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The prevalence of wealth inequality propels us to characterize its origin and progression via empirical and
theoretical studies. The yard-sale (YS) model, in which a portion of the smaller wealth is transferred between
two individuals, culminates in the concentration of almost all wealth to a single individual, while distributing
the rest of the wealth with a power law of exponent one. By incorporating redistribution to the model, in which
the transferred wealth is proportional to the sender’s wealth, we show that such extreme inequality is suppressed
if the frequency ratio of redistribution to the YS-type exchange exceeds the inverse of the population size.
Studying our model on a sparsely-connected population, we find that the wealth inequality ceases to grow for
a period, when local rich nodes can no longer acquire wealth from their broke nearest neighbors. Subsequently,
inequality resumes growth due to the redistribution effect by allowing locally amassed wealth to move and
coalesce. Analyzing the Langevin equations and the coalescing random walk on complex networks, we elucidate
the scaling behaviors of wealth inequality in those multiple phases. These findings reveal the influence of network
structure on wealth distribution, offering a novel perspective on wealth inequality.
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I. INTRODUCTION

Wealth inequality may be attributed to numerous socioe-
conomic factors and their orchestration. Yet the universal
power-law wealth and income distributions [1–3] imply a
common mechanism at play, and the possibility of understand-
ing how wealth inequality has arisen and how long it will
persist [4–6]. Given that individuals participating in a trade
can undergo wealth transfer due to imperfect pricing, vari-
ous wealth-exchange models have been studied extensively,
and their steady-state solutions, often available analytically,
serve as plausible explanations for various wealth distribu-
tions [7–13].

The yard-sale(YS) model [14,15] is remarkable as it gen-
erates an extreme wealth inequality from a seemingly fair
(and thus realistic) exchange rule: A fraction of the sender’s
and receiver’s smaller wealth is transferred in each trade, and
ultimately, almost all wealth is concentrated in a single indi-
vidual while the remaining wealth is distributed by a power
law with exponent one across the rest of the population [16].
The model’s simplicity and yet the emergence of such stark
inequality have attracted much attention [16–22]. The Gini
index is a Lyapunov functional, never decreasing with time,
in the YS model [22] and in a class of models [23]. However,
such global wealth condensation does not yet happen in the
real world; The present era may be shorter than the condensa-
tion time scale.

The degree of real-world wealth inequality has been chang-
ing with time [4–6]. In this light, the nonstationary, rather
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than stationary, state of a model may offer a better expla-
nation of the reality. Also, by relaxing constraints like the
fully connected population often assumed in many studies,
and by considering multiple modes of wealth exchange, the
YS model can become more realistic and reveal a richer set of
insights. For example, transferring a fraction of the sender’s
wealth, occurring in donation, investment, or taxation and also
called the loser rule [15,24], effectively redistributes wealth
and suppresses wealth inequality [7–9,18] while there can be
various ways to achieve redistribution [24]. Investigating the
nonstationary state of the generalized YS model [16,22] which
allows such redistribution (RD) mode of wealth transfer, as
well as the YS-mode, between connected pairs in a structured
population [21], we identify new factors influencing wealth
inequality and provide a novel theoretical framework.

We show that the extreme inequality of the original YS
model in the long-time limit can be suppressed by increas-
ing the ratio of the RD-mode transfers beyond the inverse
of the population size. In the sparsely-connected population,
inequality evolves with time through multiple phases, and
we elucidate the underlying mechanisms. Initially, the in-
equality grows, primarily driven by the YS-mode transfers,
before saturating over a period of time due to depleted wealth
of the nearest neighbors of locally rich nodes. We call this
stage local condensate phase. As time passes, the RD-mode
transfer effectively thaws this frozen state, enabling further
elevation of inequality via random walk and coalescence of
locally concentrated wealth. In these stages, wealth inequality
exhibits scaling behaviors, which we show originate from the
correlation between wealth and connectivity of individuals.
This demonstrates the critical role of the structure of networks
in shaping the wealth distribution. Finally, comparing with the
empirical data, we discuss the implications of our findings.
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FIG. 1. Model and its Monte Carlo simulation results. (a) Two
modes of wealth transfers in Eq. (1). (b) Time evolution of individual
wealth in a single run of simulation with p = 10−6 and ε = 0.05 on a
SF network of N = 97 nodes, L = 200 links and the degree exponent
γ = 2.5. Inset: The same plots for 1 � t � 106. (c) Time evolution
of wealth variance from the same simulation. Three insets represent
a part of the network at t = 102, 105, and 1010, respectively, with rich
(poor) nodes colored black (white).

