
PHYSICAL REVIEW E 108, 064304 (2023)

Reservoir computing with higher-order interactive coupled pendulums
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The reservoir computing approach utilizes a time series of measurements as input to a high-dimensional
dynamical system known as a reservoir. However, the approach relies on sampling a random matrix to define
its underlying reservoir layer, which leads to numerous hyperparameters that need to be optimized. Here,
we propose a nonlocally coupled pendulum model with higher-order interactions as a novel reservoir, which
requires no random underlying matrices and fewer hyperparameters. We use Bayesian optimization to explore the
hyperparameter space within a minimal number of iterations and train the coupled pendulums model to reproduce
the chaotic attractors, which simplifies complicated hyperparameter optimization. We illustrate the effectiveness
of our technique with the Lorenz system and the Hindmarsh-Rose neuronal model, and we calculate the Pearson
correlation coefficients between time series and the Hausdorff metrics in the phase space. We demonstrate the
contribution of higher-order interactions by analyzing the interaction between different reservoir configurations
and prediction performance, as well as computations of the largest Lyapunov exponents. The chimera state is
found as the most effective dynamical regime for prediction. The findings, where we present a new reservoir
structure, offer potential applications in the design of high-performance modeling of dynamics in physical
systems.
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I. INTRODUCTION

Reservoir computing (RC) [1], commonly described as a
generalization of echo-state networks [2] or liquid state ma-
chines [3], is gaining popularity as a powerful and effective
machine learning tool for the reconstruction and even pre-
diction of many complex systems, including low-dimensional
chaotic systems [4–6], neuronal models [5,6], and spatiotem-
poral chaos [4–7]. A total of three weight layers are involved
in RC’s architecture [8], as shown in Fig. 1. The input weight
matrix and a reservoir network matrix are randomly generated
and fixed, while only one output weight matrix is amenable
to training. For the task of predicting the state variables
of a dynamical system, the reservoir computer is utilized
in two distinct phases. We define one configuration as the
training phase and the other configuration as the prediction
phase [8]. RC has been used successfully in tasks such as
accurate speech transcription [9], prediction in time series
data [6], control of dynamic processes [10], reconstruction
of system dynamics [11], and computations on peripheral
devices [12].

The technique of reservoir computing [5,13] significantly
simplifies the training of a recurrent neural network. However,
to maximize performance, one needs to carefully construct the
network’s topology, position it in the appropriate dynamical
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regime (typically task dependent), and ensure that the input
signal scaling is optimal. These factors generate a list of mul-
tiple hyperparameters that must be simultaneously tuned for
every benchmark assignment. Hyperparameter optimization
is the process of finding the right combination of hyper-
parameter values to achieve the maximum performance on
training data in a reasonable amount of time. Technically,
there are two distinct approaches. The first is manual hy-
perparameter tuning, which may involve many tests, and
can be computationally expensive. The second is automatic
hyperparameter tuning, which uses existing algorithms to
automate the process. The algorithm runs experiments to
extract the best set of hyperparameters to achieve the best
results. For example, grid search [6] works by trying all pos-
sible combinations of parameters in the model, it performs
an exhaustive search, which is computationally expensive.
A more scalable approach is to use a random search [14],
where random combinations of hyperparameter values are
used to find the best solution for the built model. However,
this may miss important values in the search space, and
does not take advantage of the structure of the search space.
Alternatively, the Bayesian optimization [15,16] method min-
imizes the loss function by changing the model parameters,
which can find the point of the minimum loss function in
fewer steps. This optimization is less susceptible to local
minima than gradient descent techniques [17]. The Bayesian
optimization [15,16] uses the acquisition function [18] to di-
rectly sample areas that are likely to be better than the current
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best observation results, that is, there is both exploitation and
exploration here. The Bayesian optimization combines the
advantages of both random search and grid search strategies,
including higher efficiency, adaptability, effective handling
of high-dimensional problems, and robustness to noise and
uncertainty [6,14–18].

In general, the reservoir layer is constructed as a network
of interacting entities with a random topology. Numerous
topological structures have been proposed and studied, in-
cluding Erdos-Rényi networks [19,20], small-world networks
[21,22], as well as cycle linear networks [15]. The perfor-
mance of reservoir computing for a specific task is optimized
by modifying hyperparameters, or large-scale network prop-
erties, while constraining others. To successfully serve as a
substrate for RC, a dynamical system needs to possess only
a few basic properties [23], such as the separation property
[24] (different inputs result in distinct outputs), the approxi-
mation property [25] (similar inputs result in similar outputs),
the fading memory property [26] (information about recent
inputs is retained), and the consistency property (outputs are
a function of input). Those translate to the requirement that
the dynamical system must generate a variety of nonlinear
functions pertinent to a given task, and this complexity can
be manifested in mechanical systems [5].

Mechanical systems [5] are composed of an array of el-
ements, most of which exhibit nonlinear dynamics, leading
to the inherent complexity. However, the complexity can
be exploited advantageously to generate the rich nonlinear
dynamics required for RC, making them viable options for
physical reservoirs [5]. RC with a mechanical system repre-
sents a contemporary approach [5] that leverages the inherent
dynamics of the physical structure for computational pur-
poses. The reservoir of a mass-spring network [27,28] can
be used for pattern generation tasks [28], the structure of a
tensegrity robot is designed for developing planetary rovers
[1,10,29] as a reservoir, the body of a soft machine [29–31]
serves as a computational reservoir, facilitating the processing
of control actions and the transmission of computations to
remote locations, and an origami structure [32] can function
as a dynamic reservoir, possessing the requisite computational
capacity to model nonlinear systems. In addition, spin-torque
oscillator arrays [33] exhibit optimal reservoir computing per-
formance at the synchronization-disorder boundary. Utilizing
spin-wave dynamics, magnetic skyrmion crystals [34] offer a
simplified, yet highly effective method for spintronics reser-
voir computation. Other classifications of high-dimensional
systems, including swarms [23], cellular automata [35,36],
and coupled phase oscillators [37,38], have also been utilized
as reservoirs. Overall, physical implementations of the RC
principle that have the potential for rapid and efficient com-
putation [5].

