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Minimizing cell number fluctuations in self-renewing tissues with a stem-cell niche
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Self-renewing tissues require that a constant number of proliferating cells is maintained over time. This
maintenance can be ensured at the single-cell level or the population level. Maintenance at the population level
leads to fluctuations in the number of proliferating cells over time. Often, it is assumed that those fluctuations
can be reduced by increasing the number of asymmetric divisions, i.e., divisions where only one of the daughter
cells remains proliferative. Here, we study a model of cell proliferation that incorporates a stem-cell niche of
fixed size, and explicitly model the cells inside and outside the niche. We find that in this model, fluctuations
are minimized when the difference in growth rate between the niche and the rest of the tissue is maximized
and all divisions are symmetric divisions, producing either two proliferating or two nonproliferating daughters.
We show that this optimal state leaves visible signatures in clone size distributions and could thus be detected
experimentally.
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I. INTRODUCTION

Many adult tissues, such as the mammalian intestinal
epithelium and the skin epidermis, undergo constant self-
renewal supported by stem cells [1,2]. To ensure homeostasis,
the number of proliferating cells needs to be kept constant
over the lifespan of the organism. Large fluctuations in the
number of proliferating cells could lead to disease or even
the death of the organism. For that reason, tight regulation of
cell proliferation is required [3–5], where every cell division
must result in one proliferating and one nonproliferating cell,
at least on average.

The balance of proliferation and differentiation can either
be maintained strictly at the single-cell level or at the popula-
tion level [6]. In the first strategy, every cell division produces
an asymmetric outcome: one daughter cell remains prolifera-
tive and the other daughter ceases proliferation and terminally
differentiates. In the population level strategy, the outcome
of each division is stochastic and can result in zero, one, or
two proliferating daughters. In this case, the balance between
proliferation and terminal differentiation is maintained only
on average, at the population level [7]. This maintenance
strategy is therefore called the population-asymmetry model.

Unlike the single-cell level strategy, the population level
strategy is inherently stochastic and therefore potentially
prone to fluctuations in the number of proliferating cells. De-
spite these fluctuations, the population level strategy of self-
renewal is found in many stem-cell systems [3]. Examples
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include the mammalian germline, the intestine, and the epider-
mis [6,8–11]. In some organs, large variations of the number
of stem cells can occur, such as for spermatogenic stem cells
in murine testes [7]. As such fluctuations are potentially dan-
gerous, in other organs the number of stem cells appears to
be tightly controlled, such as in the small intestine [12]. It
is unknown how different strategies of stem-cell maintenance
affect fluctuations in stem-cell numbers.

In many stem-cell systems, cell proliferation is also or-
ganized in space, with stem-cell niches that provide a local
environment that maintains stem cells in an undifferentiated
and proliferating state [7], while cells outside of such stem-
cell niches eventually cease proliferation and differentiate. As
a consequence, the division patterns of proliferating cells also
likely vary in space, with more divisions generating proliferat-
ing cells within the stem-cell niche, and more nonproliferating
cells without. How such a spatial segregation of proliferation
dynamics might impact fluctuations in cell proliferation re-
mains an open question.

Here, we use a theoretical approach to study the impact of
different stem-cell maintenance strategies, including whether
or not a stem-cell niche is present, on fluctuations in the
number of proliferating cells. In particular, we compare pro-
liferation dynamics in a uniform, unbounded system, i.e.,
lacking a stem-cell niche, and a system with two compart-
ments, i.e., a stem-cell niche where cells are geared towards
proliferation, and a differentiation compartment where cells
are biased towards ceasing proliferation. We analytically de-
rive under which conditions the two-compartment model is
stable, meaning that the number of proliferating cells is
stationary, and calculate the corresponding steady-state num-
ber of proliferating cells. We then systematically examine
how different parameters, such as the fraction of symmetric
and asymmetric division or the size of the stem-cell niche,
impact the magnitude of fluctuations. We find that in the
uniform model, fluctuations are minimized when all divisions
are asymmetric, strictly generating one proliferating and one
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nonproliferating daughter. Surprisingly, we find that in the
two-compartment model, that incorporates a stem-cell niche,
fluctuations are instead minimized by a very different strategy:
when all divisions are strictly symmetric, generating either
two proliferating or two nonproliferating daughters. Finally,
our simulations show that these different strategies generate
distinct clone size distributions and could thus potentially be
differentiated experimentally [5].

II. RELATED WORK

Theoretical models have advanced our understanding of
stem-cell behavior. These models have focused on two main
questions. First, what is the impact of various niche setups
on cell number fluctuations? And second, what is the role of
(a)symmetry in cell divisions [4,5]?

We will first discuss the impact of niche setup on cell
number fluctuations. The models used to study fluctuations
can roughly be divided into three classes. A first class of
models uses a uniform space with two cell types: proliferating
and nonproliferating. Klein et al. [13] used such a model
to determine the impact of various division strategies on the
fluctuations of cell numbers, but only for individual lineages.
Sun and Komarova [14] used the same type of model to test
the impact of various feedback mechanisms on cell number
fluctuations. Those feedback mechanisms required that cells
are aware of the current amount of stem cells in the system.
However, it is open question whether such feedback mecha-
nisms are present in stem-cell systems.

