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Statistical mechanics of inference in epidemic spreading
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We investigate the information-theoretical limits of inference tasks in epidemic spreading on graphs in the
thermodynamic limit. The typical inference tasks consist in computing observables of the posterior distribution of
the epidemic model given observations taken from a ground-truth (sometimes called planted) random trajectory.
We can identify two main sources of quenched disorder: the graph ensemble and the planted trajectory.
The epidemic dynamics however induces nontrivial long-range correlations among individuals’ states on the
latter. This results in nonlocal correlated quenched disorder which unfortunately is typically hard to handle.
To overcome this difficulty, we divide the dynamical process into two sets of variables: a set of stochastic
independent variables (representing transmission delays), plus a set of correlated variables (the infection times)
that depend deterministically on the first. Treating the former as quenched variables and the latter as dynamic
ones, computing disorder average becomes feasible by means of the replica-symmetric cavity method. We give
theoretical predictions on the posterior probability distribution of the trajectory of each individual, conditioned
to observations on the state of individuals at given times, focusing on the susceptible infectious (SI) model. In
the Bayes-optimal condition, i.e., when true dynamic parameters are known, the inference task is expected to fall
in the replica-symmetric regime. We indeed provide predictions for the information theoretic limits of various
inference tasks, in form of phase diagrams. We also identify a region, in the Bayes-optimal setting, with strong
hints of replica-symmetry breaking. When true parameters are unknown, we show how a maximum-likelihood
procedure is able to recover them with mostly unaffected performance.

DOI: 10.1103/PhysRevE.108.064302

I. INTRODUCTION

Reconstructing information on epidemic spreading is cru-
cial to develop advanced digital contact tracing strategies
to mitigate the spreading of an epidemic. Based on partial
information on the states of individuals at given times, the
problem consists in reconstructing the posterior distribution
on unobserved events, such as the initial state of the epidemic
(the source), or undetected infected individuals. These inverse
problems are known to be challenging, even for simple dy-
namics such as the susceptible infectious (SI) model. Several
methods have been proposed to tackle inference problems
in epidemics, including Monte Carlo [1–3], heuristic [4],
belief propagation [5–8], mean-field [6], variational [9,10],
and other [11,12] approaches. Although many of these meth-
ods have shown through extensive simulations to reconstruct
efficiently some information on the posterior probability dis-
tribution in specific graphs sizes and ensembles, a study of the
feasibility of inference in epidemic models is still generally
lacking. A notable exception is given by preprint [8] (which
appeared while we were finishing the present work). Its main
aim is to provide a quantitative study of the feasibility of
inference in epidemic spreading on random graphs, in the
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form of phase diagrams, by means of extensive simulations
on finite-size systems. The work focuses on the Bayes optimal
setting, and uncovers interesting hints of failure of optimality,
that are attributed to finite-size effects. In this work, we focus
on the large size (thermodynamic) limit and use the replica-
symmetric cavity method. Outside the Bayes optimal regime,
we study the performances achieved when hyperparameters
are inferred. We provide a theoretical analysis of inference
tasks aiming at reconstructing individuals’ trajectories from
the partial knowledge of the state of a fraction of individuals
at a given observation time in the thermodynamic limit, which
we also show to be in good agreement with results on moder-
ately large random graphs. To the best of our knowledge, this
work is the first to study the information bounds of the risk
assessment problem in the thermodynamic limit. Our method
is semianalytical (we resort to numerics only to find fixed
points) and it is based on the cavity method, which in the
replica-symmetric regime (and for the graph ensembles stud-
ied) leads to the exact solution (up to numerical accuracy). We
provide quantitative predictions on the information contained
on the posterior probability given the observations, varying
the characteristics of the epidemic, of the contact network,
and of the observations. Our approach relies on a study of
the properties of the posterior probability measure, for typi-
cal contact graphs and realization of the epidemic spreading,
using the replica-symmetric (RS) cavity method. We focus
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in this paper on the simple SI model [13], but the strategy
is general and can be applied to other irreversible spreading
process such as the SIR or SEIR models, see Sec. II D and
Appendix C.

To perform this analysis, we need to compute averages of
the inference task over realizations of a planted epidemic tra-
jectory (the ground truth), from which observations are taken.
These observations have thus to be treated as quenched disor-
dered variables (along with the variables needed to describe
the contact graph). However, their distribution is nonlocally
correlated: the past history of the epidemic spreading induces
long-range correlations between the state of individuals at
the observation time. While the cavity method is well-suited
for models in which variables used to describe the disorder
are independent, applying it on a model with long-ranged
correlated disorder is instead nontrivial. To circumvent this
difficulty, we devised the following strategy. We separate the
planted dynamical process in two sets of variables: (a) the
transmission delays, which are independent, and (b) infection
times and observations, which are a deterministic function of
other infection times and of transmission delays through a set
of local hard constraints. We treat the first set as quenched
disorder, while the second set, together with the variables
used to describe the inferred trajectory, are treated as dynami-
cal variables. Although planted infection times are not truly
dynamical variables, their deterministic dependence on the
disorder allows us to consider them as such without modify-
ing the probability distribution. This strategy thus effectively
transfers correlations out of the quenched variables and into
the dynamical ones, allowing a straightforward application of
the cavity method.