II. MODEL

We consider a network of N nodes (individuals) connected
by L undirected links (trade partnership) with the adjacency
matrix Ai j = 0, 1. Each node i has wealth ωi(t ) with ωi(0) =
1 initially. For every pair of connected nodes with rate N/L,
the sender (“s”) and the receiver (“r”) are determined ran-
domly and the sender sends an amount �ω of wealth to the
receiver [Fig. 1(a)], where �ω is a fraction ε of either the
smaller wealth or the sender’s wealth as

�ω =
{
ε min{ωs, ωr} with prob. 1 − p (YS mode),
ε ωs with prob. p (RD mode). (1)

Consequently, their wealth changes as (ωs, ωr ) → (ωs −
�ω,ωr + �ω) while their sum is preserved. The mean
wealth is fixed, i.e., ω ≡ N−1 ∑

i ωi(t ) = 1. We use x =
N−1 ∑N

j=1 x j to denote the spatial average. The parameter
p is the relative ratio of the RD-mode transfers. This is a
network version of the model introduced in Refs. [16,22].
For the underlying networks, we use the complete graphs
(Ai j = 1 for all i �= j) and the giant connected components of
sparse scale-free (SF) networks [25] constructed by the static
model [26,27], which display power-law degree distributions
Pdeg(k) ≡ N−1 ∑

i δki,k ∼ k−γ for large k with the degree ki =∑
j Ai j , meaning the number of the nearest neighbors and

γ called the degree exponent, and have the mean degree
k = 2L/N finite. Note that for a unit time interval, every pair

of nodes is selected 2
k

times on the average for the transaction
in Eq. (1).

For a measure of wealth inequality we use the wealth
variance σ 2(t ) ≡ 1

N

∑N
i=1(ωi(t ) − ω)2, the second cumulant

of the wealth distribution P(ω, t ). A single run of the model
simulation with small p readily reveals multiple phases in
the time evolution of wealth inequality. See Figs. 1(b) and
1(c). (i) In the early-time regime, for t � 104, individuals’
wealth is made increasingly different from one another, so
wealth inequality grows. (ii) Then a frozen period follows
(104 � t � 107), when ωi’s and σ 2 hardly change with time.
Rich nodes, with at least mean wealth (ω � 1), are surrounded
by the poor nearest neighbors having ω < 1. With p = 0,
this local condensate phase becomes the equilibrium [21].
(iii) For 107 � t � 108, the wealth variance resumes growing
and each locally-concentrated wealth switches its host to one
of its nearest neighbors repeatedly, appearing to perform a
random walk, until it encounters another local wealth and they
coalesce [28]. (iv) In the late-time regime (t � 108), global
condensation occurs; almost all wealth is concentrated onto a
single node. Yet its host changes with time and σ 2 fluctuates
though weakly.

III. EARLY- AND LATE-TIME REGIME:
ANALYTIC RESULTS

To understand these observations quantitatively and pro-
ceed, we construct the Langevin equation. In the mean-field
approximation, it provides analytic results for the wealth vari-
ance and distribution in the early- and late-time regime.

A. Langevin equation

In our model, at each discrete time step τ , a pair of con-
nected nodes (i, j) are selected among L pairs and performs
the YS-mode transfer with probability 1 − p or the RD-mode
transfer with probability p. The node i or j becomes the sender
with equal probability. Therefore the expected change of the
wealth ωi of a node i for the period from τ0 to τ0 + �τ is
given by

�ωi ≡ 〈{ωi(τ0 + �τ ) − ωi(τ0)}〉

= ε

N∑
j=1

Ai j

[
p
�τ

L

ω j − ωi

2
+

√
p
�τ

L

ωi + ω j

2
ηi j

+
√

(1 − p)
�τ

L
min (ωi, ω j )ξi j

]
, (2)

with the continuous random variables ηi j and ξi j satisfy-
ing 〈ηi j〉 = 〈ξi j〉 = 0, 〈η2

i j〉 = 〈ξ 2
i j〉 = 1, ηi j = −η ji, and ξi j =

−ξ ji. We use 〈· · · 〉 to represent the ensemble average. Intro-
ducing (continuous) time t ≡ τ

N and taking large-N limit, we
find

dωi = − εp

k

∑
j

Li jω jdt + ε

√
2p

k

∑
j

Ai j
ωi + ω j

2
dCi j

+ ε

√
2(1 − p)

k

∑
j

Ai j min (ωi, ω j )dBi j, (3)
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where Li j ≡ kiδi j − Ai j is the Laplacian, dBi j and dCi j are the
Wiener processes satisfying 〈dBi j〉 = 〈dCi j〉 = 0, 〈dB2

i j〉 =
〈dC2

i j〉 = dt , dBi j = −dBji, and dCi j = −dCji. To fulfill the
condition

∑
i dωi = 0, we adopted Itô’s scheme.

