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Selection-recombination-mutation dynamics: Gradient, limit cycle, and closed invariant curve
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In this paper, the replicator dynamics of the two-locus two-allele system under weak mutation and weak
selection is investigated in a generation-wise nonoverlapping unstructured population of individuals mating at
random. Our main finding is that the dynamics is gradient-like when the point mutations at the two loci are
independent. This is in stark contrast to the case of one-locus–multi-allele where the existence gradient behavior
is contingent on a specific relationship between the mutation rates. When the mutations are not independent in
the two-locus–two-allele system, there is the possibility of nonconvergent outcomes, like asymptotically stable
oscillations, through either the Hopf bifurcation or the Neimark-Sacker bifurcation depending on the strength of
the weak selection. The results can be straightforwardly extended for multilocus–two-allele systems.
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I. INTRODUCTION

How a living being appears and behaves is inherently
determined by the variety of genes located on the differ-
ent loci of chromosomes. The entire genotype to phenotype
map is very vast and complex, and it is further complicated
by the environmental feedback effects. While the evolution-
ary dynamics, e.g., replicator dynamics [1–4], of simplified
one-locus–many-allele systems exhibits quite rich dynamical
behavior, the phenomenon of recombination during meiosis
presents one with richer extension of the evolutionary dy-
namics in a population of sexually mating organisms. In the
latter, the simplest nontrivial mathematical setup is that of a
two-locus–two-allele (2L2A) system. While two different loci
can determine two different phenotypic traits (e.g., seed color
and seed color in the revolutionary dihybrid cross experiments
of Mendel [5,6]), there are many examples where two loci
control the same trait, and their interaction has a considerable
effect on the phenotype. Some such examples that quickly
comes to mind are comb types on the head of chickens [7],
flower color in peas [8], wheat kernel color [9], blood groups
in humans [10], age-related hearing loss resistance in the
Japanese wild-derived inbred MSM/Ms mice [11], and eye
color of humans [12].

Haldane [13] and Wright [14] were among the first to
mathematically explore the evolutionary outcome when se-
lection acts on more than one locus assumed statistically
independent, i.e., a system is in linkage equilibrium. Later
Lewontin and Kojima [15] worked on a general 2L2A model
with both selection and recombination included and showed
that strong epistasis together with linkage disequilibrium can
lead to significantly different outcomes. Subsequently, many
extensions [16–20] of the model were studied—starting from
prediction and calculation of all possible fixed points and
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determination of stability condition for some special cases in
a simplified fitness model to the occurrence of cyclic motion.
For a continuous time model, Akin [21] and for a discrete time
model, Hastings [22] and Hofbauer and Iooss [23], showed
that periodic orbits can be a possible outcome when a sys-
tem is in linkage disequilibrium; when the 2L2A model is
in linkage equilibrium such complex behavior cannot occur
and the system becomes gradient-like, as shown by Nagylaki
[24]. Nagylaki also showed that for a multilocus system under
weak selection—selection strength sufficiently smaller com-
pared to recombination—linkage disequilibrium decays close
to zero within a few generations and the dynamics of the
entire multilocus system is governed by the dynamical out-
comes of time-continuous multilocus system [25–27]. Very
recently [28], Pontz and coworkers studied the 2L2A model
in detail under weak selection limit and classified all possible
equilibrium structure and phase portraits for different payoff
structures.

Mutation is the most important and indispensable ingredi-
ent of the evolutionary processes. It is important to note that
the relationship between mutations at different loci is often
complex and can be influenced by a variety of factors. It is
possible for a mutation at one locus to affect the mutation rate
at another locus on the same chromosome [29,30] directly
or indirectly. For example, a mutation in a gene that codes
for a repair enzyme involved in maintaining the integrity of
DNA could alter the mutation rate of other genes by affecting
the efficiency of DNA repair [31]. Similarly, a mutation in
a gene that regulates the transcription or translation of other
genes can affect the rate of mutations in those genes. Mutation
may not be always completely random: It can depend on
environmental changes [32] and fitness [33], and organisms
can have evolved mechanisms which can influence the timing
or genomic location of mutation [34]. In view of the above, in
this paper, we distinguish between the cases of mutations that
occur randomly (independent of what mutations occur at the
other loci) from the cases where mutations can be treated to
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have occurred independently and randomly at a locus. We call
the latter independent mutations.

The effects of mutation was studied in a one-locus
two-allele model for both overlapping and nonoverlapping
generations, and the results are really interesting: Mutation
can stop the extinction of cooperators by producing cyclic or
chaotic outcomes and even can produce coexistence regions
where both the cooperators and defectors can survive simulta-
neously [35–38]. Evolutionary dynamics were studied for the
case of the 2L2A with mutation as well [39–45].

Another aspect of mutation is worth pointing out. The
thought-provoking Fisher’s fundamental theorem of natural
selection [46–48] is famously known to allude to the conjec-
ture that the average fitness of the population should always
increase and ultimately settle down to a maximum value when
natural selection is the only driving force. While it is in
analogy with the second law of thermodynamics where the
entropy of an isolated system never decreases, the conjecture
is debatable owing to the practical impossibility of isolating
an evolutionary system from environment as any modification
of the environment includes the effects due to selection-driven
changes in allele frequencies [49]. The situation is further
complicated by the presence of mutation and recombination.
Nevertheless, some special cases exist. For example, in the
presence of both weak mutation and weak selection, it could
be shown that the one-locus–many-allele model [50] becomes
a gradient system when the mutation probabilities depends
on the target gene only [51]; the potential function of this
gradient system, which is a generalization of average fitness,
is maximized in the course of evolution. Another example is
that of the 2L2A model [28] in the presence of weak selection:
the 2L2A model, even in the presence of an evolutionary force
of recombination, turns out to be a gradient-like system.

