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Brownian motors powered by nonreciprocal interactions
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Traditional models for molecular (Brownian) motors predominantly depend on nonequilibrium driving, while
particle interactions rigorously adhere to Newton’s third law. However, numerous living and natural systems
at various scales seem to defy this well-established law. In this study, we investigated the transport of mixed
Brownian particles in a two-dimensional ratchet potential with nonreciprocal interactions. Our findings reveal
that these nonreciprocal interactions can introduce a zero-mean nonequilibrium driving force. This force is
capable of disrupting the thermodynamic equilibrium and inducing directed motion. The direction of this motion
is determined by the asymmetry of the potential. Interestingly, the average velocity is a peaked function of the
degree of nonreciprocity, while the effective diffusion consistently increases with the increase of nonreciprocity.
There exists an optimal temperature or packing fraction at which the average velocity reaches its maximum
value. We share a mechanism for particle rectification, devoid of particle-autonomous nonequilibrium drive,
with potential usage in systems characterized by nonreciprocal interactions.
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I. INTRODUCTION

Nature utilizes an intriguing mechanism known as molec-
ular motors [1] to facilitate directed transport within cells
and propel bacteria in dynamic ecosystems. These molecular
motors, protein complexes, convert differences in chemi-
cal potential between reactants and products into directed
motion or work against a gradient. Despite their extensive
diversity, all molecular motors share a common principle
of exploiting Brownian fluctuations, albeit through various
mechanisms. Being essential for biological processes, these
motors are driven by Brownian motion and nonequilibrium
driving forces, which is often conceptualized through a model
known as the Brownian ratchet. This model is believed to
underpin the functionality of several inherent biological mo-
tors, such as the F1F0 ATPase [2], and its validity has been
experimentally demonstrated in synthetic microscale systems,
including artificial molecular motors created by organic chem-
ical synthesis [3,4].

The term Brownian ratchet refers to a group of models
for directed transport that utilize Brownian motion, rectified
via energy input [5–10]. The ratchet effect emerges when a
system is shifted from thermodynamic equilibrium and the
system’s symmetries are violated. Ratchet devices are classi-
fied into four categories based on the type of nonequilibrium
driving involved. (i) Rocking ratchets [11–23], where un-
biased external forces perturb thermodynamic equilibrium,
inducing directed transport in asymmetric potentials. (ii)
Flashing ratchets [24–29], where directed motion is instigated
by the random oscillation of an asymmetric potential between
two or more states, or by the time modulation of the potential.
(iii) Correlation ratchets [30–34], where the time correlation
or spontaneous collective motion instigates directed transport.

(iv) Self-propelled ratchets [35–55], where self-propelled
forces disturb thermodynamic equilibrium, effectuating net
transport in asymmetric structures. For instance, the ratchet’s
broken spatial symmetry rectifies the self-propelled motion of
the particles [35], leading to a net current. Key conditions for
the directed motion of Brownian particles to arise from these
ratchet systems encompass nonequilibrium driving and either
temporal or spatial asymmetry.

The conventional ratchet model demands nonequilibrium
driving, and particle interactions adhere to Newton’s third law.
However, numerous living and natural systems across multi-
ple scales appear to defy this law. Specifically, the principle of
action-reaction symmetry might be violated for mesoscopic
particles when their nonreciprocal interactions are regulated
by a nonequilibrium environment [56–63]. This asymmetry
ensues when the environment moves relative to the particles
or when a system of particles is made up of different species
whose interaction with the environment is in nonequilibrium.
Examples of this exist in nature, ranging from bacteria inter-
actions [64] at the microscale to animal herd dynamics [65]
at the macroscale. In artificial systems, the use of magnetic
microdisks can selectively disrupt action-reaction reciprocity
by exploiting fluid-mediated hydrodynamic interactions [66].
From a theoretical perspective, the temporal-dependent non-
reciprocal interactions can induce sustained active motion
[67], akin to the patterns manifested in traditional active
particle models. Therefore, a crucial question arises: How
do nonreciprocal interactions affect the directed motion of
Brownian particles? Specifically, does particle-autonomous
nonequilibrium driving remain a necessary requirement for
the functionality of a Brownian motor in the presence of
nonreciprocal interactions?
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To address this, we analyzed the transport of a binary mix-
ture of Brownian particles with nonreciprocal interactions in
a two-dimensional ratchet potential. Our findings demonstrate
that in the absence of particle-autonomous nonequilibrium
driving, the nonreciprocal interactions between particles gen-
erate an interaction-dependent propulsive force. This force
can break the thermodynamic equilibrium and induce the
directed motion of Brownian particles in an asymmetric po-
tential. The directional motion of Brownian particles is solely
determined by the asymmetry of the potential. Moreover, we
identified optimal parameters, including the packing fraction,
degree of nonreciprocity, and temperature, at which the aver-
age velocity reaches its maximum value.