To proceed, we approximate the sum of the YS-
and RD-mode transfers with all the nearest neigh-
bors as

√
1
k

∑
j Ai j

ωi+ω j

2 dCi j 	
√

D(RD)(ωi )dXi and√
1
k

∑
j Ai j min (ωi, ω j )dBi j 	

√
D(YS)(ωi )dYi, where

dXi and dYi are the Wiener processes satisfying
〈dXi〉 = 〈dYi〉 = 0, 〈dX 2

i 〉 = 〈dY 2
i 〉 = dt . The coefficients

D(RD)(ω) = 〈k−1 ∑N
j=1 Ai j{(ωi + ω)/2}2〉 and D(YS)(ω) =

〈k−1 ∑N
j=1 Ai j min{ω,ω j}2〉 are the mean square of the

transferred wealth for node i under the RD and YS mode and
given approximately by

D(RD)(ω) 	 〈{(ωi + ω)/2}2〉 	
{

〈ω2〉
4 for ω → 0,

ω2

4 for ω → ∞,

D(YS)(ω) 	 〈min{ωi, ω}2〉 	
{

ω2 for ω → 0,

〈ω2〉 for ω → ∞.
(4)

Also note that D(RD)(ω) 	 1 and D(YS)(ω) 	 1 for ω close
to the initial value 1 in the early-time regime when all nodes
have wealth close to 1. Finally, the Langevin equation for the
wealth of a node is represented as

dωi = − ε p

k

∑
j

Li jω jdt + ε
√

2p D(RD)(ωi) dXi

+ ε
√

2(1 − p) D(YS)(ωi ) dYi, (5)

where dXi and dYi are the Wiener processes with mean 0 and
variance dt representing the stochasticity of whether to send
or receive wealth, and the coefficients D(RD)(ωi ) and D(YS)(ωi )
are given in Eq. (4). The first and second terms represent the
deterministic and stochastic changes by the RD-mode trans-
fers, and the third one from the YS transfers.

B. Wealth variance

In the early-time regime, ωi’s remain close to 1, and thus
D(YS)(ωi ) 	 D(RD)(ωi ) 	 1. Approximately, we have dωi 	√

2ε dYi and dωi 	 √
2ε dXi for small and large p, respec-

tively, leading to

σ 2(t ) 	 2ε2t . (6)

See Fig. 2(a). This linear growth cannot continue indefinitely
for finite N but σ 2 eventually saturates. The equilibrium value
varies with p as [Fig. 2(b)]

σ 2
eq ≡ lim

t→∞ σ 2(t ) ∼
{

N for p � p∗ ≡ ε
N ,

ε
p for p 
 p∗.

(7)

In the limit N → ∞, the condensation is suppressed with any
finite p, which has been shown in case of ε = 1 in Ref. [29].
The critical ratio p∗ and Eq. (7) are obtained as follows. For
p = 0 or small p, like the original YS model, almost all wealth
is concentrated in a single node in the long-time limit [16]
yielding σ 2

eq 	 N . For p relatively large, let us take the mean-

field approximation
∑

j Li jω j 	 k(ωi − 1), which becomes

exact in the complete graph. In equilibrium, the fluctuation
driven by the YS-mode transfers (δω)YS ∼ ε

√
2teqDYS is bal-

anced by the redistribution (δω)RD ∼ εp(δω)YSteq in a time
interval teq, which allows us to estimate teq ∼ 1

εp and σ 2
eq ∼

(δω)2
YS ∼ (δω)2

RD ∼ ε
p . It is the fluid phase of wealth. The

diverging and finite σ 2
eq’s become comparable at p∗ ≡ ε

N . Sim-
ulations on the complete graphs support Eq. (7) [Fig. 2(b)].

Given Eqs. (6) and (7), the wealth variance can be repre-
sented as σ 2(t ) = σ 2

eq�( t
teq

) with a function �(x) behaving as
�(x) 	 x for x � 1 and �(x) 	 1 for x 
 1. The equilibra-
tion time teq is given by teq ∼ N

ε2 for p � p∗, and teq ∼ 1
εp for

p 
 p∗. This is confirmed numerically by the collapse of the
rescaled data in Figs. 2(c) and 2(d).