Coupled dynamical networks, which are essential to the
development of physical models, provide a comprehensive
framework for interpreting phenomena in the fields of com-
puting, information, biology, chemistry, engineering, and the
social sciences [39]. Especially, the coupled chain of pendu-
lums serves as a model for various physical processes [40],
encompassing coupled Josephson junctions, charge density
wave conductors, metal crystal dislocations, and this chain

replicates spike and burst behaviors observed in neurons [40].
Currently, no reservoirs use the coupled pendulums model,
although the model [20,39,40] has been extensively studied
in other settings. Coupled networks draw inspiration from
the structure of the brain, which needs to transform from
only considering paired interactions to capturing higher-order
relationships. Pairwise interactions are insufficient to capture
the complex interactions among dynamical elements. Higher-
order interactions, which stand out by creation of complex
patterns as a result of interactions among multiple bodies,
become of utmost significance. Richer dynamics are a general
phenomenon emerging from higher-order interactions that
has been proven [41]. Incorporating high-order interactions
into a coupled pendulum system enables richer dynamical
behaviors [40], making it an attractive option for physical
reservoirs.

In this work, we show that a system of coupled pendulums
with higher-order interactions can serve as a reservoir. The
coupled pendulum model is a complex system made up of nu-
merous single oscillators interacting. The power of this model
lies in the fact that we consider higher-order interactions. We
introduce higher-order interactions through one node being
affected by a nonlinear combination of the states of several
other nodes. The RC structure proposed in this work differs
from previous structures in that it is not randomly generated,
and we show that a rule structure with high-order interactions
can also act as an observer in the reservoir.

The rest of the paper is organized as follows. In Sec. II, we
outline the reservoir computing configuration utilizing cou-
pled pendulums with higher-order interactions as a reservoir.
We describe the Bayesian optimization approach to choose
the best hyperparameters of the reservoir. In Sec. III, we il-
lustrate the ability of our reservoir to replicate the (long-term)
attractor dynamics using the well-known Lorenz-63 chaotic
system and Hindmarsh-Rose neuronal model. In Sec. IV,
we evaluate the results of our simulations with two metrics,
the Pearson correlation coefficient and Hausdorff metrics,
and we analyze the influence of reservoir sizes and its be-
havior on our reservoir. We compare the task performance
without the terms of higher-order interactions and no non-
linearity when injecting inputs. To do this, we estimate the
largest Lyapunov exponent to describe the contribution of
our reservoir with the higher-order interactions and nonlin-
earity when inputting information, and we find the chimera
state to be the most effective dynamical regime for en-
hanced prediction. Finally, we conclude with a summary in
Sec. V.

II. RESERVOIR COMPUTING CONFIGURATION

Reservoir computing is an approach to transforming one
time-varying signal (the input to reservoir computing) into
another time-varying signal (the output of reservoir comput-
ing) by using the dynamics of an internal system known
as the reservoir—the reservoir acts as a dynamic nonlinear
filter with memory. We define our reservoir as the coupled
nonlinear oscillator network where each isolated oscillator
is forced, damped, and subjected to a periodic substrate po-
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FIG. 1. Diagrammatic representation of the reservoir computing
training and prediction structures. In the form of reservoir comput-
ing, there are three layers: the input layer, the reservoir layer, and the
output layer. Throughout the prediction process, this structure will
develop into a closed loop.

tential [37], and the whole network includes higher-order
interactions [40].

A. Coupled pendulums with higher-order interactions

Regarding the most basic simplicial complexes of higher
order in a network, we study not only pairwise connections,
such as links (one-simplex), but also nonpairwise connections,
such as the three-body interaction in the network known as tri-
angles (two-simplex) [40]. We provide an example to facilitate
intuitive comprehension of the network topology. Figure 2 de-
picts the network of oscillator interactions when N = 8, where
the red and green lines represent the interactions between two
and three oscillators, respectively. It is visible how pairwise
interactions progress into higher-order interactions [40].

The mathematical form of coupled pendulums with higher-
order interactions is given by

θ̈i(t ) = γ θ̇i(t ) + ωi − sin θi(t )

+ k1

N

N∑
j=1

Ai j sin[θ j (t ) − θi(t )]

+ k2

2N

N∑
j=1

N∑
k=1

Bi jk sin[θ j (t ) + θk (t ) − 2θi(t )], (1)

where i = 1, 2, . . . , N , θi is the angular position of the ith
oscillator agent, and N is the number of oscillator agents.
θ̇i and θ̈i are the angular velocity and angular acceleration

FIG. 2. Schematic of pairwise and three-body interactions in a
network with eight nonlocally coupled nodes. Examples of one-
simplex (red line) and two-simplex (green triangle).

of the ith unit in the phase space, respectively. We set the
underdamping coefficient γ = −0.32 [40], a constant force
ωi = ω = 0.7155 [40], and periodic boundary conditions with
θ0 = θN and θ1 = θN+1. The matrix A denotes the pairwise
adjacency matrix of the reservoir layer, and the tensor B is
the nonpairwise adjacency tensor of the reservoir layer. The
parameters k1 and k2 are the coupling strengths of low-order
(pairwise) and higher-order (nonpairwise), respectively.

B. Higher-order interactive coupled pendulums as a reservoir

In general, the reservoir is a complex dynamical system.
Here, the coupled pendulums model is a typical nonlinear
dynamic system with complex dynamic behavior, especially
when considering high-order interactions. We seek to utilize
this model as a reservoir for a reservoir computing system.

