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Physical limits to membrane curvature sensing by a single protein
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Membrane curvature sensing is essential for a diverse range of biological processes. Recent experiments
have revealed that a single nanometer-sized septin protein has different binding rates to membrane-coated
glass beads of 1-µm and 3-µm diameters, even though the septin is orders of magnitude smaller than the
beads. This sensing ability is especially surprising since curvature-sensing proteins must deal with persistent
thermal fluctuations of the membrane, leading to discrepancies between the bead’s curvature and the local
membrane curvature sensed instantaneously by a protein. Using continuum models of fluctuating membranes, we
investigate whether it is feasible for a protein acting as a perfect observer of the membrane to sense micron-scale
curvature either by measuring local membrane curvature or by using bilayer lipid densities as a proxy. To do this,
we develop algorithms to simulate lipid density and membrane shape fluctuations. We derive physical limits to
the sensing efficacy of a protein in terms of protein size, membrane thickness, membrane bending modulus,
membrane-substrate adhesion strength, and bead size. To explain the experimental protein-bead association
rates, we develop two classes of predictive models: (i) for proteins that maximally associate to a preferred
curvature and (ii) for proteins with enhanced association rates above a threshold curvature. We find that the
experimentally observed sensing efficacy is close to the theoretical sensing limits imposed on a septin-sized
protein. Protein-membrane association rates may depend on the curvature of the bead, but the strength of this
dependence is limited by the fluctuations in membrane height and density.
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I. INTRODUCTION

Membrane curvature is ubiquitous throughout cell biology
[1–4]: proteins that sense membrane curvatures can help lo-
cate the axis of cell division, determine cell polarity, facilitate
membrane remodeling, and serve as a cue for intracellular sig-
naling [5–10]. These proteins often act in tandem by binding
with each other to sense curvature cooperatively. However, in
the case of septin proteins, recent experiments have shown
that in addition to sensing curvatures via cooperative filament
formation [11,12], even a single septin protein can distinguish
between micron-scale membrane curvatures, preferentially
binding to membranes adhered to glass beads of different
radii with different association rates [13–15]. How do proteins
only a few nanometers in size effectively sense membrane
curvatures that are hundreds of times larger than themselves,
on the order of micrometers? This sensing ability is even more
remarkable because biological membranes undergo persistent
thermally driven undulations [16]. Even if a protein could per-
fectly measure the instantaneous shape of the membrane at the
nanometer scale, these undulations drive the membrane away
from its average shape, confounding the protein’s attempts to
measure the membrane’s curvature (Fig. 1). How can a protein
reliably make a measurement of micron-scale curvature in this
noisy environment?

The current strongest evidence that protein-membrane
binding can be curvature dependent at the single-molecule
level is presented by the experiments in Fig. 2(b) of [15].
The authors measure the single-molecule association rates
of septin to membrane-coated beads, and find that the

association rate increases monotonically with bead curvature.
These experiments are performed with nonpolymerizable
septins, ruling out the possibility of septin forming larger
filaments. There is also indirect evidence that SpoVM
may have curvature-dependent binding rates, though there are
conflicting results on whether the on rates or off rates are more
sensitive to curvature [17,18]. We note that many experiments
conducted on the curvature sensitivity of septins [11,14,15]
measure the total adsorption of septins onto the membrane,
which is highest at intermediate bead curvatures [11].
These experiments do not tell us whether a single septin has a
binding preference, as the adsorption depends on septin-septin
interactions and other complex factors [15]. We focus on the
sensitivity of single molecules to membrane curvature,
because this is where we expect physical constraints to play
the largest role: it is more difficult for a single septin to detect
the curvature than for a longer polymerized filament to do so.

Although there are descriptions of molecular mechanisms
employed by proteins when sensing nanometer-scale
curvatures [19], curvature sensing at the micron scale is
less well understood [20]. Previous theoretical studies have
modeled the thermodynamics of curvature sensing [21] and
the effects of helix insertion on the membrane’s energy
[22,23]. Here, we take a qualitatively different approach: we
ask how precisely a protein could measure the micron-scale
curvature of a membrane if it made a perfect measurement
of local membrane shape or local lipid density, subject to the
inevitable thermal fluctuations of the membrane. This gives
us the fundamental physical limits to curvature sensing for an
idealized protein, akin to Berg and Purcell’s classic work on
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FIG. 1. Thermal fluctuations of the membrane lead to discrep-
ancies between the average membrane shape and the instantaneous
local nanometer-scale membrane shape present at the protein’s loca-
tion, even if the protein perfectly observes the local shape.

the limits of ligand concentration sensing for a perfect detector
of a finite size [24], and later follow-ups [25–28]. Our result
builds on the larger literature of sensing limits in different
contexts, including gradient sensing [29–33], flow sensing
[34], and sensing the mechanical properties of heterogeneous
materials [35,36]. To quantify curvature sensing in this way,
we define a signal-to-noise ratio (SNR) to indicate how well
a protein is able to extract useful information about the mem-
brane’s shape despite stochasticity. To support our analytical
models, we develop algorithms to simulate membranes with
fluctuating height and lipid densities. Curvature induces
deviations in the packing of lipids in the membrane bilayer,
and proteins with amphipathic helices insert themselves into
bilayers [37,38]. We study the possibility that proteins that
sense micron-scale curvature may be using lipid packing as a
proxy to sense membrane shape [39].

We then show how our model can be fit to the single-
molecule association rate measurements of septin in [15]. Our
results show that septin may be functioning near its physical
limits in these experiments. We also find that the ability of a
single septin to discriminate between different micron-sized
beads requires the membrane to be strongly adherent to the
bead, suggesting that, in vivo, single-molecule association is
not the likely driving factor of the observed curvature sensitiv-
ity of septin localization, and instead septin-septin interactions
must play the key role.

II. MODELS AND SIMULATION METHODS

A. Modeling membrane, bead, and membrane-bead adhesion

We represent the shape of the membrane in terms of its
height h(r) above a two-dimensional plane as a function of
position r = (x, y), i.e., using Monge gauge [40]. To induce a
curvature similar to the bead of [14,15], we model a substrate
with a spherical bump of radius R on a flat surface (Fig. 2).
The adhesion energy between the bead and membrane is har-
monic,

Eadh = γ

2

∫
dr(h(r) − hbead(r))2, (1)

where γ is the strength of membrane-substrate adhesion,
hbead(r) traces the height of the bead at each position in

FIG. 2. Snapshots of thermally fluctuating simulated mem-
branes: a freely fluctuating flat membrane with no membrane-
substrate adhesion (left) and a membrane adhered to a bead of radius
R = 500 nm with adhesion strength γ = 1013 J/m4 (right). System
size is L = 1.6 µm. Note that due to the large difference in size
scales and strong membrane-substrate adhesion, fluctuations are not
apparent in the plot on the right. Simulation parameters: Table I.

the xy plane and serves as the equilibrium height, and
the integral

∫
dr is over the xy plane. This harmonic po-

tential approximates more detailed potentials such as the
Mie potential of [41] or van der Waals interactions [42]
(see Appendix F). The height field hbead(r) is hbead(r) =√

R2 − 2s2 + 2s(x + y) − x2 − y2 with s = L/2 for r within
a distance R of the bead center (s, s). We set hbead(r) = 0
outside this region, where the membrane is adherent to a flat
substrate.

B. Energy of membrane height and density changes

In addition to the membrane height, we also characterize
the membrane by the lipid densities in each leaflet. We use
the Seifert-Langer model [43,44] to represent how the mem-
brane’s height couples to lipid densities. Due to membrane
curvature, the lipid densities measured at different depths into
the membrane bilayer will differ. We define the scaled lipid
densities of the upper and lower monolayers at the midsur-
face, ρ± ≡ (ψ±/φ0 − 1), where ψ± are the number densities
projected onto the bilayer midsurface and φ0 is the equilib-
rium number density of a flat membrane. The lipid density
deviation between the upper and lower monolayers at the
midsurface is ρ ≡ (ρ+ − ρ−)/2, and the average density is

TABLE I. Parameters used for theory and FSBD simulations
unless otherwise stated.

Parameter Notation Value

Protein size (sensing radius) a 16 nm
Membrane-substrate adhesion strength γ 1013 J/m4

Membrane bending modulus κ 20 kBT
Monolayer area compressibility modulus k 0.07 J/m2

Monolayer thickness d 1 nm
Temperature T 310 K
Monolayer viscosity μ 10−8 kg/s
Solvent fluid viscosity η 0.02 Pa s
Intermonolayer friction b 107 J s/m4

Simulation time step �t 3.2 ns
Total simulation time tsim 0.016 s
Edge length of simulated membrane L 1600 nm
Lattice points/Fourier modes per side N 73
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FIG. 3. A curved membrane induces deviations in the packing
of lipids in the bilayer. When the membrane is flat, the number
densities of lipids projected by the two monolayers at the midsurface
are equivalent. However, when the membrane is curved and its lipids
are allowed to laterally relax to their minimum energy value, the
upper (+) and lower (−) monolayers project different densities at
the midsurface. The steeper the curvature, the greater the difference
between the scaled densities ρ+ and ρ−. At steady state, the neutral
surface lipid number densities φ+ = φ−. The distance between the
midsurface and either neutral surface is d .

ρ̄ ≡ (ρ+ + ρ−)/2. As shown in Fig. 3, when the membrane is
bent to a positive curvature and the lipids allowed to laterally
relax, the density projected by the upper leaflet at the midsur-
face is greater than that projected by the lower leaflet. (This
is in contrast to the density profile when momentarily bending
the membrane, where the midsurface densities are equal and
the upper and lower leaflets are stretched and compressed at
the neutral surfaces, respectively [45].)

The membrane’s total free energy E consists of the sum of
the Helfrich free energy due to bending the membrane [46],
the energy due to lipid density deviations of the upper and
lower membrane monolayers away from their ideal values
[43], and the adhesion energy in Eq. (1),

E =
∫

dr
{

κ

2
(2H )2 + k

2
[(ρ+ − 2dH )2

+ (ρ− + 2dH )2]

}
+ Eadh, (2)

where κ is the membrane bending modulus, H is the mean
curvature of the membrane such that 2H = −∇2h(r), and k
is the monolayer area compressibility modulus. (ρ+ − 2dH )
and (ρ− + 2dH ) represent the deformations away from the
ideal lipid density in the upper and lower membrane mono-
layers, respectively. d is the “monolayer thickness,” i.e., the
distance between the bilayer midsurface and either neutral
surface. The sign conventions used for the mean curvature H
in Eq. (2) are as in [44]. Since we do not model asymme-
tries in lipid composition [47], we assume zero spontaneous
curvature.

The membrane bending energy includes a term ∇2h(r),
which can be more easily dealt with in Fourier space. We
choose our Fourier conventions to represent a finite sys-
tem size of dimensions L × L, with the Fourier wave vector
q = 2π

L (m, n) such that −(N − 1)/2 � (m, n) � (N − 1)/2
for N × N modes or lattice points, assuming N is odd. The
Fourier transform pair for the membrane’s height is then

hq =
∫

L2
drh(r)e−iq·r, h(r) = 1

L2

∑
q

hqeiq·r, (3)

and similarly for the transform pairs ρq, ρ(r) and ρ̄q, ρ̄(r).
Additional comments on the treatment of variables in Fourier
space are included in Appendix A.

The total free energy E in Eq. (2) is computed by summing
the contributions due to each Fourier mode as

E = 1

L2

∑
q

1

2
(hq, ρq, ρ̄q)E

⎛
⎜⎝hq

ρq

ρ̄q

⎞
⎟⎠

∗

+ Eadh, (4)

E =
⎛
⎝ κ̃q4 −2kdq2 0

−2kdq2 2k 0
0 0 2k

⎞
⎠. (5)

In Eq. (5), q is the magnitude of the Fourier wave vector q.
The renormalized bending modulus is κ̃ = κ + 2d2k, which
describes the response of the membrane over short times
when lipids cannot laterally relax. A typical value of κ is
about 20 kBT . The strength of membrane substrate adhesion
γ can vary over orders of magnitude in different contexts. To
best model the experiments in [14,15], we use a fairly strong
γ ∼ 1013 J/m4, unless otherwise stated. This is our estimate
of adhesion strengths of supported lipid bilayers (SLBs) on
glass substrates (see Discussion and Appendix F). The other
parameter values used in the model are included in Table I.

C. Dynamics and simulation of fluctuating membranes

A membrane that is deformed away from its equilibrium
state will relax over time. The dynamics of this process are
controlled by the viscosity of the fluid outside the membrane,
the membrane’s own viscosity, and the drag between the
two leaflets [43,45,48]. To these relaxation dynamics, we add
a stochastic term obeying a fluctuation-dissipation relation-
ship, which ensures that the system will evolve into thermal
equilibrium. The resulting stochastic dynamical equations for
evolving hq, ρq, and ρ̄q in time are (Appendix C)

∂

∂t

⎛
⎜⎜⎝

hq

ρq

ρ̄q

⎞
⎟⎟⎠ = −L2

⎛
⎜⎜⎝

1
�h

∂E/∂h∗
q

1
�ρ

∂E/∂ρ∗
q

1
�ρ̄

∂E/∂ρ̄∗
q

⎞
⎟⎟⎠+

⎛
⎜⎜⎝

ξq

ζq

χq

⎞
⎟⎟⎠, (6)

where �h
−1 = 1/4ηq, �ρ

−1 = q2/(4b + 4ηq + 2μq2), and
�ρ̄

−1 = q2/(4ηq + 2μq2). These �−1 values play the role
of hydrodynamic mobilities for a membrane with monolayer
viscosity μ and intermonolayer friction b embedded in a
fluid of viscosity η, setting the time derivative of a field ω

in terms of the forcelike term −L2∂E/∂ω∗
q. Thermal fluc-

tuations are accounted for with the stochastic terms ξq, ζq,
and χq (Appendix C). The deterministic components in the

equations for ∂hq

∂t and ∂ρq

∂t are consistent with the Seifert-

Langer model, and we derive ∂ρ̄q

∂t from the hydrodynamic
equations in [43] while neglecting inertial effects. While we
present these hydrodynamic equations of motion for gen-
erality, our focus is on the equilibrium properties of the
system, which are independent of the dynamic parameters
η, μ, b, etc. We will use this dynamical model to sample
from the equilibrium thermal distributions of h(r), ρ(r), and
ρ̄(r). A full understanding of the dynamics of this problem
should also include the effect of the presence of the sub-
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TABLE II. Symbols and definitions for relevant variables.