C. Wealth distribution

The wealth distribution P(ω, t ) is obtained, though par-
tially, by the mean-field approach. With p � p∗, Eq.
(5) can be approximated as dωi 	 ε

√
2D(YS)(ωi )dYi and

the Fokker-Planck (FP) equation is given by ∂P/∂t 	
ε2(∂2/∂ω2){D(YS)(ω)P}. Recalling D(YS)(ω) 	 ω2 for ω � 1
and DYS(ω) 	 1 for ω 
 1 in the early-time regime, we find

P(ω, t ) 	 e− tε2

4√
4πε2t ω3/2

exp

[
− (log ω)2

4ε2t

]
(8)

for ω � 1 and

P(ω, t ) 	 1√
4πε2t

e− (ω−1)2

4ε2t (9)

for ω 
 1, respectively, in agreement with the simulation
results [Fig. 2(e)]. Note that the width of these distributions
is commonly given by 〈ω2〉 − 1 	 2ε2t for ε2t � 1, in agree-
ment with Eq. (6).

In the long-time limit, a single node occupies almost all
wealth, slightly less than N . The rest of the wealth, much less
than N , is distributed over the remaining N − 1 nodes by a
power-law distribution

P(ω, t ) 	 1

ε2 ω t
, (10)

which is supported numerically in Fig. 2(f). It is obtained by
solving the Boltzmann equation investigated in Ref. [16] and
also presented in Appendix A.

With p 
 p∗, one can approximate Eq.(5) as dω 	
−εp(ω − 1)dt + ε

√
2(1 − p)ωdY for small ω under the as-

sumption ki/k 	 1. This Langevin equation, including a mul-
tiplicative noise, has been studied in Ref. [8] and also for the
stationary state of the YS model with redistribution [16,22].
The FP equation is given by ∂P/∂t = (∂/∂ω){εp(ω − 1)P} +
(∂2/∂ω2){ε2(1 − p)ω2P} in the small-ω region, and one can
see that the stationary-state solution is the inverse gamma
distribution

Peq(ω) 	 μμ+1

�(μ + 1)
ω−2−μe− μ

ω , (11)

where μ ≡ p
ε(1−p) 	 p

ε
and the width is 〈ω2〉 − 1 = 1

μ−1 	 ε
p

for large μ. Note that it is a power-law Peq(ω) ∼ ω−2− p
ε for
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FIG. 2. Wealth variance and distribution on the complete graphs. (a) Wealth variance for ε = 0.1 and different p’s with N = 105 averaged
over 20 realizations. (b) Data collapse of the rescaled wealth variance in the equilibrium state for different p’s, ε’s, and N’s. The dashed line has
slope −1. (c) Plots of σ 2/N versus ε2t/N for the parameters satisfying p < 0.1p∗ with p∗ ≡ ε

N . Legends represent (N, ε, p). (d) Plot of σ 2 p/ε
versus εpt for the parameters satisfying p > p∗. (e) Wealth distributions with different p’s for N = 105 and ε = 0.00625 at time t = 103. Lines

represent analytic predictions. “Gaussian” denotes P(ω, t ) = 1√
2πσ 2 (t )

e
− (ω−1)2

2σ2 (t ) . (f) Wealth distribution with p = 0 for N = 105 and ε = 0.1 at

time t = 108.

large ω [8] while Eq. (11) describes only the small-ω behavior
of our model.

IV. SCALING IN THE INTERMEDIATE-TIME REGIME:
NETWORK EFFECTS

For sparse networks, the early- and late-time behaviors
remain similar to those on the complete graphs as studied in
Sec. III. See Fig. 3. However, in the intermediate-time regime,
the wealth variance ceases to grow but remains fixed for a
period and then resumes growth. These novel phases emerging
on sparse networks are studied in this section, setting the ratio
of RD transfers to be small.

A. Local condensate phase

In the local condensate phase for tlc � t � trel, the wealth
variance is fixed, which is related to the sparse connection
of the underlying network. Each rich node i is found to have
taken nearly all the wealth of its nearest neighbors, possessing
ωi;rich 	 ki + 1 including its own [Fig. 4(a)]. Hub nodes thus
possess more as long as they are rich. Yet the probability of

a node to be rich decreases with its degree as ρi;rich 	 1
ki+1

[Fig. 4(b)], for a node and its neighbor(s) are equally likely to
be rich under the YS-mode transfer.

Introducing the wealth ωrich(k) of a rich node of degree k
and the probability ρrich(k) of a node of degree k to be rich
and approximating the wealth of a poor node to be zero, one
can represent the wealth variance as

σ 2 	
∑

k

Pdeg(k)[ρrich(k){ωrich(k) − 1}2 + 1 − ρrich(k)].

(12)
Using ρrich(k) 	 1

k+1 and ωrich 	 k + 1, we obtain

σ 2 	 k, (13)

as supported by Figs. 4(d) and 4(e). The onset time of lo-
cal condensation tlc ∼ k

ε2 , at which Eq. (6) crosses over to
Eq. (13), can be rationalized by considering that it takes time
ε−2 for a node to take the wealth of a neighbor by the YS-
mode transfers, and it has k such neighbors on the average.
Local condensation is terminated at trel, when the RD-mode
transfers begin to redistribute significantly the wealth of the
local rich nodes to their poor neighbors.
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FIG. 3. Wealth variance with different p’s for ε = 0.1 on SF net-
works of N = 887 ± 13, k = 4.5, and the degree exponent γ = 2.5,
averaged over 100 realizations. Inset: data collapse of the rescaled
wealth variance in the equilibrium state.

