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Inference of the force pattern acting on a semiflexible filament from shape analysis
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The study of the active forces acting on semiflexible filaments networks such as the cytoskeleton requires
noninvasive tools able to explore the deformation of single filaments in their natural environment. We propose
here a practical method based on the solution of the hydrodynamic beam equation in the presence of transverse
forces. We found that the derivative of the local curvature presents discontinuities that match the location of the
applied forces, in contrast to the smooth curvature function obtained for the case of compressing longitudinal
forces. These patterns can be easily appreciated in a kymograph of the curvature, which also reflects the
temporal behavior of the forces. We assessed the method performance with numerical simulations describing
the deformation of single microtubules provoked by the action of intracellular active forces.
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I. INTRODUCTION

Semiflexible filaments bend as the result of external forces
acting over them. During the filament deformation, its shape
changes are governed by the hydrodynamic beam equa-
tion [1]. However, inferring the forces involved in this process
only by looking at the filament shape is not an easy task. This
can be relevant in many practical applications. In particular,
it is of interest when describing biological structures, such
as cytoskeletal filaments and cellular cilia. In these examples,
active forces are responsible for the dynamical deformations,
and hence an analysis of the shape fluctuations of these
filaments can reveal important aspects of the nature of the
cytoplasmic environment [2].

In a seminal work, Gittes et al. [3] provided a method-
ology to solve the inverse problem for an isolated filament
immersed in a fluid with known rheological properties, based
on the theoretical formulation of Landau and Lifshitz [4].
They applied this method to estimate the force performed
by a single kinesin motor when buckling a microtubule fila-
ment in vitro. A similar theoretical approach has been used
to study microtubules in vesicles under tension to obtain the
persistence length of microtubules [5]. These papers show
that information on the forces deforming microtubules can be
inferred from the inspection of their shapes under very well-
controlled conditions. However, in living cells, microtubules
are subject to stochastic forces, representing a challenge to
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determine their spatiotemporal patterns by inspecting micro-
tubules shapes.

Concerning this problem, Gladrow et al. [6] developed
an analytical theory describing the shape fluctuations of an
individual semiflexible probe filament in an active viscoelas-
tic environment. The system is driven out of equilibrium by
stochastic forces acting locally at fixed positions along the
filament, which induce coupling between the flexural modes.
These correlations give rise to effective circulatory currents in
the mode’s phase space that depend on the temporal behavior
of motor activity. The authors propose that measuring cycling
frequencies will be an ideal, noninvasive tool to detect and
quantify motor activity in biological networks.

To test this approach, Battle et al. [7] have implemented the
method proposed in [6] to study the force patterns operating
on primary cilia and beating flagella. These two systems have
the advantage that they present a periodic behavior sustained
by molecular motors operating at one of their ends. This
allows them to record the movement for several cycles and
obtain long time series, providing data to build sufficiently
populated phase diagrams in which the currents are evident.
The authors were able to prove the nonequilibrium activity
underlying the steady-state fluctuations in these two biological
systems.

Despite the elegance of these recent works, their main
drawback is that they require very long time series to al-
low a deep exploration of the phase space. Although this
can be attainable for cyclical processes such as the beat-
ing of primary cilia, the sporadic bending and buckling of
cytoskeletal filaments within cells cannot be attacked with
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those approaches. These frequent but stochastic events have
gained interest recently due to their possible implications in
mechanotransduction processes [8,9].

To address this problem, approaches based on numeri-
cal simulations of semiflexible filaments have been proposed
[10–12], mostly orientated to the description of the nonequi-
librium origin of the fluctuations. Experimental evidence of
these nonthermal fluctuations has been observed for a mi-
crotubule immersed in an active actin gel [13]; assuming
pointlike transverse forces acting on the filament and an elas-
tic medium, the authors were able to estimate the magnitude
of the active forces deforming the microtubule. In a more
recent paper [14], fluorescent microtubules in Xenopus laevis
melanophores were tracked and buckling events were char-
acterized. These experimental observations were compared to
numerical simulations of a discretized one-dimensional (1D)
semiflexible filament immersed in a homogeneous medium,
with a viscosity similar to that reported for the cell cytoplasm.
External forces with different directions and magnitudes were
also considered in the model, and the evolution of the filament
shape was characterized. It was shown that different force
scenarios could give rise to very similar deformations, making
the characterization of forces very challenging in practice.

