
PHYSICAL REVIEW E 108, 064401 (2023)

Hostility prevents the tragedy of the commons in metapopulation with asymmetric migration:
A lesson from queenless ants
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A colony of the queenless ant species, Pristomyrmex punctatus, can broadly be seen as consisting of small-
body sized worker ants and relatively larger body-sized cheater ants. Hence, in the presence of intercolony
migration, a set of constituent colonies act as a metapopulation exclusively composed of cooperators and
defectors. Such a setup facilitates an evolutionary game-theoretic replication-selection model of population
dynamics of the ants in a metapopulation. Using the model, we analytically probe the effects of territoriality
induced hostility. Such hostility in the ant metapopulation proves to be crucial in preventing the tragedy of
the commons, specifically, the workforce, a social good formed by cooperation. This mechanism applies to
any metapopulation—not necessarily the ants—composed of cooperators and defectors where interpopulation
migration occurs asymmetrically, i.e., cooperators and defectors migrate at different rates. Furthermore, our
model validates that there is evolutionary benefit behind the queenless ants’ behavior of showing more hostility
towards the immigrants from nearby colonies than those from the far-off ones. In order to calibrate our model’s
parameters, we have extensively used the data available on the queenless ant species, P. punctatus.
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I. INTRODUCTION

Territoriality in a metapopulation [1–9]—a set of spatially
separated populations weakly interacting through migration—
is manifested as hostile behavior by the individuals, e.g.,
bacteria [10–12], insects [13–15], birds [16–19], carnivores
[20,21], and primates [22,23]. This hostility is often fatal, e.g.,
in eusocial insects [24,25], for a fraction of immigrants whose
movement between populations are very important to prevent
the populations, or even the entire metapopuation, from going
extinct: Often inadequate cooperation among the individuals
in a completely isolated population brings about its tragic
extinction [26].

Any extinction effectively occurs because of overexploita-
tion of resources needed for sustenance. In any population—
for simplicity, assumed to be composed of only cooperators
and defectors—social goods may be created by cooperation
[27]: Evolution leading to the dearth of cooperators in a
population would lead to a tragedy of the commons (TOC)
[28], i.e., the extinction of the social good, and, consequently,
the population would extinct. Thus, the fact that we witness
stable populations all around us means that some level of
cooperation is being maintained everywhere.

But how cooperation, or its stricter form—altruism [29]—
emerges and is sustained within the theory of evolution in
unicellular organisms to complex human societies [30] is an
enigmatic multifaceted conundrum: On the face of it, cooper-
ation seems to evolve contradicting the common wisdom of
the natural selection [31–40]. Careful analyses, nevertheless,
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divulge several mechanisms of establishing cooperation [41],
e.g., kin selection [42–47], direct reciprocity [48], indirect
reciprocity [49], network reciprocity [50], and group selection
[51–59].

The aforementioned analyses are best systematically math-
ematized through the formalism of the evolutionary game
theory [59–64] using the paradigmatic games of prisoners’
dilemma (PD) [65–67] and public goods (PGG) [68,69]. In
this paper, we use this paradigm to assert that hostility to-
wards immigrants in metapopulation is essential for not only
preventing the TOC but also to sustain the metapopulation at
its maximum potential. In this context, we recall that whether
the TOC means complete or partial destruction of the resource
leads to the nomenclature of collapsing or component TOC’s,
respectively. In this language, this paper shows that rather
intuitive positive effect of asymmetric migration (unequal
migration rates of cooperators and defectors) [70,71] in pro-
liferating cooperation is not enough to avert component TOC
which, however, is tamed by the hostility.

Hostile behavior towards intruders depends on whether
they are neighbors or they belong to a distant territory. Some
animal species show less hostile behavior towards the neigh-
bors than the distant ones [52,72]. This behavior is termed
as dear-enemy effect which is evolutionarily beneficial since
cost of escalated contests [52] with repeatedly encountered
neighbors is avoided, whereas some eusocial insects show the
opposite behavior: They are more hostile towards the neigh-
bors than the distant ones [73–75]. This behavior is termed as
nasty-neighbor effect.

While the perspective presented above is omnipresent, it
suffices for the purpose of this paper to consider the illus-
trative example of the metapopulation of the ant species,
Pristomyrmex punctatus, where the TOC [76], asymmetric
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migration [77], and hostility [25,75,78] are well documented.
Arguably, this ant society is a real-world representative of the
similar systems across the living world and hence any insight
gained from its analysis is in general qualitatively applicable
elsewhere as well.

The society of this ant is very intriguing: The queen caste
is not present in these ants’ colony. All workers are partheno-
genetically developed from unfertilized eggs laid by virgin
female workers [79]. The division of labor in the smaller body
sized ants is also unique: All young workers remain inside the
nest and participate in reproduction and brood-caring, and old
workers become sterile and come out of the nest for external
work [80]. All ants of this species reproduce only once in their
lives—in summer [79,81].

Interestingly, it is very convenient to model this ant system
as consisting of only cooperators and defectors: Some larger
body-sized ants (L-type) of the same species are also present
in the colony with the smaller ant workers (S-type), but they
do not participate in any work except reproduction and always
remain inside the nest [79]. Accordingly, the L-type workers
are the cheater or defector lineage, and S-type workers are the
cooperators [82]. The fitness of a cheater is always higher than
that of a worker [76,83], which could lead the population to
extinction [77,83]. Thus, the existence of this ant colony itself
is a mystery.

Of course, rarely does a colony exist in complete isolation.
A metapopulation of the colonies with asymmetric migration
between them is observed. The migration is such that the
defectors migrate at a higher rate than the cooperators [77].
Furthermore, the ants are quite hostile towards the immigrant
ants which are not from the same natal colony [25,75]. They
show more hostility towards the neighboring colonies than
the far-off colonies [75], i.e., nasty-neighbor effect. As we
argue in this paper, in the backdrop of asymmetric migration,
the role of aggressive hostile behavior is to further strengthen
the cooperation inside each colonies and help it proliferate
across the entire metapopulation.