B. Relaxation phase

On the time scale longer than trel, the RD transfers oc-
cur frequently enough to redistribute the locally concentrated
wealth to a neighboring node. Also one of the two wealths
on neighboring nodes can absorb the other [28]. Such coa-
lescence of wealth drives wealth to a single or a few nodes
until the stationary state is reached, and we call this period the
relaxation phase (trel � t � teq).

The wealth variance exhibits remarkable scaling behav-
iors [Fig. 4]. The dynamics of wealth in this phase can be
understood by studying the coalescing random walk (CRW)
on complex networks [30,31], which allows us to evaluate
ρrich(k) and ωrich(k) and use them in Eq. (12) to obtain σ 2(t ).
In the CRW suited for our model, the following occurs for
every link with rate λ: (i) if the link is occupied by a walker
(local wealth) at one end node and empty at the other end, the
walker moves to the latter, (ii) if both ends are occupied by
walkers, they coalesce leaving one walker at either end, and
(iii) if both ends are empty, nothing happens over the link.
One can show that the time decrease of the walker density
is proportional to the square of the density and obtain the
solution ρ 	 1

λkt
as detailed in Appendix B. The jump rate λ is

governed by the rate of RD transfers and given by λgYS ∼ εp.
Therefore the fraction of rich nodes ρrich in our model is given
by

ρrich 	 1

εpkt
(14)

for large t . It is confirmed in simulations [Figs. 4(c)].
As random movement and coalescence of local wealth

proceeds, the probability to be rich ρrich(k) loses its depen-
dence on degree k [Fig. 4(b)]. The wealth of a node remains
proportional to its degree [Fig. 4(a)] with the proportional
coefficient increasing as the number of rich nodes decreases.
Assuming ωrich(k) 	 c k with c a coefficient and ρrich(k) 	
ρrich in Eq. (14), one can use the unit-mean condition ω 	

∑
k Pdeg(k)ρrich(k) c k 	 ρrich c k = 1 to obtain c 	 1

ρrichk
. Us-

ing these results in Eq. (12), we find

σ 2(t ) 	 ρrich c2 k2 ∼
{

εpkN
3−γ

γ−1 t for 2 < γ < 3,

εpkt for γ > 3,
(15)

where we used kn

k
n ∼ max{1, N

n−γ+1
γ−1 } for the static-model

SF networks [27]. The data collapses of the scaled plots
for different ε, p, k and N in Figs. 4(d) and 4(e) con-
firm these scaling behaviors for 2 < γ < 3 and γ > 3,
respectively.

V. MULTIPLE CROSSOVERS IN WEALTH INEQUALITY

The results that we have obtained in the previous sec-
tions provide an overview of the multiple phases in the
development of wealth inequality on sparse networks, depend-
ing on the ratio p of the RD-mode transfers and the degree
exponent γ . From Eqs. (6), (7), (13), and (15), we can expect
the wealth variance to behave approximately as

σ 2(t ) ∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ε2t for t � tlc,
k for tlc � t � trel,

kεpt max
{
1, N

3−γ

γ−1
}

for trel � t � teq,

min{N, ε
p} for t 
 teq.

(16)

The scaled plots in Figs. 4(d) and 4(e) confirm the crossover
around trel for p � p∗. The crossover around the equilibration
time teq is also shown in the data collapse of the scaled plots
in Fig. 4(f).

The crossover time scales can be estimated by comparing
the behaviors of σ 2(t ) in adjacent time regimes in Eq. (16)
and are given by

tlc = k

ε2
, (17)

trel = 1

εp max
{
1, N

3−γ

γ−1
}

=
⎧⎨
⎩

t (het)
rel = 1

εpN
3−γ
γ−1

for 2 < γ < 3,

t (hom)
eq = 1

εp for γ > 3,
(18)

teq =
min{N, ε

p}
kεpt max

{
1, N

3−γ

γ−1
}

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

t (het)
eq,C = N

2(γ−2)
γ−1

εpk
for p � p∗, 2 < γ < 3,

t (het)
eq,F = 1

p2kN
3−γ
γ−1

for p 
 p∗, 2 < γ < 3,

t (hom)
eq,C = N

εpk
for p � p∗, γ > 3,

t (hom)
eq,F = 1

p2k
for p 
 p∗, γ > 3,

(19)

and the critical ratio p∗ distinguishing the global condensate
phase and fluid phase is given by p∗ ≡ ε