In an aim to overcome this difficulty, we propose here the
basis of a method to infer the forces transiently deforming
a semiflexible filament immersed in a viscous fluid from the
inspection of spatiotemporal curvature intensity matrices, i.e.,
curvature kymographs. The method grounds in the solution
of the hydrodynamic beam equation in the presence of trans-
verse forces, where we found that the local curvature presents
discontinuities that match the applied force patterns and that
can be easily appreciated in a heat map of the curvature. We
assessed the method performance with numerical simulations,
considering different force scenarios, and its applicability to
noisy data.

II. MECHANICAL MODEL

The configuration of the filament is defined by the position
of its neutral axis r(s), with s a coordinate along the filament
in the range 0 � s � L, where L is the natural length of the
filament. The coordinate s defines the material point, and the
filament can undergo two types of deformation: strain ε(s),
given by local tension compression, and curvature C(s),

ε(s) = |r′(s)| − 1, (1)

C(s) = |r′(s) × r′′(s)|
|r′(s)|3 . (2)

In the case of deformations in a plane, instead of using the
Cartesian coordinates (x, y) of the material points, we can use
the local strain ε(s) and tangent angle θ (s) of the filament
(with respect to the x axis), as the functions to characterize
the filament shape; see Fig. 1.

Given these two functions, we can recover the Cartesian
coordinates integrating

x(s) = x0 +
∫ s

s0

ds′ [1 + ε(s′)] cos θ (s′), (3)

y(s) = y0 +
∫ s

s0

ds′ [1 + ε(s′)] sin θ (s′). (4)

FIG. 1. An arbitrary configuration of the filament that can be
described by Cartesian coordinates x(s) and y(s), or by the tangent
angle θ (s), as a function of the material point coordinate s.

The material point s0 is taken as an arbitrary origin, with
Cartesian coordinates (x0, y0). For most analysis, we choose
s0 = 0 at one end of the filament (0 � s � L). For analytical
calculations, for symmetry reasons it is more practical to
choose s0 in the middle of the filament, so −L/2 � s � L/2.

Computing the first and second derivatives of expressions
(3) and (4), it is easy to demonstrate that the curvature is

C(s) = θ ′

1 + ε
. (5)

Elastic energy VE due to pure tension or compression of the
filament, and bending energy VB, are given by

VE = 1

2
EA

∫ L/2

−L/2
ε2(s)ds, (6)

VB = 1

2
EI

∫ L/2

−L/2
[θ ′(s)]2ds, (7)

where A and I are the cross-sectional area of the filament
and the second moment of the area, respectively, and E is the
Young’s modulus of the material. The flexural rigidity of the
filament is defined as EI .

Applying a variational principle to the elastic and bending
energies, we obtain the corresponding forces,

fE = EA[ε′ t̂ + ε θ ′ n̂], (8)

fB = EI

{
θ ′θ ′′

1 + ε
t̂ +

[−3ε′′θ ′ + ε′θ ′′

(1 + ε)2
+ 3θ ′3 − θ ′′′

1 + ε

]
n̂
}
, (9)

where n̂ and t̂ are the normal and tangent local unit vectors to
the filament; see Fig. 1.

We consider a viscous force fV = −cṙ that depends on the
velocity of the material point,

ṙ(s, t ) = dr
dt

= ṙ0 +
∫ s

s0

ds′[ε̇ t̂(s′) + (1 + ε)θ̇ n̂(s′)], (10)

where ε̇ and θ̇ are the partial derivatives with respect to time,
and c is a drag coefficient per unit length. This coefficient is
proportional to the dynamic viscosity of the fluid and depends
on the shape of the transverse section.

Collecting all the forces and neglecting the inertia (over-
damped regime), we obtain the hydrodynamic equation

fE + fB + fV + fext = 0, (11)

where fext represents any external force applied to the
filament. Equation (11) is a nonlinear integro-differential
equation which determines the time evolution of strain ε(s)
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and tangent angle θ (s) from an initial configuration, given the
appropriate boundary conditions of the problem.

