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Topological mechanism in the nonlinear power-law relaxation of cell cortex
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Different types of cells exhibit a universal power-law rheology, but the mechanism underneath is still unclear.
Based on the exponential distribution of actin filament length, we treat the cell cortex as a collection of chains
of crosslinkers with exponentially distributed binding energy, and show that the power-law exponent of its stress
relaxation should scale with the chain length. Through this model, we are able to explain how the exponent can
be regulated by the crosslinker number and imposed strain during cortex relaxation. Network statistics show
that the average length of filament-crosslinker chains decreases with the crosslinker number, which endows a
denser network with lower exponent. Due to gradual molecular alignment with the stretch direction, the number
of effectively stretched crosslinkers in the network is found to increase with the imposed strain. This effective
growth in network density diminishes the exponent under large strain. By incorporating the inclined angle of
crosslinkers into the model without in-series structure, we show that the exponent cannot be altered by crosslinker
rotation directly, refining our previous conjectures. This work may help to understand cellular mechanics from
the molecular perspective.
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I. INTRODUCTION

Many experiments showed that different types of cells
exhibit a universal power-law rheology [1,2]. For instance,
when subjected to constant stresses, cellular strain grows as
a power law of time, ε ∝ tβ [3–6]; when subjected to constant
strains, cellular stress decays as a power law of time, σ ∝ t−β

[7–10]; when subjected to oscillatory loads, the complex mod-
ulus varies as a power law of frequency, G∗ ∝ ωβ [11–16].
During these processes, the power-law exponent β can be
delicately regulated, depending on the amplitude of applied
strain/stress or the frequency of cyclical loads. Creep exper-
iments showed that β remains unchanged when the stress
is increased slightly [5,6], but starts to grow if the stress is
increased by orders of magnitude [3]. Relaxation experiments
revealed that β appears to be stable under large strains [7],
while small-strain experimental measurements are lacking.
Oscillatory experiments on in vitro actin networks demon-
strated that β decreases with the loads [17–19]. Furthermore,
molecular simulations suggested power-law relaxation of cor-
tical networks as well [20,21], with the scaling exponent β

increasing with the decline of imposed strain [20], like inert
soft glassy matter [22]. Molecular simulations also showed
that the mean-squared displacement of motors on actin net-
works grows anomalously as a power law of time [23]. These
ubiquitous and robust power-law features are independent of
cell types, cell states, or experiment methods, implying gen-
eral biomechanical principles underneath.

Although many theoretical efforts have been devoted to un-
derstanding the cellular rheology, the underlying mesoscopic
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mechanisms remain ambiguous. The remarkable soft glassy
rheology (SGR) model can capture the stress-induced β

growth in creep responses, but could not explain its variation
with respect to strain in relaxation [24–26]. A recent meso-
scopic network dynamics model investigated the change of β

with respect to external strain or crosslinker number in cortex
relaxation using molecular simulations, but the interpretation
was merely qualitative [20]. Macroscopic self-similar hier-
archical models, on the other hand, studied how β varies
with cellular stiffness, mainly focusing on the effect of cell
architecture embodied in different cellular hierarchies [27,28].
Currently, a physical understanding on the influence of exter-
nal loads on β is still lacking.

II. MODEL

Here we present a minimal model to illuminate how the
power-law exponent β can be regulated through a topological
mechanism during cell cortex relaxation (Fig. 1). The cortex
network is considered as a collection of crosslinker chains,
each composed of d harmonic springs connected in series,
with spring constant k and rest length l0. When subjected to a
global strain ε, crosslinkers dissociate with a rate of thermal
activation form, written as