A second class of models uses a single compartment with
a fixed number of stem cells, and no other cell types. These
models were used to study competition between lineages.
Snippert et al. [10] and Lopez-Garcia et al. [9] demonstrated
that the intestinal crypt uses neutral competition, where the
progeny of one stem cell eventually takes over the entire
niche. Ritsma et al. [11] and Corominas-Murtra [15] studied
the dependence of lineage survival on cell position within the
niche.

Finally, in a third class of models, two cell types (stem and
nonstem) are distributed over two compartments. In this work,
we will use a model of this class. So far, these models have
only been used to study the risk of developing cancer, namely,
by Cannataro et al. [16,17] and Shahriyari and Komarova
[18]. Therefore, the question of how a compartmentalized
system affect fluctuations in the number of cells remains
open.

The second question is about the impact of division sym-
metry. The studies that focused on this question so far used
a model with uniform space and both proliferating and non-
proliferating cells. Klein et al. [13] used this model to infer
division symmetry from experimental data of the skin epider-
mis and concluded that asymmetric divisions were dominant.
Sei et al. [19] used a similar setup for the intestinal crypt,
and likewise concluded that asymmetric divisions were domi-
nant. Yang and Komarova [20] used the model for a different
purpose: they investigated the impact of division symmetry
on fluctuations in the number of proliferating cells. The au-
thors found that their results were mixed. Under some control
mechanisms, symmetric divisions provide lower fluctuations,
but under most control mechanisms, asymmetric divisions

provide lower fluctuations. Therefore, it remains unclear what
impact division symmetry has on the fluctuations in cell
numbers.

III. ONE-COMPARTMENT MODEL

We start our analysis by looking at a model without space,
corresponding to Klein et al. [13]. In the next section, this
model will be extended to include a niche compartment.
We use two cell types: proliferating and nonproliferating.
Whether or not a cell is proliferative is decided at the birth
of the cell; this fate cannot be changed later. Every prolif-
erating cell will divide T hours after the birth of the cell,
while nonproliferating cells will never divide. Values of T are
drawn from a skew-normal distribution [21] with a skewness
parameter 6.1, a location of 12.2, and a scale of 5.3. This dis-
tribution approximates cell cycle times we recently measured
in intestinal organoid crypts [22].

After a division, two daughter cells are created, which
can be (I) both proliferating, (II) both nonproliferating, or
(III) one can be proliferating and the other nonproliferating
[Fig. 1(a)]. The chances for these division types to occur are
p, q, and 1 − p − q, respectively. Division types I and II are
symmetric, while type III is asymmetric. The values of p and q
are determined by two parameters. The parameter φ = p + q
is the chance of a division being symmetric [Fig. 1(b)], while
the other parameter, the growth rate α = p − q, is the aver-
age increase in the number of proliferating cells per division
[Fig. 1(c)]. One can verify that for φ = 0, all divisions are
required to be of type III, while for α = 1, all divisions are
required to be of type I.

For homeostasis, in this system it is required that the
growth rate α = 0. For α > 0, the number of proliferating
cells would grow exponentially, and for α < 0, this number
would decrease exponentially. The symmetry fraction φ can
be varied freely, as well as the initial number of proliferating
cells, D. We therefore perform a simulation for different com-
binations of D and φ, while keeping α at 0. The results are
displayed in Figs. 1(d)–1(g).

In Fig. 1(d), six simulations of the number of proliferating
cells are shown over time for two values of the symmetry frac-
tion φ. We can observe that a higher fraction of asymmetric
divisions (low φ) provides a system with less fluctuations in
the number of proliferating cells. In addition, we see that the
system with a high fraction of symmetric divisions (high φ)
is frequently depleted of proliferating cells, while the smaller
system with a high fraction of asymmetric divisions (low φ)
remains stable for at least 10 days. In Figs. 1(e)–1(g), the
depletion rate, overgrowth rate, and coefficient of variation
in the number of proliferating cells are plotted as a function
of both the initial number of proliferating cells, D, and the
symmetry fraction φ. Here, depletion is defined as the number
of proliferating cells becoming zero, while overgrowth is de-
fined as the number of proliferating cells reaching five times
the initial amount. We can see that the depletion and over-
growth rates increase for smaller D and larger φ, indicating a
less stable system. The coefficient of variation remains high
irrespective of D and φ, with one exception: the theoretical
case where precisely all cell divisions are asymmetric (φ = 0),
the coefficient is zero.
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FIG. 1. The uniform model. (a) All possible division types and their probability. (b) Dominant division type for two different division
symmetries. (c) Dominant division type for two different growth rates. (d) Number of proliferating cells over time, for simulations with
initial condition D(0) = 15 and different symmetry fraction φ. Lines indicate six individual simulations, while the histograms represent the
distribution of proliferating cells after 260 hours, for 2000 simulations. Red markers indicate events where proliferating cells were fully
depleted. (e) Depletion rate, the rate of how often the number of proliferating cells drops to zero. (f) Overgrowth rate, the rate of how often the
number of proliferating cells grew larger than five times the initial number of proliferating cells. (g) Coefficient of variation of the number of
dividing cells. In (e)–(g), the values for each parameter set were calculated over 105 hours total simulation time.

As a result, in this model, the best approach to minimize
fluctuations and avoid depletion or overgrowth of proliferating
cells would be to have a large number of proliferating cells and
to use strictly asymmetric divisions. A low amount of sym-
metric divisions already results in relatively large fluctuations
in the number of proliferating cells.