Due to the nonlinear terms in the forces, the evolution of
the filament shape cannot be solved analytically. However, we
can linearize the problem making some reasonable approxi-
mations. First, we consider that the strain along the filament is
very small, ε(s) � 1 (inextensible filament). It will be shown
later that for slender filaments, even in the case of important
initial strain, the timescale in which it relaxes is much faster
than the timescale for curvature relaxation. With this approx-
imation, the curvature C(s) is practically identical to the first
derivative of the tangent angle, θ ′(s).

Second, we consider small curvatures, |C| � 1/L. More-
over, to avoid the integral necessary to compute the velocity,
we can derive the hydrodynamic Eq. (11) with respect to s,
obtaining, up to first order,

∂fE

∂s
= EA ε′′(s)t̂, (12)

∂fB

∂s
= −EI θ ′′′′(s)n̂, (13)

∂fV

∂s
= −c[ε̇ t̂ + θ̇ n̂]. (14)

Therefore, for a filament without external forces (or por-
tions of the filament where no external forces are applied), we
obtain two decoupled differential equations: one in the tangent
direction, which provides the evolution of the strain, and the
other in the normal direction, which provides the evolution of
the curvature:

0 = EA ε′′ − c ε̇, (15)

0 = −EI θ ′′′′ − c θ̇ . (16)

Equation (16) is analogous to the equation for the transverse
displacement in a beam, as studied in [4].

For the condition of no tension at the filament ends, ε(s =
±L/2) = 0, Eq. (15) can be easily solved, obtaining

ε(s, t ) =
∑
n=1

bn�n(s) exp(−n2t/τE), (17)

with Fourier modes

�n(s) = 1√
L

cos(nπs/L), n odd, (18)

�n(s) = 1√
L

sin(nπs/L), n even, (19)

and

τE = cL2

π2EA
(20)

is the characteristic elastic time.
For the tangent angle evolution, the solution of the differ-

ential Eq. (16) for a free filament, imposing no curvature at
the filament ends C(s = ±L/2) = 0, gives the normal modes:

	n(s) =
√

L

κn

[
sinh(κns/L)

cosh(κn/2)
− sin(κns/L)

cos(κn/2)

]
, n odd, (21)

	n(s) =
√

L

κn

[
cosh(κns/L)

sinh(κn/2)
+ cos(κns/L)

sin(κn/2)

]
, n even, (22)

with κ1 = 4.73004, κ2 = 7.8532, and κn ≈ π (n + 1/2). The
derivative with respect to s of these modes (curvature modes)
fulfills the orthonormal condition∫ L/2

−L/2
ds 	 ′

n(s)	 ′
m(s) = δnm. (23)

We remark that for different boundary conditions, other
modes with a similar functional behavior, but different wave
numbers, can be obtained. Finally, the general solution for the
tangent angle of a free filament is

θ (s, t ) = θ0 +
∑
n=1

an	n(s) exp(−�nt ). (24)

The coefficients are obtained from the curvature of the fila-
ment using the orthonormal condition

an =
∫ L/2

−L/2
ds 	 ′

n(s) θ ′(s). (25)

Each mode has its characteristic damping rate,

�n = EIκ4
n

cL4
. (26)

This gives the longest timescale for the relaxation of the first
mode,

τB = cL4

EIκ4
1

, (27)

that we call bending time. For a slender filament where
L � φ, and φ is its diameter, this timescale is approximately
(L/φ)2 times larger than the elastic time computed before.
Therefore, for the purpose of this work, besides considering
that the strain is very small, it evolves instantly compared to
the evolution of the curvature.

A. Localized transverse forces

The differential equation (16) also has a cubic polynomial
as a stationary solution (t → ∞), valid for portions of the
filament where the external force is zero.

Now, we consider the presence of external forces in the
perpendicular direction to the filament. From the most general
case of a continuous distribution, fext(s) = f (s) n̂, we concen-
trate on the limit of a punctual force fext(s) = F δ(s − si )n̂.
Here, si is the coordinate of the material point on the filament
where this punctual external force is applied. The sign of F is
positive when it is parallel to n̂, and negative otherwise.