1. Internal reservoir construction

We need to determine how the signal can be injected into
the reservoir, the external fields or mechanical forces oper-
ating on oscillators are fixed by the input signal on which
computation is to be performed. Since the oscillator agents
are driven by external fields or other mechanical forces, their
motion is determined not only by the coupling between all
oscillator agents but also by the location and recent history of
the external fields or forces operating, and thus by the signal.
Therefore, we add an additional force to Eq. (1) and rewrite
it as:

θ̈i(t ) = (1 − ε)[γ θ̇i(t ) + ωi − sin θt (t )]

+ ε

{
k1

N

N∑
j=1

Ai j sin[θ j (t ) − θi(t )]

+ k2

2N

N∑
j=1

N∑
k=1

Bi jk sin[θ j (t ) + θk (t ) − 2θi(t )]

+ α tanh[Winu(t ) + β]i

}
, (2)

where the M-dimensional input u(t ) is fed into the N reservoir
nodes via a linear input weight matrix denoted by Win ∈
RN×M . The parameter 0 < ε � 1 represents the leakage rate,
modulating the reservoir’s temporal dynamics by balancing
the influence between past and present inputs. As ε → 0, the
evolution of the reservoir slows down [19]. The parameter α

denotes the coupling strength of the input data, and β is the
input bias vector [28], whose elements are randomly chosen
at an interval [−0.989, 0.989]. Each dimension of the vector
u(t ) = [u1(t ), u2(t ), . . . , uM (t )]T represents the input data1

and the vector θ(t ) = [θ1(t ), θ2(t ), . . . , θN (t )]T signifies the
phase of a single network node. The tanh(· · · ) is a typical

1We perform preprocessing on all the components of u(t ). After
normalization, the value of each element is in the range of [−1, 1].
The purpose of this normalization process is to map the data to a fixed
range, eliminate dimension effects, and avoid numerical instability,
thereby improving the performance of the reservoir.
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FIG. 3. Reservoir computing with higher-order interactions pendulums reproduces the original attractor obtained using regular networks.
The framework of the configuration of our coupled pendulums reservoir in the corresponding training and prediction phases. A reservoir
computer consists of three parts, an input layer, a reservoir layer, and an output layer. The matrices Win and Wout denote the input-to-reservoir
and reservoir-to-output weights, respectively.

activation function of the reservoir nodes that operates com-
ponentwise on vectors [15]: tanh(x)i = tanh(xi ).

2. Training step

Figure 3 depicts our reservoir configuration using the
Lorenz-63 system [11] as input. A normalized input
u(t ) = [x(t ), y(t ), z(t )]T signal is coupled to the reservoir
via Win and combined with the reservoir state θ(t ) =
[θ1(t ), θ2(t ), . . . , θN (t )]T to produce θ(t + �t ) = [θ1(t +
�t ), θ2(t + �t ), . . . , θN (t + �t )]T . The reservoir state vector
is given by Eq. (2), and the reservoir nodes contain both
pairwise and higher-order couplings, as depicted in Fig. 3 by
the red lines and green triangles, respectively. The final trained
output v(t ) is obtained by combining the reservoir states θ(t )
with the trained readout weight matrix W out:

v(t ) = W outθ(t ). (3)

The key aspect of reducing the complexity that makes
reservoir computing consequently simple and computation-
ally efficient is the linearization of the training-to-output
process [6]. The least-squares solution [6,23] is readily han-
dled by matrix computations. We choose W out by minimizing
the difference between the true v̂(t ) and the trained output
v(t ). To do this, a loss function is designed as:

T∑
t=0

‖v̂(t ) − W outθ(t )‖2 + φ‖W out‖2. (4)

In a bid to prevent overfitting, the second term in the er-
ror function modifies ordinary linear least-squares regression;
this modification is often referred to as ridge regression or
Tikhonov regularization [6]. We present results using the ridge
regularization parameter φ = 10−7. If the training phase is
successful for 0 � t � T , the readout of the reservoir out-
put should provide a decent approximation W ∗

outθ(t ) of the
unmeasured quantity v̂(t ) for t > T . Equation (3) can be
reformulated as:

v̂(t ) = W ∗
outθ(t ), (5)

where W ∗
out denotes the solutions for the minimizers of

Eq. (4), as follows,

W ∗
out = δUδRT (δRδRT + φI)−1, (6)

where δU ∈ RM×T is the matrix whose kth column is u(k�t ),
δR ∈ RN×T is the matrix whose kth column is θ(k�t ), and I ∈
RM×T is the identity matrix. Now once W ∗

out is determined, the
reservoir computer is trained.

In the prediction phase, we substitute the output for the
input to the reservoir, and the reservoir system works au-
tonomously based on the equation

θ̈i(t ) = (1 − ε)[γ θ̇i(t ) + ωi − sin θt (t )]

+ ε

{
k1

N

N∑
j=1

Ai j sin[θ j (t ) − θi(t )]

+ k2

2N

N∑
j=1

N∑
k=1

Bi jk sin[θ j (t ) + θk (t ) − 2θi(t )]

+ αtanh[W inW ∗
outθ(t ) + β]i

}
, (7)

which is independent of the input u(t ) and runs autonomously.

3. Bayesian optimization on reservoir computing

To maximize reservoir performance, we aim to discover
the global optimal hyperparameters in the fewest possible
steps [42]. Here, we apply Bayesian optimization to a sit-
uation in experimental large-scale reservoir computing. The
implementation of the Bayesian optimization [16,18] requires
the definition of surrogate and acquisition functions [18,19].
The surrogate function is used to fit the relationship between
hyperparameter and performance, and the acquisition function
is used to determine which hyperparameter to try in the next
iteration.

Bayesian optimization is an iterative process, as shown in
Algorithm 1. First, randomly try a set of points (hyperpa-
rameters) to get the corresponding performance, then use the
surrogate function to fit the results of Step 1, and determine
the next time according to the acquisition function to iterate
over points to try until the stop condition is satisfied.
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Algorithm 1: Bayesian optimization to find the optimal
hyperparameters

Presteps: Set the search space for hyperparameter and acquisition function

Select surrogate function

1: Randomly try some points (hyperparameters) in the parameter space

to get their performance (call it Box)

2: Use the surrogate function to fit the results of step 1

3: Repeat

4: Add an additional set of hyperparameters to Box based on

acquisition function

5: Reevaluate the surrogate function

6: Until

7: Maximum surrogate function remains unchanged

8: Or reached a preset number of iterations

Output: Best accuracy and a set of hyperparameters

(1) Acquisition function: setting a specific required objec-
tive function. During the training process of the algorithm,
the goal is to make the objective function value lower. We use
root mean square error (RMSE) over a certain period of time
as the objective function and max(0, RMSEbest − RMSE ) as
an acquisition function.