Description Symbol Definition

Two-dimensional position on the membrane surface r (x, y)
Fourier-space wave vector representing the membrane q 2π

L (m, n)

Magnitude of q q 2π

L

√
m2 + n2

Renormalized membrane bending modulus κ̃ κ + 2d2k
Equilibrium number density of lipids for a flat membrane φ0 –
Number density of lipids projected by the upper or lower leaflet onto the upper or lower neutral surface φ± –
Number density of lipids projected by the upper or lower leaflet onto the midsurface ψ± –
Scaled lipid density projected by the upper or lower leaflet onto the midsurface ρ± ψ±/φ0 − 1
Deviation between lipid densities ρ+ and ρ− at the midsurface ρ (ρ+ − ρ−)/2
Average scaled lipid density at the midsurface ρ̄ (ρ+ + ρ−)/2
Local membrane curvature sensed by a protein of size a Ca Eq. (7)
Local lipid density deviation sensed by a protein of size a ρa Eq. (8)
Protein kernel: two-dimensional Gaussian weight centered at the protein’s location Ga(r) Eq. (9)
Radius of a membrane-coated glass bead R –
Curvature of a membrane-coated glass bead Cbead 1/R

strate near the surface, which will alter the hydrodynamic
response [48,49].

To simultaneously simulate the fluctuations of membrane
height and lipid density, we extend the Fourier-space Brown-
ian dynamics (FSBD) approach [50]—so we will often refer
to our simulations as FSBD simulations as well. We simulate
the membrane by numerically integrating Eq. (6) in Fourier
space, adding the appropriate thermal noise to each Fourier
mode of hq, ρq, and ρ̄q over the simulation time step �t . In-
verse Fourier transforms are used to obtain the corresponding
h(r), ρ(r), and ρ̄(r). The amplitude of the thermal noise is
controlled by the system temperature and the mobility terms
�−1, and is chosen to ensure that the probability distributions
of the membrane’s height and lipid densities obey the Gibbs-
Boltzmann form at steady state. The simulation algorithms,
their derivations, and guidelines for choosing a manageable
time step for simulation convergence are included in Ap-
pendix C. To ensure that our approach creates the correct
equilibrium distribution, we compared with an extension of
the Fourier Monte Carlo method [51] (Appendix K).

D. Modeling a protein as a perfect observer

To understand what limits a protein’s ability to sense mem-
brane curvature even in ideal circumstances, we treat the
protein as a perfect observer, making a precise measurement
of the membrane curvature at the protein scale. The perfect
observer assumption means that the protein does not affect
the membrane in any way: it is a mere spectator. By a mea-
surement “at the protein scale,” we describe an average over
a region of the membrane of roughly the protein’s size a. The
local membrane curvature and local lipid density deviation
sensed by the protein can be defined as

Ca =
∫

L2
drGa(r)

−∇2h(r)

2
, (7)

ρa =
∫

L2
drGa(r)ρ(r), (8)

where Ga(r) is a two-dimensional Gaussian weight centered
at the protein location, such that

Ga(r) = 1

2πa2
exp

−|r − rprot|2
2a2

. (9)

We will always choose the protein to be located at the top of
the spherical bead, rprot = (L/2, L/2).

In our FSBD simulations, the integrals in Eqs. (7) and
(8) are evaluated by summing over discrete membrane lattice
points. Membrane curvatures are computed from hq noting
that the Fourier transform of the curvature is {− 1

2∇2h(r)}q =
1
2 q2hq, then using the inverse fast Fourier transform to recon-
struct the curvature field − 1

2∇2h(r).

E. Model parameters and notation

The parameters in Table I are applicable unless otherwise
stated for a particular result or figure. Table II is a summary
of the notation we use for relevant variables.

The values used for k and μ are consistent with typical
values in [52] and [53]. The solvent fluid viscosity η, the
membrane monolayer viscosity μ, and the intermonolayer
friction b are dynamical parameters that represent dissipative
mechanisms, and do not influence the equilibrium distribu-
tion, which only depends on the energy of a particular state.
(This is why we can reproduce our FSBD results with Monte
Carlo methods in Appendix K.) However, the dynamic pa-
rameters do determine the rate at which disturbances relax
and the magnitude of thermal fluctuations—so they influence
the stability properties of the numerical algorithm and the
equilibration time required. Our approach has been to begin
with somewhat-realistic dynamic parameters, and then tune
them to allow for easier convergence (see Appendix C 2).

III. RESULTS

A. Simulations of membrane-adhered beads

We simulate fluctuating membranes adhered to beads of
varying radii, where the bead curvature is Cbead = 1/R. In
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FIG. 4. Probability densities from FSBD simulations of local
membrane curvatures and local lipid density deviations sensed by
a protein of size a = 16 nm positioned at the top of membrane-
adhered beads of different diameters. Membrane-substrate adhesion
γ = 1013 J/m4. When the histogram distributions associated to dif-
ferent beads overlap considerably, there is more uncertainty about
which bead resulted in a particular local membrane curvature or
density deviation sensed by the protein. Time steps �t = 3.2 ns, total
time tsim = 0.016 s. Other parameters: Table I.

Fig. 4, we show the distribution of local membrane curva-
ture Ca and local lipid density deviation ρa that would be
sensed over a protein scale of a = 16 nm such that 2a roughly
corresponds to the footprint of a yeast septin rod, which
has an end-end length of ≈ 32 nm [13]. We have chosen
the membrane-substrate adhesion appropriate for a supported
lipid bilayer, which is strongly adherent (Appendix F). These
distributions show the extent to which different beads could
be distinguished by a protein: when there is significant over-
lap between two distributions, even a perfect detector would
struggle to distinguish between beads of these radii. As the
bead radius is increased, the average curvatures and density
deviations sensed by the protein decrease in magnitude—as
we would expect, because the bead is made locally flatter. The
distributions for larger beads overlap more substantially, so a
protein that measures a particular curvature or density value in
this regime is subjected to more ambiguity as to which bead
the measurement corresponds to.

B. Quantifying sensing efficacy with signal-to-noise ratio

If a particular local curvature or density deviation is
sampled from the distributions in Fig. 4, can the bead
size corresponding to the sampled measurement be reli-
ably determined? This can be challenging due to over-
lapping distributions, since each bead size is associated
to a multiplicity of instantaneous Ca and ρa values. We

summarize the way that thermal fluctuations of the mem-
brane could confound even a perfect detector of curvature
or lipid density in distinguishing between two membrane-
adhered beads of different sizes with a signal-to-noise ratio
(SNR) of

SNR = (μA − μB)2

σ 2
A + σ 2

B

, (10)

where μA and μB are the average membrane curvature Ca

or lipid density deviation ρa for two beads A and B, and
σ 2

A and σ 2
B are the corresponding variances of the membrane

curvature or density deviation sensed by the protein. The
motivation for this definition is to measure the distance be-
tween the means of two histograms in Fig. 4 in terms of
their variance. If we define a variable X which is the dif-
ference between the measured variable on bead A and the
measured variable on bead B, the SNR between A and B is
〈X 〉2/[〈X 2〉 − 〈X 〉2], which gives Eq. (10) because the vari-
ance of two independent variables adds. The greater this SNR
value is, the better a protein can distinguish between the
two beads. SNR approaches zero either if the beads are near
identical (μA ≈ μB) or if the noise σ 2

A + σ 2
B is overwhelming.

For our preferred curvature model, we show in Sec. III E
that—with some additional assumptions—this SNR controls
the largest possible ratio of association rates of the protein
to a bead of a given curvature as compared to a bead with
the protein’s preferred curvature, and use this to estimate the
experimental SNR.

We use our FSBD simulation to compute the SNR for
pairs of beads in Fig. 5, keeping the difference between
their diameters to be 200 nm. The smaller the beads, the
better a protein can distinguish between two similarly sized
beads (i.e., higher SNR). For beads on the micron scale,
the SNR is much smaller than 1 when the beads are sim-
ilarly sized (such as 1.2- and 1.4-µm diameters). This is
true for both the SNR of curvature sensing, SNRC , and the
SNR of density sensing, SNRρ . The decrease in SNR is
largely driven by the decreasing signal: large beads have
curvatures 1/R that are both increasingly close to zero cur-
vature, so the term (μA − μB)2 will shrink. As we will see
later (Fig. 8), for beads where the radii differ significantly,
e.g., 1-µm vs 3-µm diameters, the SNR can be appre-
ciable. Changing the membrane-substrate adhesion energy
from a weakly adherent membrane value (γ = 1011 J/m4)
to one appropriate to a SLB (γ = 1013 J/m4) increases
the SNR.

To gain an understanding of how the SNR depends on the
protein size, the mechanical properties of the membrane, the
geometry of the bead, and the membrane-bead adhesion, we
develop a theoretical model for the SNR in the next section,
Sec. III C. We plot this theoretical result against the simu-
lation result and see good agreement, especially at strong
membrane-substrate adhesion (Fig. 5). When the adhesion is
weak and the bead pairs are large, the SNR is low; there-
fore, small differences arising from different instances of the
same simulation can be more pronounced. The deviation at
small bead sizes (∼200−300 nm radii) and weak adhesion
(γ ∼ 1011 J/m4) is expected, and arises from the membrane
not following the bead perfectly (Appendix D).
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FIG. 5. Sensing SNR for pairs of membrane-adhered beads with diameters ranging from 0.4 to 1.4 µm, with each pair having diameters
separated by 0.2 µm. Top left: SNRC with γ = 1013 J/m4. Top right: SNRC with γ = 1011 J/m4. Bottom left: SNRρ with γ = 1013 J/m4.
Bottom right: SNRρ with γ = 1011 J/m4. Other parameters: Table I. Errors were computed with the block averaging method [54]. For each
pair of beads, the simulated curvature and ρ trajectories were separated into Nblock = 4 blocks and the mean and variance computed for each
block to obtain SNRblock, which was averaged across the blocks to obtain the SNR plotted. The error bars indicate standard errors, computed
by dividing the standard deviation of SNRblock across the blocks by

√
Nblock.

C. Analytical calculation of the SNR

To find an analytical form for the SNR written in Eq. (10),
we need the average values of curvature and density deviation
on a bead as well as their standard deviations.

If the membrane is strongly adherent to the bead, on aver-
age its shape will just be the bead’s shape, 〈h(r)〉 = hbead(r).
The averaged mean curvature for a membrane adhered to a
bead is then − 1

2∇2hbead(r). At the top of the bead (r = rprot),
the curvature is then

〈Ca〉 ≈ 1/R, (11)

where R is the bead’s radius. Our assumption that the mem-
brane follows the shape of the bead can be checked with
simulation: we see that it is reasonable at sufficiently large
bead sizes and strong membrane-substrate adhesion (Ap-
pendix D).

Given that the membrane is deformed to follow the bead,
we can find the value of ρ(r) that would minimize the energy
of the membrane, solving for ρq such that ∂E/∂ρ∗

q = 0 [us-
ing Eq. (4)]. This would be the steady-state ρq, holding the
membrane shape fixed. We find

ρss
q = dq2hq. (12)

Inverting the Fourier transform, we see that the density at the
protein’s location is

ρss(rprot ) = −d∇2h(rprot ) = 2d

R
. (13)

To approximate the standard deviation of the observed curva-
ture and density histograms, we start by noting that in Fig. 4,
the width of the histograms is broadly consistent across many
different bead diameters. σA and σB do not strongly depend on
bead size. In fact, for a large enough bead, the variances of
the observed curvature are essentially those for a membrane

adherent on a flat substrate with the same adhesion strength—
the protein scale is much smaller than the size of the bead, and
locally the bead surface is nearly flat. We then propose as an
estimate of the SNR:

SNRC =
(

1
RA

− 1
RB

)2

2
〈
C2

a

〉flat , (14)

SNRρ =
(

2d
RA

− 2d
RB

)2

2
〈
ρ2

a

〉flat , (15)

where RA and RB are bead radii for beads A and B, and 〈C2
a 〉flat

and 〈ρ2
a 〉flat are the membrane curvature and density variances

sensed by a protein of size a when the membrane is bound to a
flat substrate. These variances can be worked out analytically
in some cases, and by simple numerical quadrature in others.

1. Variances of membrane height and density
when bound to a flat substrate

For a planar membrane adhered to a flat substrate hbead =
0, the adhesion energy of Eq. (1) is just a simple harmonic
penalty, Eadh = γ

2

∫
drh(r)2 = γ

2L2

∑
q |hq|2. Then, the com-

plete energy of Eq. (4) is simply represented as

Eflat = 1

L2

1

2

∑
q

(hq, ρq, ρ̄q)E

⎛
⎜⎝

hq

ρq

ρ̄q

⎞
⎟⎠

∗

, (16)

E =

⎛
⎜⎝

κ̃q4 + γ −2kdq2 0

−2kdq2 2k 0

0 0 2k

⎞
⎟⎠. (17)
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Using Wick’s theorem [55], the variances of the Fourier
modes of height and density are

〈|hq|2〉 = L2kBTE−1
hh = L2kBT

κq4 + γ
, (18)

〈|ρq|2〉 = L2kBTE−1
ρρ = L2kBT

(2d2k + κ )q4 + γ

2k(κq4 + γ )
, (19)

〈|ρ̄q|2〉 = L2kBTE−1
ρ̄ρ̄ = L2kBT

2k
, (20)

where the subscripts hh, ρρ, and ρ̄ρ̄ denote elements of the
matrix inverse E−1.