Integrating Eq. (11) gives a condition for the tangent
angle [4],

−EIθ ′′(s−
i ) = −EIθ ′′(s+

i ) + F, (28)

resulting in a discontinuity for the second derivative of the
tangent angle at the point where the force is applied. This
condition is independent of the rheological properties of the
medium and is analogous to the discontinuity of the third
derivative of the displacement in the beam equation, given by
a punctual shear [4].

Taking into account this condition, and that for a free fila-
ment the curvature is zero at the ends, the stationary solution
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is the polynomial,

�(si, F, s) = FL2

EI

[
− σi

2

( s

L

)4
− 1

6

(
s

L

)3

+ 3σi + sign(s − si )

4

(
s

L

)2

− 4σi sign(s − si ) + 1

8

(
s

L

)

+ sign(si ) + sign(s − si )

4
σ 2

i

]
+ ωt, (29)

where σi = si/L and ω = 12σiF/(cL2). Therefore, by only
giving the value of the force F and its position si on the
filament, we can build the solution for θ (s) that gives the sta-
tionary shape of the filament for t → ∞. Due to the external
force and torque, the filament could have a global velocity and
rotation. However, this is irrelevant if we are only interested
in its shape.

In the presence of several external localized forces, the
stationary solution is given by the superposition of solutions
(29),

�∞(s) = θ0 +
∑

i

�(si, Fi, s). (30)

We expect that for any arbitrary initial deformation of the
filament, if the position and value of the applied external
forces remain constant in time, for t � τB the shape of the
filament will tend to �∞(s). We can consider this shape as
an attractor in the space of configurations, given the external
force pattern.

For the transient regime, we should go back to the previous
solutions in terms of flexural modes. Given an initial configu-
ration of the filament �0(s) at time t = 0, we can write it as

θ (s, t = 0) = �0(s) = �0(s) − �∞(s) + �∞(s). (31)

Knowing the stationary solution, we expect that the first two
terms �0(s) − �∞(s) should decay in time. So we can expand
them in flexural modes,

θ (s, t ) = θ0 − � +
∑
n=1

an	n(s) exp(−�nt ) + �∞(s) (32)

with

an =
∫ L/2

−L/2
ds 	 ′

n(s)[�′
0(s) − �′

∞(s)], (33)

� ≡
∑
m=1

a2m	2m(0). (34)

Considering stochastic forces that turn on and off in time,
each time that there is a change of them, the new asymptotic
solution has to be computed and the decomposition in modes
of the instantaneous configuration should be done again.

These results suggest that the analysis of the curvature
would be a good indicator of spatial location and temporal
dynamics of the forces acting on the filament. We will explore
the scope of this approach using numerical simulations later
in this work.

TABLE I. Parameters used in the simulations.

Filament length (L) 10 µm
Filament diameter (φ) 25 nm Ref. [1]
Flexural rigidity (EI) 2 × 107 pN nm2 Ref. [18]
Elastic constant (EA) 104 pN Ref. [1]
Drag coefficient (c⊥) 1.84 × 10−5 pN s/nm2 Ref. [14]
Viscosity (η) 10−5 pN s/nm2 Ref. [14]
Thermal energy (kBT ) 4 pN nm
Active forces ( f ) 50–200 pN Refs. [3,14]

B. Compressing forces

Compressing longitudinal forces applied to a filament can
trigger a buckling event resulting in its bending. This phe-
nomenon is a consequence of the instability produced along
the filament shape when the magnitude of the applied force
overcomes a critical value. This critical force or Euler force
depends on the length L and flexural rigidity EI , and is defined
as [1,4]

Fc = α
EI

L2
, (35)

with α a constant that depends on the boundary conditions.
In this scenario, the solution of the curvature equation re-

sults in normal modes that are different from the ones obtained
for transverse forces. The major change is that some modes
have a positive growing rate in time [15], if the compressing
force is larger than Fc. Due to the unstable nature of the buck-
ling process, minuscule curvatures on the initial filament’s
configuration can grow fast to large values.

If the compressing force largely exceeds its critical value,
high wave numbers are expected, and several points with
large positive and negative curvature alternate along the fil-
ament shape. However, the growing normal modes during the
buckling process do not show discontinuities in the curvature
or its derivative, which is a key difference with the case of
transverse forces.