In such contexts, the study of the 2L2A model in the
presence of weak selection and weak mutation still, to the best
of our knowledge, remains to be reported. Specifically, we
are interested in whether the 2L2A model is always gradient-
like or there is a specific condition on mutation for that to
happen. Does the answer depend on whether the mutations at
the two loci are independent? Furthermore, if and when the
epistasis-induced dynamics in the 2L2A system is altered due
to presence of mutation is also a question of interest because
epistasis or interaction between different loci has important
effects on dynamics, like occurrence of cyclic motion [22] and
sustaining polymorphism [28].

Without further ado, we introduce the model in the
next section (Sec. II), and then we present the gradi-
ent 2L2A system in Sec. III. Subsequently, we discuss
the nongradient dynamics in Sec. III before concluding in
Sec. IV.

II. THE 2L2A MODEL

We consider a generation-wise nonoverlapping, unstruc-
tured population of randomly mating diploid individuals. The
population is assumed to evolve under the action of viability
selection that acts on two diallelic, recombining loci. We, thus,
have the standard two-locus–two-allele (2L2A) model with
viability selection [16,28,52–57].

A. Dynamics of gamete frequencies

Let A1 and A2 be the alleles at locus A, and B1 and B2

be the alleles at locus B. Let G1, G2, G3, and G4 repre-
sent the four possible gametes, viz., A1B1, A1B2, A2B1, and
A2B2, respectively. Let the frequency of the Gi gametes be xi

(obviously,
∑4

i=1 xi = 1). In these notations, the frequencies
of allele A1 and B1 are, respectively, x1 + x2 and x1 + x3,
which we henceforth denote as p and q, respectively. Defining
D ≡ x1x4 − x2x3, the measure of linkage disequilibrium, the
following identities follow:

x1 = pq + D, (1a)

x2 = p(1 − q) − D, (1b)

x3 = (1 − p)q − D, (1c)

x4 = (1 − p)(1 − q) + D. (1d)

Furthermore, let the fitness of the GiGj genotype be wi j . For
simplicity, we assume that the fitness is independent of which
gamete is from the mother and which one is from the father,
i.e., wi j = w ji. We also assume that w14 = w23; the last as-
sumption means that the corresponding fitnesses are the same
regardless of whether A1 and B1 are on the same chromosome
or opposite ones. Consequently, the following matrix suffices
for fully representing the fitnesses of genotypes:

⎡
⎣

B1B1 B1B2 B2B2

A1A1 w11 w12 w22

A1A2 w13 w14 w24

A2A2 w33 w34 w44

⎤
⎦

We include two further phenomena in the model: recombi-
nation and mutation. While we let r denote the probability of
recombination, the mutation from one gamete to another ga-
mete is specified by the row stochastic matrix Q whose (i, j)th
element Qi j is the probability that an offspring with gamete Gj

is born to a parent with gamete Gi. With this multiplicative
[36,50] mutation that takes place during DNA replication
process, the evolution of gamete frequencies is given by the
following replicator-mutator equation [41,44,45,58]:

x′
i =

∑
j (x jw j − θ j rDw14)Qji

w̄
, (2)

where wi ≡ ∑
j wi jx j , w̄ ≡ ∑

j w jx j ,
∑

j Qi j = 1, and θ1 =
−θ2 = −θ3 = θ4 = 1. Here the prime is the tag for an imme-
diately succeeding generation. We suppose that the mutation
happens at the gametic stage [41,59].

We pause a bit to interpret Eq. (2) from a physicist’s point
of view. The nonlinear equation is essentially a mean-field
equation of a stochastically evolving system of interacting
agents whose number is held fixed over time. This is trivially
achieved if one considers an infinite population to begin with,
as has been considered in the 2L2A model. The agents are the
gametes which can be in four possible states AiBj (given by
various combinations of alleles at two loci). These four states
appear with distinct frequencies, x′

is. There are transitions
from one state to the others (and vice versa) via the process
of mutation and recombination; there is also self-transition via
replication (see Fig. 1). These probabilities of these transitions
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FIG. 1. Schematic representation of the 2L2A model. (a) Defining four different gametes and showcases, through a Markov chain
representation, different evolutionary forces at play to change the state (x1, x2, x3, x4) of gamete population over time. We represent a gamete
either as a circle containing yellow chromosomes and black lines for alleles or as a circle with red and blue chromosomes for easy visualization
in later panels. (b) Illustratively clarifying the processes further at the population level. (c) The entire selection-recombination-mutation
dynamics over one reproduction cycle. It should be noted that although the individuals are diploid organisms, the mathematical 2L2A model
conveniently tracks the frequencies of the haploid gametes of organisms: The diploid organisms act only as carriers and facilitators of the
evolutionary changes among the set of all gametes in the population.

are mathematically captured by parameters Qi j , r, and wi.
Over time any initial frequency distribution over the states
evolves and reaches a limiting stationary distribution. How-
ever, it must be emphasized that we do not solve for the
aforementioned stochastic process in the population; rather,
in this paper, we stick with the mean-field deterministic de-
scription of the evolutionary dynamics.

B. Dynamics of allele frequencies

It is well known [50] that recombination drives 2L2A
model’s phase space trajectories onto the Wright manifold in
the absence of selection and mutation. The Wright manifold
is a linkage equilibrium manifold (�0), where D = 0; and a
population in linkage equilibrium is restricted to be on the
equilibrium manifold, i.e., �0 is an invariant manifold.

As elaborated in the introduction to this paper, since
our goal is to observe the effect of both weak selection
and weak mutation on the dynamics of the 2L2A selection-
recombination model, we introduce a small parameter s such
that the fitnesses and the mutations can be recast as

wi j = 1 + smi j, (3a)

Qi j = sεi j for i �= j. (3b)

Thus, the limit of small s renders the dynamics of Eq. (2) to
be that expected under weak selection and weak mutation.

In the presence of weak selection (s � r) and weak muta-
tion, on using Eq. (3) in Eq. (2), we obtain

x′
i = xi − θirD + O(s). (4)

Interestingly, we find that the effect of mutation at this order
is completely absent. Hence, the known results [26,27] for the
case of the models without mutation (but with selection) hold
in our case as well. Close to �0, there exists a smooth invariant
manifold, �s, that is globally attracting for Eq. (2); for any
initial values the linkage disequilibrium D(t ) becomes O(s)
asymptotically in time.