IV. TWO-COMPARTMENT MODEL

We wanted to compare the performance of the uniform
model, in terms of the impact of fluctuations, to a model that
incorporated a stem-cell niche. We therefore constructed a
different model, that included two compartments, with cell
proliferation differing between compartments. One compart-
ment, which we call the niche compartment, can only contain
a fixed number of cells. In contrast, the other compartment,
which we call the differentiation compartment, is unbounded
in size. This two-compartment model is sketched in Fig. 2.

The niche compartment is set to contain a fixed number
of cells in total, denoted as S. Of this number, a variable
number of cells, N (t ), is proliferative, which makes the
number of nonproliferating cells equal to S − N (t ). For the
differentiation compartment, we denote the number of prolif-
erating cells as M(t ). As the differentiation compartment is
unbounded in size, we do not keep track of the number of
nonproliferating cells in this compartment. The total number
of proliferating cells over both compartments is defined as
D(t ) = N (t ) + M(t ). To keep the niche compartment fixed
in size, upon every division in the niche compartment, we
move one random cell out of the niche compartment into the

differentiation compartment. Instead of a single growth rate α,
both compartments can now have different growth rates. We
define the niche compartment as having a growth rate αn and
the differentiation compartment as having a growth rate αm.
For simplicity, for now we assume that the division symmetry
fraction φ is the same for both compartments.

Differentiation compartment
Unconstrained size, αm ≤ 0, ϕ

Niche compartment
Fixed size S, αn ≥ 0, ϕ

Cell type
Proliferating

Nonproliferating

FIG. 2. Illustration of the two-compartment model. Two com-
partments are defined: the niche compartment and the differentiation
compartment. In the niche compartment, the growth rate αn � 0,
while in the differentiation compartment, the growth rate αm � 0.
The fraction of symmetric divisions φ is equal in both compartments.
Upon a division in the niche compartment, one random cell moves
from the niche compartment to the differentiation compartment.
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A challenge in comparing fluctuations in the number of
proliferating cells, D(t ), between different parameter sets is
that varying parameters completely independently will cause
changes in the average cell number 〈D(t )〉. Increasing the
average cell number by itself will already decrease fluctua-
tions, obscuring the impact on fluctuations that is purely due
to differences in the cell proliferation strategy. It is therefore
important to vary parameters in a concerted manner, which
ensures that the average number of proliferating cells remains
unchanged. To find an expression that relates the number of
proliferating cells to the underlying parameters, we first exam-
ined a deterministic version of the two-compartment model.

V. SOLUTION OF THE DETERMINISTIC
TWO-COMPARTMENT MODEL

In the two-compartment model, cell proliferation in the
differentiation compartment only occurs through cells ejected
from the niche compartment and their offspring. Ejection of a
cell from the niche compartment in turn requires cell division
within the niche compartment. As a consequence, the influx of
proliferating cells in the differentiation compartment strongly
depends on the rate of cell divisions in the niche compart-
ment, and thus on the parameters αn, φ, and T . To explicitly
take into account cell cycle progression, we used a transport
model, arriving at the following two equations for the niche
compartment:

∂n(t, a)

∂t
+ ∂n(t, a)

∂a
= −n(t, T )

S
n(t, a), (1)

n(t, 0) = (1 + αn)n(t, T ). (2)

The full derivation can be found in Appendix. In the above
equations, a is the age of a cell, with a = 0 for newly born
cells, and a = T at the moment of a cell division. n(t, a) is
the average number of cells at a given time with a given age,
and integrating over all values of a results in N (t ), the aver-
age number of proliferating cells in the niche compartment.
The transport model describes the number of cells of age a
to a + da at time t . This number changes due to cell cycle
progression, cell divisions, and proliferating cells exiting the
niche compartment. At every cell division, on average, 1 + αn

proliferating daughters are born. In addition, exactly one cell
is ejected from the niche compartment, which has a chance of
N (t )

S of being a proliferating cell.
For the differentiation compartment, we arrive at a trans-

port equation [Eq. (A5)] that resembles Eq. (1), but with a
positive right-hand term representing the influx of cells from
the niche compartment. In the steady state, we arrive at the
following solution for the average number of dividing cells in
both compartments:

D = ln(1 + αn)S
αm − αn

αm
. (3)

This equation depends on the parameters αn and αm in a
nontrivial manner. At the same time, it matches an intuitive
understanding of the key properties of the two-component
model. First, D > 0 requires αm < 0 and αn > 0, meaning
that the growth rate of the niche compartment is positive and
the growth rate of the differentiation compartment is negative.
For other values, the systems either decays or grows without
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FIG. 3. (a) Average of D(t ) for a 105 h simulations of each pa-
rameter set. Niche size S was set according to Eq. (3) so that on
average, the total number of dividing cells was D = 30, as confirmed
by the simulations. The figure uses the same layout as Fig. 4(b).
(b) Average value 〈D(t )〉 (markers) as a function of niche size S
for different values of the other model parameters. Error bars are
standard deviation. Lines show D calculated using the deterministic
model in Eq. (3).

bounds. Second, D increases with increasing values of αn and
αm. In particular, D = 0 independent of αm for αn = 0, while
D increases well beyond the niche size S for αm ≈ 0.