2. Variances of curvature and densities sensed by a protein

Assuming that the protein is a perfect sensor of the
membrane curvature and density, the curvature and density
deviation sensed by the protein can be determined by the
weighted integrals over the membrane in Eqs. (7) and (8).
Since these integrals are linear in the height and density fields,
it is relatively simple to compute the variance of the protein-
sensed curvature Ca and protein-sensed densities ρa, ρ̄a by
substituting the Fourier transform conventions for h(r) and
ρ(r) into Eqs. (7) and (8) to obtain〈

C2
a

〉flat = 1

4L4

∑
q

q4〈|hq|2〉|Ga(q)|2, (21)

〈
ρ2

a

〉flat = 1

L4

∑
q

〈|ρq|2〉|Ga(q)|2, (22)

where Ga(q) is the Fourier transform of the Gaussian
weight Ga(r), and |Ga(q)|2 = |Ga(q)|2 = exp (−q2a2). See
Appendix B for an example derivation.

In the continuum limit, these Fourier sums can be rewritten
as integrals, noting

∑
q = ( L

2π
)2
∫

dq in two dimensions [16].
Since the integrands depend only on the magnitude of q, we
can further simplify

∫
dq = 2π

∫∞
0 q dq, finding〈

C2
a

〉flat = 1

8π

∫ ∞

0
q5 kBT

κq4 + γ
|Ga(q)|2dq, (23)

〈
ρ2

a

〉flat = 1

2π

∫ ∞

0
q

kBT (κ̃q4 + γ )

2k(κq4 + γ )
|Ga(q)|2dq, (24)

where κ̃ = κ + 2d2k.
We reformulate Eqs. (23) and (24) by substituting a dimen-

sionless parameter u = qa and simplify as〈
C2

a

〉flat = kBT

8πκa2

∫ ∞

0
u

u4

u4 + γ a4

κ

exp(−u2)du, (25)

〈
ρ2

a

〉flat = kBT

4πka2

∫ ∞

0
u

u4 + 2d2ku4

κ
+ γ a4

κ

u4 + γ a4

κ

exp(−u2)du. (26)

The curvature and density variances of Eqs. (25) and
(26) are numerically integrated by quadrature using the
scipy.integrate.quad [56] method in PYTHON. We plot
the variances in Fig. 6 as a function of protein size for varying
membrane adhesion strengths. We also compare these results
to FSBD simulations of a fluctuating membrane bound to
a flat substrate, finding excellent agreement (Fig. 6). These
variances will control the SNR through Eqs. (14) and (15), and
thus the potential accuracy of sensing. How do they depend on

FIG. 6. Theoretically predicted variances in local curvature and
local lipid density deviation as sensed by proteins of varying sizes
for a membrane adhered to a flat substrate with different adhesion
strengths γ , as compared to variances obtained from FSBD sim-
ulations of a membrane on a flat substrate. Simulated points are
for a = 16, 24, and 32 nm. Simulation parameters: L = 900 nm,
N = 49. Other parameters: Table I.

the protein size and membrane-substrate adhesion? In general,
larger protein sizes and stronger adhesion strengths allow the
protein to minimize the variance in curvature and ρ sensed
locally. However, increasing membrane-substrate adhesion γ

continually decreases the curvature variance 〈C2
a 〉flat over or-

ders of magnitude, while the density variance 〈ρ2
a 〉flat seems to

saturate. We can understand these behaviors by studying some
asymptotic limits where Eqs. (25) and (26) can be analytically
evaluated.

In the absence of membrane-substrate adhesion, γ = 0,
and Eqs. (25) and (26) are

〈
C2

a

〉flat

γ=0 = kBT

16πa2κ
, (27)

〈
ρ2

a

〉flat

γ=0 = kBT κ̃

8πa2kκ
. (28)

At the zero adhesion limit (freely fluctuating membrane),
the curvature and density variances sensed are both inversely
proportional to the protein size as 1/a2. Equations (27) and
(28) are also applicable at relatively weak adhesion; for the
standard parameter values chosen, these asymptotic formu-
las are reasonably accurate up to adhesion strengths of γ ∼
109–1010 J/m4 (Fig. 7).

We can also simplify the variances in Eqs. (25) and (26) in
the limit of high adhesion. The integrand in these equations is
suppressed exponentially when u � 1, so at sufficiently high
adhesion strengths, γ a4

κ
� 1 + 2d2k

κ
, we can neglect the terms

not proportional to γ in the numerator and denominators of
Eqs. (25) and (26). In this limit, we find

〈
C2

a

〉flat

high γ
= kBT

8πa6γ
, (29)
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FIG. 7. Predicted SNRC and SNRρ for beads of radii (RA, RB ) =
(0.5 µm, 1.5 µm) as a function of adhesion strength γ , compared to
their zero- and high-adhesion limits. The curvature and ρ variances
for the numerical SNR values are integrated by quadrature using
Eqs. (25) and (26). Theory parameters: Table I.

〈
ρ2

a

〉flat

high γ
= kBT

8πa2k
. (30)

We see in these high-adhesion limits both of the key fea-
tures we observed in the numerical calculations of Fig. 6:
curvature variance depends strongly on both protein size and
adhesion, while the density variance does not. In the absence
of adhesion, 〈C2

a 〉 ∼ 1/a2, while in the high-adhesion regime,
〈C2

a 〉 ∼ 1/a6. As γ is increased, 〈C2
a 〉 continues to diminish,

while 〈ρ2
a 〉 saturates asymptotically to a fixed value. This

might be expected, as even if the membrane is effectively
frozen into a flat configuration (γ → ∞), the lipids may still
diffuse in the flat membrane, leading to lipid density fluc-
tuations. Interestingly, 〈C2

a 〉 and 〈ρ2
a 〉 lose their dependence

on κ in the high-adhesion regime. In this case, the cost for
deviating from a flat height is dominated by the adhesion
energy—but because bending is so strongly suppressed, the
primary contribution to fluctuations in lipid density is the area
compressibility modulus k.

D. Determining curvature SNR and ρ SNR
for micron-sized beads

With the results of the previous sections, we now have
a complete theory for computing SNRC and SNRρ using
Eqs. (14) and (15) and the variances Eqs. (25) and (26). We
choose the radii of the beads RA = 0.5 µm and RB = 1.5 µm to
correspond to typical bead sizes in the experiments of [14,15].
We plot the SNR computed using numerical quadrature in
Fig. 7. Consistent with our discussion of measured fluctua-
tions above, the SNR for curvature increases without bound

FIG. 8. Top: SNR vs protein size, with d = 1 nm. Bottom: SNR
vs monolayer thickness, with a = 16 nm, for experimentally relevant
micron-sized pairs of beads with diameters of (1 µm, 3 µm). As the
monolayer thickness is increased, SNRρ approaches SNRC asymp-
totically. Adhesion strength γ = 1013 J/m4 is used to numerically
compute the variances for the SNR using Eqs. (25) and (26). Theory
parameters: Table I.

as curvature fluctuations are suppressed at high γ , while the
ρ SNR reaches an asymptotic limit. We can determine simple
analytical forms for the SNR by using the low-γ and high-γ
limits for the variances derived above. The closest relevant
limit for understanding experiments on supported lipid bilay-
ers on beads [14,15] is the limit of strong adhesion (high γ ).

In the limit of high adhesion, Eqs. (14) and (15) become

SNRC, high γ = 4πa6γ
(

1
RA

− 1
RB

)2

kBT
, (31)

SNRρ, high γ = 16πa2d2k
(

1
RA

− 1
RB

)2

kBT
. (32)

What is the theoretically predicted SNR when we com-
pare two beads of experimentally relevant radii (RA, RB) =
(0.5 µm, 1.5 µm)? We choose a value of γ = 1013 J/m4 to
represent a fairly strong SLB adhesion (see Appendix F for
calculated estimates), and plot the SNR in Fig. 8, varying
protein size and membrane monolayer thickness. (We note
that our estimate for SLB adhesion does not put us in the
asymptotic limit of Eqs. (31) and (32); the full form must be
used.) We would like to highlight three elements of these cen-
tral results. First, we see that the SNR for sensing curvature is
always, over our parameter range, larger than for sensing den-
sity. This may not be surprising, since our perturbation of the
membrane acts directly on the membrane height field through
Eq. (1), with density only correlated with this effect. Second,
we see that SNRρ can be comparable to SNRC , especially for
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small protein size a and larger membrane thickness d; these
are the circumstances where the density difference ρ is best
able to act as a proxy for the membrane curvature. Third, we
should comment on the overall scale: we see signal-to-noise
ratios on the order of one or higher. This suggests that single
septins sensing micron-scale curvature is at least reasonably
plausible. In the next section, we will ask whether this SNR is
compatible with the recent experimental observations of [15].

Figure 8 varies monolayer thickness independently of other
parameters. Changing lipid types to vary monolayer thickness
will also potentially change the bending modulus κ and com-
pressibility modulus k. We show a variant of Fig. 8 when κ is
also changed according to phenomenological laws connecting
κ and d in Appendix I.

E. Connecting SNR and membrane shape and density
fluctuations to experimental protein-bead association rates

To interpret what the SNR means, we make a corre-
spondence between the experimental measurements and our
computed distributions of curvature and lipid density. This
requires a few additional assumptions. We treat two separate
cases. In the first case, we assume that a single protein has a
preference to bind to a specific curvature or range of curva-
tures. This is consistent with data showing that the adsorption
of filament-forming septins has a clear peak at a charac-
teristic bead curvature of 2 µm−1 [11]. In our second case,
we assume that single proteins prefer to bind to beads with
curvature above some threshold value, so that the association
rate is enhanced above the threshold curvature, but saturates
at sufficiently steep curvatures. For example, if the threshold
curvature is 0.5 µm−1, a single protein would distinguish be-
tween a flat membrane and a bead of curvature 1 µm−1, but
would not be able to distinguish between two beads both of
which had curvatures considerably above the threshold, such
as 4 and 6 µm−1. This is motivated by the recent work in
[15], which notes that the single-molecule binding rates of
septin increase with increasing bead curvature (measured up
to 2 µm−1). These two assumptions have qualitatively distinct
results, but cannot yet be distinguished by experimental mea-
surements because single-molecule association rates have not
been determined at the highest curvatures, due to experimental
limitations.

1. Proteins with a maximal association rate
to a preferred curvature

A protein, encountering the membrane sees a local shape or
density drawn from a distribution P(Ca|R) (i.e., the histograms
plotted in Fig. 4). We then assume that the protein binds with
a probability that is dependent on the curvature it senses. In
the extreme case, binding could happen only when the protein
senses its preferred curvature Cpref. We assume that for a given
sensed curvature Ca, the association rate has a basal level
A0, and a piece that is dependent on the sensed curvature,
maximal when Ca = Cpref, which we write as a Gaussian.
Therefore,

A(Ca) = A0 + AC exp

(−(Ca − Cpref )2

2σ 2
bind

)
. (33)

Consequently, the association rates are maximal when the
protein senses its preferred curvature, and decreases when Ca

is steeper or shallower than Cpref. Here, σ 2
bind characterizes how

precisely an individual protein’s binding depends on curvature
and sets the range of apparent curvatures the protein binds to.

Equation (33) reflects the association rate for one value
of Ca, but proteins will sense a distribution of apparent cur-
vatures depending on the radius of the bead, P(Ca|R). The
conditional probability density of local curvatures sensed
given that the membrane is adhered to a bead of radius R is
Gaussian,

P(Ca|R) = 1√
2π
〈
C2

a

〉 exp

(
−(Ca − 1/R)2

2
〈
C2

a

〉
)

, (34)

where 〈C2
a 〉 is the curvature variance as derived in Eq. (25). In

this section, we drop the superscript “flat” label for simplicity,
but the variances 〈C2

a 〉 are all computed assuming a flat sub-
strate approximation [as explained when proposing Eq. (14)].
Then, the average association rate of the protein to a bead of
radius R would be

A(R) ≡
∫ ∞

−∞
dCaA(Ca)P(Ca|R). (35)

This integral can be evaluated analytically as

A(R) = A0 + β exp
(−SNReff

C

)
(preferred curvature), (36)

where β = ACσbind√
〈C2

a 〉+σ 2
bind

, and the effective curvature SNR is

SNReff
C = (1/R − Cpref )2

2
(〈

C2
a

〉+ σ 2
bind

) . (37)

In the limit σ 2
bind → 0, SNReff

C is exactly the SNRC derived
in Eq. (14), characterizing the ability of a protein as a per-
fect detector to distinguish between the bead’s true curvature
Cbead = 1/R and the protein’s preferred curvature Cpref. Some-
what counterintuitively, A(R) in Eq. (36) is maximal when
SNReff

C → 0. This is because, as always, the SNR between two
beads indicates the protein’s ability to discriminate between
the two beads, and will be zero if the beads are the same (or
in this case, if the bead curvature and the preferred curvature
are equivalent).