Thus, in the weak selection and weak mutation limit, the
linkage disequilibrium D → 0 and, consequently, the dynam-
ical equation is further simplified because of the fact that it
can now be specified using only two variables p and q, for
t � t1. Specifically, in the set of Eqs. (1), D is replaced by O(s)
terms. Rescaling time t (= 0, 1, 2, . . . ) tagging generations as
τ = st , it is easy to see that as s → 0, Eq. (2) approaches the
following differential equations:

ṗ = q(1 − p)ν1 + (1 − q)(1 − p)ν2 − qpν3 − (1 − q)pν4

+ p(1 − p)
1

2

∂m̄

∂ p
, (5a)

q̇ = p(1 − q)ν5 + (1 − p)(1 − q)ν6 − pqν7 − (1 − p)qν8

+ q(1 − q)
1

2

∂m̄

∂q
, (5b)
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where, ν1 ≡ (ε31 + ε32), ν2 ≡ (ε41 + ε42), ν3 ≡ (ε13 + ε14),
ν4 ≡ (ε23 + ε24), ν5 ≡ (ε21 + ε23), ν6 ≡ (ε41 + ε43), ν7 ≡
(ε12 + ε14), ν8 ≡ (ε32 + ε34), and

m̄ ≡ m1 pq + m2 p(1 − q) + m3(1 − p)q + m4(1 − p)(1 − q)
(6)

is the average fitness of the population wherein the marginal
fitness of the gamete i,

mi ≡ mi1 pq + mi2 p(1 − q) + mi3(1 − p)q

+ mi4(1 − p)(1 − q). (7)

Since, at p = 0 and p = 1, ṗ � 0 and ṗ � 0 respectively; and
at q = 0 and q = 1, q̇ � 0 and q̇ � 0, respectively, Eq. (5)
is forward invariant in the p-q phase space—a closed unit
square. It may also be noted that the dynamical equation re-
mains invariant under addition (but not multiplication) of a
constant matrix with the matrix M whose elements are m′

i js.

III. 2L2A GRADIENT SYSTEM

If a dynamical system is gradient-like, then the nonconver-
gent solutions like periodic or chaotic solutions can be ruled
out for the system. So it is very useful to find the condition
on the mutation rates for which the 2L2A model becomes
gradient-like.

It is of notational convenience to represent Eqs. (5) in the
form

żi = f̃i(z) ≡ zi(1 − zi ) fi(z), i = 1, 2, 3, 4, (8)

where z1 ≡ p, z2 ≡ q, z3 ≡ (1 − p), and z4 ≡ (1 − q) corre-
spond to the four coordinates in the allele frequency space.
The explicit expression of f ′

i s is obvious when compared with
Eqs. (5). The phase space P , hence, is �2 × �2 embedded
in R4; here �2 is a one-dimensional simplex. We need to
consider, e.g., the interior of P , intP ; at any point z ∈ intP ,
let the tangent space be denoted by TzP .

Now for z ∈ intP and η ∈ TzP , the inner product

〈ż, η〉z = 〈 f̃ (z), η〉z = gi j (z) f̃i(z)η j, (9)

where (and henceforth) sum over repeated indices—Einstein’s
summation convention—has been imposed. gi j is the met-
ric in intP . Considering the metric gi j = δi j/[zi(1 − zi )]—
reminiscent of the Shahshahani gradient [50,60,61]—and
recalling Eq. (8), it is obvious that

〈ż, η〉z = ∂U

∂zi
ηi, (10)

if there exists a continuous and differentiable scalar function
U (z) such that fi(z) = ∂U (z)/∂zi. Actually, since

∑4
i=1 ηi =

0 because η ∈ TzP , even if a more general condition, viz.,
fi(z) = ∂U (z)/∂zi + φ(z) (φ is a scalar function) is satisfied,
Eq. (10) holds good (see Appendix A).

In summary, what we have found is that if żi = fi(z) is gra-
dient system, then so is żi = f̃i(z). Consequently, for Eqs. (5)
to be a gradient system, one requires

∂ f1

∂q
= ∂ f2

∂ p
. (11)

This condition, on using the expression of f ′
i s, ultimately takes

the form

1

p
(ν1 − ν2) + 1

(1 − p)
(ν3 − ν4)

= 1

q
(ν5 − ν6) + 1

(1 − q)
(ν7 − ν8). (12)

As p and q are independent variables, the system is a gradient
system if

ν1 = ν2, ν3 = ν4, ν5 = ν6, and ν7 = ν8 (13)

for all possible allowed values of p and q.
In the light of condition (13), Eqs. (5) take the form

ṗ = p(1 − p)
1

2

∂m̄

∂ p
+ ν1(1 − p) − ν3 p, (14a)

q̇ = q(1 − q)
1

2

∂m̄

∂q
+ ν5(1 − q) − ν7q. (14b)

It is interesting to note that with V (p, q) ≡ exp(m̄)p2ν1 (1 −
p)2ν3 q2ν5 (1 − q)2ν7 , Eq. (14) can be recast as

ṗ = p(1 − p)

2V

∂V

∂ p
, (15a)

q̇ = q(1 − q)

2V

∂V

∂q
; (15b)

here the interior fixed points (p∗, q∗) correspond to ∂V /∂ p =
∂V /∂q = 0. In fact, it can be verified (see Appendix B) that
V (p, q) is the local Lyapunov function for the gradient system
(14) because

V̇ = 2V

p(1 − p)
ṗ2 + 2V

q(1 − q)
q̇2, (16)

implying V̇ = 0 only at any (p∗, q∗) ∈ (0, 1)2 and V̇ > 0
always for all possible (p, q) ∈ (0, 1)2 other than the fixed
points.