At the same time, Eq. (3) also provides insights that are
less intuitive. First, despite the key role of cell divisions in the
niche compartment, whose rate depends on T and φ, these
parameters do not enter the steady-state expression for D.
Second, even though the link between the niche and differenti-
ation compartments, through division-driven ejection of cells
from one to the other, is potentially complex, Eq. (3) finds that
the dependence of the number of proliferating cells is compar-
atively simple, with D showing a simple linear dependence on
niche size S.

VI. STOCHASTIC SIMULATIONS OF THE
TWO-COMPARTMENT MODEL

A. Impact of fluctuations

Building on the above analytical results of the deterministic
two-compartment model, we then examined the sensitivity of
the stochastic two-compartment model to fluctuations. For a
uniform system, asymmetric divisions resulted in a system
with smaller fluctuations in the number of proliferating cells.
We therefore specifically examined if more division asymme-
try also results in smaller fluctuations in the two-compartment
model.

We first confirmed that the average behavior of the stochas-
tic model indeed reproduced the predictions in Eq. (3)
[Fig. 3(a)]. Next, we performed a parameter sweep, sampling
all possible combinations of αn, αm, and φ, while keeping the
initial number of proliferating cells at D = 30. Here, we used
Eq. (3) to calculate the niche size S required to achieve this,
meaning that S varied with αn and αm. In addition, cell cycle
times were determined as outlined in Sec. III. We reproduced
the expected average value 〈D(t )〉 = 30 for all combinations
of φ, αn, and αm [Fig. 3(b)], confirming again the validity of
our analytical result in Eq. (3).

In Fig. 4(a), we show D(t ) for two parameter sets that
strongly differ in the degree of symmetry. In the first case,
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FIG. 4. Exploration of the two-compartment model. Niche com-
partment size S is set according to Eq. (3) so that the average number
of proliferating cells is set to D = 30. (a) Two panels showing D(t )
for six example simulations each of the optimal parameters for ei-
ther an asymmetric division strategy (left) or a symmetric division
strategy (right). Simulations ran for 750 hours. Histograms shows
distribution of D at the simulation end point for 2000 simulations.
(b) Overview of the coefficient of variation in the number of dividing
cells, D(t ). The blocked areas represent impossible combinations
of parameters, such as strictly asymmetric divisions with a positive
growth rate. For each parameter set, values were calculated over 105

hours total simulation time. (c) Coefficient of variation along selected
lines. Line style matches the lines of (b).

almost all cells divide asymmetrically, while αn, αm = 0,
thus corresponding to the strategy that minimizes fluctua-
tions in the uniform model. In the second, all cells divide
symmetrically, while the growth rate strongly differs between
compartments. Interestingly, we find that the parameter set
with a high fraction of symmetric divisions results in smaller
fluctuations in D(t ). This is in contrast to the uniform model,
where asymmetric divisions always provided less fluctuations
compared to symmetric divisions.

In Fig. 4(b), we quantify the coefficient of variation in D(t )
for different combinations of αn, αm, and φ. In general, we find
that fluctuations decrease when the difference in growth rate
between compartment, αn − αm, increases. When we focus
on the the subset of parameter sets with αn = −αm, we find
that for a fixed value of the two growth rates, fluctuations
are reduced by increasing the fraction of asymmetric divisions
(decreasing φ), which appears consistent with our results for
the uniform model and at odd with our observation in Fig. 4(a)
that high symmetry resulted in low fluctuations.

To examine this further, we compare in Fig. 4(c) the coeffi-
cient of variation along the four lines shown in Fig. 4(b). In the
top panel, we compare two lines for parameter sets with only
symmetric divisions (φ = 1) that have either a larger (cyan)

or smaller (pink) difference in growth rate between the two
compartments. In both cases, the coefficient of variation in
D(t ) decreases with increasing difference in growth rates, but
the parameter sets with the smaller difference (pink) always
showed larger fluctuations.

The bottom panel shows two other lines, where we are
varying φ while fixing αn = −αm. The red line uses, for every
value of αn, the lowest possible value of φ, i.e., the maximum
amount of asymmetry that the growth rate permits. At αn = 1,
all divisions are symmetric. The green line has a higher frac-
tion of symmetric divisions. The lines show that for a given
growth rate αn, the parameter set with the highest asymmetry
results in the smallest coefficient of variation in D(t ), as seen
above. However, at the same time, the global minimum of
the coefficient of variation is found for αn,−αm = 1. This
is because the decrease in fluctuations is strongest when the
difference in the two growth rates is maximal. For these values
of the growth rate, only φ = 1 is allowed, which is a system
with only symmetric divisions. Therefore, although asymme-
try generally reduces the coefficient of variation in D(t ), the
optimal solution is a fully symmetrically dividing system.

In Fig. 4, we assumed, for simplicity, that the symmetry
fraction φ was equal for both compartments. We examined
whether our conclusions were impacted by allowing the niche
and differentiation compartments to have distinct symmetry
fractions: φn and φm, respectively. Overall, we found that that
increasing φm increased fluctuations in the number of dividing
cells, although this impact was typically small compared to
that of increasing φn [Figs. 5(a) and 5(b)]. For sufficiently
high φn and depending on the value of the other model pa-
rameters, fluctuations in D(t ) could, in principle, be lowered
by decreasing φm relative to φn. However, overall fluctuations
were minimized for αn,−αm = 1 and φn, φm = 1 [Fig. 5(c)],
corresponding exactly to the global minimum identified in
Fig. 4. Overall, this shows that allowing φ to differ be-
tween compartments did not enable division strategies with
even lower fluctuations that the optimal strategy we already
identified.