(2) Surrogate function: performing the Bayesian hyper-
parameter optimization process. The objective function is
minimized by the surrogate function after iterating through
each model and the search space. There are four different
optimization functions provided:2

(1) dummy minimize: using a random search within the
given boundaries via uniform sampling;

(2) forest minimize: using decision trees for sequential
optimization;

(3) gbrt minimize: using gradient boosted trees for se-
quential optimization; and

(4) gp minimize: using Gaussian processes for
Bayesian optimization.
In addition, the objective function accepts a vector of reser-

voir hyperparameters and returns a real value. The smaller the
real value, the better the performance of the reservoir. The
search space refers to the possible value range of the reservoir
hyperparameters. Usually, the search space is a hypercube,
and we choose the hyperparameter ranges in order to explore
the space without having to run the algorithm for an unrea-
sonably lengthy time, as well as to include the values that
existing heuristics would pick. Based on this approach, we
learn through numerical simulations that our reservoir com-
puting can be used to predict the time series and reproduce
climate in the chaotic system.

2The SCIKIT-OPTIMIZE package offers a variety of surrogate func-
tions in PYTHON. The following PYTHON version and packages
are necessary for SCIKIT-OPTIMIZE. PYTHON >= 3.6, NUMPY (>=
1.13.3), SCIPY (>= 0.19.1), JOBLIB (>= 0.11), SCIKIT-LEARN >=
0.20, MATPLOTLIB >= 2.0.0, and then import crucial packages in-
cluding SCIKIT-OPTIMIZE.

TABLE I. The range of hyperparameters sought via Bayesian
optimization.

Hyperparameters Min Max

ε 0.01 0.90
γ −2.30 −0.01
α 0.01 10.00

III. NUMERICAL RESULTS

In the following section, we show how our technique can
accurately predict the short-term state and long-term dynam-
ical behavior (the so-called climate) of two distinct systems:
Lorenz-63 chaotic system, which serves as an ideal and well-
known benchmark for evaluating the computational of RC,
and the Hindmarsh-Rose neural model, a typical representa-
tive of a multiscale model. The choice of these systems as
benchmarks is aimed to elucidate the predictive capabilities
of our technique.

A. Lorenz-63 chaotic system

According to Lorenz’s chaotic system of 1963 [43],

ẋ = 10(y − x)

ẏ = x(28 − z) − y

ż = xy − 8

3
z.

(8)

Based on Bayesian optimization on reservoir computing,
the following are steps of our reservoir computer’s Bayesian
optimization for the Lorenz-63 chaotic system:

(1) Defining the objective function. Consider RMSE as
an evaluation indicator and minimizing it as the objective
function;

(2) Defining the search space. Select the hyperparameter
space includes three hyperparameters: ε, γ , and α, as shown
in Table I.;

(3) Initializing the optimizer. Choose the Bayesian opti-
mizer and initializing the optimizer according to the search
space;

(4) Performing optimization. Use an optimizer to itera-
tively optimize the objective function until a certain stopping
condition is reached, such as reaching the maximum number
of iterations or achieving convergence of the objective func-
tion;

(5) Obtaining optimal parameters. Obtain the final vector
of reservoir computing hyperparameters from the optimiza-
tion is the optimal solution of the objective function.

The optimizer builds a reservoir with the selected hy-
perparameters for each iteration, trains it using the steps
outlined in Algorithm 1, and evaluates its performance using
max(0, RMSEbest − RMSE ). It selects a new set of hyper-
parameters to test based on this measurement that may be
closer to the desired values. Before producing an optimized
reservoir, we restrict 200 iterations to a maximum of reservoir
performance. Once optimized, we evaluate the convergence
results of different surrogate functions and see how our model
improves its optimal performance in each iteration. Four
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FIG. 4. Convergence results with four different surrogate func-
tions to see how the best performance of the model can be improved
in each iteration. The minimum RMSE value found (y axis) as a
function of the number of iterations (x axis) executed so far.

different surrogate functions are gbrt, dummy, forest, and gp
minimize approaches, as shown in Fig. 4. The four approaches
converge as the number of iterations increases, especially
the gp minimize function, which has the fastest convergence
speed and is the optimal convergence value. Thus, gp min-
imize is used as the surrogate function in the following
simulations.

Figure 5 shows the evolution of the gp minimize surrogate
function. For each set of hyperparameters, a histogram is
obtained. For each set of hyperparameters, the scatter plot of
sampled values is represented by color. A two-dimensional
scatter plot of every point is displayed in the lower triangle.

FIG. 5. Visualize the sampling order of the points used for
optimization on the three-by-three grid. The diagonal plots are
histograms that illustrate the distribution of samples for each search-
space dimension, and the plots below the diagonal are scatter plots
of the samples for all combinations of search-space dimensions. The
order of sample evaluations is transmitted in the color of each point.
A red star denotes the best-found hyperparameters.

FIG. 6. The distribution of the objective function value when
each hyperparameter changes separately. The graph on the diagonal
shows the degree of influence of the hyperparameter on the objec-
tive function. The horizontal and vertical axes represent the value
range of the hyperparameter, the color represents the corresponding
objective function value, and the brighter color represents the higher
objective function value.

The order in which points are evaluated is encoded in the
color of each point. Darker (purple) colors correspond to
earlier samples, and lighter (yellow) colors correspond to later
samples. A red star point shows the location of the minimum
found by the optimization process. The points begin to gather
around the true minimum position. Each of the dimensions’
histograms is displayed on the diagonal. The histogram shows
that targets are evaluated more frequently near one of the three
minimum values.

Partial dependence plots were proposed by Friedman [44]
as a method for interpreting the importance of input features
used in gradient boosting machines. The advantage lies in the
intuition of fractional sensitivities associated with hyperpa-
rameters. It is possible to decide which parts of the space
require a more fine-grained search, and to check out which
hyperparameters barely affect the score, and may be removed
from the search. The plot on the diagonal is the distribution
graph of the objective function value when each hyperparam-
eter is used as an axis alone in Fig. 6. We can visualize the
one-dimensional partial dependence of the surrogate model. If
the shape in the graph appears as a flat line, the objective func-
tion is not affected by this hyperparameter. If the plot on the
diagonal shows a certain shape, it indicates that the objective
function is very sensitive to the value of the hyperparameter
or has a very high optimal value in a certain range of the
hyperparameter. The horizontal and vertical axes in the lower
triangle represent the value range of each hyperparameter,
respectively. The color represents the corresponding objective
function value, the brighter the color, the higher the objective
function value.