The interest in theoretical modeling of this ant system is
rather recent. Specifically, Young and Belmontein [84], set up
an interesting model to investigate the dependence of extinc-
tion of colonies on migration. The model has coexistence of
cooperators and defectors artificially put into it: In the absence
of any migration, an isolated colony does not go extinct, even
though the literature [76,77,83] suggests that the fitness of
an isolated colony decreases in the presence of the defectors
and eventually it collapses. Furthermore, while careful obser-
vations [76] clearly concludes that the surviving probability
of the defectors is always higher than the cooperators, hence
considering the death rate of the defectors to be higher than
that of the cooperators in the aforementioned model [84]
seems not too appropriate for the ants. Finally, the model
[84] adopts a migration mechanism—migration from lower
to higher fitness colony—that is not practically feasible for
the ants as it requires prior knowledge about the demographic
structure of other colonies: It seems to be a very improbable
prospect for an ant to know and process all the information
required to selectively migrate towards a higher fitness colony.

In view of the above and the fact that we are after a general
description of a large number of metapopulations with qual-
itatively similar driving forces, let us present a very simple

yet nontrivial model within the tenet of natural selection. For
concreteness and lucidity of the presentation, we would keep
the case of P. punctatus in mind in what follows.

II. GAME-THEORETICAL MODEL

Let us consider a metapopulation consisting of M differ-
ent population of a single asexual species. Every population
exhaustively contains two classes of individuals: cooperators
and defectors. Here the cooperation is a socially desirable
action, while the defection is solely self-interest driven action.
The state of the ith population can be defined using two
variables—NC

i and ND
i —respectively the total numbers of co-

operators and defectors. Due to the finite carrying capacity of
any habitat, the death rate of an individual depends on the total
number of individuals in a population; consequently, we con-
sider that the death rate of an individual linearly proportional
to the total number of individuals and the proportionality
constant, δ, for the cooperators and the defector to be same.
Furthermore, if the fitness of the cooperators and the defectors
of the ith population be f C

i (NC
i , ND

i ) and f D
i (NC

i , ND
i ) respec-

tively, then we can write the growth dynamics as follows:

ṄC
i = NC

i

[
f C
i

(
NC

i , ND
i

) − δ
(
NC

i + ND
i

)]
, (1a)

ṄD
i = ND

i

[
f D
i

(
NC

i , ND
i

) − δ
(
NC

i + ND
i

)]
. (1b)

The fitnesses depend on the details of the strategic interactions
between the individuals.

The simplest nontrivial strategic interaction—
mathematically, realized through the PD—manifests the
selfishness of the individuals. Any two-player two-strategy
one-shot game can be expressed in a compact bimatrix form
as follows:

Player 2
Cooperate Defect

*Player 1Cooperate 1, 1 S, T
Defect T, S 0, 0

where the first and the second element of each cells is
the payoffs of the Player 1 and Player 2, respectively. The
aforementioned game describes the PD game if the payoffs
maintain the following ordinal relationship: T > 1 > 0 > S.
Unless otherwise specified, in the rest of this paper, we stick
to the above ordinal relationship between the payoffs. The
average payoffs, i.e., fitnesses of a cooperator and a defector
is given by

f C
i

(
NC

i , ND
i

) = 1

(
NC

i

NC
i + ND

i

)
+ S

(
ND

i

NC
i + ND

i

)
, (2a)

f D
i

(
NC

i , ND
i

) = T

(
NC

i

NC
i + ND

i

)
, (2b)

respectively. Since f C
i (NC

i , ND
i ) < f D

i (NC
i , ND

i ) ∀NC
i , ND

i for
PD, it is apparent to see the defectors thrives in the population.
However, when there are no cooperators left in the popula-
tion, the fitness of a defector becomes zero, i.e., f D

i (NC
i =

0, ND
i ) = 0, and the whole ith isolated population should

collapse.
To avoid such a tragedy, many times migration is known to

come to the rescue [85,86]. Hence, now we allow for migra-
tion between populations in the aforementioned model: Let us

064401-2



HOSTILITY PREVENTS THE TRAGEDY OF THE COMMONS … PHYSICAL REVIEW E 108, 064401 (2023)

assume that the probability rate of migration of a cooperators
and a defector from the ith to the jth population are μC

i j and
μD

i j , respectively. Thus, the rate of increase of cooperators in
ith population due to immigration is

∑
j �=i NC

j μC
ji and the rate

of decrease of cooperators in the ith population due to emigra-
tion is

∑
j �=i NC

i μC
i j . Similarly, the rate of increase of defectors

in the ith population due to immigration is
∑

j �=i ND
j μD

ji and
the rate of decrease of defectors in the ith population due to
emigration is

∑
j �=i ND

i μD
i j . Furthermore, we assume that each

population communicates with every other M − 1 populations
and the migration rates are constant, i.e., they do not depend
on the colonies from which they start to migrate and where
they reach, i.e., μC

ji = μC/(M − 1) and μD
ji = μD/(M − 1)

for all i, j ∈ {1, 2, · · · , M}. Finally, in the presence of migra-
tion, we rewrite Eq. (1a) and Eq. (1b) as follows:

ṄC
i = NC

i

[
f C
i

(
NC

i , ND
i

) − δ
(
NC

i + ND
i

)]
−

∑
j �=i

NC
i μC

i j + (1 − h)
∑
j �=i

NC
j μC

ji, (3a)

ṄD
i = ND

i

[
f D
i

(
NC

i , ND
i

) − δ
(
NC

i + ND
i

)]
−

∑
j �=i

ND
i μD

i j + (1 − h)
∑
j �=i

ND
j μD

ji. (3b)

These are a set of 2M coupled nonlinear equations. Note that
we have introduced a parameter, h, that is identically zero
in the present case. Following paragraph makes the physical
meaning of h conspicuous.