III. NUMERICAL SIMULATIONS

In the previous section, we obtained analytical expressions
for the evolution of the shape of a filament immersed in a
viscous medium in the presence of transverse or longitudinal
forces. However, when several forces with stochastic behav-
iors in space and time act on the filament, the complexity
to predict the filament shape evolution increases. As also
mentioned, in the case of forces with a parallel component
to the filament, the buckling phenomenon can arise, which
is very sensitive to the initial conditions [15], making the
exact moment of the onset of the bending process analytically
unpredictable.

Therefore, to study these scenarios, we performed numeri-
cal simulations of a single filament using the wormlike chain
model [16], such as described in [14,15,17] (for details, see
the Appendix).

We run simulations of this model using the parameters
displayed in Table I, which correspond to a microtubule im-
mersed in a medium with a viscosity resembling that of the
cytoplasm. These physical parameters give an elastic time
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FIG. 2. Simulation of a 10 µm microtubule in a viscous medium,
during a relaxation without external forces, with and without thermal
agitation. The filament was initially bent. (a) Simulated shapes for
increasing times (from dark to light blue), without (with) thermal
agitation in the upper (lower) panel. (b) Amplitude of the colored
beads marked in (a), computed as the distance to their final position.
The amplitudes of individual beads show slight variations due to
thermal noise [lower vs upper panel in (b)], although their shapes
and characteristic relaxation times are very similar.

τE = 0.0186 s and bending time τB = 18.4 s. This difference
in the timescale of both processes is consistent with our as-
sumption of a slender filament.

In the simulations, the filament is discretized by dividing
it into N = 100 segments of equal length, �s = 100 nm. The
integration temporal step was �t = 5 µs.

We should mention that due to the high stiffness of
microtubules, which results in a persistence length Lp =
EI/(kBT ) ≈ 5 mm [18,19], much larger than the typical
length of microtubules in their natural environment, thermal
forces do not significantly affect the filament’s shapes (Fig. 2).
Thus, we did not consider thermal noise in what follows.

Similarly to [6], localized active forces f applied at dis-
crete positions along the filament with a stochastic temporal
behavior were considered. The temporal pattern followed a
telegraph function with a characteristic times τON and τOFF.
We also explored the effects of longitudinal stochastic forces
applied at one or both filament ends.

The obtained discrete [x(t ), y(t )] coordinates of the fila-
ment shape for each time t were transformed into the discrete
curvilinear coordinates, θ (s), for the tangent angle of each
segment. The curvature was obtained as the discrete centered
derivative of θ (s).

In order to facilitate the visualization of the filament shape
evolution in time, we introduce a graphical tool: the kymo-
graph of curvature. This colored image is built as a matrix
whose rows and columns represent the curvature along s and
time, respectively, while the color intensity value represents
the curvature magnitude. The inspection of these matrices
allows the visualization of the spatiotemporal force patterns,
as will be discussed in the following sections.

A. Curvature analysis for transverse and longitudinal forces

We first consider the case of a single force F = 50 pN,
acting perpendicularly on a 10 µm filament at the position
si = 3.3 µm. The dependence in time is a telegraph function: if
the force is off, it activates with a Poissonian probability with

characteristic time τON = 3 s; while if the force is on, it deac-
tivates with a Poissonian probability with time τOFF = 1.3 s.

The left panel of Fig. 3(a) shows the configuration of the
filament at two different times: one when the force is on,
the other when the force is off. The corresponding curvature
profiles along the filament are plotted in the left panel of
Fig. 3(b). When the force is on, the pointy shape displayed by
the curvature at the position s = 3.3 µm is noticeable, which
corresponds to the point of application of the force si. This is
a manifestation of the discontinuity of the curvature derivative
at si.

In the left panel of Fig. 3(c), we show the curvature of the
filament as a function of time at s = 3.3 µm and s = 6.7 µm.
For the first position, a rapid increase in the curvature mag-
nitude is observed when the force switches from off to on.
The release of the force triggers the rapid decrease of the
curvature, which corresponds to the relaxation of the fila-
ment shape. Although the amplitudes are smaller, the other
temporal profile displays a similar behavior. The exponential
decay of the curvature when the force is off is in agreement
with the characteristic bending time, τB = 18.4 s, as expected
since the relaxation rate only depends on the geometrical
and mechanical properties of the filament and the medium
viscosity.