N . We remark that on
the complete graphs (k = N − 1), the local condensate phase
in Eq. (16) is identical to the global condensate phase σ 2 	
N and therefore tlc in Eq. (17) should be considered as the
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FIG. 4. Scaling of wealth variance on SF networks. (a) Wealth of rich nodes versus degree plus one at different times for p = 2.5 × 10−6

and ε = 0.05 with N = 27989 ± 27, k = 4.5, and γ = 2.5. (b) Plots of the probability ρrich(k) of a node of degree k to be rich. (c) Time
decay of the rich-node density ρrich in the generalized YS model compared with the random-walker density ρ in the CRW with (p1, ε1) =
(2.0 × 10−6, 0.1) and (p2, ε2) = (2.5 × 10−6, 0.05) for γ = 2.5 and different N’s and k’s. See Appendix B. The dashed line is Eq. (14).
(d) Data collapse of the rescaled wealth variance as predicted in Eq. (15) with {(p1, ε1), (p2, ε2)} as in (c) for γ = 2.5 and different N’s and
k’s. Inset: Wealth variance versus N at fixed time t = 1.25/εp with p = 2.5 × 10−6 and ε = 0.05 for two different γ ’s. The dashed line has
slope 13. (e) The same plots as in (e) for γ = 10. The dashed lines in (d) and (e) have slope 1. (f) Data collapse of the rescaled wealth variance
exhibiting a crossover from the relaxation phase to the global condensate phase around teq = N2/3

εpk
with p < 0.1p∗ on the SF networks with

γ = 2.5.

equilibration time. From Eqs. (16), (17), (18), and (19), we
can obtain the diagram of different phases as in Figs. 5(a) and
5(b) for 2 < γ < 3 and γ > 3, respectively.

In these results, the influence of the network structure is
significant: A large and heterogeneous network (small γ ) fa-
cilitates wealth condensation by large wealth inequality and
small trel and teq as seen in Eqs. (16) to (19). Moreover,
the correlation of wealth and node degree leads the wealth
distribution to share the similar asymptotic behaviors with
the degree distribution as will be detailed in the below. It is
also remarkable that the RD transfers enable wealth inequality
to resume growth but eventually decrease the stationary-state
wealth inequality. The increase of the fraction ε not only
speeds up the whole process, as shown in Eq. (5), but also
increases stochasticity and thereby enhances the stationary-
state wealth inequality as shown in Eq. (7).

Finally, let us discuss the form of the wealth distribution
on sparse networks. In the local condensate and the relaxation
phase with small p (p � p∗), there are a number of rich

nodes as well as poor nodes. the poor nodes’ wealth, mostly
much smaller than the average ω � ω = 1, is found to be
distributed by the power law with exponent one, P(ω) ∼
ω−1, the same as the stationary-state distribution in Eq. (10).
However, the distribution of rich nodes’ wealth is different,
characterized by a larger power-law exponent than one as
shown in Fig. 6(a). As we have shown in the main text, the
origin lies in the correlation of the wealth of a rich node with
its degree

ωrich(k) ∼ c k, (20)

where the coefficient c is close to one in the local condensation
phase (tlc � t � trel) and c 	 ε pt in the relaxation phase
(trel � t � teq) as shown in Sec. IV. Also, the probability of
a node to be rich is given by

ρrich(k) 	
{

1
k+1 for tlc � t � trel,

ρrich for trel � t � teq,
(21)
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FIG. 5. Multiple phases of wealth inequality in the (p, t) plane
for the generalized YS model with ε = 0.1 on SF networks of N =
105, k = 4 and (a) γ = 2.5 and (b) γ = 10. See Eq. (16). The phase
boundaries are given by the crossover time scales in Eqs. (17), (18),
and (19).

with ρrich given in Eq. (14). Therefore the wealth distribution
P(ω) for large ω is evaluated by using the degree distribution
Pdeg(k) as

P(ω) ∼
∑

k

Pdeg(k)ρrich(k)δ(ωrich(k) − ω)

∼ Pdeg

(
k 	 ω

c

)
ρrich

(
k 	 ω

c

)

∼
{
ω−γ−1 for tlc � t � trel,

ω−γ for trel � t � teq.
(22)

This means that the power-law exponent of the wealth dis-
tribution P(ω) for large ω may be between γ and γ +
1, probably changing from γ + 1 to γ with time, in the
intermediate-time regime [Fig. 6(a)]. Approaching the sta-
tionary state, the number of rich nodes decreases [Eq. (14)]
and therefore the fast-decaying right tail of P(ω) in Eq. (22)
shrinks and eventually disappears in the stationary state.