Figures 4–6 indicate that the optimal hyperparameters
are determined to be ε = 0.81, γ = −0.01, and α = 9.42,
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FIG. 7. The predicted state (red) of the optimized reservoir and
the actual trajectories (blue) of the Lorenz-63 system for 0 < t �
20. The values of the hyperparameters are ε = 0.81, γ = −0.01, and
α = 9.42.

respectively. We produce a prediction of the Lorenz-63
chaotic system using the best performing optimized hyperpa-
rameters RC and use these predictions to show the time series
and the attractor.

Figure 7 depicts the predicted time series for 0 < t � 20
for the trained and optimized reservoir. The reservoir (R1 sys-
tem) generates good short-term forecasts for approximately
14 time units. It then tends to deviate from the actual Lorenz
trajectories. The long-term dynamics resemble the features
of the original Lorenz system in Fig. 8(a), and the attractor
is reproduced. A more detailed evaluation is necessary to
verify the accuracy of the climate. We plot the return map of
successive maxima of z(t ) in Fig. 8(b). Initially, we obtain z(t )
for 0 < t � 50 in both the actual and predicted time series.
Then, we identify all local maxima of the actual and predicted
z(t ) in time order and label them [z1, z2, . . . , zm]. Following
which, consecutive pairs of these maxima [zmax

i , zmax
i+1 ] for

i = 1, 2, . . . , m − 1 are plotted as points in Fig. 8(b), and the
blue (truth) dots remain covered with red (prediction) dots, the

FIG. 8. (a) Motion in phase space for the actual (blue) and pre-
dicted (red) trajectories for 0 < t � 50. (b) Poincaré return map of
successive local maxima of z(t ) for the actual (blue) and predicted
(red) trajectories for 0 < t � 50. Both (a) and (b) utilize the same
conditions as Fig. 7.

TABLE II. Best reservoir computers using hyperparameter set-
tings of various reservoir sizes following 200 iterations of the
Bayesian optimization algorithm using the Lorenz-63 chaotic system
as input. The algorithm-selected hyperparameters are displayed on
the right.

parameters Lorenz-63 chaotic system

ε γ α

N = 100 0.89 −1.44 9.06
N = 200 0.76 −0.01 9.14
N = 300 0.85 −0.01 7.40
N = 400 0.03 −1.48 1.78
N = 500 0.91 −0.01 5.96
N = 600 0.90 −0.01 6.92
N = 700 0.81 −0.01 9.33
N = 800 0.81 −0.01 9.42
N = 900 0.90 −0.09 5.96
N = 1000 0.90 −0.01 8.40

local maximal value for the truth and the prediction are at the
same point. Consequently, the reservoir appears to reproduce
the long-term climate of the attractor.

As shown in Table II, we use Bayesian optimization to find
the optimal hyperparameter with different number of oscilla-
tors. It can be seen from the table that no matter the number
of the oscillators, the optimal hyperparameter has preferential
characteristics, and there is always a part of the number that
is always selected as the optimal value. The first hyperparam-
eter ε frequently appears around 0.8 across various reservoir
sizes. The most common value of the second hyperparameter
γ is approximately −0.01. Interestingly, the optimal values
of the first two parameters occur near the search boundary.
These tendencies, as identified by the Bayesian optimization
approach, suggest the existence of a possible underlying struc-
ture in the space and emphasize the significance of these
hyperparameters in achieving optimal performance.

B. Hindmarsh-Rose neural model

Neurons can exhibit chaotic behavior, characterized by
irregular quantities of spikes per burst and irregular time
intervals between bursts. These behaviors can be imitated
by the Hindmarsh-Rose (HR) neuronal model. The system
consists of a set of three first-order differential equations with
dimensionless variables representing the voltage variable x,
the spiking variable y, and the bursting variable z. The state
evolution of the HR neural model is given by [45]

ẋ = y − x3 + 3x2 − z + 3.25

ẏ = 1 − 5x2 − y

ż = 0.005[4(x + 1.6) − z].

(9)

The model Eq. (9) can be segregated into a fast subsystem
made up of the first two equations and a slow subsystem made
up of the third equation. For the neuron with parameters fixed,
the neuronal dynamic displays chaotic behavior in Fig. 9(a),
with irregular numbers (four or five) of spikes per burst as well
as irregular time intervals between bursts in Fig. 9(b). Since
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FIG. 9. (a) Chaotic motion of Hindmarsh-Rose neural model.
(b) The time series of variable x in the Hindmarsh-Rose neural
model.

the HR neuron model is a fast-slow system, the reservoir layer
is required to learn both the dynamical characteristics of the
slow variable and the fast variable after training, that is, the
reservoir has to learn the timescale of the input (a fast-slow
system), which increases the difficulty of prediction.

In this case, we use a vector u(t ) = [x(t ), y(t ), z(t )]T of
HR neural model states for which we extract 60000 training
data points as input signal for training the reservoir with time
step 0.01, and the following 35000 data points as the desired
output. The input and output data points are carried on data
preprocessing. We show the results of training a reservoir
computer to predict the future behavior of the HR neural
model in Fig. 10. In the short term, the reservoir generates
accurate predictions, but as time evolves, it diverges from the
actual neuronal trajectory. After the predicted trajectory starts
to diverge from the actual trajectory at about time 249, as
shown in Fig. 11, the two trajectories continue to exhibit the
same qualitative behavior.

The long-term dynamics resemble the characteristics of
the Hindmarsh-Rose neural model illustrated in Fig. 11. We
obtain x(t ) for a period 0 < t � 350 for both the actual and

FIG. 10. The predicted state (red) of the optimized reservoir and
the actual trajectories (blue) of the Hindmarsh-Rose neural model for
0 < t � 350. The value of the hyperparameters are ε = 0.90, γ =
−0.01, and α = 8.64.