Finally, in the left panel of Fig. 3(d), we present a kymo-
graph that displays the curvature values both as a function
of position s along the filament (horizontal axis) and time
(vertical axis). The horizontal colored lines in the kymograph
indicate the two instants studied in Fig. 3(b), while the vertical
colored lines correspond to the positions analyzed in Fig. 3(c).
The position where the force is applied can be inferred from
the inspection of the curvature around the extreme values in
the kymograph. Additionally, the temporal behavior of the
force can be explored by counting the spots along the vertical
line at this maxima position.

We now consider the case of a 50 pN compressing force
acting on the right end of the filament, while the left end
is fixed. The time dependence is also chosen as a telegraph
function with the same τON and τOFF as the previous case.
The angle of the force is chosen randomly between ± 30◦
in each activation event, so its main component is in the
compressing direction. The modulus is larger than the Euler’s
critical load, which for this case is near 2 pN, provoking a
buckling instability. In the right panel of Fig. 3(a), we repre-
sent two configurations of the filament, with the force on and
off, respectively. The characteristic wavy shapes are similar
to the case of the transverse force discussed above, and it is
almost impossible to infer the nature of the force acting on
the filament only by looking at the shapes. However, in the
right panel of Fig. 3(b), we observe a striking difference in the
curvature profile compared to its counterpart for the transverse
force. The curvature is bell shaped and does not show any cusp
or discontinuity in its derivative, even when the force is on.

On the other hand, the temporal behavior of the bending
and relaxation processes produced by the stochastic com-
pressing force pattern is very similar to the one observed in
the case of the transverse forces [Fig. 3(c)], also recovering
the same relaxation times, as expected.

Finally, the kymograph for this case [right panel of
Fig. 3(d)] displays a similar pattern as in the case of the
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FIG. 3. Comparison between the action of a 50 pN transverse force (left panels) and a 50 pN longitudinal compressing force (right panels).
(a) Configuration of the microtubule at two different times, when the force is on (blue) and off (orange). The red arrows indicate the position
and direction of the forces. (b) Curvature as a function of the coordinate s along the filament, with the same instants and color code as (a).
(c) Curvature as a function of time at two different positions (magenta and red lines). The dashed line represents the force temporal on and off
behavior (in arbitrary units). (d) Curvature spatiotemporal kymographs. Horizontal colored lines at different times for the configuration and
curvature profiles represented in (a) and (b). Vertical colored lines show the positions of the temporal profiles shown in (c).

transverse force. However, the localization of the extreme val-
ues of the curvature slightly varies, which is a typical feature
of the buckling process evolution.

To sum up, while the curvature vs s profile allows exploring
the spatial localization and direction of the forces acting on
the filament, the curvature vs t plot gives an insight into
the temporal dynamics of the applied forces. In addition,
the exploration of the curvature during the relaxation periods
provides information about the mechanical properties of the
filament and the viscosity of the environment.

B. Inferring the spatiotemporal force patterns
from the curvature’s kymograph

We consider here two different scenarios. In the first place,
we simulate the action of intermittent and transverse forces
acting at six different positions along a filament, as repre-
sented in Fig. 4(a). In this case, the kymograph is more
complex than the one shown in Fig. 3. However, the points
of application of the forces can be appreciated, corresponding
to areas of intense yellow (for positive curvatures) and intense
blue (for negative curvatures). Then, it is possible to choose
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FIG. 4. Filament subject to the action of several stochastic
forces. (a) Six transverse forces were applied at the points indicated
by the red arrows, with the same simulation parameters as in Fig. 3.
(b) Curvature kymograph displaying intense yellow and blue at the
points of the force application. (c) Curvature profiles at different
times, as indicated by the color lines in (b). These curves are not
derivable when the forces are on at the point of their application (i.e.,
pointy shape).

some spatial profiles [indicated by the colored lines in the
example shown in Fig. 4(b)] of curvature as a function of s
and explore their behavior. Following the lesson learned for
the case of a single transverse force, the extreme values of
C(s) are candidates for points of force localization, as long as
the curvature is not differentiable. A systematic exploration of
those chosen spatial profiles can reveal not only the presence
of local forces, but also their localization, as schematized in
Fig. 4(c).