�(E , ε) = γ exp

[
−

(
E − kl2

0 ε2

2

)
/ξ

]
, (1)

where γ represents the rate constant, E the binding energy,
and ξ the thermal energy coupled with bond rupture. Fol-
lowing the paradigm of the SGR model, we consider the
crosslinker dissociation as a thermal-activated hop out of a
harmonic well. This equation differs from the well-known
Bell’s equation only in the well shape [29], and the physical
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FIG. 1. Topological mechanism of cortex relaxation. (a) A mini-
mal model of a cell cortex, which is abstracted as many molecular
chains in parallel, each composed of d crosslinkers. The binding
energy of crosslinkers is exponentially distributed, described by the
probability density ρ(E ). (b) A downstream “signaling cascade”
of the external strain ε, crosslinker number n, chain length d , and
ultimately the power-law exponent β in cell cortex relaxation (green
pathways: d → β, n → d , and ε → n). Direct regulation by external
strain through rotation is forbidden (red pathway: ε → β).

nature behind both is the thermal activation over an energy
barrier. Such a difference does not affect our following deriva-
tion, since Eq. (4) below holds irrespective of the form of τm.

In the real cortex, since actin filaments are semiflexible
and of exponentially distributed length [30,31] and shorter
filaments could exert larger forces due to their higher stiff-
ness, crosslinkers bound to filaments of smaller length will
dissociate with larger rate even under the same global strain.
Such an acceleration effect of random length of filaments
turns out to be equivalent to that of the similarly distributed
binding energy of crosslinkers (see Appendix A). Hence the
binding energy E in the dissociation rate is assumed to be
exponentially distributed as well, with a probability density
ρ(E ) ∝ exp(−E/η), where η is the mean value of binding
energy E . In this manner, the disordered nature of the cell
cortex is essentially subsumed into the randomness of binding
energies, and the deformation of filaments is not considered
explicitly. Once a crosslinker dissociates, the stress stored in
the entire molecular chain is released immediately, and the
crosslinker rebinds with a new binding energy according to the
probability density function ρ(E ). The aim of this model is to
explain the power-law relaxation of the cell cortex through the
dissociation dynamics of crosslinkers and topological struc-
ture of the network, as suggested by previous experiments
[15] and simulations [20,21], whereas effects such as poly-
merization and depolymerization of filaments, viscous flow
of filaments within the cytoplasm, steric interaction between
filaments, or myosin contractility will be investigated in the
future.

In the initial steady state (i.e., ε = 0), the unbinding and
rebinding of crosslinkers reach thermodynamic equilibrium,
and thus the fraction P(E ) of crosslinkers with a specific
binding energy E should satisfy

P(E )�(E , 0) = ρ(E )
∫ ∞

0
P(E )�(E , 0)dE , (2)

in which the left-hand side reflects the number of crosslinkers
that dissociate with this binding energy E and then rebind with
possible binding energies, while the right-hand side reflects
the number of crosslinkers that dissociate with any binding
energies and then rebind with the binding energy E . This

equation basically states that the overall rate at which the
system loses (through unbinding) and regains (through rebind-
ing) a given binding energy E must be equal. The solution to
Eq. (2) is

P(E ) ∝ exp(−E/η) exp(E/ξ ), (3)

which describes the initial state of the model. Here we as-
sign k = 16 pN/nm and l0 = 50 nm [32], along with γ =
0.15 s−1 and ξ = 1.2η = 250kBT (see Appendix B) to ensure
that the initial distribution P(E ) is normalizable and that the
crosslinker strength for typical binding energy η conforms to
experimental results [33]. The global stress σ at any time t is
calculated by the sum of stresses over all chains.

The stochastic dissociation of crosslinkers can be simu-
lated through the standard Gillespie algorithm [34,35]. Upon
strain application, the lifetime of each crosslinker is tenta-
tively calculated as �−1(E , ε) ln(1/u), with u being a random
number uniformly distributed on the interval [0, 1] and re-
generated each time. Then, the lifetime of each crosslinker
chain is calculated as the minimum lifetime amongst its d
components. The stress stored in each chain is released when
its lifetime is reached. Recording the stress at the time of
each chain rupture event, one obtains the history of stress
relaxation. Using this model, we can investigate how β can
be regulated by upstream parameters, such as the chain length
d , and further the crosslinker number n and global strain ε in
the network [Fig. 1(b)], discussed in detail as follows.