Overall, we conclude that in the two-compartment model,
the best strategy to minimize fluctuations in the number of
proliferating cells, D(t ), is to use a system where all cells in
the niche compartment proliferate, but each cell born outside
the niche compartment immediately stops proliferating. This
results in the dominance of symmetric cell divisions. Other
solutions, such as strictly asymmetric divisions or a combi-
nation of symmetric and asymmetric divisions, result in more
fluctuations in the number of proliferating cells.

B. Dependence of fluctuations on niche size

Next, we wondered what the influence of the size of the
niche compartment would be on the stability of the system.
For each size, we plot the coefficient of the variation along
two lines. For the first line, we take the line that describes
all points for which φ = αn,−αm, corresponding to the red
dashed line in Fig. 4(b). This is the line with the lowest
coefficient of variability in the number of dividing cells, D(t ),
for every φ. For the second line, we examine the dependence
of the niche compartment size S for the parameters on the line
with φ = 1 and αn = −αn, corresponding to the cyan dotted
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different combinations of αn and αm. (b) Coefficient of variation
in D(t ) along the lines show in (a). Overall, the variation in D in-
creases with φm, i.e., more symmetric divisions in the differentiation
compartment. However, this impact is small compared to that of
increasing φn. (c) Coefficient of variation in D(t ) when increasing
φm for αn, −αm = φn. The red line, with φn = φm, corresponds to to
the red line in Figs. 4(b) and 4(c) and represents the parameter sets
that minimize fluctuations in D for the given αn. Here, increasing
φm raises fluctuations in D, in particular for low αn. Fluctuations are
minimized for αn,−αm = φn, φm = 1, corresponding to the global
minimum found in Fig. 4

line in Fig. 4(b). This line represents the line with the largest
difference in coefficient of variability of D(t ); it goes from the
global minimum to the global maximum of the coefficient of
variability in D(t ) for a given S.

The results are displayed in Fig. 6(a). Consistent with the
results above, for every given size, increasing the difference
in growth rates αn and αm will always result in a system with

(a) Coeff. of var. in D(t)
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FIG. 6. Simulations for different niche compartment sizes S,
each for 105 hours. The initial number of dividing cells, D, is set
according to Eq. (3). The striped lines above and below the graphs
correspond to the lines in Fig. 4. The blocked areas in the graphs are
parameter ranges for which Eq. (3) does not give a solution. (a) Coef-
ficient of variation of D(t ) for various parameters. (b) Depletion rate
for various parameters.

a lower coefficient of variation in D(t ) and a lower depletion
rate. Moreover, at larger compartment sizes S, the coefficient
of variation in D(t ) always becomes lower. Therefore, inde-
pendent of the chosen parameter set, a system can always
decrease its relative fluctuations by creating a larger niche.
For the same reason, decreasing the niche compartment size
results in more frequent depletions of the proliferating cells
[Fig. 6(b)].

The observation that a smaller system results in more
fluctuations is as expected. However, interestingly even for
small niche sizes, the system can remain stable, provided the
symmetry fraction is high. Decreasing the niche compartment
size from S = 30 to only S = 10 still results in a system with
low fluctuations (less than 1 collapse per 10 years), provided
the niche compartment maintains a high growth rate and sym-
metry fraction.

C. Determining growth rate and division symmetry
by clone size distributions

Experiments often measure clone size distributions using
lineage tracing. For instance, using a model analogous to the
uniform model above, the division symmetry φ was estimated
by fitting to experimental long-term clone size scaling distri-
butions, measured for different time frames [13]. We therefore
asked whether parameters such as growth rate and division
symmetry could also be inferred from clone size distributions
obtained in the context of the two-compartment system.

For short-term clone size distributions, the dominance of
symmetric divisions appears clearly as an enrichment of even
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FIG. 7. Clone size distributions of cells within the niche compartment. 1000 simulations per parameter set, αm = −αn, D = 30, and S is
set according to Eq. (3). (a) Short-term clone size distributions, taken after 40 hours. (b) Amounts of even and odd clone sizes over time. For
the symmetric, high-growth case, there is initially a large enrichment of even clone sizes, which becomes smaller after 50 hours. For the mixed
symmetric-asymmetric case, odd clone sizes are enriched. For the asymmetric case, all clones grow at almost the same rate, and therefore a
single clone size is dominant at any point in time. This causes oscillatory behavior in whether even or odd clone sizes are dominant. (c) Clone
size scaling for the symmetric, low-growth case. For these parameters, there is a large contrast between the clone size distribution of all cells
and the clone size distribution of only the proliferating cells. (d) Growth of the average clone size over time.

clone sizes. In Fig. 7(a), we show simulated clone size dis-
tributions of 1000 simulation runs, taken after 48 hours. For
the case where symmetric divisions are dominant [φ = 0.95,
displayed in Fig. 7(a), left], we can see that even clone sizes 2,
4, 6, and 8 all occur in higher frequencies than the odd clone
sizes 3, 5, and 7. This enrichment is not visible for systems
where asymmetric divisions are dominant or where neither
division type is dominant [Fig. 7(a), center and right].