In the second case, we analyzed the buckling event pro-
duced by a large and almost instantaneous longitudinal force
applied at one of the filament’s ends [Fig. 5(a)]. In this case,
the instability gives rise to a multimodal deformation of the
filament, as explored in [15,17]. At first sight, the resulting
kymograph also shows regions of large positive and negative
curvature [Fig. 5(b)]. However, a closer inspection reveals two
interesting aspects: a temporal drift of the position of these

FIG. 5. Buckling of the filament by application of a large lon-
gitudinal force. (a) A 200 pN force was applied to one end of the
filament (red arrow) at t = 0 s for approximately 0.5 s, resulting in
its deformation. (b) Curvature kymograph displaying a multimodal
behavior. (c) Curvature profiles at different times are indicated by
the color lines in (b). These curves are derivable at every point for
any time that is given (i.e., bell shape).

maxima and the absence of discontinuities of C ′, as evidenced
in Fig. 5(c). These two aspects rule out the possibility that
the forces responsible for the deformations are applied at
positions 0 < s < L.

C. Noisy data

The calculation of the curvature of real filaments can re-
sult in noisy data since it involves derivatives of the tangent
angle obtained from discrete data points subject to the finite
precision of the tracking method. In order to assess the impact
of the tracking error on microtubule shape recovery, we simu-
lated the behavior of a filament in a viscous medium under the
influence of an intermittent transverse force of 50 pN applied
at one-third of the filament length. The force is on from t = 5
to 8 s and from t = 15 to 17 s. For the rest of the simulation,
the force is off. We assigned a random displacement sampled
from a normal distribution with a standard deviation of 5 nm
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FIG. 6. Comparison between original, noisy, and smoothed simulated filaments subjected to intermittent forces. (a) Original (black), noisy
(orange), and smoothed (green) filament shape at time t = 7.5 s. (b) Tangent angle θ (s) corresponding to the configuration shown in (a).
(c) Curvature kymograph without error (left), with error (center), and with error and smoothing (right). The magenta line indicates the cut on
the kymograph at time t = 7.5 s. (d) Curvature at time t = 7.5 s; same color code as specified in (a).

to the y position of each bead in the original simulation. This
quantity corresponds to the typical precision achieved by fila-
ment tracking algorithms for high signal-to-noise ratio images
[20], such as the ones obtained with Airyscan microscopy.

Figure 6 shows that the tracking error introduces small
random fluctuations to the filament shape, that are amplified
in the calculation of θ (s) and C. In order to analyze whether
the application of a smoothing technique would enable the
recovery of the curvature with higher precision, we tried the
Savitzky-Golay filter available on PYTHON [21]. We decided
to apply this filter to the noisy θ (s) data instead of the (x, y)
coordinates because typical smoothing filters require 1D func-
tions. Then, we recovered C(s) deriving the smoothed θ (s)
function. Transforming the θ and s coordinates back to the
Cartesian ones using Eqs. (3) and (4) allowed us to reconstruct
the smoothed filament shape.

Figure 6 shows the comparison between the original, the
noisy, and the smoothed filament shape [Fig. 6(a)] and tangent
angle [Fig. 6(b)] obtained in a simulation, with the same
parameters as in Fig. 3. Although the shapes are very similar,
the tracking error deeply impacts the calculation of the cur-
vature, resulting in very noisy kymographs [Fig. 6(c)], which

completely shields the presence of the discontinuity. On the
contrary, the smoothing procedure allows recovering the main
features of the spatiotemporal force patterns observed in the
original data [Fig. 6(d)].

IV. CONCLUSIONS

The study of the dynamics of cytoskeletal networks re-
quires the search for noninvasive tools able to explore the
deformation of single filaments in their natural environ-
ment. Fluorescence microscopy and tracking algorithms are
well-known techniques to perform these studies [3,10,14].
However, inferring the forces responsible for the observed
filament shapes is not straightforward.