III. RESULTS AND DISCUSSION

A. The pathway of d → β

Under a global strain ε = 5%, we plot the stress relaxation
curves on a log-log scale for d = {1, 2, 3} in Fig. 2(a). The
range of d ∈ N is chosen to match network statistics (Fig. 3).
The curves here are the results of individual simulations,
whose fluctuation is negligible due to the large number of
crosslinkers n ∼ 104. On each curve, the number of data
points is n/d , since the stress is released only when a chain
is ruptured. It can be seen that the stress decays with time in a
power-law form, σ ∝ t−β , for sufficiently large time t � γ −1,
and the power-law exponent β increases with the chain length
in proportion, as shown in Fig. 2(b).

This can be understood by analyzing the mean lifetime
of crosslinker chains. For d = 1, each chain is composed of
only one crosslinker, whose mean lifetime is the inverse of
its dissociation rate and can be expressed as τ = τmeE/ξ , with
τm = γ −1 exp(−kl2

0 ε2/2ξ ) being the minimum mean lifetime.
As a function of the binding energy E , the complementary
cumulative distribution function of τ can be derived from the
initial distribution P(E ) as

S(τ ′) = Pr(τ > τ ′)

=
∫ ∞

ξ ln(τ ′/τm )
P(E )dE

∝ τ ′1−ξ/η, (4)

where the prime denotes a given value of τ to discriminate it
from the random variable. This function gives the probability
that a crosslinker can survive beyond τ ′, or in other words,
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FIG. 2. Power-law relaxation of the minimal model. (a) Under
different chain lengths d = {1, 2, 3}, the stress decays as a power
law of time, σ ∝ t−β . (b) The exponent β is proportional to the chain
length d , which can be fitted by a linear curve, β(d ) = dβ(1). The
number of crosslinkers is 104.

the fraction of crosslinkers that remain bound at a given time.
Since each crosslinker bears equal force, the normalized mean
global stress at time t is thus σ (t )/σ (0) = S(t ) ∝ t1−ξ/η, and
accordingly β(1) = ξ/η−1 = 0.2.

When each chain is composed of multiple crosslink-
ers (d > 1), its mean lifetime is determined by the most
short-lived component, and hence can be expressed as τ̃ =
min(τ1, . . . , τd ), where {τi}d

i=1 is the mean lifetime of each
component crosslinker. The complementary cumulative dis-
tribution function of τ̃ can be derived from the above
single-molecule result. Noticing that τ̃ > τ̃ ′ if and only if
τi > τ̃ ′ for any 1 � i � d , and that each τi is independent, we
have

S (τ̃ ′) = Pr(τ̃ > τ̃ ′)

=
d∏
i

Pr(τi > τ̃ ′)

= Sd (τ̃ ′), (5)

where the prime denotes a given value of τ̃ to discriminate
it from the random variable. The above equation gives the
probability that a chain can survive beyond τ̃ ′, or in other
words, the fraction of chains that remain intact at a given
time. Since each chain bears equal force, the normalized mean

global stress at time t is thus σ (t )/σ (0) = S (t ) ∝ t (1−ξ/η)d ,
and accordingly β(d ) = (ξ/η−1)d = dβ(1), accounting for
the results in Fig. 2.

B. The pathway of n → d

In microrheological experiments on cells, the power-law
exponent has been shown to decrease with the overexpres-
sion of intermediate filaments during relaxation [9], and
increase with the reduction of cytoskeleton polymerization or
crosslinker concentration during creep responses [6,36], sug-
gesting cells tend to be more fluidlike when the spatial density
of the cytoskeletal network descends. This can be understood
through statistics on filament-crosslinker chain length under
different crosslinker density in the cell cortex, whose config-
uration can be generated within a three-dimensional periodic
box, with filaments considered as rigid rods and crosslinkers
as Hookean springs (see Appendix C).