II. MODEL AND METHODS

We consider a binary mixture of Brownian particles, con-
sisting of equal proportions of species A and species B,
confined within a two-dimensional box of size Lx × Ly, and
operating under periodic boundary conditions. Here, we con-
sider that the interactions between the Brownian particles are
nonreciprocal, thus violating Newton’s third law. The position
of particle i is represented by the coordinates ri ≡ (xi, yi )
of its center. We neglected both hydrodynamic interactions
among the particles and inertial terms. In the overdamped
limit, the dynamics of particle i are described by the following
overdamped Langevin equation:

dri

dt
= μ

[ ∑
j �=i

Fi j + Gi

]
+

√
2μkBT ζi(t ), (1)

where T is the temperature, kB the Boltzmann constant, and
μ the mobility. ζi(t ) signifies a Gaussian white-noise random
vector exhibiting zero mean and unit variance.

The substrate force Gi = −∇V arises from the following
two-dimensional ratchet potential:

V (x, y)=−V0

[
sin

(
2πx

lx

)
+ �

4
sin

(
4πx

lx

)
+ sin

(
2πy

ly

)]
,

(2)

where lx,y is the substrate period and V0 is height of the po-
tential. As for the potential, it demonstrates symmetry in the y
direction but asymmetry in the x direction. � manifests as the
parameter responsible for any potential asymmetry along the
x direction; when � = 0, the potential is entirely symmetric.

Nonreciprocity is a common characteristic of both living
and natural systems. Increasingly, it is being employed to
modify the structure and dynamics of synthetic materials
across a wide range of scales. In this study, we explore a
category of nonreciprocal interactions as outlined in Ref. [57].
This interaction allows for an easily adjustable and continu-
ous fluctuation of nonreciprocity. The pairwise force Fi j (r),
exerted on particle i by particle j, takes the subsequent form
as detailed in Ref. [57]:

Fi j (r) = FC
i j (r) ×

⎧⎪⎪⎨
⎪⎪⎩

1 − g(r), i j ∈ AB,

1 + g(r), i j ∈ BA,

1, i j ∈ AA or BB,

(3)

FIG. 1. Schematic representation of pairwise nonreciprocal in-
teractions between species A and B for different δ. The system
operates under the reciprocal limit at δ = 0, and transitions into a
predator-prey regime when δ > 1. When δ �= 0, an additional net
force emerges in the interaction between two particles, which does
not satisfy Newton’s third law.

where FC
i j represents the conservative interaction force,

abiding by Newton’s third law, i.e., FC
i j + FC

ji = 0. The func-
tion g(r) is a representation of nonreciprocity. Interactions
between particles of the same species are entirely recip-
rocal (Fi j = FC

i j). However, interspecies interactions present
both reciprocal FR

i j = FC
i j and nonreciprocal FNR

i j = ±g(r) ×
FC

i j components. The conservative interaction force, FC
i j =

−∇U emerges from the corresponding truncated and shifted
Lennard-Jones potential [68]

U (r) =
{

4ε
[(

σ
r

)12 − (
σ
r

)6 + Cshift
]
, r � 2.5σ,

0, r > 2.5σ,
(4)

where the constants ε and σ determine the energy unit and
the nominal particle diameter, respectively. In this case, we
choose the value of Cshift = ( 2

5 )6 − ( 2
5 )12 so that the potential

remains continuous at r = 2.5σ .
For simplicity, we consider a step nonreciprocity function

defined as

g(r) =
{

δ, r � drec,

0, r < drec,
(5)

where δ specifies the degree of nonreciprocity and drec repre-
sents a reciprocity diameter. All particle pairs exhibit strictly
reciprocal repulsion within a separation distance of drec. Note
that by setting drec > σ , we control the nonreciprocity only
via the attractive part of the interaction without much loss
of generality. Additionally, we confirm that accounting for
nonreciprocity in both the attractive and repulsive components
does not create a qualitative difference in the results. There-
fore, for convenience, we set drec = 21/6σ in our study. The
pairwise nonreciprocal interactions between different species
are represented in Fig. 1. When δ = 0, there exists no net
force. For 0 < δ < 1, each species experiences a force of
variable magnitude, with these forces continually opposing
one another. Conversely, for δ > 1, nonreciprocity results in
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opposing forces that no longer counteract each other: a parti-
cle that exerts a repulsive (attractive) force will subsequently
experience an attractive (repulsive) force. This phenomenon
is reminiscent of the so-called predator-prey interaction wit-
nessed in nature.