The real-world income distributions, which are obtained by
compiling the world income data in Refs. [5] and [6] as de-
scribed in Appendix C, decay slow for small income and then
fast for large income with the latter characterized by a power
law of the exponent between 2 and 3. [Fig. 6(b)]. It is similar
to the behavior of the wealth distribution in the intermediate-
time regime, P(ω) ∼ ω−1 for small ω and Eq. (22) for large ω.
Different forms of the income distributions between the lower
and upper class of the United States of America have been
noted also in Ref. [32]. For comparison, we used the rescaled
data so that the average income is equal to one. The income
variance σ 2 is far from diverging with the population size,
which would be the case with global wealth condensation; it
increased from 20 to 50 in the period 1820 to 1900 and then
decreased to less than 10 until around 1960, probably related
to two world wars, and finally increased reaching σ 2 	 20 in
2020 [Fig. 6(c)].

VI. DISCUSSIONS

In this study, we have characterized the scaling proper-
ties of wealth inequality, represented by wealth variance, in
both its dynamics and steady-state. In the process, we have
identified the critical value for redistribution ratio which is
inversely proportional to the population size. Furthermore,
the evolution of wealth inequality on a sparsely connected
population undergoes multiple phases, revealing the effects
of network structure: If heterogeneously connected, a large
population progresses into an inequality at a greater rate
than a small one, while if homogeneously connected, the
population size does not affect the speed. This is direct conse-
quence of the correlation between wealth and node degree.
Our study thus demonstrates that the relevance of the net-
work structure to the wealth distribution in the nonstationary
state should be considered in analyzing the real-world wealth
inequality.

The influence of the dimensionality of the underlying
network on the speed of wealth condensation deserves
investigation. The studied model is a minimal one, and
can be extended with more datasets of the real-world
inequality.
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APPENDIX A: BOLTZMANN EQUATION FOR p = 0

When p is small, in the long-time limit, the ap-
proximations that we take to obtain the left or right
tail of the wealth distributions in Eqs. (8) and (9) are
not working but one should refer to the Boltzmann
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FIG. 6. Inequality in the model and the real world. (a) Wealth distributions in the generalized YS model with p = 2.5 × 10−6, ε = 0.05
at different times on SF networks with N = 16000, k = 16, and γ = 2.5. The solid and dashed lines are guide lines with different slopes.
(b) Income distributions in several years between 1820 and 2020 obtained from the datasets in Refs. [5] and [6]. Data have been rescaled so
that the average is one, ω̄ = 1. Inset: The power-law exponent α in P(ω) ∼ ω−α fitted to the datasets for ω > 10. (c) Wealth variance σ 2 and
the Gini index of the rescaled income in the period 1820 to 2020 (filled points) [5] and in the period 1980 to 2016 (open) [6].

Eq. [16]

∂P(ω, t )

∂t
= −

[
P(ω, t ) − 1

1 + ε
P
( ω

1 + ε
, t

)]
−

[
P(ω, t ) − 1

1 − ε
P
( ω

1 − ε
, t

)]

+
∫ ω

1+ε

0
dω′

[
P(ω − εω′, t ) − 1

1 + ε
P
( ω

1 + ε
, t

)]
P(ω′, t )

+
∫ ω

1−ε

0
dω′

[
P(ω + εω′, t ) − 1

1 − ε
P
( ω

1 − ε
, t

)]
P(ω′, t ) (A1)

under the random-agent approximation. Then, one can find the
following solution by direct substitution:

P(ω, t ) = C

ω(t + t0)
, (A2)

where t0 is a finite constant and C is given by

C = 1

log
(

1
1−ε2

) 	 1

ε2
(A3)

with the last approximation valid for small ε.

APPENDIX B: DENSITY OF RANDOM WALKERS IN THE
CRW: DERIVATION OF EQ. (14)

Following Ref. [30], we can see that the number of random
walkers, ni = 0 or 1, on node i at time t + dt in the CRW
model is given by

ni(t + dt ) = ni(t )η + (1 − ni(t ))ξ, (B1)

where η is 0 with probability λdt
∑

j ai j (1 − n j ) +
λdt

∑
j ai jn j = λ dt ki and 1 with probability 1 − λ dt ki, and

ξ is 1 with probability λ dt
∑

j ai jn j and 0 with probability
1 − λ dt

∑
j ai jn j . Here, η = 0 represents the disappearance

of the random-walker at node i because of a jump to a nearest
node [with probability λdt

∑
j ai j (1 − n j )], or coalescence to

a neighbor node (with probability λdt
∑

j ai jn j). On the other
hand, ξ = 1 represents the arrival of a walker at node i from
a neighbor node (with probability λdt