Not every immigrant is welcomed in the new population.
In the ants, every colony possesses a distinctive individuality
due to which a migrated ant is spotted, stopped from joining
the new habitat [25,75], and eliminated. Due to this hostile
behavior towards individuals different from their own habi-
tat, not all of the migrated individuals survive. There is no
known hostility towards emigration. Thus, the rate of increase
of cooperators (defectors) in the ith population due to im-
migration is ps

∑
j �=i NC

j μC
ji (ps

∑
j �=i ND

j μD
ji) and the rate of

decrease of cooperators (defectors) in the ith population due
to emigration is unchanged—

∑
j �=i NC

i μC
i j (

∑
j �=i ND

i μD
i j); here

ps is the probability of survival after the migration. Naturally,
h ≡ 1 − ps can be termed hostility: The lower the survival
rate, the higher the hostility.

Obviously, Eq. (3a) and Eq. (3b) constitute an analytically
intractable set of equations, but it is amenable to some sta-
bility analysis. We have categorized the fixed points into two
classes: homogeneous and nonhomogeneous. A homogeneous
fixed point corresponds to the metapopulation state where
all the constituent colonies have same numbers of coopera-
tors and defectors, i.e., mathematically, NC

i = NC
j and ND

i =
ND

j ∀i, j; whereas the fixed points which are not homoge-
neous are termed nonhomogeneous fixed points. The general
stability analyses about all possible fixed points is, however,
almost impossible because of the plethora of fixed points the
system possess. Even with a metapopulation with two popu-
lations, it can have more than 20 fixed points. Nevertheless,
homogeneous fixed points are limited and we can gain some
insight by analyzing them. These fixed points correspond to
the state of the metapopulation with the populations being
in identical equilibrium states. Since our motivation is to

elucidate the constructive effect of hostility in metapopula-
tion, we can succinctly accomplish that by working with the
smallest possible metapopulation, i.e., M = 2: While such a
setup loses the higher-order intricacies that can appear due
to the specific network topology of a metapopulation, the
fundamental idea put forward in this paper should remain
valid qualitatively even for M > 2. Hence, henceforth, we
stick with this choice.

III. STABILITY ANALYSIS OF EXTINCTION STATE

The stability analysis of the nonhomogeneous fixed points
is quite straightforward: We calculate the expression of the
Jacobian matrix of the dynamical equations, Eq. (3a) and
Eq. (3b), linearized about every fixed point and calculate its
eigenvalues. If real parts of all the eigenvalues for the fixed
point are negative, then the fixed point is stable; otherwise, it is
unstable. Likewise the stability analysis of the homogeneous
fixed points is also rather simple. However, it is interesting
to note the nontriviality of stability analysis of the extinction
state, (NC

1 , ND
1 , NC

2 , ND
2 ) = (0, 0, 0, 0) (a homogeneous fixed

point). The issue is that the ratio of the number of cooperators
or defectors to the total population size is undefined (0/0). In
fact, even to adjudge that (0,0,0,0) is actually a fixed point, we
need xi ≡ NC

i /(NC
i + ND

i ) to have a finite limiting value at the
fixed point.

Before we explain our adopted method of doing the sta-
bility analysis, it is probably instructive to study a simple
toy model that is plagued by the similar problem. Consider
a two-dimensional autonomous flow:

u̇ −u − u2

v
, (4a)

v̇ −v − v2

u
, (4b)

where the phase space u–v is [0,∞) × [0,∞). It is obvious
that the flow for any initial condition approaches (u, v) =
(0, 0). However, it is a bit of a problem in terming this a fixed
point in the light of the fact that u̇ = 0 and v̇ = 0 leads to
algebraic equation with 0/0 form at (0,0). What comes to our
rescue is the existence of the asymptotic value of γ ≡ u/v

(and v/u) as the system evolves. We find

γ̇ = 1 − γ 2, (5)

whose physically allowed fixed point is γ = u/v → 1 which
is stable as well. Hence, we conclude that at (u, v) = (0, 0),
u/v takes the dynamics-driven limiting value that is unity.
With this in mind, we can now safely calculate (0,0) as the
fixed point of Eq. (4) by factoring u2/v as γ u. In fact, now
even the linear stability analysis of Eq. (4) about (0,0) can
be carried out because all the terms (in the Jacobian) in the
form of γ 2 (or 1/γ 2) calculated at the fixed point are not
indeterminate but finite.

Now, coming back to the issue of dealing with the stability
analysis about the fixed point (0,0,0,0), it is of convenience to
rewrite Eq. (3a) and Eq. (3b) in terms of the total number of
individuals, Ni ≡ NC

i + ND
i , and the frequency of cooperators,
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xi = NC
i /Ni as follows:

ẋi = xi(1 − xi )
[

f C
i − f D

i + μD − μC
]

+ (1 − h)
∑
j �=i

Nj

Ni
[μCx j (1 − xi ) − μDxi(1 − x j )],

(6a)

Ṅi = Ni[xi
(

f C
i − μC

) + (1 − xi )
(

f D
i − μD

)
]

+ (1 − h)
∑
j �=i

Nj[x jμ
C + (1 − x j )μ

D] − δN2
i , (6b)

where we have set M = 2. In these notations, the extinction
state corresponds to Ni = 0 ∀i irrespective of what value xi’s
take.

We note the factor Nj/Ni in Eq. (6a) which is 0/0 at the
extinction state. We hope to associate a limiting value to this
factor so that we can find fixed points of Eq. (6a). To this end,
we write dynamical equation for γi j ≡ Ni/Nj ∀i �= j:

γ̇i j = γi j
[
xi

(
f C
i − μC

) + (1 − xi )
(

f D
i − μD

)]
− γi j

[
x j

(
f C

j − μC
) + (1 − x j )

(
f D

j − μD
)]

+ (1 − h)
∑
k �=i

γk j[xkμ
C + (1 − xk )μD]

− (1 − h)γi j

∑
k �= j

γk j[xkμ
C + (1 − xk )μD]

+ δNi(1 − γi j ). (7)

It is clear that if Ni = 0 (and arbitrary fixed xi), Eq. (7) possess
at least one finite value of γi j as its fixed point; specifically, if
Ni = 0 and xi = 0, x̂ or 1 [i.e., the homogenous fixed points of
Eq. (6a) with fixed finite γi j], γi j = 1 is the stable fixed point.
Recall that x̂ ≡ (−|S| + ν)/(T − 1 − |S|). Of course, there
could be situations where x1 �= x2 and N1 = N2 = 0 along
with finite γi j �= 1 correspond to an extinction state; however,
these situations are best tackled numerically as we discuss
later. One should not be surprised that the extinction state
in the (xi, Ni ) coordinates correspond to some specific values
of xi’s (and not arbitrary ones) because the limiting values of
γi j’s decide how the extinction is approached.