FIG. 11. (a) Motion in phase space for the actual (blue) and
predicted (red) trajectories for 0 < t � 350. (b) Poincaré return map
of successive local maxima of x(t ) for the actual (blue) and predicted
(red) trajectories for 0 < t � 350. Both (a) and (b) utilize the same
conditions as Fig. 10.

predicted time series. Then, all local maxima of the actual
and predicted x(t ) are identified in time order and labeled
as [x1, x2, . . . , xm]. Consequently, successive pairs of these
maxima [xmax

i , xmax
i+1 ] for i = 1, 2, . . . , m − 1 are depicted as

points in Fig. 11(a), and the blue (truth) points remain covered
with red (prediction) points in Fig. 11(b), indicating that the
local maximal value for the truth and the prediction are simi-
lar. Therefore, the reservoir appears to replicate the long-term
climate of the attractor.

Next, we consider a network of reservoirs with different
sizes N ranging from 100–1000. The input weight ma-
trix W in ∈ RN×M elements are obtained from an uniform
distribution with values between −0.98 and 0.98, with a reg-
ularization factor of 10−7. Refer to Table I for the selection
of hyperparameters, and the iterations of the Bayesian opti-
mization algorithm is 200. The above settings are the same
as Lorenz. The advantage is that we do not need to change the
structure of the reservoir itself for specific tasks. The selection
of hyperparameters appears with various reservoir sizes, as
summarized in Table III. The three hyperparameters ε, γ ,
and α, vary with different reservoir sizes without a noticeable
trend.

TABLE III. Best reservoir computers using hyperparameter set-
tings of various reservoir sizes following 200 iterations of the
Bayesian optimization algorithm using the Hindmarsh-Rose neural
model as input. The algorithm-selected hyperparameters are dis-
played on the right.

parameters Hindmarsh-Rose neural model

ε γ α

N = 100 0.01 −1.26 10.00
N = 200 0.01 −2.30 8.54
N = 300 0.14 −0.31 4.74
N = 400 0.01 −2.30 0.96
N = 500 0.90 −0.01 8.46
N = 600 0.89 −0.02 9.78
N = 700 0.90 −0.01 10.00
N = 800 0.60 −0.60 7.93
N = 900 0.85 −0.87 6.13
N = 1000 0.90 −0.01 10.00
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IV. EVALUATION

A. Tool for evaluating production ability of reservoir

To calculate our reservoir’s capacity, we utilize the Haus-
droff metric and the Pearson correlation coefficient. Assuming
predicted state v(t ) = [xv (t ), yv (t ), zv (t )]T in the prediction
phase T � t � T1, the corresponding true state at time t is
u(t ) = [xu(t ), yu(t ), zu(t )]T .

The Pearson correlation coefficient is defined as the quo-
tient of covariance and standard deviation between two
variables, and we use the variable x(t ) to calculate its Pearson
correlation coefficient,

ρXv ,Xu = cov(Xv, Xu)

σXv
σXu

= E [(Xv − μXv
)(Xu − μXu )]

σXv
σXu

=
∑T1

t=T (Xv (t ) − X̄v (t ))(Xu(t ) − X̄u(t ))√∑T1
t=T (Xv (t ) − X̄v (t ))2

√∑T1
t=T (Xu(t ) − X̄u(t ))2

,

(10)

where Xv is a time series of xv , and Xu is a time series of xu.
The Pearson correlation coefficient ρXv ,Xu varies from −1 to
1. The values of ρXv ,Xu = 1 or ρXv ,Xu = −1 mean that Xv and
Xu are well described by linear equations, and all data points
fall nicely on a straight line, and ρXv ,Xu = 0 means that there
is no linear relationship between the two variables. For the
intuitiveness of the calculation results, let rρ = |ρXv ,Xu |, rρ is
greater than 0 and less than or equal to 1, and the larger rρ is,
the more correlated the two variables are.

The Hausdorff metric is a measure that describes the simi-
larity between two sets of point sets, and it is defined as:

d (Xv, Xu) = max

{
sup

xv∈Xv

inf
xu∈Xu

d (xv, xu), sup
xu∈Xu

inf
xv∈Xv

d (xv, xu)

}
,

(11)

where sup and inf represent the least upper bound and greatest
lower bound, respectively. The quantity d (Xv, Xu) is the bidi-
rectional distance between the prediction set Xv and truth set
Xu. The smaller d (Xv, Xu), the more accurate the prediction.

B. Influence of reservoir size on RC capability

Investigating the effect of various reservoir sizes on com-
putational capabilities may be of interest: while the memory
capacity increases with the number of reservoir units, the
prediction of time series requires only a finite amount of mem-
ory. The Pearson correlation coefficient rρ and the Hausdorff
metric d (Xv, Xu) are plotted against the total reservoir size
in Figs. 12(a) and 12(b), respectively. The predictive perfor-
mance shows an upward trend as the size of the reservoir
increases, until the size of the reservoir equals 800. Although
the size of the reservoir continues increase to 1000, it does
not affect the prediction. However, there is no improvement
in predictive accuracy when using the same training data set
as the reservoir size exceeds 1000 in Fig. 12. An explanation
could be the advent of overfitting as a result of a reservoir
that is disproportionately large to the available training data.
In the field of RC, the complexity of the dynamics it can
capture increases with reservoir size. Without a proportional
increase in the training data, this could result in the model

FIG. 12. Our reservoir requires only a modest amount of storage
space for time series forecasting. (a) Variation of the Pearson corre-
lation coefficient rρ as a function of reservoir size. (b) Variation of
the Hausdorff metric d (Xv, Xu) as a function of reservoir size.

memorizing the training data rather than generalizing, which
is a sign of overfitting. Therefore, our reservoir only requires
a small storage capacity for time series prediction.