The existence of the Lyapunov function leads to the con-
clusion for Eq. (2): for sufficiently small s and if all the
equilibria of Eqs. (15) are hyperbolic, every solution of Eq. (2)
converges to a fixed point. This is essentially an extension of
a theorem due to Nagyalaki [26] and can be succinctly under-
stood as follows. Substituting wi j = 1 + smi j and Qi j = sεi j

for all i �= j in Eq. (2), and assuming linkage equilibrium
(D = 0) and condition (13), we arrive at

�p = s

w̄

[
p(1 − p)

2

∂m̄

∂ p
+ ν1(1 − p) − ν3 p

]
, (17a)

�q = s

w̄

[
q(1 − q)

2

∂m̄

∂q
+ ν5(1 − q) − ν7q

]
, (17b)

which reduce to Eqs. (15) as s → 0. Here w̄ = 1 + sm̄. It is
straightforward to note that the fixed points of Eqs. (15) and
Eqs. (17) and their stability properties for small enough s are
the same. This means that if the fixed points of Eqs. (15) are
hyperbolic, then due to the system being a gradient system, the
initial conditions will be attracted to some stable fixed points;
and so this is going to be the fate of the initial conditions under
the map given by Eq. (2) whose corresponding fixed points are
in the �s manifold.
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The search for which kind of replicator-mutator 2L2A sys-
tem can be a gradient system interestingly stops at the most
simple case of random point mutation, happening independent
of what is happening elsewhere (e.g., at another locus). We
call such mutations independent. It can be expressed in our
setup as follows. Let the probability of mutation from Ai allele
to Aj allele be given by μA

i j , and the probability of mutation
from Bi allele to Bj allele is given by μB

i j . Naturally μA
ii and

μB
ii correspond to the probabilities of no mutation from Ai and

Bi alleles, respectively. So the corresponding mutation matrix
Q representing the probability of mutation from one gamete
to another gamete, when the mutations at the two loci are
independent, can be represented by the following matrix:

⎡
⎢⎢⎢⎢⎣

A1B1 A1B2 A2B1 A2B2

A1B1 μA
11μ

B
11 μA

11μ
B
12 μA

12μ
B
11 μA

12μ
B
12

A1B2 μA
11μ

B
21 μA

11μ
B
22 μA

12μ
B
21 μA

12μ
B
22

A2B1 μA
21μ

B
11 μA

21μ
B
12 μA

22μ
B
11 μA

22μ
B
12

A2B2 μA
21μ

B
21 μA

21μ
B
22 μA

22μ
B
21 μA

22μ
B
22

⎤
⎥⎥⎥⎥⎦.

Now note that condition (13) for the gradient system in more
convenient notation is

ν1 = ν2 ⇒ ε31 + ε32 = ε41 + ε42, (18a)

ν3 = ν4 ⇒ ε13 + ε14 = ε23 + ε24, (18b)

ν5 = ν6 ⇒ ε21 + ε23 = ε41 + ε43, (18c)

ν7 = ν8 ⇒ ε12 + ε14 = ε32 + ε34. (18d)

This is trivially satisfied by the aforementioned mutation ma-
trix for an independent mutation because of the fact that∑2

j=1 μA
i j = ∑2

j=1 μB
i j = 1—the normalization condition of

probability. In conclusion, in the presence of independent point
mutations at the two different loci, the 2L2A system always
behaves as a gradient system in the weak selection limit, and
no complicated dynamics like oscillatory or chaotic dynamics
can appear. It may be noted, however, that the converse of this
result need not be true: Mathematically speaking, mutations
that are not independent (mentioned in Sec. I) may or may not
satisfy the gradient condition.

It is instructive to compare this result with the analogous
one for the one-locus–many-allele model, represented by a
dynamical equation: x′

i = ∑
j x jw jQ ji/w̄. The condition for

it to be a gradient-like system in the weak mutation and weak
selection limit [50,51] is that the mutation rates must depend
on the target gene only, i.e., Qji does not depend on index
j. Evidently, it is different from the 2L2A model’s condition
(13) that it is more general due to the two-loci character
of the system; nevertheless, it may be observed that if the
mutation rates are dependent on the target gene only, condition
(13) is trivially satisfied. Of course, condition (13) may be
satisfied for mutations are dependent on source gene as well,
something not possible at all in one-locus–many-allele model.
The reason behind the more general condition (13) is genetic
recombination, which is not present in the one-locus–many-
allele model. The recombination in the 2L2A model allows
for the exchange of genetic material and, hence, changes
in gametic frequencies. Also, linkage disequilibrium, which
appears in the presence of recombination, approaches the

invariant �s manifold in the weak selection and weak mu-
tation leading to condition (13).

IV. 2L2A NONGRADIENT SYSTEM

Now let us see some of the examples where nonconvergent
dynamical outcomes are possible in the 2L2A model in the
presence of mutation in the weak selection limit. As is clear
from the preceding discussion, we have to consider noninde-
pendent mutations as they can result in nongradient dynamics
and hence oscillatory outcomes.

Let us consider a simple fitness matrix well studied in
literature [15,22]:

M =
⎡
⎣ k L1 k

L2 K L2

k L1 k

⎤
⎦. (19)

It basically says that a genotype homozygous at both loci
has the fitness k, a genotype homozygous at A (B) locus and
heterozygous at B (A) locus has the fitness L1 (L2), and a
genotype heterozygous at both loci has the fitness K . Our
aim is to illustrate the nonfixed point-type dynamics that can
appear in such systems in the presence of mutation.

To this end, let us take a mutation matrix that does not
satisfy condition (13), and hence the corresponding dynamics
given by Eqs. (5) is not a gradient system. Specifically, let
us take ε31 = ε24 = ε1, ε12 = ε43 = ε2, and other mutation
probabilities as zero. Furthermore, in order to achieve ana-
lytical tractability, let us choose ν1 + ν2 − ν3 − ν4 = 0 and
ν5 + ν6 − ν7 − ν8 = 0 (note that our choice of Q satisfies
these) so that the internal fixed point (p∗, q∗) is conveniently
located at (1/2, 1/2).