The stability of extinction state as marked by the fixed
points of Eq. (6a) and Eq. (6b), with γi j having a limiting
value, can be found out by doing linear stability analysis about
the homogeneus fixed points (x∗

i , N∗
i ) = (0, 0), (1, 0), and

(x̂, 0) ∀i and also about the nonhomogeneous ones where Ni =
0 but x1 �= x2 (xi �= 0). The former is analytically tractable but
the latter is accessible only numerically.

Straightforward calculations reveal that (1,0) is always
unstable, whereas (0,0) is stable when |S| > ν, where ν ≡
h(μD − μC ). This means that in the μC–μD space, the curve
dividing the regions of extinction and survival of the metapop-
ulation is given by μD = μC + |S|/h: The region below this
curve denotes stable extinction state. Consequently, as the
hostility increases, the possibility of extinction decreases. In
principle, such dividing curves should exist for other represen-
tations (where xi �= 0) of the extinction state, although writing
their explicit expressions is very cumbersome. However, what
we can prove is that all such curves lie below a certain

FIG. 1. Numerics validate the stability diagram: We illustrate the
validation of the analytically obtained stability diagram in Fig. 2(d).
Extinction, bistability, and heterogeneous existence of the metapop-
ulation are respectively marked by the white markers ∗, +, and ×
which represent the direct numerical time evolution of Eq. (3a) and
Eq. (3b). For the numerics, we uniformly divide μC–μD plane in
8 × 8 grid. At each grid point, we evolve 10 randomly chosen initial
conditions (for a time t = 15 000 by the fourth-order Runge-Kutta
method with discrete time step dt = 10−3) whose final states match
with the corresponding analytical results: The red, yellow, and green
patches—which respectively indicate extinction, bistability, and het-
erogeneous existence—exclusively contain ∗, +, and × markers
respectively.

curve (henceforth referred as “existence boundary curve”) that
serves as the boundary below which nonextinction states do
not exist. To this end, let us rewrite Eq. (6b) as follows:

Ṅi = Ri(xi, x j, γ ji )Ni

[
1 − δNi

Ri(xi, x j, γ ji )

]
, (8)

where

Ri(xi, x j, γ ji ) ≡ [
xi

(
f C
i − μC

) + (1 − xi )
(

f D
i − μD

)]
+ (1 − h)

∑
j �=i

γ ji[x jμ
C + (1 − x j )μ

D]. (9)

Now we note that at any fixed point with x1 �= x2 (xi �= 0),
the nonextinction state, when it exists, is Ni = Ri(xi, x j, γ ji )/δ
which must be a positive quantity that in turn means that Ni =
0 (i.e., the extinction state) is unstable. We should emphasize
here that the homogeneous extinction state represented by
(xi = 0, Ni = 0), however, can stably coexist with the nonex-
tinction state because in that case Ri(xi, x j, γ ji ) = −μD(1 +
γ ji ) is always negative. This mathematically is the source of
bistability in our system: Extinction and nonextinction states
can stably coexist—which one is realized depends on the
specific initial composition of the metapopulation. In Fig. 1,
we illustrate a validation of the fact that the phase diagram
in μC–μD space found analytically using above arguments
should match with the results found using direct numerical
evolution of the corresponding system.
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IV. RESULTS

A. Without hostility (h = 0)

There exist two possible homogeneous fixed points,
(NC∗

i , ND∗
i ), of Eq. (3a) and Eq. (3b)—h set to zero—inside

the physically allowed region of the phase space: (0,0) and
(1/δ, 0) ∀i. The first fixed point corresponds to extinction
of the metapopulation, while the second one corresponds
to the sustenance of the metapopulation at its most pros-
perous possible state exclusively composed of cooperators.
They are stable if |S| > 0 (see Sec. III) and T − 1 < 0,
respectively.

Furthermore, there are five independent parameter in our
system. Their values are dependent on specific details of the
system in question. As our main parameters of interest are
the migration rates and hostility, it helps to fixed S, T , and
δ to keep the discussion focused. To this end, it is helpful to
use the values that are appropriate in the ant colony just for
concreteness.

First, we take δ = 10−4 so that the carrying capacity in
our model becomes 104, since the observed colony size of P.
punctatus is of the order of 104 [83]. Naturally, we should
have payoff of a defector interacting with a defector to be
zero. Since the per capita brood production is of the order one
in the absence of any defectors, the payoff of a cooperator
interacting with cooperator may be taken as one. Note that
the diagonal elements of the general payoff matrix as intro-
duced earlier are 1 and 0 anyway. The defectors definitely
get more payoff that than cooperators when they interact
with cooperators. Hence we take T = 1.5 > 1. However, a
cooperator in a population exclusively composed of defectors
produces no brood [76] but on top of it pays cost by working
for the colony; hence, the corresponding payoff—S in our
notation—should be negative, that we take as −0.01. As long
as the ordinal relationship between the payoff elements is
maintained, one expects the results to be qualitatively same.
The numbers we have specifically chosen closely match with
the ant population to the best of our inferences from the
existing literature on the ants. Finally, the migration rates per
generation of cooperators and defectors are know to be of
the order of 10−5 and 10−2, respectively [76]. However, we
let μC and μD vary over a larger range to further theoretical
predictions.

For the aforementioned parameter values, one quick ob-
servation [Fig. 2(a)] is that all the homogeneous fixed points,
except the one that corresponds to the extinction, are always
unstable whether the migration is asymmetric or not. How-
ever, for high-enough defector migration rate, a stable internal
nonhomogeneous fixed point appears. Of course, due to indis-
tinguishability (as far as the parameter-values are considered)
of the two colonies, any nonhomogeneous fixed point must
appear in pair. Depending on the precise initial condition,
symmetry breaking occurs and one in the stable pair is the
observed equilibrium solution. In summary, we have a mul-
tistable system where the extinction is avoided if cooperator
fraction is above a threshold and the migration is asymmetric.
The surviving state is, however, not homogeneous and, more
importantly, it requires quite high value of μD (	 10−2, the
value for the ants) for its existence. This motivates us to bring
in the phenomenon of hostility.