We generate cortex networks for a series of crosslinker
numbers n = {4, 5, 6, 7, 8, 9, 10} × 103. The length of
filament-crosslinker chains can be characterized by the con-
cept of graph distance in graph theory [37], which is defined as
the minimum number of crosslinkers di j required to connect
a pair of filaments {i, j}. When averaged over all filament
pairs, the quantity 〈di j〉 characterizes the mean length of
force-bearing chains in the network. This parameter may be
regarded as an analog of d in the minimal model (see Ap-
pendix D), although it cannot reach the value 1 that demands
any two filaments be connected in the network. The relation-
ship between 〈di j〉 and n is plotted in Fig. 3, indicating that
the molecular chains become longer as the network becomes
sparser. This is essentially the same as that in Ref. [20], but
obtained from new networks here. Since a larger chain length
gives rise to a higher power-law exponent [see Fig. 2(b)],
β should decrease with the growth of crosslinker number n,
as reported in previous experiments [6,9,36] and simulations
[20].

C. The pathway of ε → n

Our previous simulations on a cortex network show that
the power-law exponent of relaxation may decrease with the

FIG. 3. Relationship between the average length of filament-
crosslinker chains 〈di j〉 and the total number of crosslinkers n.
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FIG. 4. Relationship between the number of effective crosslink-
ers neff and the external strain εx imposed on a network with n =
5000 crosslinkers.

imposed uniaxial strain [20], suggesting the cortex network
behaves like inert soft glassy matters [22]. This can be under-
stood through the strain-dependent variation of an “effective”
crosslinker number neff , essentially defined as the number of
crosslinkers whose deformation exceeds the strain imposed on
the cortex.

We generate a cortex network with n = 5000 crosslink-
ers and stretch it with a series of uniaxial strains εx =
{2.5, 5, 7.5, 10, 15, 20, 25} × 10−2. The equilibrium net-
work configurations can be obtained through the standard
Metropolis algorithm [20,38]. Since the crosslinkers are con-
stantly bombarded by the thermal bath, the part of molecular
extension that is actually induced by external mechanical
load, i.e., mechanical deformation, should be estimated as
the apparent deformation directly extracted from the simula-
tion minus the scale of thermal fluctuation. Hence, we write
the mechanical deformation as �mech = � − �ther, where
�ther = √

kBT/k is the standard deviation in thermal vibra-
tion of a harmonic spring, a consequence of Boltzmann
distribution [39]. To measure how many crosslinkers are ac-
tually stretched by the imposed strain, we define the effective
crosslinker number neff as the number of crosslinkers whose
mechanical strain exceeds the threshold εx, or in terms of
apparent deformation, � > l0εx + �ther. The relationship be-
tween neff and εx is plotted in Fig. 4, in which the number of
effective crosslinkers robustly grows with the uniaxial strain.
This is because crosslinkers tend to align with the stretch
direction as the strain increases [20]. Therefore, effectively,
the number of molecules is increased by the strain. Since
larger molecular density leads to smaller chain length (see
Fig. 3), which would further diminish the exponent, β should
decrease with the external uniaxial strain, explaining the re-
sults in previous simulations [20] and experiments performed
on inert soft glassy colloids [22].

D. The pathway of ε � β

An intuitive hypothesis is that the rotation of crosslinkers
could decrease the power-law exponent directly, as their align-
ment with the stretch direction seems to solidify the network
[20]. However, such an understanding is quite obscure. In fact,

FIG. 5. Relaxation of minimal model with molecular rotation but
without topological structure. The power-law exponent remains un-
changed irrespective of the angle distribution. Inset: Minimal model
where crosslinkers are endowed with random inclined angle ψ with
respect to the horizontal direction, while their in-series connection is
removed. The number of crosslinkers is 104 in the minimal model.

here we show that without the in-series structure of molecular
chains, the exponent would always be β ≡ β(1), no matter
what form the strain energy distribution takes (Fig. 5).