However, as the clone size over time in Fig. 7(b) shows, this
enrichment of even clone sizes is strongest until 60 hours. In
addition, during the entire simulation, the enrichment is barely
visible for clone sizes larger than 8 [Fig. 7(a) and Fig. 8].
In the simulation, this has two causes. First, we simulate
for φ = 0.95, which still results in 5% of all divisions being
asymmetric. While symmetric divisions will keep the clone
size of a single lineage even, asymmetric divisions will not.
Already a single asymmetric division anywhere in the lineage
tree results in the clone size becoming odd.

Second, the variability in cell cycle times also contributes
to the occurrences of odd clone sizes. Consider, for example,
two proliferating sister cells. Initially, the clone size is two,
and after both sisters have divided, it is four. However, in be-
tween the divisions of both sisters, the clone size is three and
therefore odd. This effect occurs more often for large lineage
trees, simply because there are more sister pairs, therefore
increasing the chance of at least one of them making the clone
size odd. In conclusion, the effect of division symmetry is
visible only on the timescale of a few divisions.

Often, clone size growth is characterized experimentally
by the clone size scaling function Pc(t ) [5], which is a func-
tion that gives the probability of finding a clone of size c at

time t . Unlike the distributions discussed above, the scaling
function Pc(t ) is not dependent on time, but only on the
clone size divided by the average clone size for that time:
Pc(t ) = f (c/〈c(t )〉). Would there be a way to measure both
the symmetry fraction and the growth rate from this scal-
ing function? In other words, do the symmetry fraction and
growth rate affect the observed long-time scaling behavior?

In experiments, clone size distributions are often collected
only in the stem-cell niche. Moreover, our simulations do
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FIG. 8. Clone sizes plotted over time for the entire system, for
the sums of the given even and odd clone sizes. The evolution of
the clone size depends mainly on the division symmetry, not on the
growth rate. Each parameter set consists of 1000 simulations.
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FIG. 9. Scaling function for various configurations. Each parameter set consists of 1000 simulations. (a) Scaling functions that include all
cells in the niche compartment. (b) Scaling functions that include only the proliferating cells in the niche compartment.

not implement cell death, which results in the number of
nonproliferating cells outside the niche compartment grow-
ing continuously. Such unbounded growth would prevent any
long-term scaling behavior. For that reason, we will, in our
analysis, ignore all cells outside the niche compartment.

We calculated the scaling function of different combina-
tions of the symmetry fraction φ and growth rate αn. First,
we find that for all parameters examined, the clone size dis-
tributions scale, meaning that they fall on the same curve
independent of time, both when considering only proliferating
cells or all cells in the niche compartment. In Fig. 7(c), we
show the scaling functions, both for all cells in the niche
compartment and for only the proliferating cells. Interestingly,
the shape of the scaling function for the proliferating cells in
the niche is almost independent of the growth factor αn, as
both for αn = 0.05 [Fig. 7(c), left] and αn = 0.95 [Fig. 7(c),
center] the scaling function follows a concave shape. In-
stead, the scaling function for proliferative cells depends on
the symmetry fraction φ: for high-symmetry fractions, the
scaling function follows the concave pattern predicted by neu-
tral drift dynamics [9], which is 〈c(t )〉Pc(t ) = (πx/2)e−πx2/4,
with x = c/〈c(t )〉 [Fig. 7(c), left and center], while for low-
symmetry fractions, the scaling function follows a convex
shape [Fig. 7(c), right].

However, if we look at all cells in the niche, including
nonproliferating cells, then the scaling function no longer
depends on the symmetry fraction φ, but on the niche growth
rate αn. For high αn, the scaling function follows a concave
shape [Fig. 7(c), left], while for low αn, the function follows
a convex shape [Fig. 7(c), center and right]. The scaling func-
tions of other parameter sets are displayed in Fig. 9 and are
consistent with these observations.

The cause of this scaling behavior can be seen in Fig. 7(d).
In this panel, we plot the average clone size over time for the
same three parameter sets. As expected, the average clone size
for all cells in the niche compartment increases faster for a
high growth rate [Fig. 7(d), left] compared to a low growth
rate [Fig. 7(d), center and right]. However, if we include only
the proliferating cells, then the clone size growth depends on

φ. For high φ [Fig. 7(d), left and center], the clones grow faster
than for low φ [Fig. 7(d), right]. This is because the number of
proliferating cells can only grow due to symmetric divisions,
as asymmetric divisions do not have an effect on the number
of proliferating cells. Even though the total number of pro-
liferating cells is independent of φ [Eq. (3)], the proliferating
cells are now distributed over more clones. We can see that
the fast-growing clones in Fig. 7(d) correspond to the concave
scaling functions in Fig. 7(c), and the slow-growing clones
correspond to the convex scaling functions.

VII. DISCUSSION

In this paper, we investigated the impact of fluctuations
for different stem-cell maintenance strategies, in the context
of a stem-cell niche. For this, we used a model with two
compartments and two cell types, namely, proliferating cells
and nonproliferating cells. The model assumes a stem-cell
niche that is restricted in size, and in which cells decide
whether or not to continue proliferating depending only on
the basis of the identity of the compartment in which they are
born. No other interactions between cells are assumed, and
besides their proliferation state, no other internal cellular state
is considered. The key parameters governing the dynamics of
this model are each compartment’s growth rate, which indi-
cates how many proliferating cells are produced on average
through each cell division, and the division symmetry, that
describes how likely two daughters cells are to have the same
proliferating or nonproliferating cell type.