Shi et al. report the association rates of a single septin
oligomer to beads of different curvatures [15], which we re-
plot in Fig. 9. We can extract the basal association rate A0

of Eq. (36) directly from their experiments on flat surfaces
(zero curvature). We assume that the preferred curvature of
a septin is at 2 µm−1, which is where the association rate is
maximal among the available data, and is also the curvature
of maximal adsorption by septin filaments [11] (although
the competition effects found by [15] suggest that this max-
imum is not straightforward when different bead sizes are
present in the same assay). This also sets the value of β,
because A(R = 1/Cpref ) = A0 + β. We use our default pa-
rameters (Table I) to compute 〈C2

a 〉, leaving only one fit
parameter in the model, σ 2

bind. We fit Eq. (36) to the exper-
imental data with σ 2

bind as a fit parameter, and in Fig. 9 we
compare the data to our predicted association rates for varying
bead curvatures. Although the protein associates maximally
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FIG. 9. Preferred curvature model: association rates of a septin-
sized protein to various membrane-adhered bead curvatures, mod-
eled with Eq. (36) for Cpref = 2 µm−1. This is compared to the
experimental data in Fig. 2(b) of [15] (extracted using WEBPLOTDIG-
ITIZER [57]) for single septin association rates. For an experimental
basal rate of A0 = 0.892 µm−2 s−1 nM−1, we obtain the model param-
eter β = 3.505 µm−2 s−1 nM−1 by subtracting A0 from the maximal
association rate at the preferred curvature. The binding variance is
obtained as a fit parameter using nonlinear least-squares fits (lmfit
[58] in PYTHON), such that σ 2

bind ≈ 5 × 10−9〈C2
a 〉. Parameters:

Table I.

as expected to the chosen Cpref = 2 µm−1, it can also asso-
ciate substantively to a fairly broad range of bead curvatures
between ≈ 0 and 4 µm−1. The width of this curve is lim-
ited by the unavoidable error in sensing the curvature, 〈C2

a 〉,
which we computed above. The best fit σ 2

bind is negligible
compared to 〈C2

a 〉.
In addition to the fit displayed in Fig. 9, we can more

directly map between the association rates we studied and the
SNR we computed in the earlier sections. Using Eq. (36), the
ratio between the protein’s association rate to a bead with its
preferred curvature and a bead of radius R is

A(R = 1/Cpref )

A(R)
= w + 1

w + exp
(−SNReff

C

) , (38)

where w = A0/β. This ratio is maximized when w → 0,
which would happen if the basal rate A0 is negligible. The
maximum possible association ratio when w = 0 is{

A(R = 1/Cpref )

A(R)

}
max

= exp
(
SNReff

C

)
. (39)

Our estimates for association rate in this section let us
interpret what the SNR means: a large SNR between beads
of radii RA and RB indicates that there can be a large ratio of
association rates between these two beads. However, if there is
a large nonspecific basal level of association, or if the specific
association to curvature is very weakly dependent on sensed
curvature (large σ 2

bind), then the ratio of association rates could
be much smaller than that predicted by the simplest SNR in
Eq. (10). The signal-to-noise ratio of Eq. (10) gives the best
case ability of proteins to distinguish between differing bead
shapes, assuming perfect detection of the membrane shape
and no nonspecific binding.

What SNR do the data on single-septin binding to
membrane-coated beads imply? Using data from [15] (replot-
ted in Fig. 9), the ratio between the association rates of a
yeast septin to membrane-adhered beads of diameters 1 µm

and 3 µm (curvatures of 2 and 0.67 µm−1) is{
A(R = 0.5 µm)

A(R = 1.5 µm)

}
experiment

≈ 2.5. (40)

The minimal SNR required by a protein to distinguish be-
tween these two membrane-adhered beads with a selective
association ratio of 2.5 when w = 0 is

SNReff
minimum ≈ ln(2.5) ≈ 0.9. (41)

However, since the experiments indicate a basal as-
sociation rate of A0 = 0.892 µm−2 s−1 nM−1, we obtain a
non-negligible w = A0/β ≈ 0.254. Consequently, for an as-
sociation ratio of 2.5, Eq. (38) gives the effective experimental
curvature SNR:

SNReff
experiment ≈ 1.4. (42)

This SNR value is fairly close to the theoretical curvature-
sensing limits we have derived (Fig. 8), suggesting that the
accuracy of septin’s discrimination between two curvatures
may be near the limit set by stochastic fluctuations. How-
ever, as is apparent in Fig. 7, the theory SNR is strongly
dependent on adhesion between the membrane and substrate.
Our best estimate for membrane adhesion strength to a solid
substrate such as a bead is γ ∼ 1013 J/m4 (see Appendix F).
For weaker γ values, the sensing limit would be set lower.
For example, if we used parameters appropriate to membrane-
cytoskeleton adhesion, where γ ∼ 109 J/m4 [59], we obtain
SNRC ≈ 0.25 (see Appendix E). A SNR of 0.25 means that
the association ratio between targets of diameters 1 and 3 µm
could be at most about 1.3. This is not as preferentially se-
lective as the membrane-bead systems in [14,15]; if these
experiments were repeated on a system with γ � 109 J/m4

(e.g., a membrane attached to the cell’s cortex or a giant
unilamellar vesicle with no adhesion, γ = 0), then we would
expect a significantly lower ratio of association rates. It is only
the adhesion strength being large in the experiments of [14,15]
that make them consistent with our bounds. The enhancement
of binding by 30% even at weaker adhesion, though, suggests
that at least some curvature sensing by single proteins may
be plausible in a broader range of contexts than just strongly
adherent SLBs.

We have phrased everything so far in this section in terms
of sensing membrane curvature. However, we can derive an
effective lipid density sensing SNR in an exactly analogous
way. We find that

SNReff
ρ = (2d/R − ρpref )2

2
(〈
ρ2

a

〉+ σ 2
ρ,bind

) , (43)

and that the maximum possible ratio between a ρ-sensing
protein’s association rate to a membrane-adhered bead with
its preferred lipid density deviation and a different bead is{

A(R = 2d/ρpref )

A(R)

}
max

= exp
(
SNReff

ρ

)
. (44)

Figure 8 would suggest that the theoretical lipid density sens-
ing limit is substantially lower than SNReff

experiment ≈ 1.4 when
d = 1 nm. However, this does not necessarily indicate that ρ

is an unfeasible metric to infer membrane shape, as ρ SNR
can be appreciable when the membrane monolayer is made
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thicker or more resistant to in-plane compression. Holding
the other parameters constant, we find that SNRρ ≈ 1.4 when
d = 4 nm and k = 0.1 J/m2 (a relatively small change from
our default parameters in Table I). In Appendix J, we plot the
ratio between SNRρ and SNRC for different sets of physical
parameters and compare their relative sensing efficacy.

2. Proteins with enhanced binding above a threshold curvature

Instead of the protein binding when it measures a particular
curvature, we can loosen our requirements and assume that the
protein binds to the bead when it measures a local membrane
curvature Ca greater than a threshold curvature Cthresh. This
is motivated by the idea that nanometer-scale curvature can
induce defects in the lipid order [39], so rare fluctuations
to very steep curvatures could induce local defects in the
lipid order, allowing for easier insertion of the amphipathic
helices of the protein. Under this threshold assumption, the
protein’s association rate to the bead will be proportional
to the probability that Ca > Cthresh, i.e., P(Ca > Cthresh) =∫∞

Cthresh
dCaP(Ca|R). We define an association rate that depends

on Cthresh as

A(R) = A0 + AC

∫ ∞

Cthresh

dCaP(Ca|R), (45)

where P(Ca|R) is the conditional probability density of local
curvatures for a membrane adhered to a bead of radius R, as
in Eq. (34).

Evaluating this analytically, we obtain

A(R) = A0 + AC

2
erfc

⎛
⎜⎝Cthresh − 1/R√

2
〈
C2

a

〉
⎞
⎟⎠ (threshold), (46)

where the complementary error function is defined as
erfc(x) = 2√

π

∫∞
x e−t2

dt [60].
We can view Eq. (46) as the association rate as a func-

tion of the bead curvature Cbead = 1/R. When Cbead = Cthresh,
erfc(0) = 1, and A(Cbead ) = A0 + AC/2. Therefore, Cthresh in-
dicates the curvature at which the protein association rate’s
increase above the basal level is half maximal.

In the simulated histograms in Fig. 4, we showed how
beads can have local curvature distributions that overlap con-
siderably, making discriminating between these two beads
more difficult. If the protein binds only at sufficiently large
curvature, Ca > Cthresh, this means that proteins are probing
the tails of these histograms. This has two effects. First,
looking at the tail of the distribution can highlight a small
difference between the means—a higher Cthresh makes it
less likely that a protein incorrectly attributes a steep local
membrane curvature to a shallow bead’s curvature distri-
bution. However, as Cthresh is increased above Cbead, it is
rarer and rarer that a curvature this high is observed, so the
curvature-dependent association rate decreases, and eventu-
ally any specificity is lost because the curvature-dependent
association rate is smaller than the basal rate. In Fig. 10,
we compare the predicted association rates of a septin-sized
protein to beads of curvature 2 and 0.67 µm−1. The associa-
tion rates for both these beads are suppressed at high Cthresh

values; however, the association to the bead with steeper

FIG. 10. Predicted association rates of a septin-sized protein to
membrane-adhered beads of curvature 2 and 0.67 µm−1, as a function
of the protein’s threshold curvature Cthresh, for a fixed A0 and AC .
Theory parameters: Table I. The values used for A0 and AC are taken
from the fit in Fig. 11.

curvature (Cbead = 2 µm−1) is considerably higher over a
broad range of Cthresh.

How does the threshold model compare to experiment? We
fit Eq. (46) to the experimental data in [15], using their basal
rate for A0. The variance 〈C2

a 〉 is computed using our default
physical parameters (Table I), and we obtain Cthresh as a fit
parameter. The data indicate that Cthresh ≈ 1.55 µm−1 when
the adhesion strength γ = 1013 J/m4. As plotted in Fig. 11,
the association rate increases sigmoidally as a function of bead
curvature, saturating when the bead curvature is sufficiently
greater than Cthresh. Therefore, a protein that is described by
the threshold model exhibits increased association to cur-
vatures that are above a threshold, but loses the ability to
discriminate between two bead curvatures that are substan-
tially more than the threshold curvature.

In the model of Sec. III E 1, where individual proteins
have a preferred curvature, the SNR controls the sharpness
of how the association rates can depend on bead curvature. In
a similar fashion, in the threshold model, the sharpness of the
transition in association rates is determined by the variance
in membrane curvatures sensed by the protein. In Eq. (46),
we see that the predicted association rate increases from its
basal level to its maximal level as the bead curvature 1/R is

FIG. 11. Protein association rates predicted by the curvature
threshold model, as compared to the experimental single-septin as-
sociation rates in Fig. 2(b) of [15] for varying bead curvatures. The
basal rate A0 is 0.892 µm−2 s−1 nM−1. The model parameters, fitted
using a nonlinear least-squares method (lmfit [58] in PYTHON),
are AC ≈ 5.05 µm−2 s−1 nM−1 and Cthresh ≈ 1.55 µm−1. Parameters:
Table I.
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increased—the value
√〈C2

a 〉 sets the scale of this transition.
The fit between experiment and data in Fig. 11 could be
improved if we made the transition sharper. If we increase
the adhesion γ —corresponding to fluctuations that are more
suppressed—we do find a better fit (Appendix G). However,
this takes the adhesion beyond what we think is the likely
range (Appendix F).

IV. DISCUSSION

Our results identify the key elements that determine
whether it is physically plausible for a single protein to sense
micron-scale curvature via local membrane shape or lipid
density. Although real proteins often perturb the membrane
locally [12,23,61], which will lead to protein-protein inter-
actions once proteins have bound to the membrane [62–65]
and which may be relevant to later stages of septin assembly
[15,66], our focus is on the first step of a single protein
binding. By modeling a protein as a perfect observer, we
obtain the ideal limits to sensing curvature as constrained
by the membrane’s properties. We can compare how well
a particular protein—like septin—performs with respect to
this ideal limit. These limits occur because even a perfect
detection of the membrane’s shape is subject to unavoidable
thermal fluctuations. We identify a signal-to-noise ratio that
describes the accuracy with which a protein can discriminate
between two different large-scale curvatures solely by sam-
pling the local properties of the membrane. This SNR can
be related to the relative association rates of the protein to
two membrane-coated beads of different curvatures. The SNR
naturally depends on the curvature of the bead—larger bead
radii lead to shallower curvatures, which are more difficult to
distinguish—but also on the properties of the membrane and
the protein. Of particular importance are the membrane-bead
adhesion strength and membrane bending stiffness, which
suppress membrane fluctuations, and the protein’s size. In ad-
dition, when sensing lipid densities, the membrane’s thickness
and area compressibility modulus (indicating its resistance to
in-plane compression) play an important role. Our estimates
of SNR suggest that micron-scale curvature sensing as ob-
served for single septins in [15] could feasibly occur either
due to septin measuring the local membrane shape or the
local lipid density. However, for consistency, we must assume
both that the measurements are near perfect and that the
membrane is strongly adherent to its bead (γ ≈ 1013 J/m4);
lower adhesion strengths lead to insufficient SNR to explain
the experiments (Appendix E). We would then expect that
preferential binding as a function of curvature would be much
lower for giant unilamellar vesicles that are not attached to a
bead, though we note that there may be confounding issues
when changing vesicle size [67]. Although the importance
of membrane-substrate adhesion in biological processes is
widely acknowledged [68–71], it remains challenging to as-
certain the range of adhesion strengths that are applicable
to any given system. Evidence suggests that large vesicles
exhibit weak adhesion to glass substrates, while supported
lipid bilayers with direct lipid-glass binding can have stronger
adhesion [41,72]. Membranes supported on glass beads gen-
erally exhibit strong adhesion; the hydration layer between the
membrane and bead is only a few nanometers thick [73–75].

Given the orders-of-magnitude-broad range of reported val-
ues, we have generally tried to show how our SNR depends on
adhesion. The value γ ≈ 1013 J/m4 was estimated based on
van der Waals interactions and hydration forces (Appendix F).

We have computed SNRC under the assumption of perfect
local detection of the curvature. However, there may be strong
biophysical constraints on curvature sensing beyond the sta-
tistical ones we have raised here. In particular, as noted in
[76], if a perfectly straight rod-shaped protein is placed on
top of a spherical membrane of micron-scale diameter, the
gap distance between the protein and the membrane is below
the angstrom scale for a protein of length ∼4 nm, such as
SpoVM. It is biophysically implausible that binding depends
on the direct measurement of this subangstrom gap. A simple
curvature-sensing mechanism is not as immediately ruled out
for proteins that are larger, such as septin. For yeast septins
with an end-end length of ∼32 nm (emulated by our “sensing
radius” a ∼ 16 nm), this gap is about 1 nm even for a bead that
is a micron in diameter. The clear relevance of amphipathic
helices for septins [13,14] also suggests that curvature sensing
arises from sensing some aspect of lipid membrane structure,
and our SNRρ estimate for septin supports this possibility.
Despite SpoVM being only 4 nm in length, its amphipathic
helix has membrane insertion depths of ∼1 nm [77], indicat-
ing that even small proteins may be sensitive to leaflet lipid
properties. However, if we use the parameters appropriate to
SpoVM (a = 2 nm), we find a very small SNR ≈ 0.003 for
curvature and density sensing when distinguishing between
beads of diameters 1 and 3 µm, holding the other parameters
constant. This suggests that the binding on rate for SpoVM
should not be significantly curvature dependent. SpoVM lo-
calization could then arise from a curvature-sensitive off rate.
Experiments on this point are mixed [17,18].