In this scenario, the system in Fig. 1(a) becomes a col-
lection of crosslinkers with random binding energy E and
random inclined angle ψ with respect to the horizontal di-
rection. Hence, the crosslinker extension is no longer l0ε,
but depends on its orientation, and can be approximated by
l0εcos2ψ under small strains. By replacing the strain en-
ergy term in the original dissociation rate correspondingly,
one obtains the new dissociation rate �(E , ε, ψ ). Once the
distribution of ψ is specified, the stochastic dissociation of
crosslinkers can be simulated through the aforementioned
standard Gillespie algorithm. Based on simulation data [20],
we fit the probability density of ψ ∈ (0, π/2) as a linear func-
tion, g(ψ ) = (π/4−ψ )α + 2/π , where α = 0 corresponds to
the uniform distribution of orientations and 0 < α < 8/π2

corresponds to the uneven distribution of orientations. Under
a uniaxial strain ε = 5%, we plot the relaxation curves on
a log-log scale for α = {0.01, 0.3, 0.7} in Fig. 5, where the
exponent remains β = 0.2 even for the smallest α that corre-
sponds to the most scattered distribution.

This can be understood through the lifetime distribution
of inclined crosslinkers. Note that the orientation distribution
of crosslinkers affects their lifetime through the strain en-
ergy term in its dissociation rate. Denote the strain energy of
crosslinkers as � ∈ (0,∞) with a probability density h(�).
The mean lifetime can be expressed as τ̂ = γ −1e(E−� )/ξ ,
where the distribution of binding energy E ∈ (0,∞) is de-
scribed by P(E ) for crosslinkers in the initial steady state.
Since E and � are independent, the complementary cumu-
lative distribution function of τ̂ can be derived from P(E ) and
h(�) as

S(τ̂ ′) = Pr(τ̂ > τ̂ ′)

=
∫∫

E−�>ξ ln(τ̂ ′γ )
P(E )h(�)dEd�

∝ τ̂ ′−β(1) (6)
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where τ̂ ′ > γ −1 and the prime denotes a given value of τ̂ to
discriminate it from the random variable. The above relation
is irrespective of the functional form of h(�). Assuming each
crosslinker roughly bears equal force and using the same
argument for stress relaxation as in the case of d = 1, one can
obtain the normalized mean global stress at time t > γ −1 as
σ (t )/σ (0) = S(t ) ∝ t−β(1). For the less concerned τ̂ < γ −1

regime, if we arbitrarily choose h(�) ∝ exp(−�/ζ ), the com-
plementary cumulative distribution function will be S(τ̂ ) =
1 − (τ̂ γ )ξ/ζ β(1)

β(1)+ξ/ζ
, which describes the transition of the re-

laxation curve from initial constant value to a power-law form.
Therefore, its slope in a log-log plot is always below β(1)
for ζ ∈ (0,∞). Neither of these two regimes can explain the
exponent growth under small strains [20,22]. Since geometric
factors such as orientation or stress distribution of crosslinkers
affect the dissociation dynamics through the strain energy �

eventually, they can only alter the prefactor of the power law
(the intercept of the relaxation curve), but not its exponent
(the slope of the relaxation curve), in the absence of network
topological structure.