FIG. 2. Hostility averts extinction: This figure depicts the sta-
bility diagram of Eq. (3a) and Eq. (3b) with PD (T = 1.5 and S =
−0.01) as the underlying game structure. We also fix δ = 10−4 and
M = 2. By keeping the hostility (h) fixed, we vary μC along x axis
and μD along y axis for generating every panel. Red, yellow, green,
and blue respectively depict the parameter region for which the
metapopulation goes extinct, sustains bistability between extinction
and nonhomogeneous extant state, sustains nonhomogeneous extant
state, and sustains homogeneous extant state. Subplot (a) is for the
nonhostile case while panel (b) is for the hostile case with h = 0.5.
The lower row of panels (c) to (d) is zoomed in plots about the origin
and the value of hostility increases from (a) to (d) as marked in the
figure; here the ranges of μC and μD are close to what was reported
for P. punctatus [76,77].

B. With hostility (h �= 0)

As discussed earlier, since not every immigrant is allowed
into a new population, the ants may be deemed hostile. The
degree of hostility is measured by parameter h that is the
probability of migrant’s death in the new colony. Hence, in
the presence of hostility, we consider [Eq. (3a) and Eq. (3b)]
but now with h ∈ (0, 1].

Once again the landscape of the homogeneous fixed points,
(NC∗

i , ND∗
i ), is of interest. Here the earlier (when h = 0)

two possible homogeneous corner fixed points—(0,0) and
(1/δ, 0)—modify to (0,0) and ([1 − μCh]/δ, 0). The latter
one (the prosperous state with full of cooperators) is stable
if T − 1 < ν, where ν ≡ h(μD − μC ). If |S| > ν, then the
state of extinction, i.e., (0,0) fixed point, is stable. Addi-
tionally, if either |S| < ν < T − 1 or |S| > T − 1 > ν, then
the extinct state may again be stable for some particular
combination of the parameters which, however, has a cum-
bersome expression. Also, if either |S| < ν < T − 1 or |S| >

T − 1 > ν, then a new homogeneous internal fixed point
appears such that (NC∗

i /ND∗
i , NC∗

i + ND∗
i ) = (x̂, N̂ ) where

x̂ ≡ (−|S| + ν)/(T − 1 − |S|) and N̂ ≡ [x̂{x̂ + (1 − x̂)(T −
|S|)} − h{x̂μC + (1 − x̂)μD}]/δ. When there is no hostility,
this particular fixed point moves out of the physically allowed
region of the phase space. The nonhomogeneous fixed points
are practically accessible only numerically.
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FIG. 3. Hostility averts the TOC: The first row represents the realization and the prevention of the TOC in metapopulation, whereas the
second row represents the same for the constituent populations or colonies separately. We find that the presentation is conspicuous if we plot the
logarithm of the total number of cooperators; for the extinction state we replace NC

1 = NC
2 = 0 with a small number, 10−20. Fixed parameters

are same as in Fig. 2. The red and the darkest green regions respectively depict the complete realization and the prevention of TOC, whereas
the all other colors represent the partial TOC. We can see [in (a), (d) and (e)] that the TOC is an unavoidable fate without hostility; however
[as shown in (b), (f) and (g)], with hostility (h = 0.5), the prevention of TOC always possible for suitable parameter values. Panel (c) shows
the increase in size of metapopulation with the hostility: The solid line corresponds to homogeneous stable fixed point, while the dashed line
represents the nonhomogeneous fixed point. Here μC = 0.015 and μD = 0.5.

Since hostility induces less survival of the migrated ants,
it may appear that the metapopulation is more prone to ex-
tinction. Interestingly, this is not the case: In the presence of
asymmetric migration, the internal homogeneous fixed point
is stabilized in the metapopulation with hostile individuals and
extinction is averted. Moreover, the population size increases
with hostility for fixed migration rates Fig. 3(c). In fact, even
a stable nonhomogeneous state of the population appears (as
was the case when h = 0) but now at much lower values of μD

(<10−2) so that the survival of ant metapopulations may be
attributed to the hostile behavior whose existence from natural
selection perspective is, thus, justified.

C. Sustaining nonhomogeneous states

The role of asymmetric migration should again be em-
phasized: In case the migration is symmetric (μC = μD), we
can show (elaborated below) that no amount of hostility can
overcome extinction of the metapopulation (see Fig. 2).

First we observe that case of symmetric migration always
leads to extinction irrespective of how high the hostility is.
First, we note that when μC = μD, the homogeneous fixed
point (xi = 0, Ni = 0) is always stable (since |S| > ν = 0).
It leaves the possibility of coexisting nonextinction state.
However, even this is not a possibility as we see next. The
nonextinction state must have xi �= 0 since with xi = 0 only
possible fixed point is (xi = 0, Ni = 0) ∀i. We recast Eq. (6a)
as follows:

ẋi = xi(1 − xi )
(

f C
i − f D

i

) + (1 − h)γ ji(μ
Cx j − μDxi ), (10)

where j �= i. Within the paradigm of PD, f C
i − f D

i < 0, and
hence unless μCx j − μDxi is positive, the system cannot
evolve to nonzero values of x1 and x2. But for μC = μD, it
leads to the contradicting conditions, respectively, x2 > x1 and

x1 > x2. In conclusion, symmetric migration always leads to
extinction of the metapopulation playing PD irrespective of
initial compositions and parameter values.

Consequently. in a discussion on the physical mechanism
behind the emergence and sustenance of nonhomogeneous
states we have to restrict ourselves to the case of asym-
metric migration. It is a straightforward observation from
Eq. (6a) and Eq. (6b) that if the system evolves with the
initial conditions, xi(0) = x j (0) and Ni(0) = Nj (0) ∀i �= j, the
resulting trajectories always remain on the hypersurface given
by xi = x j and Ni = Nj which, thus, is an invariant manifold.
In NC

1 –ND
1 –NC

2 –ND
2 phase space coordinates, this hypersur-

face is expressed as NC
1 = NC

2 and ND
1 = ND

2 . Therefore, the
existence of the nonhomogeneous state requires the initial
condition must not follow these equalities.