To quantify the ratchet effect, we measure the average
velocity in the x direction. In the asymptotic long-time regime,
the average velocity of the particle along the x direction can
be obtained from the following formula:

Vx = lim
t→∞

�X (t )

t
, (6)

where �X (t ) = 1
N

∑N
i=1〈xi(t ) − xi(0)〉 is the average dis-

placement of particles at time t along the x direction. xi(t )
is the center of mass of particle i. The symbol 〈...〉 denotes an
average over the random initial conditions and 100 stochastic
trajectories are used to perform ensemble average.

In order to characterize the diffusion behavior of particles,
we employ the time-dependent mean square displacement
(MSD) which is defined as follows:

MSD(t) = 1

N

〈∑
i

[r′
i (t) − r′

i (0)]2

〉
. (7)

Here, the calculation is performed in the reference frame of
the center of mass, denoted by rcm = 1

N

∑
i ri, where r′

i =
ri − rcm. The ensemble average, denoted by the brackets,
is calculated under steady-state conditions. Accordingly, the
effective diffusion coefficient is derived from the long-time
behavior and expressed as Deff = limt→∞ MSD(t)

4t .
To integrate Eq. (1), we employ the Euler algorithm with a

step time of 10−5. The total integration time is 105, which is
sufficient to ensure that the system can reach a nonequilibrium
steady state. Particle positions are initialized using a uniform
random distribution within the confining box. The particle
density within the box is described by the packing fraction
φ = Nπσ 2/(4LxLy), which represents the ratio of the area
occupied by particles to the total available area. In the simula-
tions, we implemented periodic boundary conditions. We set
Lx = 2Ly, Lx = 2lx, and Ly = 2ly without loss of generality.
Unless indicated otherwise, simulations are executed using
the following parameters: kB = 1, ε = 1, μ = 1, V0 = 0.5,
and N = 1000. The robustness of the presented results has
been confirmed under reasonable alterations of these param-
eters. It needs to be clarified that our work primarily focuses
on the system being in the liquid phase.

III. RESULTS AND DISCUSSION

We first discuss the implementation of rectification con-
ditions for Brownian particles in our model. The ratchet
mechanism necessitates two crucial components: (i) a
nonequilibrium driving force, which disrupts thermal equilib-
rium and prevents directed transport due to the Second Law
of Thermodynamics; and (ii) asymmetry, either temporal or
spatial, which interrupts the left-right symmetry of the re-
sponse. In the system under consideration, there is an absence
of a particle-autonomous nonequilibrium drive. However, the
nonreciprocal interactions embedded within our model pro-
duce a net force Fnet

i j (t ) = Fi j (t ) + F ji(t ) between particle i

FIG. 2. (a) Plot illustrating the typical average net force fx on
a particle against time t for different δ. The black solid line rep-
resents the case of reciprocity (δ = 0), indicating that in reciprocal
situations, fx is always zero. For nonreciprocal situations (δ = 0.4,
0.8, 1.0), a net random force appears. (b) Comparison of the power
spectral density of fx (t ) for varying values of δ with that of Gaussian
white noise. The other parameters are φ = 0.2 and T = 0.3.

and j, which can be treated as an internally generated ac-
tive force. For the purposes of our discussion, we define the
average force impacting each particle at a given time t , derived
from nonreciprocal interactions, as f (t ) = 1

N

∑
Fnet

i j (t ). This
force is determined by particle configurations as well as the
degree of nonreciprocity δ. In the scenario of reciprocity, all
action and reaction forces are fully neutralized, leaving no net
force. Consequently, the net force f (t ) always equals zero.
In the nonreciprocal case, as particle configurations fluctuate
randomly over time, f (t ) also exhibits randomness.

Figure 2(a) compares the time-dependent net force f (t )
in the x direction, specifically referred to as fx(t ), acting
on a particle under both reciprocal and nonreciprocal con-
ditions at φ = 0.2 and T = 0.3. When δ = 0.0, all particle
interactions are purely reciprocal. In consequence, the mag-
nitudes of the action and reaction forces are equal but are

064409-3



BAO-QUAN AI PHYSICAL REVIEW E 108, 064409 (2023)

directed oppositely, hence fx(t ) consistently equals zero (no
nonequilibrium driving). If we consider nonreciprocal inter-
actions (e.g., δ > 0), the net force fx(t ) fluctuates around zero,
operating similarly to a nonequilibrium driving force. This
oscillating force subsequently intensifies with an increase in δ.