We used a transport model approach to obtain an ana-
lytical solution describing the average dynamics of the two-
compartment model. Combined with stochastic simulations,
we found that this model allowed for two distinct strategies
to minimize stem-cell number fluctuations under homeostatic
conditions. If the two compartments do not differ in growth
rate, then the overall growth rate must be zero to balance pro-
liferation and cells must maximize the fraction of asymmetric
divisions. This special case of our model corresponds to the
one-compartment model previously developed by Klein et al.
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[13], and also used by Sei et al. [19]. However, if the two com-
partments are allowed to differ in growth rate, then another
strategy is possible that exhibits substantially lower cell num-
ber fluctuations. In this strategy, fluctuations are minimized
when the different in growth rate between the two compart-
ments is maximized and hence all divisions are symmetric.
This finding is in contrast to the view that asymmetric divi-
sions offer a more regulated stem-cell maintenance process
in stem-cell niches [23,24], but consistent with measurements
recently performed by us that show that symmetric divisions
dominate in growing intestinal organoids [22]. In this optimal
limit, the dynamics in the niche compartment of our model
becomes similar to the models of Snippert et al. [10] and
Lopez-Garcia et al. [9]. Our results thus show that their mod-
els, which were based on experimental observations, corre-
spond to a parameter regime, in our more general model, that
minimizes fluctuations in the number of proliferating cells.

Our simulations indicate that the key parameters of our
model, i.e., growth rate and division symmetry, can be
determined experimentally through measuring clone size dis-
tributions. Clone size distributions are commonly measured
using techniques such as genetic lineage tracing [25,26]. For
sufficiently short times (0–50 hr, corresponding to a few cell
cycles) high division symmetry can be detected through en-
richment of even-sized clones. Indeed, we recently observed
such an enrichment in intestinal crypts in vivo using lineage
tracing [22], in agreement with the high division symmetry
that we observed in intestinal organoids by direct cell track-
ing. However, for most experiments, clone size distributions
are collected over much longer timescales, for which our
simulations show that enrichment of even-sized clones is no
longer observable. Here, we found that growth rate and di-
vision symmetry can still be determined by comparing clone
size distributions either for all cells in the stem-cell niche or
only proliferating cells, as they give rise to different scaling
functions for clone size distributions as well as distinct in-
creases in average clone size. Experimentally, this could be
readily achieved by combining lineage tracing reporters with
antibody markers for cell proliferation.

Many stem-cell systems share the two-compartment archi-
tecture of the intestine, with a small niche containing stem
cells that inject differentiating cells into the rest of the tissue
[27]. It will therefore be interesting to experimentally test
whether such tissues also exhibit dynamics consistent with
the optimal limit of our model, with a strong difference in
growth rate between the stem-cell niche and the rest of the
tissue, and most divisions symmetric, producing either two
proliferating or two nonproliferating daughters. Our analysis
provides a starting point to test this experimentally.
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APPENDIX: DERIVATION OF EQ. (3)

When a cell is born, it is set to be either proliferating or
nonproliferating. Proliferating cells will divide T hours after

they are born, while nonproliferating cells will not divide.
Here, T is a normal distribution. We define n(t, a)da as the
number of proliferating cells in the niche compartment at time
t with age bracket (a, a + da). Here, age is defined as the time
since the last division. The number of cells flowing in and out
of this age bracket due to aging is

J+ = dt

da
n(t, a − da)da,

J− = − dt

da
n(t, a)da.

The rates for cells entering and exiting the niche compart-
ment are defined as k+(a) and k−(a), respectively. Note that
in our simulation, cells do not reenter the niche compartment
so k+(a) = 0.

Using this information, we look at how the number of cells
of a particular age bracket evolves over time. This number
is equal to the number of existing cells of that age bracket,
plus the number of incoming cells due to aging, minus the
number of cells exiting the age bracket due to aging, plus
the number of cell changes due to cells entering and exiting
the compartment:

n(t + dt, a)da = n(t, a)da + dt

da
n(t, a − da)da

− dt

da
n(t, a)da + (k+(a) + k−(a))dadt .

Rearranging, we find

n(t + dt, a) − n(t, a)

dt
+ n(t, a) − n(t, a − da)

da

= k+(a) + k−(a).

Using the definition of the derivative, we readily find

∂n(t, a)

∂t
+ ∂n(t, a)

∂a
= k+(a) − k−(a). (A1)

1. Growth boundary condition

Next, we introduce the growth boundary condition. If there
are no cells moving in between compartments, then k+(a) =
k−(a) = 0 and dN = Jin − Jout. Here, Jout = dt

da n(t, T )da is
the rate of cells exiting the cell cycle, and Jin is the rate of cells
entering the cell cycle. As each division produces, on average,
α + 1 proliferating cells, Jin = (α + 1)Jout. Together,

dN

dt
= Jin − Jout

dt
= αn(t, T ). (A2)

From the definition N (t ) = ∫ T
0 da n(t, a), it follows that

dN

dt
=

∫ T

0
da

∂n(t, a)

∂t
.