C. Influence of reservoir behavior on RC capability

Coupled pendulums with higher-order interactions have
been shown to exhibit numerous types of behaviors, from
coherent motion to chimera states and even incoherent mo-
tion. The purpose of this investigation is to determine what
types of collective behavior, if any, are best able to listen
the input signals. By analyzing the global order parameter R
[38], the collective behaviors observed in this study can be
classified into two types: non-chimera and chimera states with
spatial features. The measurement R [38] does not perfectly
depict the complex dynamics of the coupled pendulums with
higher-order interactions as it is a global metric for stationary
state, however, for the purposes of this part of the exploration,
it is an adequate metric.

The relationship between the reservoir’s behavior and the
task performance of RC is illustrated in Figs. 13 and 14.
With hyperparameters ε = 0.10, γ = −2.30, and α = 0, the
RC dynamic is coherent, as depicted in Fig. 13(a), and the
snapshot confirms that all oscillators operate in synchroniza-
tion in Fig. 13(b), which represents a unique coherent state
and its global order parameter R = 1. Under hyperparameters
ε = 0.81, γ = −0.01, and α = 0, the emergence of a chimera
state is observed, as reflected in both the spatiotemporal plot
Fig. 13(c) and the snapshot representation where the green and
blue nodes represent an incoherent state, while the red nodes
indicate a coherent one in Fig. 13(d). A detailed examination
of the first 50 oscillators showcases an amplified coherent
segment, indicating the presence of a multiheaded station-
ary chimera state, underscoring the intricate coexistence of
coherent and incoherent dynamics in the system. Moreover,
the global order parameter R for this configuration is 0.67,
which is consistent with the established criteria [38] for a
chimera state. For ε = 0.16, γ = −0.01, and α = 0, the dis-
tinctiveness of this state is characterized by the absence of any
synchronized regions in Fig. 13(f), with oscillators demon-
strating an entirely desynchronized spatial behavior across
the entire system in Fig. 13(e), which is a hallmark of the
incoherent state.

We now compare results for three simulations using reser-
voir configurations with coherent, chimera, and incoherent
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FIG. 13. The chimera state favors maximum information stor-
age and transfer. Left column: Spatiotemporal plots of the variable
θ̇ for node i = 1, 2, . . . , N . Right column: Snapshots of the vari-
able θ̇ at t = 50. All simulations under [(a) and (b)] coherent state
for ε = 0.10, γ = −2.30, and α = 0, [(c) and (d)] chimera state
for ε = 0.81, γ = −0.01, and α = 0, [(e) and (f)] incoherent
state for ε = 1.60, γ = −0.01, and α = 0.

states. The prediction x variable for 0 < t � 20 for trained
reservoirs is shown by pink dashed line (coherent state of RC),
red dashed line (chimera state of RC), and green dashed line
(incoherent state of RC) in Fig. 14. All those patterns of RC
generate correct short term predictions and then deviate from
the actual Lorenz-63 trajectories. However, after the failure

FIG. 14. Predictive performance across three different dynamical
states. The pink dashed line denotes predictions in the coherent
state, the red dashed line shows predictions in the chimera state, and
the green dashed line represents predictions in the incoherent state.
These results underscore the enhanced predictive potential associated
with the chimera state.

of the short-term prediction, the different patterns of reservoir
show substantially different predictions. With the incoherent
state of RC, although the prediction deviates from the actual
trajectory, the long-term behaviors appear to resemble that of
the original Lorenz system. In contrast, with the coherent state
of RC, which is not the case for reproducing the long-term
behavior of the Lorenz-63 system.

When comparing the predictive outcomes of RC with the
chimera state and the non-chimera state, the best performance
does come when the observer is in the chimera state, while
there are observers in the non-chimera state that cause the
testing and training errors to become larger as the reservoir
computing approaches coherent and incoherent states. We
emphasize that our finding is that information storage and
transfer are maximized in proximity to spatially characterized
locations, as depicted in Figs. 13(c) and 13(d). The result
highlights the essential role of the chimera state in forecasting
tasks, it is a prerequisite for the reservoir to produce good
predictions.

Regarding the observed tendency in Lorenz-63 system in
Table II, we delve into the interplay between these parame-
ters and system dynamics. Systems with hyperparameters that
display the described tendencies invariably manifest chimera
states. Taking the reservoir system with N = 800 as an ex-
ample, mirroring the behavior in other systems with similar
hyperparameter tendencies. As showcased in Figs. 13(c) and
13(d), the pattern of reservoir is the coexistence of coherent
and incoherent states. Contrastingly, when we deviate from
these hyperparameter tendencies, even if the parameters are
optimal, the dynamical behavior of the system might not nec-
essarily be that of a chimera. A case in point is the system with
N = 100 does exhibit non-chimera dynamic. This divergence
in dynamics, which is driven by hyperparameter selection,
reveals an inherent relationship: finding the proper balance
of hyperparameters may not be only about optimization in
the traditional sense, but rather about creating the precise
dynamical environment favourable to chimera formation. This
supports the idea that for certain computing outcomes, not
just any optimal state will suffice, the distinct dynamics of
a chimera state may be required.

D. Influence of higher-order interactions on RC capability

In this study, we focus on the analysis of the interactive dy-
namics shown by the coupled pendulums model, specifically
we consider the higher-order interactions. The incorpora-
tion of high-order interactions significantly enhances the
dynamical pattern of a reservoir [41], resulting in increased
complexity. This allows for a more accurate representation
of intricate nonlinear relationships and a more comprehen-
sive modeling of real-world phenomena. The process of
enrichment not only enhances the representation of complex
systems, but also enhances the reservoir’s ability to handle
advanced tasks. To show that the higher-order interactions
are important for the system to act as a reservoir, we keep
the other parameters of the RC unchanged but set the strength
of higher-order interactions k2 = 0, the coupled pendulums
model without higher-order interactions (R2 system), and then
train the reservoir using the same inputs.
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FIG. 15. The absence of higher-order interactions in the coupled
pendulums model leads to inadequate prediction performance in the
trained machines. The predicted state (red) of the optimized reservoir
without higher-order interactions, and the actual trajectories (blue)
of the Lorenz-63 system for 0 < t � 20. The results within the other
parameters of the RC are unchanged but set k2 = 0 in Eq. (2).