We have primarily focused on proteins sensing the local
value of ρ, the difference in lipid densities between the upper
and lower leaflets at the midsurface. While ρ is a lipid feature
that clearly reflects the curvature, it is not the only possibil-
ity. We can also generalize our results to describing proteins
that simply sense the projected density of the upper leaflet
ρ+, which might be more appropriate for proteins that only
embed amphipathic helices shallowly into the membrane. We
performed simulations and derived the theory for 〈ρ+2〉 and
SNRρ+ (Appendix H). We find that SNRρ is greater than
SNRρ+ , and interestingly, in the high-adhesion limit, the vari-
ance in ρ+ is exactly twice the variance in ρ. It may also
be possible for proteins to effectively sense other membrane
properties, such as lipid tilt [78], which can be a more reliable
readout of bending moduli at small scales [79].

To compute the best possible accuracy of membrane cur-
vature sensing by proteins, we assumed that the protein is
a perfect sensor of local curvature or ρ, representing the
measurement by a weighted integral in Eqs. (7) and (8).
There are several important caveats to this approach. While
we think that the local average used here is the most nat-
ural measurement of curvature, it is possible that a more
complex observable could be less noisy. For example, past
modeling of concentration sensing by a single receptor has
shown that the best-achievable accuracy is twice that of a
naive average [26], and this difference can be even larger if
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there are multiple receptor types [80]. This is a clear area
for future research. We have also neglected the anisotropy of
the septin by choosing an isotropic weight function Ga(r),
but expect this to play a small role in setting SNR. We
also note that binding uses effectively only a single snapshot
of the membrane state, neglecting potential time averaging.
This differs from the Berg-Purcell approach and gener-
alizations, where noisy measurements are integrated over
time in order to better resolve them [24–26]. We are moti-
vated in this by results suggesting that these time-averaging
schemes require energy dissipation and cannot be carried
out in equilibrium [81–83]; time averaging is then likely
not relevant to understanding in vitro experiments of curva-
ture sensing, though it is an intriguing possibility within a
living cell.

In Figs. 9 and 11, we have made predictions for how
we would expect association rates to depend on bead cur-
vature based on limited single-septin binding data. These
are somewhat speculative, because they depend strongly on
assumptions of how single proteins bind based on their in-
stantaneous measurement of curvature. We have made two
physically plausible assumptions, which make qualitatively
different predictions on how association rate will depend on
increasing bead curvature. These could be distinguished by
measuring single-molecule association rates at smaller bead
sizes, extending the results of [14,15]—though this would be
experimentally difficult due to the small patch of membrane
resolved with these beads [15]. In addition, while both models
are roughly consistent with the existing experimental data,
neither is a perfect fit. It is possible to improve the fit qual-
ity if the membrane is more adherent than our expectations
or there is another reason why fluctuations are suppressed
(Appendix G). Greater availability of single-molecule bind-
ing data for other proteins with strong curvature-sensing
abilities would allow us to apply our models in a broader
context.

Another potentially important factor in improving the
quantitative comparison between experiment and theory is
to understand the extent to which diffusion of septin to the
bead influences binding. If there was no selectivity in bind-
ing, and binding occurred immediately upon contact with
a sphere of radius R, the rate of binding would be 4πDR
[24]—so the association rate (rate per surface area) computed
by [14,15] would decrease for increasing radius R, as observed
by [15]. However, the association rate observed is smaller than
we would expect from a diffusion-limited rate, so we have
neglected these factors. In future work we will consider com-
plications arising from competing diffusion and adsorption
timescales [84].

What if the membranes are under tension? We expect that
a probe of local membrane tension [85,86] may also be con-
strained by related fluctuation results, as probes of tension
are related to probing lipid structure and packing [86]. Added
tension on the membrane will suppress thermal fluctuations
[40]. Tension on the membrane due to osmotic effects may
play several other roles. As pointed out by Wasnik et al. in
analyzing SpoVM localization, in the presence of an osmotic
pressure difference across the membrane, the tension will be
different for different-sized vesicles due to the Young-Laplace
equation [87], with the tension increasing linearly with vesicle

radius. If this is the case, then the relevant distinction be-
tween vesicles of different sizes may not be the shape, but the
tension. In our view, then, we would expect that the averaged
lipid densities in the two leaflets ρ± could vary systematically
with radius in a more complex way than that given by our
simple ρ = 2d/R. If so, the osmotic pressure could lead to
systematic shifts between the histograms in Fig. 4, increasing
the SNR beyond our predictions here.

Basic considerations of physical and statistical bounds
limit the accuracy of a vast number of sensing processes
across biology, from chemotaxis to pattern formation and
differentiation. Our results suggest that similar physical con-
straints may be relevant for curvature sensing by single
proteins—proteins like septin may be performing nearly
as well as possible, given the inevitable thermal fluctua-
tions of the membrane. These predictions, though, must be
tested against experiments, e.g., varying the membrane-bead
adhesion, membrane compressibility modulus, or bending
modulus, to be viewed confidently. Our results also have
broader implications for sensors of related properties, such
as fluorescent probes that reflect membrane structure or ten-
sion [86]. We would predict that the distribution of signals
arising from these fluorescent probes of membrane structure
are limited by the thermal fluctuations in lipid density and
membrane shape, and could be fit to models extending our
work. These results may also provide inputs into probe de-
sign for curvature or stress sensors. It is more advantageous
to use larger probe sizes for curvature sensors (∼a6 depen-
dence) than for lipid density sensors (∼a2 dependence) in
the high-adhesion limit, while density sensors can benefit
from greater membrane insertion depths (probing ρ instead
of ρ+). As we have studied here, probe accuracies would also
depend on membrane-substrate adhesion strength, suggesting
that substrate types and preparations [88–90] may play a role
in curvature-sensing experiments.

The data and code to reproduce all of the figures in the
paper are available at the Zenodo archive [91].
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APPENDIX A: FOURIER SPACE CONVENTIONS

Our Fourier modes are q = 2π
L (m, n) with m, n in the

range −(N − 1)/2, . . . , 0, . . . , (N − 1)/2. Since h(r), ρ(r),
and ρ̄(r) must necessarily be real quantities, the modes must
fulfill the conditions h∗

q = h−q, ρ∗
q = ρ−q, and ρ̄∗

q = ρ̄−q.
Therefore, only half the modes are independently evolved as
a function of time, and the dependent modes are computed
as complex conjugates of the independent modes. We choose
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the independent modes analogously to [63]. In general, we
would expect Fourier modes to be complex, but because we
are performing Fourier transforms with a finite set of modes,
some modes are forced to be their own complex conjugate,
requiring them to be real. Aside from these explicitly real
modes, other modes have both real and imaginary compo-
nents. The specific modes that are explicitly real depend on
whether N is chosen to be even [49] or odd [63,92]. For
convenience, we choose N to be an odd number, such that
only a single mode corresponding to (m = 0, n = 0) of hq,
ρq, and ρ̄q is explicitly real. As the membrane’s center of
mass is not evolved in our system [93], these zeroth modes
are not evolved in time after their initial values are set (see
Appendix C 2 for details). To perform Fourier transforms and
their inverses [as in Eq. (3)], we used the two-dimensional fast
Fourier transform (FFT2) and inverse fast Fourier transform
(IFFT2) methods from PYTHON’s numpy package [94] (scaling
by N2 to accommodate PYTHON’s convention for the inverse
discrete Fourier transform).

APPENDIX B: VARIANCES IN LOCAL CURVATURE
AND ρ DERIVED ANALYTICALLY IN FOURIER SPACE

Consider the local membrane curvature sensed by a protein
of size a, as in Eq. (7):

Ca =
∫

L2
dr

−∇2h(r)

2
Ga(r). (B1)

Using the Fourier-space representation of h(r) and the
relation Ga(r) = 1

L2

∑
q Ga(q)eiq·r, we obtain

Ca =
∫

L2
dr

1

2L2

∑
q

q2hqeiq·r 1

L2

∑
q′

Ga(q′)eiq′ ·r

= 1

2L4

∑
q,q′

q2hqGa(q′)
∫

L2
dreiq·reiq′ ·r

= 1

2L4

∑
q,q′

q2hqGa(q′)L2δq′,−q

= 1

2L2

∑
q

q2hqGa(−q), (B2)

where δq′,−q is a Kronecker delta function.
The variance in Ca for a flat, fluctuating membrane is then

derived as

〈Ca
2〉flat =

〈
1

2L2

∑
q

q2hqGa(−q)
1

2L2

∑
q′

q′2hq′Ga(−q′)

〉

= 1

4L4

∑
q,q′

q2q′2〈hqhq′ 〉Ga(−q)Ga(−q′)

= 1

4L4

∑
q

q4〈hqh−q〉Ga(−q)Ga(q), (B3)

where in the last step we have noted that 〈hqhq′ 〉 =
δq,−q′ 〈hqh−q〉. Since h−q = h∗

q and Ga(−q) = Ga(q)∗, this

simplifies to

〈
Ca

2
〉flat = 1

4L4

∑
q

q4〈|hq|2〉|Ga(q)|2. (B4)

Similarly, the lipid density deviation sensed by a protein
of size a in Eq. (8) can be used to derive the variance
in density deviations for a flat membrane, as shown
in Eq. (22).

APPENDIX C: SIMULATION ALGORITHMS

1. Derivation of equation of motion

a. Choosing thermal noises to obey detailed balance

We have written our equations of motion as

∂

∂t

⎛
⎜⎝

hq

ρq

ρ̄q

⎞
⎟⎠ = −L2

⎛
⎜⎜⎝

1
�h

∂E/∂h∗
q

1
�ρ

∂E/∂ρ∗
q

1
�ρ̄

∂E/∂ρ̄∗
q

⎞
⎟⎟⎠+

⎛
⎜⎝

ξq

ζq

χq

⎞
⎟⎠. (C1)

The correlations of the Gaussian Langevin noises can be
written as

〈ξq(t )ξq′ (t ′)〉 = 2Dhδq,−q′δ(t − t ′), (C2)

〈ζq(t )ζq′ (t ′)〉 = 2Dρδq,−q′δ(t − t ′), (C3)

〈χq(t )χq′ (t ′)〉 = 2Dρ̄δq,−q′δ(t − t ′). (C4)

This serves as a definition for Dh,ρ,ρ̄ .
The amplitudes of the noises Dh, Dρ , Dρ̄ , which are

analogous to diffusion coefficients in simple Brownian dy-
namics [95], must obey a fluctuation-dissipation relationship.
This can be found by writing down the Fokker-Planck equa-
tion [96] for the time evolution of the probability distribution
of the fields P({hq}, {ρq}, {ρ̄q}) as

∂P

∂t
=
∑

q

∂

∂hq

[
L2

�h(q)

∂E

∂h−q
P + Dh

∂P

∂h−q

]

+
∑

q

∂

∂ρq

[
L2

�ρ (q)

∂E

∂ρ−q
P + Dρ

∂P

∂ρ−q

]

+
∑

q

∂

∂ρ̄q

[
L2

�ρ̄ (q)

∂E

∂ρ̄−q
P + Dρ̄

∂P

∂ρ̄−q

]
, (C5)

where E is the total membrane free energy defined in Eq. (4),
and we have noted that h∗

q = h−q, ρ∗
q = ρ−q, and ρ̄∗

q = ρ̄−q
for the real-valued functions h(r), ρ(r), and ρ̄(r).

For the steady-state probability to have the Gibbs-
Boltzmann form, PGB({hq}, {ρq}, {ρ̄q}) = 1

Z exp(−E/kBT ), it
must set the right-hand side of this Fokker-Planck equa-
tion to zero. We note that ∂

∂hq
PGB = − 1

kBT
∂E
∂hq

PGB. Plugging in
the Gibbs-Boltzmann solution to the Fokker-Planck equation,
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we find

∂PGB

∂t
=
∑

q

∂

∂hq

[
L2

�h(q)

∂E

∂h−q
PGB − Dh

kBT

∂E

∂h−q
PGB

]

+
∑

q

∂

∂ρq

[
L2

�ρ (q)

∂E

∂ρ−q
PGB − Dρ

kBT

∂E

∂ρ−q
PGB

]

+
∑

q

∂

∂ρ̄q

[
L2

�ρ̄ (q)

∂E

∂ρ̄−q
PGB − Dρ̄

kBT

∂E

∂ρ̄−q
PGB

]
.

(C6)

For the equation to be at steady state at the Gibbs-Boltzmann
distribution, and the right-hand side to be zero, we then need

Dh = kBT L2

�h(q)
, (C7)

Dρ = kBT L2

�ρ (q)
, (C8)

Dρ̄ = kBT L2

�ρ̄ (q)
. (C9)

These are the Einstein relations for our system.

b. Deriving hydrodynamic mobilities for h, ρ, and ρ̄

To obtain the mobilities �−1
h , �−1

ρ , and �−1
ρ̄ , we derive

the dynamical equations for ∂hq/∂t , ∂ρq/∂t , and ∂ρ̄q/∂t from
the hydrodynamic equations in the Seifert-Langer model [43]
while neglecting inertial effects with the Stokes approxima-
tion. The model assumes that the membrane is surrounded
by fluid above and below the membrane. Our derivation
here is a variant of that presented in [43], to highlight how
the Seifert-Langer results can be generalized to an arbitrary
Hamiltonian.