IV. CONCLUSIONS

In summary, we present a “signaling cascade” that summa-
rizes how the exponent β can be regulated by the molecular
chain length d , how d can be regulated by the crosslinker
number n, and how n can be regulated by the external strain
ε in a downstream manner during the nonlinear power-law
relaxation of the cell cortex, as shown in Fig. 1(b). Through
a minimal model, we demonstrate how the exponent can be
affected by the chain length. Since the stress of the entire chain
is released once a crosslinker ruptures, the longer the chain,
the faster the relaxation, whereby the exponent is raised. In
real cortical networks, network statistics show that the average
length of filament-crosslinker chains decreases as the network
gets denser, and thereby the exponent should decrease with the
molecular density, in agreement with microrheological experi-
ments [6,9,36]. Moreover, network statistics also show that the
number of effective force-bearing crosslinkers increases with
the external strain due to molecular alignment with the stretch
direction. As a result of network structure change, the expo-
nent should decrease with the strain, in consistency with previ-
ous simulations [20] and experiments on soft glassy colloids
[22]. Counterintuitively, however, the strain effect on an ex-
ponent cannot be explained by the molecular rotation directly,
which was previously conjectured to be able to solidify the
network. These results complete a closed loop that explains
how the power-law relaxation of the cell cortex is governed
by its topological structure, whereby the crosslinker number
and imposed strain may decrease the scaling exponent.
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APPENDIX A: LENGTH-ENERGY EQUIVALENCE

Here we derive the dissociation rate of a crosslinker bound
to a semiflexible filament [20]. Consider a representative

FIG. 6. Representative filament-crosslinker complex. The semi-
flexible filament is described by the length L, modulus Y and
cross-sectional area A, and the crosslinker is described by the stiff-
ness k, rate constant γ0, and binding energy E0. With effective rate
constant γ and binding energy E , their dissociation dynamics is
equivalent to that of a crosslinker bound to a rigid filament of fixed
length L.

filament-crosslinker complex (Fig. 6), where the filament
is semiflexible, with rest length L, elastic modulus Y , and
cross-sectional area A, whereas the crosslinker is elastic, with
stiffness k, rate constant γ0, and binding energy E0. When
the complex is subjected to a deformation δ, the crosslinker
extension reads

� =
(

1

k
+ L

YA

)−1
δ

k
=

(
1 + kL

YA

)−1

δ. (A1)

Since the stiffness of a crosslinker is much smaller than
that of a filament of typical length [40,41], the dissociation
rate can be derived in the condition of kL/YA � 1 as below:

� = γ0 exp

[
−

(
E0 − k�2

2

)
/ξ

]

= γ0 exp

[
−

(
E0 − k

2

(
1 + kL

YA

)−2

δ2

)
/ξ

]

≈ γ0 exp

{
−

[
E0 − k

2

(
1 − 2kL

YA

)
δ2

]
/ξ

}

= γ0e−E0/ξ exp

[
−

(
k2δ2L

YA
− kδ2

2

)
/ξ

]
. (A2)

Note that � (crosslinker extension in the first line) is
eventually replaced by δ (complex deformation in the last
line) in the above equation. Hence, the dissociation of a
crosslinker bound to a semiflexible filament can be treated
as that of a crosslinker bound to a rigid filament, with the
newly defined rate constant γ = γ0e−E0/ξ and binding energy
E = k2δ2L/YA ∝ L. Since L is exponentially distributed in
the cell cortex [30,31], the binding energy E is also exponen-
tially distributed in Eq. (1) in the main text.

APPENDIX B: UNBINDING STRENGTH

Here we discuss the setting of binding energy η and ther-
mal energy ξ in our model. Their scale is related to the form
of strain energy in the dissociation rate, and their values are
related to the unbinding strength of a typical crosslinker. In
Eq. (1), we construct the strain energy as kl2

0 ε2/2, which
is proportional to the strain squared. With k = 16 pN/nm,
l0 = 50 nm, and a typical strain of 10%, the scale of strain
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FIG. 7. Unbinding strength distributions of a typical crosslinker
under thermal energies ξ = {1.2, 1.4, 1.6, 1.8} × η = 250 kBT ,
under a loading rate of 20 pN/s.

energy may be estimated as

Uscale = 16 pN/nm × (5 nm)2

4 pN nm
× 1kBT = 100kBT . (B1)

Accordingly, to match the scale of strain energy, reasonable
binding and thermal energies should be several hundreds of
kBT as well, and they can be regarded as effective energies
corresponding with such formulation of dissociation rate.