To understand the physical picture behind the emergence
of nonhomogeneous state, consider an initial condition such
that N1(0)C > NC

2 (0) and ND
1 (0) > ND

2 (0). With such an ini-
tial condition, we note from Eq. (3a) and Eq. (3b) that the
individuals from population 1 migrate to population 2 at a
larger number than the individuals who arrive at population
1 from the other. Obviously, the population 1 can be sus-
tained only if the defectors migrate at a higher rate than the
cooperator (i.e., if μD > μC) such that the fitness benefit of
the defectors is counterbalanced by the negative effect of
the migration, i.e., −μD(ND

1 − ND
2 ) < 0. Thus the population

is maintain a constant frequency of cooperator and its total
number of individuals do not decrease further. In population
2, the frequency of the cooperators becomes very low because
of higher number of immigrant defectors. However, it does not
become identically zero if μC �= 0: In this case, population 1
acts as a source of cooperators for population 2, rendering the
frequency, x2, bounded by x2 > x1μ

C/[x1μ
C + (1 − x1)μD].

Of course, if μC = 0, then population 2 has no source of
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cooperators present and population 2 becomes full of defec-
tors in the long run but it is not extinct.

D. Tragedy of the commons

In the literature [27], whether the TOC refers to com-
plete or partial destruction of the resource (say, workforce)
leads to the naming of the respective tragedy as collapsing
or component. In any typical evolutionary system, the fact
that significant levels of cooperation—in spite of the selfish
interests of cheaters—are observed begets the question of why
a component TOC does not always deteriorate further into
collapsing one or why even component TOC is not present
in certain cases (mostly where cooperation levels are very
high). We have shown that territoriality induced hostility is
one answer to this question.

The workforce—a social good formed by cooperation—in
our setup is simply measured by the number of cooperators.
In the setting of PD, we note that in the absence of hos-
tility, collapsing TOC is inevitable, except that sometimes
certain migration rates that allow for bistability can come to
the rescue. As hostility kicks in, the collapsing TOC can be
either converted to a component one or even be completely
prevented at high-enough defector migration rate (Fig. 3).

In passing, we remark that an immediate criticism of the
results presented until now could be about the usage of PD
when in an ant colony, multiplayer interaction—and hence the
framework of PGG—is more realistic: The workforce [87,88]
in a eusocial insect colony is the social good that may be
envisaged as the product of a PGG being played by a group
of individuals. Actually, the idea we want to convey is most
simply said through the PD and the results obtained using
PGG are qualitatively similar (see Appendix). Nevertheless,
the reference of PGG brings the corresponding metapopula-
tion’s state under the purview of TOC.

V. MULTICOLONY METAPOPULATION

We have conclusively established that hostility, in the
presence of asymmetric migration, averts TOC in the set-
ting of two-colony metapopulation. It is easy to argue that
this assertion remains qualitatively intact even in the case
of multicolony metapopulation (M > 2) irrespective of the
fact whether the metapopulation is structured or not. This is
because if the hostility is same towards every colony, there is
nothing in our model that distinguishes a nearby colony from
a far-off colony; in fact, in our model every colony may see
intruders from different colonies as the ones coming from a
single effective colony. Nevertheless, the investigation of mul-
ticolony metapopulation becomes extremely relevant in the
context of dear-enemy and nasty-neighbor effects which can
be mathematically captured via unequal hostilities in different
pairs of colonies.

Therefore, in order to mathematically address this, we
consider a ring network (metapopulation) with M nodes
(colonies) as illustrated in Fig. 4. To begin with there is
only nearest-neighbor interaction: The edges of the lattice
are bidirectional and represent migration. However, intrud-
ers from far-off colonies can also come to a given colony.
At any instant, thus, there is a probability (p, say) that an

FIG. 4. Diagrammatic depiction of multicolony metapopulation:
Panel (a) shows nearest-neighbor interaction, and (b) depicts the
random rewiring at a time step. The directed arrow heads show the
directed migrations from one colony to the other. A nearest-neighbor
migration is indicated by solid green arrow, a broken connection
(dashed arrow with scissors) indicates no nearest-neighbor migration
at that time step, and a new connection (violet arrow) indicates
migration from far-off node.

intruder is from far-off colony; naturally, 1 − p is the prob-
ability that the intruder is from nearby colony. We incorporate
this phenomenon by allowing random rewiring [85,86,89] in
the network: The ring network dynamically evolves such that
at every instant an edge between two adjacent colony may be
severed and in its place a new edge with a randomly chosen
(with probability p) far-off node is created.

Thus, if the hostilities towards the distant and the near-
est neighbors are hd and hn, respectively, then Eq. (3a) and
(3b) modify to following mean-field equations for the ring
network:

ṄC
i = NC

i

[
f C
i

(
NC

i , ND
i

) − δ
(
NC

i + ND
i

) − μC
]

+ (1 − hd )pNC
ξ μC

ξ i + (1 − hn)(1 − p)
∑
〈 ji〉

NC
j μC

ji,

(11a)

ṄD
i = ND

i

[
f D
i

(
NC

i , ND
i

) − δ
(
NC

i + ND
i

) − μD
]

+ (1 − hd )pND
ξ μD

ξ i + (1 − hn)(1 − p)
∑
〈 ji〉

ND
j μD

ji.

(11b)

Here i is the focal node or colony and can take any value from
1 to M. Due to the periodic structure of the network, i and
i + M denote the same node. Subscript ξ (not equal to i − 1,
i or i + 1) denotes the randomly chosen distant node. μC ≡∑

j �=i μ
C
i j and μD ≡ ∑

j �=i μ
D
i j are the total cooperators’ or

defectors’ emigration rates from colony i. The cases hd < hn

and hd > hn, by definition, correspond to the nasty-neighbor
effect and the dear-enemy effect, respectively.