We describe the fluid flow above and below the membrane
using the incompressible Stokes equations with a fluid ve-
locity v±

f (x, y, z), where ± indicates whether we are above
(z > 0) or below (z < 0) the membrane. These equations
are

∇ · v±
f = 0, (C10)

η∇2v±
f = ∇p±, (C11)

where p± is the pressure above or below the membrane.
The two monolayers of the membrane have in-plane ve-

locity fields ṽ±(x, y)—these are treated as completely two
dimensional. The Stokes equations for the velocity fields of
the monolayers are

−∇̃σ+ + T + · êz + μ∇̃2ṽ+ − b(ṽ+ − ṽ−) = 0, (C12)

−∇̃σ− − T − · êz + μ∇̃2ṽ− + b(ṽ+ − ṽ−) = 0, (C13)

where a tilde denotes quantities in two dimensions,
σ±(x, y) = −δE/δρ±(x, y) is the surface pressure due to
varying densities in the two leaflets, T ± is the stress tensor
of the surrounding fluid, i.e., T ± · (±êz ) is the force per unit
area exerted by the outside fluid onto the monolayers, μ is the
monolayer viscosity, and b is the intermonolayer friction. The

components of the stress tensor T ± are

T ±
i j = −p±δi j + η(∂iv

±
f , j + ∂ jv

±
f ,i ). (C14)

There is also a force balance equation in the vertical direc-
tion, written in real space as

−T +
zz (x, y, z = 0) + T −

zz (x, y, z = 0) = −δE

δh
. (C15)

We assume a no-slip boundary condition between the
membrane and the outside fluid—the velocity of the mem-
brane must match the external fluid velocity. In the plane
of the membrane, this requires that the monolayer velocities
match the in-plane components of v±

f at z = 0:

ṽ±
x (x, y) = v±

f ,x (x, y, z = 0), (C16)

ṽ±
y (x, y) = v±

f ,y(x, y, z = 0). (C17)

In addition, the z velocity of the membrane ∂t h(x, y) must
match the external fluid flow in the z direction, assuming that
the fluid does not penetrate the membrane. Therefore,

v±
f ,z(x, y, z = 0) = ∂t h(x, y, t ). (C18)

The leaflet densities obey (approximately; see [43]) an in-
plane continuity equation,

∂ρ±

∂t
(x, y, t ) = −∇̃ · ṽ±. (C19)

We want to determine, from these hydrodynamic equa-
tions, what the equations of motion for the rescaled densities
in the top and bottom leaflets ρ±(x, y, t ) and the membrane
height h(x, y, t ) are. This requires us to simultaneously solve
for the fluid flow in plane and out of plane. This is eas-
ier to do in Fourier space. We also follow Seifert-Langer
by using an ansatz that in-plane flows are only in the ex

direction.
We can then write the in-plane monolayer velocities in

Fourier space as

ṽ±
x = 1

L2

∑
q

ṽ±
q eiqx. (C20)

Given this form, the Stokes equations for the x component
of the in-plane velocity fields of the monolayers are, in real
space,

−∂xσ
+ + T +

xz + μ∇̃2ṽ+
x − b(ṽ+

x − ṽ−
x ) = 0, (C21)

−∂xσ
− − T −

xz + μ∇̃2ṽ−
x + b(ṽ+

x − ṽ−
x ) = 0. (C22)

Then, in Fourier space, these can be written as

−iqσ+(q) + T +
xz (q) − μq2ṽ+

q − b(ṽ+
q − ṽ−

q ) = 0, (C23)

−iqσ−(q) − T −
xz (q) − μq2ṽ−

q + b(ṽ+
q − ṽ−

q ) = 0, (C24)

where we have defined σ± = 1/L2 ∑
q σ±(q)eiqx. The Fourier

transforms of the surface pressure are

σ±(q) =
{
− δE

δρ±(x, y)

}
q

= −L2 ∂E

∂ρ±
−q

, (C25)

where {· · · }q is the Fourier transform, and the second equa-
tion can be derived from applying the chain rule on functional
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derivatives to our convention for Fourier transforms. [Note
ρ−q = (ρq)∗ because ρ(x, y) is a real function.]

The fluid velocity and pressure above and below the mem-
brane can be written in the form

v±
f (x, y, z) = 1

L2

∑
q

[w±(z)ex + u±(z)ez]exp[iqx], (C26)

p±(x, y, z) = 1

L2

∑
q

B±(z) exp[iqx], (C27)

where ex and ez are unit vectors in the x and z directions, and

w±(z) = [((±w̄ − w) − iu)qz + w̄ ± w] exp[∓qz], (C28)

u±(z) = [(−i(w̄ ± w) ± u)qz + u] exp[∓qz], (C29)

B±(z) = 2ηq[−i(w̄ ± w) ± u] exp[∓qz], (C30)

where w, w̄, and u are constants to be solved for. Note that
these constants will depend on q.

The boundary condition of Eq. (C16) then reduces to

ṽ±
x (x, y) = v±

f ,x(x, y, z = 0) (C31)

⇒ 1

L2

∑
q

ṽ±
q eiqx = 1

L2

∑
q

(w̄ ± w)eiqx (C32)

⇒ ṽ±
q = w̄ ± w. (C33)

Similarly, the boundary condition of Eq. (C18) gives

∂t h(x, y, t ) = v±
f ,z(x, y, z = 0) (C34)

⇒ 1

L2

∑
q

∂t hq(t )eiqx = 1

L2

∑
q

u±(z = 0)eiqx (C35)

⇒ ∂t hq(t ) = u, (C36)

where in the last equation, u = u±(z = 0) is a constant.
We will now simplify the in-plane force balance equa-

tions [Eqs. (C23) and (C24)]. To compute the surface pressure
gradients, we use the change of variables

σ±(q) = −L2

(
∂E

∂ρ±∗
q

)
= −L2

(
∂E

∂ρ∗
q

∂ρ∗
q

∂ρ±∗
q

+ ∂E

∂ρ̄∗
q

∂ρ̄∗
q

∂ρ±∗
q

)

= −L2

(
±1

2

∂E

∂ρ∗
q

+ 1

2

∂E

∂ρ̄∗
q

)
. (C37)

This means that the difference of surface pressures depends
on the derivative of energy with the density difference ρ,
i.e., σ+(q) − σ−(q) = −L2 ∂E

∂ρ∗
q
, and relatedly the sum of the

surface pressures will be related to the derivative with respect
to ρ̄. The next term in the force balance requires T ±

xz (q)—the
fluid’s stress tensor in Fourier space, evaluated at z = 0. We
will start by evaluating Txz(x, y, z) in real space, plugging in
our ansatz for the fluid velocity [Eq. (C26)]. The pressure,
which only contributes to the diagonal component of the
stress tensor, does not show up in the xz component, and so

T ±
xz = η(∂xv

±
f ,z + ∂zv

±
f ,x ). We find, then,

T ±
xz (x, y, z) = 1

L2

∑
q

η

(
∂[u±(z)eiqx]

∂x
+ ∂[w±(z)eiqx]

∂z

)

⇒ T ±
xz (x, y, z) = 1

L2

∑
q

η
{
([(−i(w̄ ± w) ± u)qz + u]

× exp[∓qz]iq exp[iqx]

+ [((∓w̄ − w) − iu)qz + w̄ ± w](∓q)

× exp[∓qz] exp[iqx]

+ [((∓w̄ − w) − iu)q] exp[∓qz] exp[iqx])
}
.

(C38)

Evaluating this stress tensor at the membrane location, z = 0,

T ±
xz (x, y, z = 0) = 1

L2

∑
q

η(uiqeiqx + (w̄ ± w)(∓q)eiqx

+ ((∓w̄ − w) − iu)qeiqx ) (C39)

= 1

L2

∑
q

∓2ηq(w̄ ± w)eiqx (C40)

⇒ T ±
xz (q) = ∓2ηq(w̄ ± w). (C41)

Adding the Fourier-space lateral force balance equations,
Eqs. (C23) and (C24), we can solve for w̄ by plugging in
the expressions for σ±(q), T ±

xz (q), and ṽ±
q derived above.

Therefore,

− iqσ+(q) − iqσ−(q) + T +
xz (q) − T −

xz (q) − μq2(ṽ+
q + ṽ−

q )

= 0 (C42)

⇒ iqL2 ∂E

∂ρ∗
q

− 4ηqw̄ − 2μq2w̄ = 0 (C43)

⇒ w̄ = iq

4ηq + 2μq2
L2 ∂E

∂ρ∗
q

. (C44)

Subtracting Eq. (C24) from Eq. (C23), we can solve for w

as

− iqσ+(q) + iqσ−(q) + T +
xz (q) + T −

xz (q) − μq2(ṽ+
q − ṽ−

q )

− 2b(ṽ+
q − ṽ−

q ) = 0 (C45)

⇒ iqL2 ∂E

∂ρ̄∗
q

− 4ηqw − 2μq2w − 4bw = 0 (C46)

⇒ w = iq

4ηq + 2μq2 + 4b
L2 ∂E

∂ρ̄∗
q

. (C47)

We can find the remaining parameter, u, and the corre-
sponding dynamics of the height field, from the vertical force
balance equation [Eq. (C15)]. In Fourier space, this equa-
tion is

−T +
zz (q) + T −

zz (q) = −L2 ∂E

∂h∗
q

. (C48)

We obtain the (z, z) component of the stress tensor as

T ±
zz (x, y, z) = −p±δzz + η(∂zv

±
f ,z + ∂zv

±
f ,z ) (C49)
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= −p±(x, y, z) + 2η∂zv
±
f ,z (C50)

= − 1

L2

∑
q

B±(z)eiqx + 2η
1

L2

∑
q

∂[u±(z)eiqx]

∂z
. (C51)

At z = 0, plugging in the formulas for B±(z) and u±(z),

T ±
zz (x, y, z = 0) = 2η

1

L2

∑
q

q[−i(w̄ ± w) ± u] exp[iqx]

+ 2η
1

L2

∑
q

q(−i(w̄ ± w) exp[iqx])

(C52)

= ∓ 1

L2

∑
q

2ηqu exp[iqx] (C53)

⇒ T ±
zz (q) = ∓2ηqu. (C54)

The force balance equations in the vertical direction then
become

−T +
zz (q) + T −

zz (q) = −L2 ∂E

∂h∗
q

(C55)

⇒ 4ηqu = −L2 ∂E

∂h∗
q

(C56)

⇒ u = −1

4ηq
L2 ∂E

∂h∗
q

. (C57)

Now that we have values for u, w, and w̄, we can find the
equations of motion for hq, ρq, and ρ̄q. We already know that
∂t hq = u from the boundary condition at the membrane. The
other equations arise from applying the in-plane continuity
equation, Eq. (C19). If we plug in our Fourier transform
representation of the functions, we see that

1

L2

∑
q

∂ρ±
q

∂t
eiqx = − 1

L2

∑
q

iqṽ±
q (C58)

⇒ ∂ρ±
q

∂t
= −iqṽ±

q = −iq(w̄ ± w). (C59)

Using the definitions ρq = (ρ+
q − ρ−

q )/2, ρ̄q = (ρ+
q +

ρ−
q )/2, we then get

∂hq

∂t
= u = − 1

4ηq
L2 ∂E

∂h∗
q

, (C60)

∂ρq

∂t
= 1

2

(
∂ρ+

q

∂t
− ∂ρ−

q

∂t

)
= −iqw

= q2

4ηq + 2μq2 + 4b
L2 ∂E

∂ρ∗
q

, (C61)

∂ρ̄q

∂t
= 1

2

(
∂ρ+

q

∂t
+ ∂ρ−

q

∂t

)
= −iqw̄ = q2

4ηq + 2μq2
L2 ∂E

∂ρ̄∗
q

.

(C62)

Equating Eqs. (C60)–(C62) to the deterministic part of our
equations of motion in Eq. (C1) gives us the hydrodynamic
mobilities,

1

�h
= 1

4ηq
, (C63)

1

�ρ

= q2

4ηq + 2μq2 + 4b
, (C64)

1

�ρ̄

= q2

4ηq + 2μq2
. (C65)

The first two of these mobilities could be derived simply by
requiring that the deterministic equations of motion matched
those of Seifert and Langer. The third is not quite the result
of Seifert and Langer, as we have neglected inertia in the
ρ̄ mode. Although this assumption influences the dynamics,
the resultant thermal equilibrium distribution of ρ̄ does not
change.

c. Deriving the equations of motion using functional derivatives
of the membrane energy E

The membrane energy E in Eq. (4) may be expressed as

E =
∑

q

1

2

1

L2
(κ̃q4hqh−q − 2kdq2ρ−qhq − 2kdq2h−qρq

+ 2kρqρ−q + 2kρ̄qρ̄−q) + Eadh.

