using LEAD-
DBS [58]. The methods used the algorithms for false-positive
fibers shown to be optimal in recent open challenges [59,60].
The risk of false positive tractography was reduced in sev-
eral ways. Most importantly, this used the tracking method
achieving the highest (92%) valid connection score among
96 methods submitted from 20 different research groups in
a recent open competition [59].
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f. Neuroimaging acquisition for fMRI HCP

The 1003 HCP participants were scanned on a 3-T fMRI
using a customized 3-T Siemens Connectom Skyra scanner
with a standard Siemens 32-channel rf-receive head coil, with
the following parameters: 2.0-mm isotropic voxels, TR = 720
ms (time resolution of fMRI data), echo time (TE)= 33.1 ms,
flip angle = 52◦, field of view (FOV)= 208 × 180 mm, 72
slices, and multiband factor = 8. We used one resting-state
fMRI acquisition of approximately 15 min acquired on the
same day, with eyes open with relaxed fixation on a projected
bright cross hair on a dark background as well as data from the
seven tasks. The HCP website [61] provides the full details
of participants, the acquisition protocol, and preprocessing
of the data for both resting state and the seven tasks. The
time duration of fMRI recordings was: 1200 volumes (rest-
ing state); 176 volumes (emotion); 253 volumes (gambling);
405 volumes (WM); 316 volumes (language); 232 volumes
(relational); 284 volumes (motor); and 274 volumes (social).
Below we have briefly summarized these.

The preprocessing of the HCP resting-state and task
datasets is described in detail on the HCP website. Briefly,
the data are preprocessed using the HCP pipeline which
is using standardized methods using FSL (FMRIB Software
Library), FREESURFER, and the CONNECTOME WORKBENCH

software [62,63]. This standard preprocessing included cor-
rection for spatial and gradient distortions and head motion,
intensity normalization and bias field removal, registration
to the T1-weighted structural image, transformation to the
2-mm Montreal Neurological Institute (MNI) space, and using
the FIX artifact removal procedure [63,64]. The head mo-
tion parameters were regressed out and structured artifacts
were removed by ICA+FIX processing (independent compo-
nent analysis followed by FMRIB’s ICA-based X-NOISEIFIER

[65,66]). Preprocessed time series of all grayordinates are in
HCP CIFTI grayordinates standard space and available in the
surface-based CIFTI file for each participant for resting state
and each of the seven tasks.

We used a custom-made MATLAB script using the
ft_read_cifti function (FIELDTRIP TOOLBOX [67]) to extract the
average time series of all the grayordinates in each region of
the Mindboggle-modified Desikan-Killiany parcellation [54]
with a total of 62 cortical regions (31 regions per hemi-
sphere) [68], which are defined in the HCP CIFTI grayordinates
standard space. The BOLD time series were filtered using a
second-order Butterworth filter in the range of 0.008–0.08 Hz.

2. Human sleep data: acquisition and preprocessing

a. Ethics

Written informed consent was obtained, and the study was
approved by the ethics committee of the Faculty of Medicine
at the Goethe University of Frankfurt, Germany.

b. Participants

We used fMRI- and polysomnography (PSG)
data from 18 participants taken from a larger
database that reached all four stages of PSG [41,69].
Exclusion criteria focused on the quality of the

concomitant acquisition of EEG, EMG, fMRI, and
physiological recordings.

c. Acquisition and preprocessing of fMRI
and polysomnography data

Neuroimaging fMRI was acquired on a 3-T system
(Siemens Trio, Erlangen, Germany) with the following set-
tings: 1505 volumes of T2∗-weighted echo planar images with
a repetition time (TR) of 2.08 s (time resolution of fMRI
data), and an echo time of 30 ms; matrix 64 × 64, voxel size
3 × 3 × 2 mm3, distance factor 50%, FOV 192 mm3.

The EPI data were realigned, normalized to MNI space,
and spatially smoothed using a Gaussian kernel of 8 mm3

FWHM in SPM8 [70]. Spatial downsampling was then
performed to a 4 × 4 × 4 mm resolution. From the si-
multaneously recorded ECG and respiration, cardiac- and
respiratory-induced noise components were estimated using
the RETROICOR method [71], and together with motion
parameters these were regressed out of the signals. The data
were temporally bandpass filtered in the range 0.008–0.08 Hz
using a sixth-order Butterworth filter. We extracted the time
series in the DK62 parcellation [72].