Figure 15 depicts the state evolution predicted by R2 sys-
tem. We observe that the R2 system is capable of predicting
the future for approximately nine time units, which is less
than R1 system. Figure 16(a) shows the predictive system
ultimately fails to reconstruct the dynamic characteristics by
the R2 system. The return map constructed from the predicted
z(t ) in Fig. 16(b) is different from the actual one. In the case
of no higher-order interactions, we regard the reservoir as
being poorly trained. Thus, we clarify that the contribution
of higher-order interactions to task performance is essential.

E. Influence of external nonlinearity when injecting
inputs on RC capability

In traditional machine learning architecture, tanh is widely
used as the nonlinear activation function among layers.

FIG. 16. In the absence of higher-order interactions in the cou-
pled pendulums model, the prediction performance and pattern
properties of the trained machines are poor. (a) Motion in phase space
for the actual (blue) and predicted (red) trajectories for 0 < t � 50.
(b) Poincaré return map of successive local maxima of z(t ) for the
actual (blue) and predicted (red) trajectories for 0 < t � 50. Both
(a) and (b) utilize the identical Lorenz trajectory and reservoir as
Fig. 8.

FIG. 17. In the absence of activation function tanh when in-
jecting the inputs in the coupled pendulums model, the prediction
performance and pattern properties of the trained machines are poor.
(a) Motion in phase space for the actual (blue) and predicted (red) tra-
jectories for 0 < t � 50. (b) Poincaré return map of successive local
maxima of z(t ) for the actual (blue) and predicted (red) trajectories
for 0 < t � 50.

Nonlinearity is well acknowledged to be a key aspect in com-
prehending information processing in reservoir computing.
The standard strategy, commonly utilized in the RC commu-
nity [46], is to select a nonlinear activation function tanh,
we introduce an external nonlinearity tanh when injecting the
linear sum of the inputs to the reservoir system in Eq. (2).

Choice of activation function tanh is important, we discuss
how the performance varies when inputs are injected without
tanh (R3 system). As shown in Fig. 17, the reservoir is com-
pletely incapable of producing accurate forecasts and fails to
replicate the dynamics’ long-term attractor. Due to the lack of
the nonlinear compression effect (zero-center characteristic)
provided by tanh, it cannot ensure bounded activations and
capture the intricate nonlinear correlations present in the data.
Without such nonlinearity, the system is unable to adequately
represent and anticipate complex behaviors.

F. Largest Lyapunov exponent in different RC configurations.

It is critical to precisely capture the complex climate and
long-term behavior in the domain of dynamical systems. The
fundamental strategy is the calculation of the largest Lya-
punov exponent (LLE) �1 [47]. The LLE is acknowledged
for its ability to quantitatively assess the divergence or con-
vergence of trajectories inside a system. It serves as a robust
indicator of a system’s sensitivity to its initial conditions. In
this section, we illustrate the capability of our technique with
different configurations through LLE to replicate the climate
of the Lorenz-63 system and Hindmarsh-Rose neural model,
as shown in Table IV.

TABLE IV. The largest Lyapunov exponents �1 for the Lorenz-
63 system and Hindmarsh-Rose neural model. The reservoir set up
in three configurations of coupled pendulums model. R1 system:
coupled pendulums model with higher-order interactions; R2 system:
coupled pendulums model without higher-order interactions; R3 sys-
tem: coupled pendulums model with higher-order interactions, but no
tanh.

Actual system R1 system R2 system R3 system

�L
1 0.91 0.92 0.47 0.32

�HR
1 0.18 0.18 0.02 0.14
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For the Lorenz-63 system, while the actual system show-
cases LLE �L

1 = 0.91, our approach (R1 system) closely
emulates this with 0.92. This near-perfect matching highlights
the efficacy of the R1 system in mirroring intricate dynamics.
In contrast, the absence of high-order interactions in the R2
system leads to a marked reduction to 0.47. When nonlinear
activation is omitted during the input in the R3 system, the �L

1
further deteriorates to 0.32. For the Hindmarsh-Rose neural
model, the actual HR system presents �HR

1 = 0.18. Our R1
system parallels this value, reflecting its capability in accurate
system representation. However, when high-order dynamics
are excluded, the R2 system exhibits a raised �HR

1 = 0.02,
suggesting an underestimation of system chaos. The R3 sys-
tem, bereft of nonlinear activation at the input, yields �HR

1 =
0.14, which is a slight underestimation compared to the actual
system. The R1 system exhibits a good capacity to accurately
replicate the dynamic characteristics of both the Lorenz-63
and HR systems. The significance of the discrepancy revealed
in the R2 and R3 systems highlights the crucial need of high-
order dynamics and nonlinear activations in achieving precise
chaos prediction and system representation. The considerable
disparity observed in �1 upon the exclusion of these pivotal
components serves to underscore their importance in the mod-
eling of complex dynamical systems.

V. CONCLUSIONS

To summarize, we propose a coupled pendulums model
with higher-order interactions as a suitable candidate for
reservoir computation within the fundamental context of
dynamical systems considered here. We have studied cou-
pled pendulums with higher-order interactions as dynamical
systems for reservoir, the spatiotemporal properties of this

reservoir are explored with respect to chaotic short-time pre-
diction and long-time climate reproduction tasks. We have
numerically investigated the Bayesian optimization algorithm
to tune the best hyperparameters for the reservoir. We tested
the Lorenz-63 chaotic system and the Hindmarsh-Rose neural
model under the same internal composition of the reservoir,
and we showed that the nonlocal coupling network has good
predictive effects as a reservoir. We explored the predic-
tive capabilities of our reservoir, emphasizing the role of
higher-order interactions. By analyzing the interplay between
different reservoir configurations and prediction performance,
combined with calculations of largest Lyapunov exponents,
we highlighted the significance of higher-order interactions.
The chimera state is identified as the ideal dynamic for pre-
diction. We illustrated the greater predictability of this state
by analyzing the interplay between system features and hyper-
parameter setups. The underlying mechanisms that contribute
to this heightened predictability warrant further exploration.
These results help to understand the computational benefits of
coupled pendulums as reservoirs.

The data that support the findings of this study are available
in the manuscript.
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