Previous works, both by other researchers [5,18,22–24]
and ourselves [14,17], have exhaustively analyzed the mi-
crotubule buckling phenomenon, which results from an
instability in semiflexible filaments when subjected to com-
pressing forces exceeding the critical force. It commonly
occurs within cells, such as during microtubule polymeriza-
tion when encountering obstacles or due to the push or pull
of molecular motors. Conversely, the impact of transverse
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forces on filament shapes has received significantly less atten-
tion in the biological context. Through numerical simulations
presented in [14], we have demonstrated that the shapes of
filaments subjected to transverse forces closely resemble those
produced by compressing ones, despite significant differences
in force intensity between the two cases. Therefore, the de-
velopment of a method enabling the recovery of the points
of force application would enhance our ability to determine
their magnitudes accurately, which is crucial for understand-
ing cellular mechanics. Although other approaches have been
proposed [6,7], these methods require a stationary force pat-
tern, where forces are always applied at the same spots along
the filament, which makes them fail in cases of short time
series and/or aleatory forces.

In this paper, we have applied a theoretical model of the
local curvature of a semiflexible filament subjected to trans-
verse or longitudinal forces. We found that the kymograph
of the curvature reflects the underlying spatiotemporal force
patterns. Closer inspection of the curvature C vs s profiles at
their extreme values allows distinguishing between localized
transverse forces (pointy shape) and longitudinal forces (bell
shape), even when this difference is not appreciable at first
glance from the shape of the filament. At the same time, the
curvature C vs t profiles reveal the temporal activation and
deactivation behavior of the applied forces.

In contrast to the mentioned works, our approach is also
applicable to cases of sporadic deformations, such as micro-
tubule bending, and short time series, which represents an
advantage from an experimental point of view.

In the presence of noisy data, such as the discrete shapes
recovered from the images of experimental filaments with a
tracking algorithm, we demonstrated that the key features of
the force pattern can be recovered after applying a standard
smoothing procedure for the shapes.

Although the method was tested with numerical simula-
tions of microtubules, these results can be extended to other
cytoskeletal filaments, as well as semiflexible micro- and
macroscopic fibers.
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APPENDIX: NUMERICAL SIMULATIONS

We consider the wormlike chain model, as was described
in [15]. We divide the filament in N equal segments of length

�s = L/N . The configuration is determined by the (N + 1)
coordinates rn of the endpoints of each segment, where 0 �
n � N . In terms of these coordinates, the elastic and bending
potential energies are written as

VE = 1

2

EA

�l

N−1∑
n=0

(|rn+1 − rn| − �l )2, (A1)

VB = EI

�l

N−1∑
n=1

[
1 − (rn+1 − rn) · (rn − rn−1)

|rn+1 − rn| |rn − rn−1|
]
. (A2)

Other expressions can be considered, depending on how
the discrete derivatives are defined, although these expressions
converge to Eqs. (6) and (7) in the limit �l → 0. Deriving the
potential energies with respect to the coordinate rn, elastic and
bending forces are obtained,

FE
n = −∂VE

∂rn
, (A3)

FB
n = −∂VB

∂rn
, (A4)

which are applied to the corresponding bead n. The vis-
cous force is given by Fvis

n = −c�l ṙn for 1 � n � (N − 1).
For the end beads n = 0 and n = N , the viscous force is
Fvis

n = −c(�l/2)ṙn, corresponding to the drag on both ending
semisegments.

Neglecting the inertia of the filament, we arrive at (N + 1)
coupled first-order differential equations,

ṙn = αn

c�l

(
FE

n + FB
n + Fext

n

)
, (A5)

where αn = 1 for 1 � n � (N − 1), and αn = 2 for n = 0 and
n = N . For microtubules, we chose the parameters E , A, I ,
and c in Table I. These equations are integrated numerically
from a given initial configuration.

In the simulations where thermal noise was considered, an
additional random displacement was added to the position of
each bead,

rn = αn

c

(
Ftot

n

)
�t +

√
2kBT

c
wn

√
�t, (A6)

with kB the Boltzmann constant and T the absolute tempera-
ture. wn represents a vector of Gaussian random numbers with
zero mean and unit variance [25].
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