Simultaneous PSG was performed through the recording of
EEG, EMG, ECG, EOG, pulse oximetry, and respiration. EEG
was recorded using a cap (modified BrainCapMR, Easycap,
Herrsching, Germany) with 30 channels, of which the FCz
electrode was used as reference. The sampling rate of the
EEG was 5 kHz, and a low-pass filter was applied at 250 Hz.
MRI and pulse artifact correction were applied based on the
average artifact subtraction method [73] in VISION ANALYZER2
(Brain Products, Germany). EMG, EOG and ECG were col-
lected with chin and tibial derivations and recorded bipolarly
at a sampling rate of 5 kHz with a low-pass filter at 1 kHz.
Pulse oximetry was collected using the Trio scanner, and
respiration with MR-compatible devices (BrainAmp MR+,
BrainAmp ExG; Brain Products, Gilching, Germany).

Participants were instructed to lie still in the scanner
with their eyes closed and relax. Sleep classification was
performed by a sleep expert based on the EEG recordings in
accordance with the AASM criteria (2012) [74]. Results using
the same data and the same preprocessing have previously
been reported [41,69]. We used all the available data for
the analysis. The time duration of the fMRI signal in each
condition is dependent on the time that each participant spent
in each sleep stage. Here, we considered the wakefulness and
deep sleep stages, where the time duration in each condition
varies from 110 to 720 volumes and from 88 to 1002 volumes,
respectively.

3. Statistical comparisons

Differences in probabilities of occurrence before and after
injection were statistically assessed using a permutation-based
paired t-test. This nonparametric test uses permutations of
group labels to estimate the null distribution, which is com-
puted independently for each experimental condition. For
each of 1000 permutations, a t-test is applied to compare
populations and a p-value is returned.
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APPENDIX B: DERIVATION
OF THE FLUCTUATION-DISSIPATION

THEOREM IN SPIN SYSTEMS

The simplest thermodynamic model of a system with
multiple interacting components is the Ising model. In the
Ising model, each component (or spin) is represented by
a binary variable xi. The probability of finding the en-
tire system in state x = {xi} is given by the Boltzmann
distribution,

P(x) = 1

Z
exp

⎡
⎣β

⎛
⎝∑

i, j

Ji jxix j +
∑

i

hixi

⎞
⎠

⎤
⎦, (B1)

where β is the inverse temperature, Ji j = Jji represents the
strength of the interaction between components i and j, hi is
the external influence on component i, and

Z =
∑

x

exp

⎡
⎣β

⎛
⎝∑

i, j

Ji jxix j +
∑

i

hixi

⎞
⎠

⎤
⎦ (B2)

is the normalization constant (often referred to as the partition
function). Because the interactions Ji j are symmetric, the sys-
tem is in equilibrium and the fluctuation-dissipation theorem
should hold.

To derive the fluctuation-dissipation theorem, we would
like to know how the average state of component i,

〈xi〉 =
∑

x

xiP(x), (B3)

changes due to a small perturbation h j coupled to component
j. In particular, we have

χi j = ∂〈xi〉
∂h j
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= 1
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For the first term, we

1
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For the second term, we first note that
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and so
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Thus, putting terms together, we have

χi j = ∂〈xi〉
∂h j

= β(〈xix j〉 − 〈xi〉〈x j〉). (B8)

We therefore find that the average response of component i
to a perturbation on component j is equal to the spontaneous
equilibrium correlation between i and j (scaled by the inverse
temperature β). This is precisely the fluctuation-dissipation
theorem for the equilibrium Ising model.

APPENDIX C: CORRELATION BETWEEN FDT
AND INSIDEOUT

We computed the correlation across all participants be-
tween the level of FDT and INSIDOUT. We found a strong
correlation of 0.75 (p < 0.001) between both nonequilibrium
metrics (see Fig. 4).

FIG. 4. The scatter plot shows a correlation of 0.75 (p < 0.001)
when comparing all HCP participants using the FDT deviation and
INSIDEOUT irreversibility measures.
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