While performing linear stability analysis of Eqs. (5) about
fixed point (1/2, 1/2), the Jacobian comes out to be

J =
[
α β

γ δ

]
, (20)

where α = (k − K )/4 − (ν1 + ν2 + ν3 + ν4)/2, β = (ν1 −
ν2 − ν3 + ν4)/2, γ = (ν5−ν6−ν7 + ν8)/2, and δ = (k − K )/
4 − (ν5 + ν6 + ν7 + ν8)/2; and the corresponding eigenval-
ues are

λ = (α + δ) ±
√

(α − δ)2 + 4βγ

2
. (21)

For the Hopf bifurcation to occur one must have 4βγ <

−(α − δ)2, and it happens at α + δ = 0, which can be re-
cast to read (k − K ) = ∑8

i=1 νi. For illustrative purposes, if
we now fix ε2 = 0.2 and (k − K ) = 1, and work with ε1 as
a variable parameter then at ε1 = 0.3, the Hopf bifurcation
should occur (see Fig. 2).

We observe that in the setting in which we are working,
the condition of the Hopf bifurcation is independent of any
constraints on L1 and L2. This has an interesting implication
that we now point out. The case K > L1, L2 and k > L1, L2

corresponds to strong epistasis in the literature [22], where
it was shown that for oscillatory behavior to appear in the
2L2A model (without mutation), strong epistasis is a neces-
sary condition. However, when nonindependent mutation is in
action, the limit cycle can appear even in the absence of the
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FIG. 2. Mutation drives oscillatory outcomes in nongradient
2L2A system. As discussed in Sec. IV, for illustrative purposes, we
take ν1 = ν4 = 0.3, ν6 = ν7 = 0.2, ν2 = ν3 = ν5 = ν8 = 0.0, and
k − K = 1.0. The Hopf bifurcation and the Neimark-Sacker bifur-
cation (in the time discrete version) occur at ε = 0.3. Panels (a) and
(b) depict the appearance of the limit cycle (blue closed curve) via
Hopf bifurcation as ε1 decreases. whereas panels (c) and (d) exhibit
the birth of a closed invariant cycle (blue closed curve) via Neimark-
Sacker bifurcation (we take s = 0.01). The red and green trajectories
depict evolution of two separate initial conditions. (In the lower
panel, the red and the green curves are a guide for the eye to follow
the discrete orbit.)

strong epistasis because the corresponding Hopf bifurcation
condition is dependent only on the values of k and K .

In this context, we recall that the 2L2A gradient system
closely approximates the corresponding discrete-time dynam-
ics of the 2L2A model in the weak selection limit. Each
initial condition approaches a stable fixed point. A somewhat
analogous effect is seen corresponding to the limit cycles
in a discrete-time 2L2A nongradient system. For the same
parameter values and sufficiently small s, an invariant closed
curve is generated. However, in general, the orbits on the
invariant curve need not necessarily be periodic with a finite
number of periodic points as another possibility is that the
orbit on the curve can be everywhere dense (may be due to
quasiperiodcity or chaos). As long as s is sufficiently small
[we can ignore O(s2) and higher order terms], it is easily seen
that the time-discrete equation (which is effectively the Euler
forward discretization of the continuous-time equation) under
the same parameter values chosen above (while discussing the
Hopf bifurcation) undergoes the Neimark-Sacker bifurcation.
We do not present the calculations for the sake of avoiding
trivial repetition. Numerical evidence of this is showcased in
Fig. 2.

V. DISCUSSION AND CONCLUSION

Summarizing, we have mathematically investigated
the two-locus–two-allele selection-recombination-mutation

dynamics through the replicator equations in the limit of
weak selection and weak mutation. We note that when
selection and mutation are sufficiently weak, one can ignore
linkage disequilibrium completely, and the system becomes a
two-dimensional continuous-time differential equation which
faithfully approximates the evolutionary dynamics when
the dynamics is gradient-like. Our search for the cases of
mutation for which the dynamics is gradient-like has led to
the result that whenever the point mutation rate at one locus
is not affected by what happens at the other, the dynamics is
always gradient-like. When the dynamics is not gradient-like,
we found that stable limit cycle or stable closed invariant
curve can appear. The dynamics on the invariant curve can,
in principle, sustain nonconvergent solutions like periodic,
quasiperiodic, and chaotic orbits. We have also discussed
how the dynamical manifestation of epistasis can completely
change in presence of mutation.

As already mentioned in introduction, the dependent mu-
tation is a widely observed phenomenon. What has been
mathematically emphasized is that, within the paradigm of
a deterministic replicator-mutator equation, it may facilitate
oscillatory dynamics of gene frequency. However, we are
not aware of any direct experimental instance verifying it
explicitly, which may simply be because this result is not
common knowledge in the literature. We recall that Eqs. (18),
the condition for the 2L2A system to be gradient-like, is
trivially satisfied when the mutation rates do not depend on
which allele is mutating; i.e., if all the alleles mutate to a given
allele at the same rate, then the 2L2A system is gradient-like.
Interpreting differently, for oscillations to possibly appear,
different alleles must necessarily mutate to a given allele at
unequal rates. Whether dependent mutations should lead to
an oscillatory outcome depends not only on the violation of
condition (18), but also on the form of the fitness matrix
as illustrated in Sec. IV. On a broader note, we understand
that the presence of oscillatory outcomes, i.e., the fact that
the corresponding systems are not gradient-like, indicates that
there is no fitness-related quantity of the population that is
maximized à la Fisher’s fundamental theorem.

We would like to make a few points explicitly clear.
First, the condition of the realization of gradient-like 2L2A
replicator-mutator system is independent of the fitness ma-
trix, making the result quite general. Second, it should be
remarked that had the mutation been taken as additive rather
than multiplicative [35,36], the form of the final dynamical
equation in the limit of weak selection and weak mutation
remains the same as Eqs. (5). Finally, we are tempted to claim
that our results imply that, within the paradigm of replicator
dynamics of an evolutionary process in the weak selection
and mutation limit, an observation of oscillatory gametic or
allelic frequencies in a 2L2A system with the possibility of
mutations at both loci may be an indirect indication of the
existence of mutations that are not independent. As an aside,
we may mention that another theoretical model [62] shows
that the interference of mutations at multiple points leads to
oscillatory outcomes.