In order to examine the persistence of the net force fx(t ),
we computed its power spectral density as shown in Fig. 2(b),
and compared it with that of Gaussian white noise. From the
definition of the white noise via its covariance, the spectral
density of Gaussian white noise appears uniform. Neverthe-
less, for nonreciprocal interactions, the spectral density of
fx(t ) is dominated by the low-frequency component over the
high-frequency one. The net force fx(t ) can be artificially
decomposed into two components: Gaussian white noise and
low-frequency ac drive. The persistent active motion, which
resembles patterns observed in conventional active particle
models, can potentially be induced by the latter constituent.
As a result, the net force emerging from nonreciprocal
interactions could act as a nonequilibrium drive. Note that
the previous literature [69] has also demonstrated that non-
reciprocal interactions can drive a system out of equilibrium.
The subsequent section will focus on how this nonequilibrium
drive leads to directional movement of Brownian particles
within a ratchet potential.

Figure 3(a) depicts the relationship between the average
velocity Vx and the asymmetry parameter � for different δ

values at φ = 0.2 and T = 0.3. The average velocity Vx is
found to be positive for � > 0, zero at � = 0, and negative
for � < 0. A qualitative explanation of this phenomenon is
provided below. When � > 0, the potential’s left side from
the minima exhibits steeper characteristics [as depicted in the
top panel of Fig. 3(b)]. Consequently, it is more accessible
for particles to move toward the sloped side than the steep
side, resulting in an average rightward movement of particles
(Vx > 0). Conversely, when � < 0, particles tend to move
leftward on average (Vx < 0). For � = 0, the potential is
entirely symmetric [as shown in the middle panel of Fig. 3(b)],
leading to equal probabilities of particle movement to either
side and the disappearance of directed motion. In the case
of large � limits, the potential barrier height increases to a
point where particles get trapped in local minima, which in
turn suppresses rectification. Hence, there exists an optimal
value of � at which Vx reaches its peak. Due to the perfectly
antisymmetric relationship between Vx and �, we will limit
the discussion to only cases where � > 0.

Figures 4(a) and 4(b) respectively represent the average
velocity Vx and the effective diffusion coefficient Deff/(μkBT )
as functions of the degree of nonreciprocity δ. Upon compar-
ison, it becomes clear that the relationships between Vx and
Deff/(μkBT ) in relation to δ are substantially different. The
former exhibits a peak relationship, whereas the latter demon-
strates a monotonically increasing relationship. At T = 0,
the dynamics become deterministic and once equilibrium is
achieved, the particle configurations remain unchanged. The
absence of a nonequilibrium drive implies no directed motion.
Upon examination, Vx is observed to be a peaked function of
δ. This is explicable via an earlier discussion that revealed the
nonequilibrium driving force fx(t ) to increment along with
δ (Fig. 2). Simultaneously, the effective diffusion coefficient
Deff/(μkBT ) also escalates with δ [Fig. 4(b)]. This unveils

FIG. 3. (a) The average velocity Vx as a function of the the asym-
metric parameter � of the potential for different δ at φ = 0.2 and
T = 0.3. (b) The profile of the potential V (x) along the x direction
described in Eq. (2) for different values of the parameter �. The left
side of the potential is steep for � > 0 and the right side is steep
for � < 0. The error bars represent the standard deviation above and
below the mean.

that nonreciprocal interactions between Brownian particles
can significantly amplify their diffusivity, which is in line
with findings from Ref. [60]. As δ → 0, the nonequilibrium
driving force vanishes, rendering Vx negligible. Conversely,
when δ is significantly large, the nonequilibrium driving force
fx(t ) intensifies to a substantial degree, enabling particles to
traverse the potential barrier with such ease that its presence
becomes almost imperceptible. Furthermore, the influence
of the asymmetric potential becomes negligible, resulting in
the rectifying effect being discounted, which subsequently
reduces Vx to zero. Therefore, an optimal value for δ exists,
estimated to be at δ = 1.0, where Vx reaches its maximum.