We show here that we get the Seifert-Langer equations of
motion back in the limit of zero adhesion (Eadh = 0). Differen-
tiating E with respect to ρ−j, such that j is an arbitrary Fourier
index,

∂E

∂ρ−j
=
∑

q

1

2

1

L2
(−2kdq2hqδ−j,−q − 2kdq2h−qδ−j,q

+ 2kρqδ−j,−q + 2kρ−qδ−j,q), (C66)

where δ−j,−q and δ−j,q are Kronecker delta terms.
Consequently,

∂E

∂ρ−j
= 1

2L2
(−2kd j2hj − 2kd j2hj + 2kρj + 2kρj). (C67)

Since j is an arbitrary Fourier index, we may equivalently
reformulate in terms of q (noting that ∂E

∂ρ−j
= ∂E

∂ρ∗
j

) as

∂E

∂ρ∗
q

= 1

L2
(−2kdq2hq + 2kρq). (C68)

Similarly, it can be shown that

∂E

∂ρ̄∗
q

= 1

L2
(2kρ̄q), (C69)

∂E

∂h∗
q

= 1

L2
(κ̃q4hq + 2kdq2ρq). (C70)

Substituting Eqs. (C68)–(C70) as appropriate to the dy-
namical equations in Eqs. (C60)–(C62), we have
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∂

∂t

⎛
⎜⎝

hq

ρq

ρ̄q

⎞
⎟⎠ ≡ −M

⎛
⎜⎝

hq

ρq

ρ̄q

⎞
⎟⎠ = −

⎛
⎜⎜⎜⎝

κ̃q4

4ηq
−qkd

2η
0

−kdq4

2b+2ηq+μq2
kq2

2b+2ηq+μq2 0

0 0 kq2

2ηq+μq2

⎞
⎟⎟⎟⎠
⎛
⎜⎝

hq

ρq

ρ̄q

⎞
⎟⎠. (C71)

These are (except for the ρ̄ mode, as noted above)
the equations of motion from [43], who have neglected
membrane-substrate adhesion (γ = 0). It is also straight-
forward to show that if we have adhesion to a flat
surface, then Eadh = γ

2

∫
drh2(r) = γ

2L2

∑
q |hq|2, which will

lead to an added term γ /4ηq to the Mhh term as
shown in Eq. (C86).

2. Numerical evaluation of the equation of motion

To numerically solve the stochastic equations of motion in
Eq. (C1), we take the simplest approach, the Euler-Maruyama
method [97]. Let us take the dynamics of the height variable
hq as an example. Integrating from a time t to t + �t , this
equation becomes

hq(t + �t ) − hq(t ) = −
∫ t+�t

t
dt ′ L2

�h

∂E

∂h∗
q

+
∫ t+�t

t
dt ′ξq(t ′).

(C72)

The term without the Langevin noise can be approximated
simply with the usual Euler rule, and we define a new function
�q(�t ) ≡ ∫ t+�t

t dt ′ξq(t ′), so we have

hq(t + �t ) = hq(t ) − �t
L2

�h

∂E

∂h∗
q

+ �q(�t ). (C73)

Here, �(�t ) is a Gaussian random variable with mean zero
and a variance that will depend on the time step �t . We can
compute its variance straightforwardly by using the correla-
tion of ξq(t ) given above, 〈ξq(t )ξq′ (t ′)〉 = 2Dhδq,−q′δ(t − t ′),
such that

〈|�q(�t )|2〉 = 〈�q(�t )�−q(�t )〉

=
〈∫ t+�t

t
dtξq(t )

∫ t ′+�t ′

t ′
dt ′ξ−q(t ′)

〉

=
∫ t+�t

t

∫ t ′+�t ′

t ′
〈ξq(t )ξ−q(t ′)〉dtdt ′

=
∫ t+�t

t

∫ t ′+�t

t ′
2Dhδ(t − t ′)dtdt ′

= 2kBT L2

�h

∫ t+�t

t
dt

= 2kBT L2

�h
�t . (C74)

Similarly, to integrate over the Langevin noises associ-
ated to fluctuations in lipid densities, we define �q(�t ) ≡∫ t+�t

t dt ′ζq(t ′) and ϒq(�t ) ≡ ∫ t+�t
t dt ′χq(t ′) and derive

〈|�q(�t )|2〉 = 2kBT L2

�ρ

�t, (C75)

〈|ϒq(�t )|2〉 = 2kBT L2

�ρ̄

�t . (C76)

In ordinary Brownian dynamics, we would generate a real
random variable with a variance given by Eqs. (C74)–(C76) in
order to evolve the equations of motion. However, our Fourier
modes are complex, except for q = (0, 0) (see Appendix A).

We sample the real and imaginary parts of our Fourier
modes separately, with variances so that their absolute value
obeys Eqs. (C74)–(C76), such that

Re[�q(�t )]; Im[�q(�t )] ∼ N
(

0,
kBT L2

�h
�t

)
, (C77)

Re[�q(�t )]; Im[�q(�t )] ∼ N
(

0,
kBT L2

�ρ

�t

)
, (C78)

Re[ϒq(�t )]; Im[ϒq(�t )] ∼ N
(

0,
kBT L2

�ρ̄

�t

)
, (C79)

where N (μ, σ 2) is a Gaussian distribution with mean μ

and variance σ 2. This is essentially the approach used by
[50,92,98], etc.

The equation evolving the membrane’s height in Fourier
space, Eq. (C73), includes a term −∂E

∂h∗
q

, which includes the

forces acting on the membrane from both deformation forces
(bending and monolayer compression) in addition to the
forces due to membrane-bead adhesion. The deformation
forces are as shown earlier in Eq. (C70). When we simulate a
membrane-bead system, we explicitly compute the force due
to membrane-bead adhesion by fast Fourier transforming the
functional derivative −δEadh/δh(r), which is computed in real
space. Therefore, at time t ,

−∂E

∂h∗
q

= 1

L2
(−κ̃q4hq(t ) + 2kdq2ρq(t )) + 1

L2

{−δEadh(r)

δh(r)

}
q
,

(C80)

where {· · · }q indicates the Fourier transform performed
using our convention [analogous to Eq. (3)], noting the dis-
cretization dr = dxdy = (L/N )2. The numerical algorithm
for evolving hq is obtained by writing Eq. (C73) explicitly as

hq(t + �t ) = hq(t ) + �t
L2

�h

[
1

L2
(−κ̃q4hq(t ) + 2kdq2ρq(t ))

+ 1

L2

{−δEadh(r)

δh(r)

}
q

]
+ �q(�t ) (C81)
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FIG. 12. A comparison of the relaxation times τ = 1/λ(q) for λ1(q), λ2(q), and λ3(q), demonstrating the effects of adhesion on the
relaxation of modes. The presence of membrane-substrate adhesion (γ = 1013 J/m4) results in faster relaxation of low-q modes for two of the
eigenvalues, while the third eigenvalue is independent of adhesion.

= hq(t ) + �t

4ηq

[
−κ̃q4hq(t ) + 2kdq2ρq(t )

+
{−δEadh(r)

δh(r)

}
q

]
+ �q(�t ). (C82)

Similarly, the numerical algorithms for evolving ρq and ρ̄q
can be written as

ρq(t + �t ) = ρq(t ) + �tq2

4b + 4ηq + 2μq2

× [2kdq2hq(t ) − 2kρq(t )] + �q(�t ), (C83)

ρ̄q(t + �t ) = ρ̄q(t ) + �tq2

4ηq + 2μq2
[−2kρ̄q(t )] + ϒq(�t ).

(C84)

With the exception of q = (0, 0), for both the real and
imaginary components of the remaining independent modes,
the thermal noise �q(�t ) is sampled from a Gaussian dis-

tribution with a mean of zero and variance L2kBT �t
4ηq , �q(�t )

is sampled from a Gaussian distribution with mean zero and
variance L2kBT q2�t

4b+4ηq+2μq2 , and ϒq(�t ) is sampled from a Gaussian

distribution with mean zero and variance L2kBT q2�t
4ηq+2μq2 .

To allow for faster simulation equilibration, we set the
membrane’s initial height field h(r) at t = 0 to be equal to
the bead’s height hbead(r), and then fast Fourier transform this
to obtain hq(t = 0). The lipid density ρq is initialized at zero
and allowed to evolve due to its coupling with membrane
height; ρ̄q is also initialized at zero. After initializing hq, ρq,
and ρ̄q, the zeroth modes of each of these variables are not
evolved further either due to the deterministic or stochastic
contributions. To avoid division by zero when q = 0, the
zeroth modes of the mobilities 1/�h = 1/4ηq and 1/�ρ̄ =
q2/(2ηq + μq2) must be set to zero when evaluating these
algorithms. After each successive �t , the arrays computed
for hq(t + �t ), ρq(t + �t ), and ρ̄q(t + �t ) are inverse fast
Fourier transformed to store their corresponding real-space
values.

Choosing parameters appropriately for simulation convergence

Choosing a small �t is necessary for simulation conver-
gence, but a �t that is too small prolongs the computation
time required since a greater number of time steps must
be simulated for the same tsim. The following are useful

guidelines when assessing whether a chosen set of dynamical
parameters is practically feasible for the desired simulation.

Consider the dynamical equations for evolving hq, ρq, and
ρ̄ for a membrane adhered to a planar substrate,

∂

∂t

⎛
⎝hq

ρq
ρ̄q

⎞
⎠ ≡ −M

⎛
⎝hq

ρq
ρ̄q

⎞
⎠, (C85)

M ≡

⎛
⎜⎜⎜⎝

κ̃q4+γ

4ηq
−qkd

2η
0

−kdq4

2b+2ηq+μq2
kq2

2b+2ηq+μq2 0

0 0 kq2

2ηq+μq2

⎞
⎟⎟⎟⎠, (C86)

where we note the inclusion of adhesion strength γ in Mhh.
The eigenvalues for M can be obtained symbolically

by matrix diagonalization (we used the sympy package in
PYTHON). This results in three sets of eigenvalues, which
we denote as λ1(q), λ2(q), and λ3(q). These eigenvalues
correspond to the relaxation frequencies of the modes q.
We plot the relaxation times τq = 1/λ(q) in Fig. 12. For τ1

and τ2, the presence of strong adhesion can allow the low-q
(large-wavelength) modes to relax orders-of-magnitude more
quickly.

For simulation convergence, the total simulation time tsim

must be at least a few times longer than the relaxation time of
the slowest relaxing mode. Also, the time step �t must be a
fraction of the relaxation time of the fastest relaxing mode for
numerical stability of the integration algorithm,

λslowesttsim � 5–10,

λfastest�t � 1.

Practically, it suffices to have λfastest�t ≈ 0.2. λslowest and
λfastest can be obtained as the minimum and maximum values
of λi(q).

APPENDIX D: CROSS-SECTION PROFILES OF
SIMULATED MEMBRANES ADHERED TO A SMALL
BEAD WITH DIFFERENT ADHESION STRENGTHS

To perfectly adhere a membrane onto a hemispherical bead
and the flat substrate around it would require large bending
forces at the periphery of the bead due to the sharp curve. If the
membrane-substrate adhesion strength is too weak, the mem-
brane does not exactly follow the bead shape, even on average.
We show in Fig. 13 that, for a small bead of R = 200 nm,
the simulated membrane’s curvature at the center of the bead
deviates from Cbead = 1/R when γ is weak. This discrepancy
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FIG. 13. Cross-section profile of bead height for a bead of diameter 0.4 µm and the mean height of a simulated membrane adhered to
this bead. Left: With weak adhesion (γ = 1011 J/m4), the simulated membrane overestimates the curvature at the center of the bead due to a
height discrepancy of 4.073 nm at the bead center. Right: With stronger adhesion (γ = 1013 J/m4), the membrane wraps around the bead more
effectively, with a negligible −0.003 nm central overhang.

between bead shape and the average membrane shape is most
relevant at small bead sizes and at weak adhesion strengths,
and leads to the deviation between theory and simulated SNR
in Fig. 5. We note that the membrane’s average profile can
be below the “bead height” line at γ = 1011 J/m4 in Fig. 13.
The bead height line indicates the energy minimum of the
harmonic potential—this does not necessarily indicate that the
membrane is crossing the bead itself. At these low adhesions,
using a more complex potential with a hard core might be
necessary in order to prevent the membrane from penetrating
the bead. However, we expect that the distributions of height
from the harmonic potential are a good approximation to dis-
tributions for fluctuations in the vicinity of the substrate [41].

APPENDIX E: SNRC AND SNRρ

IN THE LOW-ADHESION REGIME

In the main text, we primarily use our best estimate of γ

for the supported lipid bilayer systems of [14,15]. Here, we
show some corresponding plots of SNR in the low-adhesion
regime. Membrane-cytoskeleton confinement in cells have re-
ported γ ∼ 109 J/m4 [59]. This corresponds to SNRC ≈ 0.25
(as shown in Fig. 14). Assuming a negligible basal associ-
ation rate, Eq. (39) implies a maximal association ratio of
exp(0.25) = 1.3 to the preferred radius when distinguishing
between cells of radii (RA, RB) = (0.5, 1.5) µm.

APPENDIX F: JUSTIFICATION
FOR ADHESION STRENGTH γ

We estimate the membrane-substrate adhesion parameter
γ in our model using the approach of [42]. They model the
energy per unit area of membrane at height h as

V = − A

12π

(
1

h2
− 1

(h + δ)2

)
+ βe−αh, (F1)

where the first term is the van der Waals interaction between
a bilayer of thickness δ = 3.8 nm and the substrate, with A ≈
2.6 × 10−21 J as the Hamaker constant [75,99]. The second
term is a phenomenological form for the hydration force with
β ≈ 0.93 J/m2 and α−1 ≈ 0.22 nm. Instead of this complex
potential, we have used a harmonic approximation to it about
an equilibrium height h0,

V (h) ≈ V0 + 1

2
V ′′(h0)(h − h0)2, (F2)

where V ′′(h0) = γ , corresponding to our adhesion strength.
Note, again, that V here is an energy per unit area, so γ

has units of J/m4. Using the parameter values of [42], stated
above, we find that the minimum energy distance is h0 ≈ 3.02
nm, and find V ′′(h0) ≈ 1.6 × 1013 J/m4. We view this as the
roughly correct order of magnitude for a supported lipid bi-
layer, which is strongly adherent to the substrate. However, it
is possible that this adhesion energy could be a little higher

FIG. 14. Sensing SNR in the low-adhesion regime for γ = 109 J/m4. Left: SNR vs protein size (when d = 1 nm). Right: SNR vs
monolayer thickness (when a = 16 nm) for (RA, RB) = (0.5 µm, 1.5 µm). The curvature and ρ variances for these SNR values are computed
with Eqs. (25) and (26).
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FIG. 15. Curvature threshold model fits to experimental data
in [15] for varying bead curvatures when γ = 1015 J/m4. With
A0 = 0.892 µm−2 s−1 nM−1, the fit parameters obtained with non-
linear least squares fits are AC ≈ 3.505 µm−2 s−1 nM−1 and Cthresh ≈
0.733 µm−1. Other physical parameters: Table I.

in some SLBs. Experimental data indicate that the hydra-
tion layer can be as thin as 1 nm [74]; if this arose from a
larger Hamaker constant or lower repulsion energy, that would
increase the value of γ . There is also evidence suggesting
that adhesion strengths can vary over orders of magnitude in
different contexts. Large membrane vesicles adhere to glass
substrates relatively weakly, with corresponding γ values
of 107 J/m4 [41], and whole-cell experiments have reported
membrane-cytoskeleton adhesion strengths on the order of
109–1010 J/m4 [59].