The 2L2A model is a stripped-down mathematical abstrac-
tion of a real biological evolutionary process in a sexually
reproducing population. Hence, the claims through the lens
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of the replicator-mutator equation are justified only when
observed in the real world. We must admit that we are, un-
fortunately, not trained in biological experiments to be able
to make practical and authoritative remarks on how experi-
ments should be done to detect the effect of nonindependent
mutations in a real biological setting—this is something ex-
perimentalists have to ponder.

An immediate future work that builds on the present paper
is to find how the aforementioned results manifest themselves
in a finite population where stochastic effects can no longer
be ignored. Also, in this paper we have exclusively focused on
viability selection. The results can, thus, change nontrivially
in the presence of fertility or sexual selections because they
introduce higher-order interactions like allele-genotype and
genotype-genotype interactions. Moreover, in general, there
can be different modes of inheritance, like polyploidy, sex
linkage, and cytoplasmic inheritance. An important future
work is to find under what conditions the results of this paper
hold for such general scenarios. Furthermore, many charac-
teristics like our body size [63], height [64], and shape of
different organs like the ear [65] are controlled by more than
two loci of a chromosome. So understanding the evolution-
ary dynamical outcome of multilocus systems [66,67], in the
presence of a mutation, is still another natural direction to
investigate. While our main result—occurrence of a gradient
system in the presence of independent mutation—is valid for
multilocus–two-allele systems (see Appendix A), the condi-
tion for general multilocus–multi-allele systems’ becoming
gradient-like remains an open problem.

Before we conclude, we would like to emphasize that
while our results are restricted to the scenarios where the
deterministic replicator-mutator equation is relevant, the set
of such scenarios is not restricted to merely genetics. The
2L2A deterministic dynamics finds application in evolution of
learning [68], cultural evolution [69], neuroscience [70], and
signaling systems [71]. Furthermore, we also remark that the
2L2A dynamical model is not just a mathematical endeavor;
e.g., with some more additional features, it was used to explain
a very high level of amino acid divergence between human
RHCE and RHD genes in a short region around exon 7 [72].
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APPENDIX A: MULTILOCUS–TWO-ALLELE
GRADIENT SYSTEM

Let there be a total n + 1 loci and at the lth (l =
0, 1, 2, . . . , n) locus two possible alleles be denoted by A(l )

0

and A(l )
1 . The gametes—each represented by a sequence,

A(0)
ς0

A(1)
ς1

A(2)
ς2

A(3)
ς3

· · · A( j)
ς j · · · A(n)

ςn
, where ς j ∈ {0, 1} ∀ j—are

mathematically sorted in a fashion such that ith gamete (Gi)
is listed at position i = (ς0 × 20) + (ς1 × 21) + (ς2 × 22) +
· · · + (ςn × 2n), thereby helping us to directly associate a
gamete number with a gamete. Let the frequency of Gi be xi.

Furthermore, let the fitness of the GiGj type of genotype
be wi j . Assuming that the fitness is independent of which ga-
mete is contributed by which parent, the equality, wi j = w ji,
follows. The fitness of the ith gamete and average fitness of
the population are, thus, given by wi ≡ ∑

j wi jx j and w̄ ≡∑
j w jx j , respectively.
Now for the multilocus system the selection-recombination

evolutionary equation [25,26] for the gametes’ frequency in
the presence of multiplicative mutation which occurs during
the gametic stage [58], takes the form

x′
i = 1

w̄

2n−1∑
j=0

(x jw j − Dj )Qji, (A1)

where Qji corresponds to the probability of mutation from the
jth gamete to the ith gamete. The symbol Di is understood as
follows.

Let us decompose the set of loci l = {0, 1, 2, . . . , n} into
two disjoint sets, I and J . Let the probability of recombi-
nation with the loci in I inherited from one parent with the
loci in J inherited from the other parent be rI . Now Di ≡∑

j

∑
I rI (wi jxix j − wiI jJ , jI iJ xiI jJ x jI iJ ) represents the measure

of linkage disequilibrium for the ith gamete. xiI jJ denotes the
frequency of gametes consisting of the genes iI located in I
and the genes jJ located in J inherited from two different
parents, where iI (or jJ ) corresponds to a vector with com-
ponent il (or jl ) for every l ∈ I (or l ∈ J). In passing, note
that Di ultimately boils down to θiw14rD for the two-locus
two-allele scenario, when w14 = w23, as used in the main text.
In consistent notation, wiI jJ , jI iJ is the fitness of the genotype
formed by the two gametes—one whose frequency is xiI jJ and
another one whose frequency is x jI iJ .

Here again we are interested in an evolutionary outcome
under weak selection and weak mutation. So let us take the
form of the fitness and mutation as we have taken for the
two-locus case (3). Under weak mutation, à la Nagylaki [25],
we can show that under weak selection linkage disequilibrium
in Eq. (A1) goes to quasilinkage equilibrium within a few
generations (t > t1). So we can write Eq. (A1) after t > t1 as

x′
i = 1

w̄

2(n+1)−1∑
j=0

Qjix jw j . (A2)

Rescaling time t (= 0, 1, 2, . . .) of generations as τ = st and
taking the limit s → 0, we ultimately come up with the fol-
lowing differential equation [50]:

ẋi = xi[mi − m̄] +
2(n+1)−1∑

j=0

(ε jix j − εi jxi ). (A3)

We now want to rewrite this equation in terms of the frequency
of the alleles.