The dependence of the average velocity Vx on the tem-
perature T is shown in Fig. 5(a) for different δ at φ = 0.2
and � = 2.0. Analogous to Fig. 4(a), the average velocity
Vx exhibits a peak function in relation to T . As T tends
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FIG. 4. (a) The average velocity Vx as a function of δ for different
T . (b) The effective diffusion coefficient Deff/(μkBT ) as a function
of δ for different T . The other parameters are φ = 0.2 and � = 2.0.

to zero, particles encounter difficulties in overcoming the
potential barrier, causing Vx to approach zero. Directed mo-
tion is only accomplished when the temperature exceeds a
specific threshold. This facilitates the nonequilibrium drive
and noise in aiding the particle to cross the potential barrier.
Conversely, when T approaches infinity, the potential barrier
becomes negligible, the asymmetric potential’s effect ceases,
and no directional movement is produced, leading Vx to zero.
Consequently, there exists an optimal value of T at which the
rectification of the particle is maximized. Furthermore, as δ

increases, there is a marginal shift in the peak positions of the
curves toward a smaller T .

In order to thoroughly investigate the interdependence of
the average velocity Vx on δ and T , a phase diagram was
constructed. This diagram, illustrated in Fig. 5(b), emphasizes
the average velocity in the δ-T representation at φ = 0.2 and
� = 2.0. In regions where δ < 0.4 or T < 0.1, it is difficult
for particles to overcome the potential barrier, leading to an
observable lack of directional movement. Conversely, when

FIG. 5. (a) The average velocity Vx as a function of the temper-
ature T for different δ. (b) Phase diagram of the average velocity
Vx in the δ-T representation. The other parameters are � = 2.0 and
φ = 0.2. The background represents the value of Vx according to the
color bar on the right.

T > 0.6 or δ > 2.0, particles can easily traverse the potential
barrier, thereby resulting in the disappearance of asymmetric
action and hence an absence of a rectification effect. This
affirms the existence of an optimal parameter region for (δ, T )
where Vx attains its maximal value. The following discussion
will elucidate the results. The degree of particle rectification is
determined by the interplay between the driving force, depen-
dent on T and δ, and the potential barrier. A weak driving
force cannot propel the particles over the potential barrier,
resulting in the absence of directed motion. On the other hand,
an excessively strong driving force can make the potential
barrier insignificant, resulting in a loss of the asymmetry effect
and thereby limiting directed motion. When the driving force
exactly matches the potential barrier, creating a condition re-
ferred to as “directional motion” in the figure, optimal particle
rectification is achieved.

We have also examined the relationship between the aver-
age velocity Vx and the temperature T for different values of
φ. This relationship is depicted in Fig. 6(a), and the range con-
sidered extends from the dilute regime to close packing (φcp ≈
0.91). We discovered that there exists a threshold temperature
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FIG. 6. (a) The average velocity Vx as a function of the temper-
ature T For different φ at � = 2.0 and δ = 0.8. (b) The average
velocity Vx as a function of the packing fraction φ for different δ

at T = 0.3 and � = 2.0.

below which the average velocity Vx suddenly decreases. This
phenomenon arises due to the formation of a dense phase at
low temperatures. The thermal motions of the particles are
insufficient to disrupt this phase, which hinders the particles
from passing through the potential barrier, leading to zero net
transport. Additionally, this threshold temperature increases
with the rise in φ. This can be attributed to the fact that a
higher packing fraction facilitates the formation of a denser
phase, demanding a higher temperature to destabilize it. Fur-
thermore, an increase in φ leads to a shift in the position of
the peak in the curves toward higher temperatures. It is worth
noting that when the density reaches a certain level (e.g.,
φcp ≈ 0.91), particle crystallization or jamming occurs, which
leads to zero net transport.

Figure 6(b) illustrates the relationship between the average
velocity Vx and the packing fraction φ for varying values
of δ at a fixed T = 0.3 and � = 2.0. Noticeably, the aver-
age velocity displays a peaked function in relation to φ. At

FIG. 7. The effective diffusion coefficient Deff/(μkBT ) as a func-
tion of φ for different δ at T = 0.3 and � = 2.0.

extremely low φ values, the particle density is minimal,
thereby rendering interparticle interactions negligible. This
condition induces the disappearance of the nonequilibrium
drive, which is achieved by nonreciprocal interactions, conse-
quently leading to the elimination of rectification. Conversely,
when the packing fraction significantly increases, particle
crowding becomes intense, ultimately reducing the average
inter-particle indirect interaction to a marginal level, exem-
plified by r < 21/6σ . This scenario results in two primary
effects: first, it causes the nonreciprocal part of the inter-
particle force to vanish, eliminating the nonequilibrium drive.
Second, it makes the rectification of particles inefficient due
to overcrowding. Therefore, under high-density conditions,
the average velocity tends to zero. Interestingly, there exists
an optimal φ at which Vx achieves its maximal value. Upon
reviewing the curve peaks, it is apparent that their positions
slightly shift toward smaller φ values with escalating δ levels.