For the case of P. punctatus, it is known [75] that these
ants show nasty-neighbor effect, i.e., hd < hn. Numerically,
we observe (as seen in Fig. 5) that with the nasty-neighbor
effect metapopulation can avert the tragic extinction at lower
defectors’ migration rate. In Fig. 5, for illustrative purpose,
we use M = 5, p = 0.1 (assuming immigration is lower from
far-off colonies) and divide μC–μD plane in 48 × 48 grid.
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FIG. 5. The propensity of preventing the extinction is higher with
the nasty-neighbor effect than with the dear-enemy effect. Panels
(a) and (b) are the stability diagram for the dear-enemy (hd = 0.75 >

0.5 = hn) and nasty-neighbor (hn = 0.75 > 0.5 = hd ) effects, re-
spectively. Rewiring probability has been fixed to 0.1. Colors bears
the same meaning and all other fixed parameters’ values are same as
in Fig. 2.

At each grid point, we evolve 10 randomly chosen initial
conditions (for a time t = 15 000 by the RK4 method with
discrete time step dt = 10−3) whose final states are the red,
the yellow, and the green patches, respectively, indicating
extinction, bistability, and heterogeneous existence.

This positive effect of nasty-neighbor may be compre-
hended by considering the average hostility, phd + (1 − p)hn:
Since the probability of immigration from distant colonies is
expected to be lower than that corresponding to the neighbor-
ing colonies, i.e., p < 1 − p, the average hostility is clearly
higher for the case hd < hn compared to the case hd > hn.
Thus, given the observational data we have used for the ant
in our numerics, the existence of nasty-neighbor effect in the
ant is compatible with the evolutionary game-theoretic model
presented in this paper.

VI. CONCLUSION

Why hostility should give rise to cooperation across
metapopulation, which thus is prevented from going extinct,
in the presence of asymmetric migration is intuitively quite
simple: Defectors try to migrate to another colony more fre-
quently than the cooperators but the hostile residents of the
destination colony kill them; consequently, the total defector-
fraction is kept in check. Our mathematical model very vividly
captures this intuition. What is even more interesting is that—
like any useful good model—there are some quite nonintuitive
conclusions gathered through study of our model: First, even
in the absence of any hostility, asymmetric migration can lead
to sustenance of cooperation if the colonies are of unequal
sizes and with unequal cooperator fractions. In fact, we see
in the bottom row of Fig. 3 that for very small migration
rate of cooperators, the TOC is averted more effectively in
one population than the other which is sustained even with
high defector fraction (see Sec. IV C). (It is not uncommon to
find an ant colony with quite high defector fraction up to al-
most 50% [79].) Second, for relatively lower migration rates,
hostility averts TOC and leads to nonhomogeneous distribu-
tion of individuals across colonies. Third, equal sized stable
colonies (homogeneous states) exist only when hostility is in
action and such states do not coexist with extinction states—
meaning they are much more robust survival states compared
to the nonhomogeneous states. Therefore, although there are

various deciding factors behind unequal-size distribution in a
metapopulation—something generically seen in nature (e.g.,
in P. punctatus ants [83])—it appears that hostility is one of
them.

Furthermore, we would emphasize that this is the first
theoretical work which has successfully explained the surviv-
ability of the ant species P. punctatus, in the face of defectors’
selfish behavior, by using the direct observational data avail-
able on literature. Our mathematical model also shows that
their ability to discriminate strangers from neighbors (with
whom they interact multiple times) and to show more ag-
gregation towards the latter is evolutionarily justified as this
behavior further suppresses the possibility of extinction owing
to selfishness of the defectors.

Before we conclude, we must reiterate that in this paper,
we have considered this ant society—for which we fortunately
have access to some observational data in the literature—
as a convenient representation of the similar systems across
the living world and hence all the aforementioned lessons
gained are, in general, qualitatively applicable to many other
metapopulations as well.

While it is fascinating how much insight one has gath-
ered using deterministic mean-field kind of dynamics and
how well the dynamics conforms to the data available on P.
punctatus ant, carefully investigating the system as a stochas-
tic birth-death process [90–93] is necessary, especially when
the population size is not very high and the stochastic ef-
fects come to the fore. In fact, near the extinction state,
the stochastic effects are at their peak; moreover, for very
low values of Ni’s even talking about strategic interactions
among group of large size is not meaningful. Hence, what we
recognize as the extinction state in the deterministic model
essentially a state with low-enough population size such that
it is almost an extinction but high-enough population size
that mean-field model still makes some sense. The deter-
ministic model correctly tells whether an extinction state is
approached of not; the precise dynamics about the such a
low-populated state is, however, best studied stochastically.
We would like to bring the effects of stochasticity, delays
[94,95], structured matapopulation [96] into the scope of fu-
ture investigations. Spatially restricted migration in structured
population is known to avert extinction [77]. Also, extending
this work to the cases with more than two kinds of individuals
[97]—not just cooperators and defectors—is an exciting av-
enue of research as it opens up possibilities of more complex
scenarios encountered in the multistrategy games [98].
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APPENDIX: PGG IN METAPOPULATION

Let us now discuss the case where one goes beyond
the simultaneous two-player interaction to simultaneous
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multiplayer interaction, or in other words, we consider NPD
(N-player PD) instead of PD. If we further consider the form
of PD that corresponds to the additive model studied by
Hamilton [99] and Trivers [100], then it is equivalent to a PGG
game [101]. Specifically, the form of the payoff matrix under
consideration is [b − c −c

b 0 ], where b is the benefit rendered
by a cooperator while incurring a cost c; defectors neither
provide any benefit nor incur any cost. We note that the payoff
matrix chosen in the main text is only ordinally equivalent to
the aforementioned payoff matrix. In the setting of the PGG,
suppose that a finite number of individuals in a population ran-
domly form a group. All the cooperators contribute towards a
public good which is utilized equally by the all members of
the group; none of the defectors contribute anything.