We denote the frequency of the allele A(l )
0 , i.e., the fre-

quency of the 0th allele at the lth locus by zl and the
frequency of the first allele at the lth locus by zn+l . Since
each locus contains two alleles, it is obvious that zn+l =
1 − zl . At the linkage equilibrium manifold, the gamete fre-
quency is given by just the product of the corresponding allele
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frequencies [26],

xi =
n∏

l=0

zl+ςl n, (A4)

where i = �n
l=0ςl2l , in our notation. zl can be easily calcu-

lated by taking the sum over all possible gametes in which
the lth locus contains the zeroth allele. Again, by virtue of

the numbering convention of the gametes introduced in the
beginning of this Appendix, one can write the allele frequency
in terms of gamete frequency explicitly as follows:

zl = x0 + x1 + · · · + x2l −1 + x2.(2l ) + · · · + x3.(2l )−1 + x4.(2l )

+ · · · . (A5)

Taking the time derivative of Eq. (A5) and using Eq. (A3),
we ultimately get the evolution equation for allele frequency:

żl ≡ f̃l (z) ≡ zl (1 − zl )

[
1

2

∂m̄

∂zl
+ νl0

x0

zl (1 − zl )
+ νl1

x1

zl (1 − zl )
+ · · · + νl2n

x2n

zl (1 − zl )

]
≡ zl (1 − zl ) fl , (A6)

where m̄ = 1 + sw̄,
and νl0 ≡ −[ε0,(2l ) + · · · + ε0,2(2l )−1 + ε0,3(2l ) + · · · + ε0,4(2l )−1 + · · · ],

νl1 ≡ −[ε1,(2l ) + · · · + ε1,2(2l )−1 + ε1,3(2l ) + · · · + ε1,4(2l )−1 + · · · ],
· · · ≡ · · ·
νl(2l −1)

≡ −[ε(2l −1),(2l ) + · · · + ε(2l −1),2(2l )−1 + ε(2l −1),3(2l ) + · · · + ε(2l −1),4(2l −1) + · · · ],
νl(2l )

≡ +[ε(2l ),0 + · · · + ε(2l ),(2l )−1 + ε(2l ),2(2l ) + · · · + ε(2l ),3(2l )−1 + · · · ],
· · · ≡ · · · .

Here we have put a comma in the subscript of εi j merely
for the visual clarity in reading the subscripts.

We know that the Shahshahani metric in the gametic space
(a simplex of dimension 2n+1 − 1) is gi j (x) = δi j/xi. Now we
are interested to calculate the corresponding metric (e.g., ḡi j)
in the allelic space, (z1, z2, . . . , z2n). Transformation of the
coordinates yields

ḡi j (z) = ∂xρ

∂zi

∂xσ

∂z j
gρσ (x). (A7)

Evidently, for i �= j, the metric elements ḡi j (z) is zero, and for
i = j the metric is nonzero such that the metric can eventually
be written as

ḡi j (z) = δi j

zi(1 − zi )
. (A8a)

Recall that the allelic phase space P is (n + 1)-dimensional
space, �2 × �2 × · · · × �2, embedded in R2(n+1); here �2 is
one-dimensional simplex.

We need to consider, e.g., the interior of P , intP ; at any
point z ∈ intP , let the tangent space be denoted by TzP . Now
for z ∈ intP and η ∈ TzP , the inner product

〈ż, η〉z = 〈 f̃ (z), η〉z = ḡi j (z) f̃i(z)η j . (A9)

Considering the metric ḡi j , it is obvious that

〈ż, η〉z = ∂U

∂zi
ηi, (A10)

if there exists continuous and differentiable scalar functions
U (z) and φ(z) such that fi(z) = ∂U (z)/∂zi + φ(z). In other
words, this form of fi is the condition for ż = f̃ to be a
gradient system.

Now, consider the bilinear form Hz f̃ :

Hz f̃ (ξ, η) ≡
2n∑

i, j=1

1

zi(1 − zi )

∂ f̃i

∂z j
ξiη j, (A11)

where ξ, η ∈ TzP . We find that

∂ f̃i

∂z j
= δi j (1 − 2zi ) fi + zi(1 − zi )

∂ fi

∂z j
. (A12)

Putting this relation in Eq. (A11) and imposing fi(z) =
∂U (z)/∂zi + φ(z), we find that Hz f̃ (ξ, η) is symmetric,
which, in turn, implies

2n∑
i, j=1

(
∂ fi

∂z j
− ∂ f j

∂zi

)
ξiη j = 0 (A13)

for all possible tangent vectors ξ, η ∈ TzP . With ξ = ei − ek
and η=ej − ek (e′s are the unit basis vectors of R2(n+1)), we
obtain

∂ fi

∂z j
+ ∂ f j

∂zk
+ ∂ fk

∂zi
= ∂ fi

∂zk
+ ∂ fk

∂z j
+ ∂ f j

∂zi
. (A14)

As an aside, one notes that this general condition for 2L2A
reduces to the simpler condition, ∂ f0/∂z1 = ∂ f1/∂z0, as ob-
served in the main text, making the presence of φ(z) redundant
in the condition.

We now show that just like the fact that an independent
point mutation renders the 2L2A model a gradient system, the
multilocus–two-allele model in the presence of an indepen-
dent point mutation is also a gradient system. To this end, it
suffices to ignore φ(z), meaning we have as a special case of
Eq. (A14):

∂ fi

∂z j
= ∂ f j

∂zi
, ∀ j ∈ {0, 1, 2, . . . , n}, (A15)
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at all values of z. Thus, we explicitly have

∂ fi

∂z j
= [

(
νi2 j − νi0

)
(x0 + x2 j ) + (

νi2 j +1
− νi1

)
(x0 + x2 j+1) + · · · + (

νi2i − νi2 j +2i

)
(x2i + x2 j+2i ) + · · · ]

1

zi(1 − zi )
+ 1

2

∂2m̄

∂z j∂zi
,

(A16a)

∂ f j

∂zi
= [

(
ν j2i − ν j0

)
(x0 + x2i ) + (

ν j2i+1
− ν j1

)
(x0 + x2i+1) + · · · + (

ν j2 j − ν j2i+2 j

)
(x2 j + x2i+2 j ) + · · · ]

1

z j (1 − z j )
+ 1

2

∂2m̄

∂zi∂z j
.