Setting ξ = 1.2η = 250kBT and γ = 0.15 s−1, we simu-
late the unbinding force of crosslinkers under a loading rate of
20 pN/s for 103 times using Eq. (1), as shown in Fig. 7. The
strength distribution is of a bell shape roughly, with a mean
value of 162 pN, basically conforming to the experimental
measurements on actin-binding-protein filamin [33]. How-
ever, when the thermal energy increases to ξ = 1.8η, the most
probable strength is severely reduced, and the distribution
becomes a decreasing curve, deviating from the experimen-
tal distribution [33]. This is because the binding is largely
impaired under very strong thermal agitation. Therefore, we
assign ξ = 1.2η throughout this study.

APPENDIX C: NETWORK GENERATION

Here we briefly summarize the details on the generation of
the network model. Based on the analysis in Appendix A, we
treat filaments as rigid rods with fixed length L = 500 nm, and
crosslinkers as linear springs with stiffness k = 16 pN/nm
and rest length l0 = 50 nm.

In the initial configuration, a total number of N = 500
filaments are put into a box of side length W = 1 µm and
thickness h = 250 nm, with periodic boundary conditions in
x and y directions. The position of a filament is described by
a vector P, and the orientation is described by a vector n,
as shown in Fig. 8(a). Filament position and orientation are
uniformly distributed, and set as follows:

Px = u × W, Py = u × W, Pz = u × W, (C1)

theta = arccos[(1 − 2u) × sin(θ0/2)], φ = u × 2π,

(C2)

FIG. 8. (a) Description of filament and crosslinker configuration.
(b) Top view of the initial configuration of a network with side length
W and thickness h, where gray molecules are filaments and blue ones
are crosslinkers. (c) Network configuration under a uniaxial strain
εx = 5% in the x direction.

where u is a random number uniformly distributed on [0,1]
and regenerated each time, and θ0 = π/8 is an arbitrary an-
gle to restrict out-of-plane inclination. Then, a total number
of n ∼ 103 crosslinkers are put onto the filament backbone.
Crosslinker configuration is described by the linear coordi-
nates {si, s j} of its binding sites on the two bound filaments
{i, j}, as shown in Fig. 8(a). The crosslinker length is then
written as

l = ||(Pi + sini ) − (P j + s jn j )||, (C3)

which must be close to the rest length l0. Such configuration
can be set by searching for binding sites randomly. First,
randomly choose two filaments. Second, randomly change
the linear coordinates of two potential binding sites on the
filaments. Third, check whether their distance is close to l0.
Repeating the above operations will eventually find suitable
binding sites for all crosslinkers. A technical detail here is
that, for the convenience of setting initial configurations, the
crosslinker end is actually attached with a tiny flexible rope
with a length of lend = 0.5 nm, such that no force or deforma-
tion energy is produced within a tiny range |l − l0| < 2lend,
where the factor 2 comes from the fact that one crosslinker
has two ends. Due to the periodic boundary conditions, fil-
aments in adjacent boxes may be connected by crosslinkers
[seen as lighter ones in Figs. 8(b) and 8(c)]. Since this work
mainly considers typical actin-crosslinking proteins such as
filamin, α-actinin, fimbrin, and spectrin, each of which has
two actin-binding sites [42], we neglect the multiple binding
scenario.

When the network is subjected to a uniaxial strain εx im-
plemented by changing the side length Wx of the box and the x
coordinates of filament centers proportionally, its equilibrium
configuration can be obtained through the standard Metropolis
algorithm. First, randomly change the position and orientation
of a crosslinker. Second, calculate the energy change �U .
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Third, accept the new configuration if

exp(−�U/kBT ) > u, (C4)

where u is a random number uniformly distributed on [0,1]
and regenerated each time. Repeating the above operations
will eventually lead to a series of thermodynamic equilibrium
states of the system.