APPENDIX G: CURVATURE THRESHOLD MODEL
AT HIGHER MEMBRANE ADHESION STRENGTHS

Although we choose γ = 1013 J/m4 as a realistic esti-
mate of the adhesion strength relevant to the experimental
membrane-bead system, it is useful to examine the model’s
fit to the data for higher adhesion strengths. In Fig. 15, we
choose γ = 1015 J/m4 and observe a nearly perfect fit to the
data in [15] with a lower Cthresh = 0.733 µm−1 (compared to
Cthresh = 1.55 µm−1 at γ = 1013 J/m4, Fig. 11). This does not
necessarily indicate that the experimental system is subject
to such strong adhesion strengths, but only that minimizing
the curvature variance improves the fit to the data. Therefore,
sources of membrane fluctuation suppression other than ad-
hesion (such as membrane tension; see Discussion) may also
contribute to improved fits to the data.

APPENDIX H: SENSING LIPID DENSITIES PROJECTED
BY THE UPPER MONOLAYER

Instead of sensing the lipid density deviation ρ between the
upper and lower monolayer at the midsurface, we investigate
here whether the protein might comparably infer differences
in bead sizes by sensing the density ρ+ projected solely by the
upper monolayer at the midsurface. Using the definitions for
ρ and ρ̄, we have

ρ + ρ̄ =
(

ρ+ − ρ−

2

)
+
(

ρ+ + ρ−

2

)
= ρ+. (H1)

The mean squared value of ρ+
q is then derived as

ρ+
q = ρq + ρ̄q (H2)

FIG. 16. Lipid density SNR for ρ and ρ+ for varying membrane
adhesion strengths, in comparison to their high-adhesion limits. The
SNR is computed as in Eq. (15) and the corresponding flat membrane
variances for 〈ρ2

a 〉 and 〈ρ+2

a 〉 are computed by numerical quadrature.
Theory parameters: Table I.

⇒ 〈|ρ+
q |2〉 = 〈|ρq|2〉 + 〈|ρ̄q|2〉 + 〈ρqρ̄−q〉 + 〈ρ−qρ̄q〉 (H3)

= 〈|ρq|2〉 + 〈|ρ̄q|2〉, (H4)

where the last step is true because 〈ρq〉 = 〈ρ̄q〉 = 0 for a
membrane associated to a flat substrate, and ρq and ρ̄−q are
independent given the flat-membrane energy of Eq. (17).

From Eqs. (19) and (20), we obtain, for a flat membrane,

〈|ρ+
q |2〉 = L2kBT

(
κ̃q4 + γ

2k(κq4 + γ )
+ 1

2k

)
. (H5)

In the continuum limit, the variance in ρ+ sensed by a
protein of size a is

〈ρ+
a

2〉 = 1

L4

∑
q

〈|ρ+
q |2〉|Ga(q)|2

= 1

2π

∫ ∞

0
qkBT

(
κ̃q4 + γ

2k(κq4 + γ )
+ 1

2k

)
|Ga(q)|2dq.

(H6)

Substituting a dimensionless parameter u = qa, and since
|Ga(q)|2 = exp(−q2a2), it can be shown that

〈
ρ+

a
2〉 = kBT

4πka2

∫ ∞

0
u

(
u4 + 2d2ku4

κ
+ γ a4

κ

u4 + γ a4

κ

+ 1

)
exp(−u2)du

(H7)

= 〈
ρ2

a

〉+ kBT

4πka2

∫ ∞

0
u exp(−u2)du (H8)

= 〈
ρ2

a

〉+ kBT

8πka2
, (H9)

where 〈ρ2
a 〉 is as in Eq. (26). We see that the variance in ρ+

a is
always greater than the variance in ρa by the simple additive
factor kBT/8πka2.

In the absence of membrane-substrate adhesion,

〈
ρ+2

a

〉
γ=0 = kBT (d2k + κ )

4πa2kκ
. (H10)
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FIG. 17. Histograms (normalized as probability densities) from simulations of beads of diameters 0.4 µm (left) and 1.4 µm (right), with
γ = 1013 J/m4. In each case, ρa and ρ+

a have the same mean values at steady state, but ρ+
a has more variance. Parameters: Table I.

In the high-adhesion limit,

〈
ρ+

a
2〉

high γ
= kBT

4πa2k
= 2

〈
ρ2

a

〉
high γ

(H11)

⇒ SNRρ+, highγ = 1
2 SNRρ, highγ . (H12)

In deriving the SNR for ρ+, we have used the result that the
mean value of ρ+ is the same as the mean value for ρ. We
can see that the steady-state solution for the average density
is ρ̄q = 0, as obtained by solving ∂E

∂ρ∗
q

= 0. Therefore, ρ+

has the same mean value as ρ, but a greater variance in its
distributions.

We plot the theoretical SNR resulting from a protein prob-
ing ρ or ρ+ in Fig. 16. We see that the difference between
probing ρ and ρ+ becomes largest at high adhesion, where the
SNR of probing ρ is twice that of probing ρ+, as discussed in
the main text and seen in Eq. (H12).

To simulate fluctuations in ρ+, we use the relation ρ+
q =

ρq + ρ̄q in conjunction with the algorithms in Eqs. (C83)
and (C84). We plot these histograms in Fig. 17, and see,
as we expect, that the mean values of ρa and ρ+

a agree,
but the variance of ρ+

a is larger. For the parameters in
Table I, simulations of membranes adhered to beads of di-
ameters 0.4 and 1.4 µm show ρ+

a variances of 2.07 × 10−5

and 2.08 × 10−5, respectively. This is in good agreement
with the flat membrane theory variance of Eq. (H7), which
is approximately 2.11 × 10−5 as computed by numerical
quadrature.

APPENDIX I: DEPENDENCE OF BILAYER BENDING
MODULUS ON MONOLAYER THICKNESS AND AREA

COMPRESSIBILITY MODULUS

In addition to understanding how curvature-sensing effi-
cacy depends explicitly on each physical parameter in our
model, it may also be of interest to consider instances
when these parameters are coupled. Phenomenological ev-
idence based on a polymer brush model [52,100] suggests
that the membrane bilayer’s bending modulus is cou-
pled to the monolayer’s thickness and area compressibility
modulus as

κbilayer = KAd2
bilayer

α
= kd2

3
, (I1)

where α = 24 is obtained as a fit parameter from data corre-
sponding to various lipid species, KA = 2k is the bilayer’s area
compressibility modulus, and dbilayer = 2d .

The renormalized membrane bending modulus can then be
expressed as

κ̃ = κbilayer + 2d2k = 7kd2

3
. (I2)

As shown in Fig. 18, this formulation allows us to compute
the SNR without explicitly choosing a bending modulus by
substituting κ = kd2/3 in Eqs. (25) and (26). However, this
α = 24 is phenomenological and may not apply to all lipid
species. Understanding, e.g., the role of lipid type on driving
different association rates to beads may require systematic
characterization of both κ and d for different lipid mixtures.

APPENDIX J: RELATIVE EFFICACY OF LIPID DENSITY
SENSING AND CURVATURE SENSING

To better understand the relationship between various
physical parameters and the relative sensing efficacy of lipid
density sensing in comparison to local curvature sensing, we
plot the ratio between SNRρ and SNRC in Fig. 19 for beads
of diameters 1 and 3 µm. At low γ , density sensing is a
fairly effective sensing strategy compared to local curvature

FIG. 18. SNRC and SNRρ for beads of diameter � =
(1 µm, 3 µm) as a function of the monolayer thickness d when the
membrane bending modulus is coupled to the monolayer’s thickness
and area compressibility modulus as κ = kd2/3.
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FIG. 19. Ratios between the theoretically predicted ρ SNR and curvature SNR for beads of diameter (1 µm, 3 µm) for various physical
parameters as a function of increasing γ . For each plot, only the depicted parameters are varied, while the other parameters are the same as
those referenced in Table I.

sensing, with the SNRρ

SNRC
ratio approaching a value of 1 for

thicker membranes with larger d . As γ is increased, the
variance in ρ saturates and curvature sensing becomes sig-
nificantly more effective as a sensing strategy. For smaller
proteins, density sensing serves as a passable proxy for cur-
vature sensing even at relatively high adhesion strengths, in
contrast to larger proteins, for which SNRρ/SNRC decays
more prominently as a function of γ .

APPENDIX K: FOURIER MONTE CARLO SIMULATIONS

We develop here an alternative method to simulate cou-
pled fluctuations in the membrane’s height and lipid densities
based on a Fourier Monte Carlo (FMC) algorithm [51], and
use it to ensure our FSBD algorithm is correctly reproducing
the thermal equilibrium. For large membranes and membrane-
adhered beads, FMC takes a much longer time than our FSBD
algorithms to satisfactorily simulate, since a larger number of
modes entails a substantial increase in the number of Monte
Carlo steps (MCSs) required for convergence. Therefore, we
only use the FMC method to corroborate our FSBD simula-
tions for small system sizes.

In Table III, we compare SNRC and SNRρ for a pair of
beads with small radii, as obtained from FSBD and FMC sim-
ulations. For beads as small as these, the simulated membrane
has deviations from the simple theory result, as in Fig. 5, but
nonetheless FSBD and FMC are in excellent agreement.

In the FMC approach, we propose changes to only a single
Fourier mode chosen at random for each attempt, compute
the resultant change in the membrane energy, and use an
acceptance criterion in accordance with the Metropolis rule
to determine whether to accept or reject the proposed change.
The size of the proposed change varies with each attempt; as

we show subsequently, the proposed changes are scaled such
that on average, 50% of the proposals are accepted.

For a flat membrane subject to adhesion, the membrane
energy is computed as

Etot =
∑

q

1

2L2
((κ̃q4 + γ )|hq|2 − 2kdq2ρ∗

qhq

− 2kdq2h∗
qρq + 2k|ρq|2 + 2k|ρ̄q|2). (K1)

For a membrane-adhered bead, the energy due to the har-
monic potential must be explicitly accounted for, such that

Etot =
∑

q

1

2L2
(κ̃q4|hq|2 − 2kdq2ρ∗

qhq − 2kdq2h∗
qρq

+ 2k|ρq|2 + 2k|ρ̄q|2) + Eadh, (K2)

TABLE III. Comparison of FSBD and FMC simulations for
small system sizes. Parameters: L = 400 nm, N = 21, γ =
1013 J/m4. FSBD: tsim = 0.016 s, �t = 3.2 ns. FMC: 5 × 107 at-
tempts (Monte Carlo steps = attempts/N2). The error bars denote
standard errors, and were computed using the block averaging
method (see Fig. 5 caption). The data were separated into Nblock = 5
blocks for both FSBD and FMC data, truncating the initial 40% of
FMC data to allow for equilibration burn-in.

Bead diameters: (0.1, 0.2 µm) FSBD FMC

SNRC 500.7 ± 3.1 506.8 ± 2.0
SNRρ 93.4 ± 0.3 93.9 ± 0.4
Bead diameters: (0.2, 0.3 µm)
SNRC 9.18 ± 0.05 9.31 ± 0.08
SNRρ 1.68 ± 0.01 1.73 ± 0.02
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where the adhesion energy is computed as a sum over the
lattice in real space as Eadh = (L/N )2

2

∑
r γ (h(r) − hbead(r))2.

A single independent mode q is selected at random (with
the exception of the zeroth mode, which does not evolve), and
changes to this mode are computed for the real and imaginary
components of this mode q, for each Monte Carlo attempt, as

hq,new = hq + 2sh

√
〈|hq|2〉(rand − 0.5)

+ 2ish

√
〈|hq|2〉(rand − 0.5), (K3)

ρq,new = ρq + 2sρ

√
〈|ρq|2〉(rand − 0.5)

+ 2isρ

√
〈|ρq|2〉(rand − 0.5), (K4)

ρ̄q,new = ρ̄q + 2sρ̄

√
〈|ρ̄q|2〉(rand − 0.5)

+ 2isρ̄

√
〈|ρ̄q|2〉(rand − 0.5), (K5)

where rand indicates a random number between 0 and 1. Each
use of rand here is a different random number, so the real and
imaginary parts are updated with independent random values.
〈|hq|2〉, 〈|ρq|2〉, and 〈|ρ̄q|2〉 are as derived in Eqs. (18)–(20). sh,
sρ , and sρ̄ are scaling factors that can be varied to influence

how frequently the proposed changes are accepted. For the
simulations in Table III, the scaling factors sh = 0.95, sρ =
1.3, and sρ̄ = 1.3 resulted in approximately 50% acceptance.

To update the dependent modes, we conjugate the inde-
pendent modes to ensure that the height and density variables
in real space are real valued (see Appendix A). Therefore,
h−q,new = h∗

q,new, and similarly for the other fields. Subse-
quently, hq,new, ρq,new, and ρ̄q,new are inverse fast Fourier
transformed to obtain their corresponding real-space values.

We change one mode q at a time, and also only
change one of the three fields hq, ρq, and ρ̄q at a time.
(We propose changes first for hq, then for ρq, then
ρ̄q.) The usual Metropolis acceptance criterion is used,
and applied after each change; i.e., we update the three
fields separately, not simultaneously. This Metropolis
criterion is

rand < exp

(−(Etot, new − Etot )

kBT

)
. (K6)

If this condition is fulfilled, then the change is accepted,
and Etot and the corresponding height and density variables
are updated to their new values and iterated for use in the next
attempt.
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