(A16b)

Owing to the independence of x′
is, from Eqs. (A16a) and (A16b), one can easily say that the condition (A15) is satisfied when

νi2 j = νi0 , νi2 j +1
= νi1 , . . . , νi2i = νi2 j +2i , . . . (A17)

and

ν j2i = ν j0 , ν j2i+1
= ν j1 , . . . , ν j2 j = ν j2i+2 j , . . . . (A18)

Now let the probability of mutation from A(l )
i allele to A(l )

j (i, j ∈ {0, 1} and i �= j) allele at locus l be μl
i j . In independent

point mutations, the probability of mutation from one gamete to another gamete is just the product of the corresponding allelic
mutation probabilities. So we can write the explicit expressions of νi0 and νi2 j (∀ j < i):

νi0 = −[(
μ0

00μ
1
00 · · · μi

01 · · · μn−1
00 μn

00

) + · · · + (
μ0

01μ
1
01 · · · μi

01 · · · μn−1
00 μn

00

) + (
μ0

00μ
1
00 · · ·μi

01μ
i+1
01 · · ·μn

00

) + · · · ], (A19a)

νi2 j = −[(
μ0

00 · · · μ j
10 · · · μi

01 · · · μn
00

) + · · · + (
μ0

01 · · · μ j
11 · · · μi

01 · · ·μn
00

) + (
μ0

00 · · · μ j
10 · · · μi

01μ
i+1
01 · · · μn

00

) + · · · ], (A19b)

and similarly all the other ν ′s in terms of the multiplication of
mutation probabilities at each locus. One can check from the
above expressions that both νi0 and νi2 j ultimately boil down
to −μi

01. An intuition behind it may be gained by noting that
νi0 (and νi2 j ) contains terms which are (apart from an overall
negative sign) the addition of the probabilities of mutation
from the zeroth (and 2 j th) gamete to the gametes which do not
contribute to the allele frequency, zi. Actually, the sum of the
latter gamete frequencies gives 1 − zi. Consequently, we can
effectively consider the sum under question as the probability
of mutation from the A(i)

0 allele to the A(i)
1 allele at the ith

locus. Likewise, other conditions [(A17) and (A18)] are also
satisfied trivially in the presence of independent mutations.
So we can conclude that in the presence of independent point
mutations, the multilocus–two-allele system is gradient-like.

APPENDIX B: LOCAL LYAPUNOV FUNCTION

Here we show that the function, V (p, q) ≡ exp(m̄)p2ν1 (1 −
p)2ν3 q2ν5 (1 − q)2ν7 , is a local Lyapunov function for the gra-
dient system (14). First, we note that the value of the function
V (p, q) is always positive for all values of p and q in intP .
Next we show below that the function has local maxima
(minima) at the stable (unstable) fixed points of Eqs. (14).

Considering the alternate form of Eqs. (14), viz., Eqs. (15),
we see that every fixed point (p∗, q∗) ∈ intP corresponds to
∂V /∂ p = ∂V /∂q = 0. For later use, we write below the ex-
plicit expressions of the second derivative of V (p, q):

∂2V

∂ p2

∣∣∣∣
(p∗,q∗ )

= 2V [mA − ν1 − ν3]

p∗(1 − p∗)
, (B1a)

∂2V

∂q2

∣∣∣∣
(p∗,q∗ )

= 2V [mB − ν5 − ν7]

q∗(1 − q∗)
, (B1b)

∂2V

∂ p∂q

∣∣∣∣
(p∗,q∗ )

= V m̄, (B1c)

where mA≡ ∂
∂ p [ p(1−p)

2
∂m̄
∂ p ]|(p∗,q∗ ) and mB≡ ∂

∂q [ q(1−q)
2

∂m̄
∂q ]|(p∗,q∗ ).

Now, in the process of the linear stability analysis, the
Jacobian of the linearized system at (p∗, q∗) is given by

J1 ≡
[

mA − ν1 − ν3 2p∗(1 − p∗)m̄
2q∗(1 − q∗)m̄ mB − ν5 − ν7

]
≡

[
a b
c c

]
, (B2)

and the corresponding eigenvalues are

λ = 1
2 [(a + d ) ±

√
(a − d )2 + 4bc]. (B3)

Obviously, a necessary condition for the fixed point (p∗, q∗)
to be stable is (a + d ) < 0, which implies

either ν1 + ν3 > mA, (B4a)

or ν5 + ν7 > mB. (B4b)

This condition in light of Eqs. (B1) means that

either
∂2V

∂ p2

∣∣∣∣
(p∗,q∗ )

< 0 (B5a)

or
∂2V

∂q2

∣∣∣∣
(p∗,q∗ )

< 0. (B5b)

Finally, the sufficient condition for the stability of the fixed
point is (a + d )2 > (a − d )2 + 4bc, which boils down to

[mA − ν1 − ν3][mB − ν5 − ν7] > 4p∗q∗(1 − p∗)(1 − q∗)m̄2,

(B6)

which in light of Eqs. (B1) implies that[
∂2V

∂ p2

∣∣∣∣
(p∗,q∗ )

][
∂2V

∂q2

∣∣∣∣
(p∗,q∗ )

]
>

[
∂2V

∂ p∂q

∣∣∣∣
(p∗,q∗ )

]2

. (B7)
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Conditions (B5) and (B7) together imply that the stable fixed
point corresponds to the local maximum of the function
V (p, q). A similar calculation shows that the unstable fixed
point corresponds to the local minimum, and the saddle fixed
point corresponds to the saddle point of the function V (p, q).
Furthermore, we already know from Eq. (16) that V̇ > 0

except at the fixed points where it vanishes. Hence, it qualifies
as the local Lyapunov function.

Actually, in the more conventional sense [73], the lo-
cal Lyapunov function near a stable fixed point, (p∗, q∗), is
V (p∗, q∗) − V (p, q) and near an unstable fixed point, (p∗, q∗),
is V (p, q) − V (p∗, q∗).
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