We assume that the group is formed within a popula-
tion through binomial sampling where the probabilities of
choosing a cooperator and defector respectively are the over-
all frequencies of the cooperators and the defectors in that
population. Thus, the probability of a focal cooperator finds
herself in a group of size G consisted of k other cooperators is(G−1

k

)
xk

i (1 − xi )G−1−k ∀k ∈ {0, 1, . . . , G − 1}, where xi is the
frequency of the cooperators in the ith population [102,103].
Here

(a
b

)
is the binomial coefficient—“a choose b.” Further-

more, we consider the public good is linearly proportional to
the total contribution made by the cooperators. Accordingly,
the effective fitness of a cooperator becomes

f C =
G−1∑
k=0

(
G − 1

k

)[
αc(k + 1)

G
− c

]
xk

i (1 − xi )
G−1−k,

= αc(G − 1)xi

G
+ αc

G
− c, (A1)

where c is the contribution by a cooperator and α is the
synergy factor. Similarly,

f D =
G−1∑
k=0

(
G − 1

k

)[
αck

G

]
xk

i (1 − xi )
G−1−k

= αc(G − 1)xi

G
(A2)

is the fitness of a defector.
From the expression of these fitnesses, it is clear that the

fitness of a cooperator is always less than that of the defector if
α/G < 1. This scenario leads the metapopulation towards the
state of no cooperators and eventually it collapses. Similarly to
the PD, here also we elucidate how the asymmetric migration
and hostility prevents this tragic fate. Now with these fitnesses
[Eq. (A1) and Eq. (A2)], Eq. (3a) and Eq. (3b) have only
two homogeneous fixed points, (NC∗

i , ND∗
i ), inside the allowed

region of the phase space: (0,0) and [c(α − 1)/δ, 0]. The first
fixed point indicates the extinction and the second one is the
most prosperous state. The latter one is always unstable and
the first one is always stable. Along with these two corner
fixed points, there may exist some nonhomogeneous internal
fixed points whose existence and stability conditions are only
numerically accessible. Owing to indistinguishability (as far
as the parameter values are considered) of the two colonies,
any nonhomogeneous fixed point appears in pair. The stable
pair consists of larger number of total cooperators compared

FIG. 6. Hostility averts extinction: This figure depicts the sta-
bility diagram of Eq. (3a) and Eq. (3b) with PGG (α = 5,
G = 6, and c = 1/4) as the underlying game structure. We also fix
δ = 10−4 and M = 2. By keeping the hostility (h) fixed, we vary μC

along x axis and μD along y axis for generating every panel. Red,
yellow, and blue respectively depict the parameter region for which
the metapopulation goes extinct, sustains bistability between extinc-
tion and nonhomogeneous extant state, and sustains homogeneous
extant state. Panel (a) is for the nonhostile case while panel (b) is for
the hostile case with h = 0.5. The lower row of panels (c) to (d) is
zoomed in plots about the origin and the value of hostility increases
from (a) to (d) as marked in the figure; here the ranges of μC and μD

are close to what was reported for P. punctatus [76,77].

to the unstable pair. Depending on the exact initial condi-
tion, degeneracy is lifted and one in the stable pair is the
observed equilibrium solution. Thus, we have a multistable
system where the extinction is bypassed if the migration is
asymmetric and the number of cooperators is above a thresh-
old. The surviving state is not homogenous and requires quite
high value of μD (	 10−2, the value for the ants) for its
existence.

Now if we introduce hostility, the two homogeneous corner
fixed points—(0,0) and (c[α − 1]/δ, 0)—are modified to (0,0)
and ([c{α − 1} − hμC]/δ, 0). No homogeneous internal fixed
point exists. Interestingly, in contrast with the case of without
hostility, here the latter one (prosperous state) can become
stable if c(1 − α/G) < ν [where ν = h(μD − μC )]; otherwise
the first one (extinction state) is stable. The existence and
stability conditions of the nonhomogeneous fixed points are
found numerically. One quick observation is that the bista-
bility between the extinction state and the nonhomogeneous
fixed points is always present irrespective of the parameters’
values, and always remains in the region where the prosperous
state is unstable. However, with the hostility in action, the
prosperous state can be stable for a lower value of μC ∼ 10−5

and μD ∼ 10−2 which is observed in the ant. The argument
around Eq. (10) is also valid here meaning that the symmet-
ric migration makes the extinction unavoidable fate for the
metapopulation.

We present the summary of the results in Figs. 6 and 7
where, for illustrative purpose, we use the parameters which
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FIG. 7. Hostility averts the TOC: The first row represents the realization and the prevention of the TOC in metapopulation playing PGG,
whereas the second row represents the same for the constituent populations and colonies separately. We find that the presentation is conspicuous
if we plot the logarithm of the total number of cooperators; for the extinction state we replace NC

1 = NC
2 = 0 with a small number, 10−20. Fixed

parameters are same as in Fig. 6. The red and the darkest green regions respectively depict the complete realization and the prevention of TOC,
whereas the all other colors represent the partial TOC. We can see [in (a), (c), and (d)] that the TOC is an unavoidable fate without hostility;
however [as shown in (b), (e), and (f)] with hostility (h = 0.5), the prevention of TOC always possible for suitable parameter values.

closely encapsulates the fitnesses of the ant colonies (P. punc-
tatus). The following values of the parameters, i.e., c = 1/4
and α = 5, represent the order unity fitness of a cooperator in
the absence of any defector [83]. We use the value of G = 6
(> α = 5) to exemplify the fitness of a defector that is more
than of a cooperator [76]. Finally, we let μC ∈ [0, 0.04] and
μD ∈ [0, 0.3] to vary over a larger range to illuminate all
possible outcomes. Hostility, h, can vary from 0 to 1.

One interesting observation is worth pointing out: While
in the PD case, high-enough hostility does not even let the

extinction state coexist with the metapopulation state with
N1, N2 > 0 and N1 �= N2 (see Fig. 2); in the case of the PGG
(see Appendix), hostility cannot do so (see Fig. 6). This
coexistence between all defector state (that essentially leads
to extinction) and a mixed state (mixture of cooperators and
defectors) is reminiscent of coexistence of the PD and the an-
ticoordination game solutions—something that is achieved in
the presence of the nonlinear PGG only [103]. It, thus, appears
that migration is a probable route to such game coexistences
in the linear PGG.
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