It is worth mentioning that once the rate is given, time-
dependent stochastic dissociation of crosslinkers can be
simulated through the Gillespie algorithm as well. In this
work, the network model is merely used for the statistics of
molecular chain length and crosslinker strain distribution at
time t = 0. More details can be found in Ref. [20].

APPENDIX D: GRAPH REPRESENTATION OF NETWORK

Here we briefly summarize the concept of graph distance
in graph theory, which we use to characterize the topological
structure of our networks. As illustrated in Fig. 9, a network
can be represented by a graph, with each filament represented
by a vertex and each crosslinker by an edge that connects
two vertices. In the graph (network), two vertices (filaments)
may be connected by a path (molecular chain) formed by a
sequence of consecutive vertices and edges. The length of
a path (chain) is simply the number of edges (crosslinkers)
on it. When several paths are present, their lengths could
be different. Graph distance di j is defined as the minimum
length of all paths connecting a vertex pair {i, j}, and can
be generally determined by Dijkstra’s algorithm [37]. When
averaged over all vertex pairs, 〈di j〉 measures the mean length
of force-bearing chains in the network, which is abstracted as
the chain length d in the minimal model.

APPENDIX E: CATCH-BOND CASE

Here we discuss the case of catch bond. For the catch-bond
case, the dissociation rate in Eq. (1) may be modified as

� = γ exp

[
−

(
E + kl2

0 ε2

2

)
/ξ

]
, (E1)

FIG. 9. Graph representation of a network. (a) A local network
of six filaments (marked by numbers) and seven crosslinkers. (b)
Graph of the network, where vertices and edges represent filaments
and crosslinkers, respectively. Vertex 1 and vertex 6 can be connected
by several paths, such as the green one 1 → 2 → 5 → 6 or the red
one 1 → 4 → 5 → 2 → 3 → 6. Since the length of the former is 3,
while the length of the latter is 5, the graph distance between them is
d16 = 3.

FIG. 10. Relaxation of the minimal model without in-series
structure in the catch-bond case.

where the sign of strain energy becomes positive. This
changes the form of the minimum mean lifetime of crosslink-
ers [Eq. (4)] into

τm = γ −1 exp
(
kl2

0 ε2/2ξ
)
, (E2)

which grows with the global strain ε now. Hence, the power-
law relaxation will be postponed under large global strains,
but neither the power-law feature nor the power-law expo-
nent will be altered, since Eq. (4) does not depend on the
specific form of τm. Such a modification will not change
the form of Eq. (5) either, which does not depend on τm

explicitly. In addition, as the statements of Secs. III B and
III C are based on the initial configuration of the network,
unrelated to the dissociation dynamics, this modification
will not change other green parts of the signaling cascade
in Fig. 1(b).

For Sec. III D, the lifetime is now written as

τ̂ = γ −1e(E+� )/ξ , (E3)

where τ̂ ∈ (γ −1,∞). If we arbitrarily choose the strain energy
distribution as h(�) ∝ exp(−�/ζ ) in Eq. (6), we have

S(τ̂ ′) = Pr(τ̂ > τ̂ ′)

=
∫∫

E+�>ξ ln(τ̂ ′γ )
P(E )h(�)dEd�

∝ (τ̂ ′γ )−β(1) − ζ (η−1 − ξ−1)(τ̂ ′γ )−ξ/ζ , (E4)

for τ̂ ′ > γ −1. We plot the stress history σ (t )/σ (0) = S(t )
under different values of ζ/η in Fig. 10. It can be seen
that the exponent slightly decreases as the strain energy
variance ζ increases (corresponding to the smaller global
strain exerted on the network). This suggests that the ex-
ponent increase under small global strain may still be
induced by the topological mechanism in the case of catch
bond.
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