From Eq. (A1) in the case where k+(a) = k−(a) = 0, we
can see that ∂n(t,a)

∂t = − ∂n(t,a)
∂a . Inserting this into the above

integral and evaluating it results in

dN

dt
= n(t, 0) − n(t, T ). (A3)

Combining Eq. (A3) with Eq. (A2) results in

n(t, 0) = (1 + α)n(t, T ). (A4)
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2. Full model

Having satisfied the growth condition, we will now cal-
culate the values of k−(a) and k+(a), which represent the
movement of cells between compartments. In our model, cells
cannot reenter the niche compartment, so k+(a) = 0. For ex-
pressing k−(a), we realize that the fixed size of the niche
compartment means that for every cell division, one random
cell must be removed from the niche compartment and added
to the differentiation compartment. Therefore, k−(a) is equal
to the number of cells dividing in a given time interval, multi-
plied by the chance that a cell being ejected is a dividing cell,
multiplied by the probability that the ejected cell has the age
(a, a + da):

k−(a)da dt =
[

dt

da
n(t, T )da

](
N (t )

S

)(
n(t, a)da

N (t )

)
.

Here, we remind the reader that N (t ) is defined as the
total number of proliferating cells in the niche at time t , and
that n(t, a) is the number of proliferating cells in the niche
compartment of age a at time t . From this equation, it directly
follows that

k−(a) = n(t, T )

S
n(t, a).

Inserting these results in Eq. (A1), we obtain Eq. (1):

∂n(t, a)

∂t
+ ∂n(t, a)

∂a
= −n(t, T )

S
n(t, a).

The number of newly born proliferating cells in the niche
was already defined by Eq. (A4).

For the differentiation compartment, a similar analysis can
be made, noting that here k−(a) is now negative, and k+(a) is
now equal to k−(a) of the niche compartment. The number of
proliferating cells in the differentiating compartment of age a
at time t is defined as m(t, a),

∂m(t, a)

∂t
+ ∂m(t, a)

∂a
= n(t, T )

S
n(t, a). (A5)

The equivalent of Eq. (A4) for the differentiation compart-
ment simply becomes

m(t, 0) = (1 + αm)m(t, T ). (A6)

3. Steady state for the niche compartment

To solve the number of proliferating cells, we assume that
the age distribution is exponential,

n(t, a) = f (t )era. (A7)

Here, f (t ) is a function independent of a and r is a coeffi-
cient. At a = 0, we obtain n(t, a = 0) = f (t ). From Eq. (A4),
we obtain n(t, a = 0) = (1 + αn)n(t, T ) = (1 + αn) f (t )erT ,
where we inserted Eq. (A7). This results in

r = − ln(1 + αn)

T
. (A8)

Next, we substitute Eq. (A7) into Eq. (1),

∂ f (t )

∂t
era + r f (t )era = − f (t )erT

S
f (t )era.

By dividing by era and rearranging, we find

∂ f (t )

∂t
= f (t )

(
ln(1 + αn)

T
− f (t )

(1 + αn)S

)
. (A9)

In the steady state, f ′ = f (t ) so that ∂ f (t )
∂t = 0. Therefore,

from Eq. (A9), two solutions arise. The first is the trivial
solution f ′ = 0, and the second is

f ′ = (1 + αn)
ln(1 + αn)

T
S.

Inserting this solution into Eq. (A7) [with Eq. (A8)] results in

n′(a) = (1 + αn)
ln(1 + αn)

T
S e− ln(1+αn )

T a. (A10)

Integrating over all values of a results in the number of
dividing cells in the niche compartment,

N ′ =
∫ T

0
da n′(a)

= (1 + αn)S

(
1 − 1

1 + αn

)

= αnS. (A11)

Here, we used

∫ T

0
da e− ln(1+αn )

T a = − T

ln(1 + αn)
(e− ln(1+αn ) − 1).

4. Steady state for the differentiation compartment

To obtain the total number of dividing cells, we also need
to calculate the number of cells in the differentiation compart-
ment. For this compartment, we need to take into account that
there is an incoming supply of dividing cells from the niche
compartment. In the steady state, ∂m(t,a)

∂t = 0. To ensure home-

ostasis in the full system, ∂m′(a)
∂a = − ∂n′(a)

∂a . From Eq. (A10),
we therefore obtain

∂m′(a)

∂a
= (1 + αn)

(
ln(1 + αn)

T

)2

S e− ln(1+αn )
T a.

As the age distribution is exponential, we can state

m′(a) = A eBa + C.

From inserting this equation into the one above it and com-
paring terms, it follows that B = − ln(1+αn )

T and A = −(1 +
αn) ln(1+αn )

T S.
From Eq. (A6), we obtain m′(0) = (1 + αm)m′(T ), result-

ing in

C = ln(1 + αn)

T
S
αm − αn

αm
.
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Together,

m′(a) = ln(1 + αn)

T
S

(
αm − αn

αm
− (1 + αn)e− ln(1+αn )

T a

)
.

With M ′ = ∫ T
0 da m′(a), we obtain

M ′ = ln(1 + αn)S
αm − αn

αm
− αnS.

With D = M ′ + N ′ and the insertion of Eq. (A11), we obtain
the final result,

D = ln(1 + αn)S
αm − αn

αm
.

This equation has solutions for D > 0 if αm < 0 and αn >

0. If αn < 0, then N ′ would be negative, and if αm >

0, then M ′ would be negative, both of which are not
allowed.
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