Figure 7 illustrates the relationship between the effec-
tive diffusion and the packing fraction at T = 0.3 and � =
2.0. It is observed that the effective diffusion coefficient
Deff/(μkBT ) exhibits a peaked behavior with respect to the
packing fraction φ. This can be explained as follows: when
particles are confined within a potential well, increasing the
density has two distinct effects. Initially, at lower packing
densities, it facilitates the particles’ ability to overcome the
potential barrier, thereby enhancing diffusion. However, at
higher densities, the motion of the particles becomes more
constrained, resulting in a decrease in diffusion. As the pack-
ing fraction φ gradually increases from zero, the initial factors
play a significant role, leading to an increase in Deff/(μkBT ).
However, as the density becomes large enough for the par-
ticles to smoothly pass through the potential barrier, the
subsequent factors become dominant, resulting in a decrease
in Deff/(μkBT ). Consequently, there exists an optimal density
at which the diffusion coefficient is maximized.

We explore the impact of the system size on the rectifica-
tion of mixed Brownian particles, as depicted in Fig. 8, with
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FIG. 8. The average velocity Vx as a function of the particle
number N at δ = 0.8, φ = 0.2, T = 0.3, and � = 2.0.

T = 0.3, δ = 0.8, and � = 2.0. We maintained a constant
φ = 0.2, while the system size (Lx and Ly) adjusted in accor-
dance with the total particle number N . Our findings indicate
no significant deviations in the average velocity Vx as the
particle number N changes. This suggests that the rectification
of particles remains unaffected by the scale of the system.

Finally, we will briefly discuss the one-dimensional case.
For particles with no bias in their position distribution, we
obtained similar results to those of the two-dimensional
case (which are not presented here). However, there are the
following differences in the one-dimensional case. In the one-
dimensional case, particles are unable to pass through each
other, resulting in each particle having fixed neighbors that
remain unchanged over time, leading to a single-file motion.
For instance, a biased particle distribution propels a force that
deviates from the conventional random force with zero mean,
displaying a skewed random force instead. Additionally, the
diffusion behavior of the particles is significantly reduced
compared to the two-dimensional scenario, due to the single-
file motion.

IV. CONCLUSION AND OUTLOOK

In this paper, we studied the directed transport of mixed
Brownian particles with nonreciprocal interactions in a

two-dimensional periodic asymmetric potential. It was dis-
covered that such interactions could induce an interaction-
dependent nonequilibrium drive, which is dependent on both
the configurations of the particles and the degree of non-
reciprocity. This externally introduced force can break the
system’s thermodynamic equilibrium and induce the directed
motion of Brownian particles within an asymmetric periodic
potential. The direction of this motion is determined by the
asymmetry of the potential. The average velocity presents as
positive for � > 0, zero at � = 0, and negative for � < 0.
Moreover, the average velocity exhibits a peak function with
the degree of nonreciprocity, while the effective diffusion
coefficient consistently increases with an increase in non-
reciprocity. There exists a distinct optimal packing fraction
or temperature at which the maximum average velocity can
be attained. Importantly, these findings maintain applicability
and are not exclusive to any finite size effects.

In the traditional ratchet model, a particle-autonomous
nonequilibrium drive is essential, with the interactions be-
tween particles adhering to Newton’s Third Law. In this
context, we propose a method for rectifying Brownian par-
ticles using an interaction-dependent nonequilibrium drive,
propelled by nonreciprocal interactions. This alleviates the
need for a particle-autonomous nonequilibrium drive. Con-
currently, we propose a strategy for transposing the energy
of nonreciprocal interactions into directed motion. It should
be noted that in binary particle mixtures with nonreciprocal
interactions, like the one investigated in our study, net currents
(with randomly selected directions) can be achieved with-
out the requirement of an external potential [56,70,71]. This
phenomenon arises from the spontaneously emerging current
inherent to the nonreciprocal binary mixture, in conjunction
with the broken spatial asymmetry induced by the potential.
At present, this is merely a theoretical concept and the vali-
dation of its application should be pursued through laboratory
experiments on nonreciprocal systems [63,64,66]. This could
significantly impact our understanding of the complex behav-
iors observed in various out-of-equilibrium systems.
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