∑
j ai jn j). Taking the

ensemble average for a given ni(t ), we have

〈ni(t + dt )〉 = ni(t )(1 − λ dt ki )

+ (1 − ni(t ))λdt
∑

j

ai jn j (t ), (B2)

which leads to

dρi

dt
= −λkiρi + λ(1 − ρi )

∑
j

ai jρ j, (B3)

where the density of random walker is denoted by ρi = 〈ni〉
and the independence of ρi and ρ j for i �= j is assumed.
Assuming that ρi at node i is a function of its degree ki and
equivalently ρi = ρ j if ki = k j , we can rewrite Eq. (B3) as

dρk

dt
= −λkρk + λk(1 − ρk )

∑
k′

k′Pdeg(k′)

k
ρk′ , (B4)

where ρk ≡ 1
N

∑N
i=1 δki,k ρi and Pdeg(k) is the degree distribu-

tion of the underlying network. Note that ρ = ∑
k Pdeg(k)ρk .

Let us also introduce ρ̃ ≡ ∑
k

kPdeg(k)

k
ρk . Multiplying Eq. (B4)

by Pdeg(k) and summing over k, we find

dρ

dt
= −λkρ̃ + λkρ̃(1 − ρ̃ ) = −λkρ̃2. (B5)

In the long-time limit, we expect dρk

dt is much smaller than ρk

or ρ̃ in Eq. (B4), so we assume that the right-hand side of
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Eq. (B4) is zero, to obtain

ρk 	 ρ̃

1 + ρ̃
, (B6)

which means that ρk is independent of k. This also implies
that

ρ =
∑

k

Pdeg(k)ρk = ρ̃

1 + ρ̃
or ρ̃ = ρ

1 − ρ
. (B7)

Inserting Eq. (B7) into Eq. (B5), we have

dρ

dt
= −λk

(
ρ

1 − ρ

)2

	 −λkρ2, (B8)

where the last relation holds for ρ � 1 which will be valid in
the long-time limit. Therefore, from Eq. (B8), we have

ρ 	 1

λkt
, (B9)

which gives ρrich ∼ ρ ∼ 1
εpkt

with λgY S = εp as in Eq. (14)

in the main text. It takes thop ∼ 1
εp for the local wealth at a

rich node i to be fully redistributed to its poor neighbors and
itself, which is understood by considering εp

k
ki(ωi − 1)thop ∼

ωi − 1 and essentially determines the rate λgYS 	 1
thop

∼ εp of
random hopping of local wealth.

APPENDIX C: INCOME DISTRIBUTION
IN THE REAL WORLD IN 1820 - 2020

We use two datasets of the world income distribution, one
in Ref. [5] covering a few selected years in the period 1820
to 2020 and the other in Ref. [6] providing annual data from
1980 to 2016. Both datasets provide for each given year the
average income W (x) of the people who belong to the top x%
of the whole population in the world regarding their income
with x = 0.01, 0.1, 1, 10, 50, and 100. We can consider six
distinct groups of people according to their income: bottom
50%, top 50% to top 10%, top 10% to top 1%, top 1% to top
0.1%, top 0.1% to top 0.01%, and the top 0.01%. The average

incomes of the people in these six distinct groups and their
portions are then given by⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

W1 = W (100) − W (50), f1 = 0.5,

W2 = W (50) − W (10), f2 = 0.4,

W3 = W (10) − W (1), f3 = 0.09,

W4 = W (1) − W (0.1), f4 = 0.009,

W5 = W (0.1) − W (0.01), f5 = 0.0009,

W6 = W (0.01), f6 = 0.0001.

(C1)

Notice that
∑6

�=1 fi = 1. We can use these values to compute
the mean wealth

W =
6∑

�=1

W� f�. (C2)

To compare the properties of these real-world incomes
with the wealth considered in the main text, we consider the
rescaled income

ω� = W�

W
(C3)

for � = 1, 2, 3, 4, 5, 6. The income variance is then evaluated
as

σ 2 =
6∑

�=1

ω2
� f� − 1 (C4)

and the (rescaled) income distribution P(ω) is obtained by

p(ω�) = f�
�ω�

, (C5)

where the bin sizes are evaluated as �ω� = √
ω�ω�+1 −

√
ω�ω�−1 with ω0 = ω2

1√
ω1ω2

and ω7 = ω2
6√

ω5ω6
. We also compute

the Gini index by

G = 1

2

6∑
�1=1

6∑
�2=1

∣∣ω�1 − ω�2

∣∣ f�1 f�2 , (C6)

where we used ω = 1. Note that the wealth variance σ 2 is
represented by σ 2 = (1/2)

∑
�1,�2

(ω�1 − ω�2 )2 f�1 f�2 .
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