The paper is organized as follows. In Sec. II we set up the
problem, and present our strategy to adapt the RS formalism
to inference in epidemic spreading. Results are presented in
Sec. III. We start our analysis in the Bayes-optimal case
(Sec. III A), where RS is expected to hold. We provide quanti-
tative estimates of the feasibility of inference, including Bayes
estimators, and the area under the receiver operating char-
acteristic (ROC) curve (AUC). These RS predictions are in
good agreement with the result of message-passing algorithm
on large instances. We identify a region in the Bayes-optimal
setting where belief-propagation algorithm fails to converge,
both on finite-size instances (as already observed in Ref. [8])
and in the thermodynamic (large-size) limit. This observation
is a strong hint for replica-symmetry breaking (RSB), and is
also confirmed by a failure of Monte Carlo algorithm perform-
ing the inference task in this regime. This result is surprising,
as it is often argued that being on the Nishimori line guaran-
tees the absence of replica-symmetry breaking [14]. However,
and although Nishimori’s identities are always satisfied in
the Bayes-optimal setting, our observations can be explained
by the fact that the overlap between planted and inferred
trajectories is not necessarily self-averaging in this problem
(that is not gauge invariant). In Sec. III B, we explore regimes
outside Bayes-optimal conditions. We identify a regime in
which neither Belief Propagation nor the iterative numerical
resolution of the RS cavity equations converge. This suggests
the presence of an RSB transition. When the parameters of
the model are unknown, one can rely on strategies such as
expectation-maximization to infer them. These strategies are

equivalent to imposing the Nishimori conditions. We provide
a quantitative study of an iterative strategy to infer the param-
eters of the prior in the thermodynamical limit. We show that,
for a large range of the prior’s parameters, it is possible to re-
cover similar accuracy than the one of the Bayes optimal case,
even when starting from initial conditions that are far from the
prior’s parameters. These results are in good agreement with
simulations in finite systems.

II. ENSEMBLE STUDY FOR INFERENCE IN EPIDEMIC
SPREADING

A. Epidemic inference

1. SI model on graphs

We consider the SI model of spreading, defined over a
graph G = (V, E ). At time t a node i ∈ V can be in two states
represented by a variable xt

i ∈ {S, I}. At each time step, an
infected node can independently infect each of its susceptible
neighbors ∂i with probabilities λi j ∈ [0, 1]:

P(x) =
N∏

i=1

[
p
(
x0

i

) T −1∏
t=0

p
(
xt+1

i |xt
i , xt

∂i

)]
, (1)

where x = {xt
i } for i = 1, . . . , N , t = 0, . . . , T , and

p
(
xt+1

i = I
∣∣xt

i , xt
∂i

) = 1 − δxt
i ,S

∏
j∈∂i

(
1 − λ jiδxt

j ,I

)
. (2)

The dynamics (2) is irreversible: A given node can only un-
dergo the transition S → I . Therefore, the trajectory in time
of an individual can be parameterized by its infection time ti.
We assume that a subset of the nodes initiate with an infection
time ti = 0, i.e., x0

i = I . A realization of the SI process can
be univocally expressed in terms of the independent trans-
mission delays si j ∈ {1, 2, . . . ,∞}, following a geometrical
distribution wi j (s) = λi j (1 − λi j )s−1. Once the initial condi-
tion {x0

i }i∈V and the set of transmission delays {si j, s ji}(i j)∈E is
fixed, the infection times can be uniquely determined from the
set of equations:

ti = δx0
i ,S min

j∈∂i
{t j + s ji}. (3)

We assume that each individual has a probability γ to be
infected at time t = 0, and we assume for simplicity that the
transmission probabilities are site-independent: λi j = λ for all
(i j) ∈ E . The distribution of infection times conditioned on
the realization of delays and on the initial condition can be
written

P(t |{x0
i }, {si j, s ji}) =

∏
i∈V

ψ∗(ti, t ∂i, x0
i , {s ji} j∈∂i

)
, (4)

with t ∂i = {t j, j ∈ ∂i}, and where ψ∗ enforces the above con-
straint on the infection times:

ψ∗ = I
[
ti = δx0

i ,S min
j∈∂i

{t j + s ji}
]
, (5)

with I[A] the indicator function of the event A. Once averaged
over the transmission delays and over the initial condition, we
obtain the following distribution of times:

P(t ) =
∏
i∈V

ψ (ti, t ∂i ), (6)
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where

ψ =
∑

x0
i

γ
(
x0

i

) ∑
{s ji} j∈∂i

ψ∗(ti, t ∂i, x0
i , {s ji} j∈∂i

)∏
j∈∂i

w(s ji), (7)

and γ (x) = γ I[x = I] + (1 − γ )I[x = S].

2. Inferring individual’s trajectories from partial observations

In the inference problem, we assume that some information
O = {Om}m=1,...,M is given on the trajectory by the result of
M independent medical tests. The probability of observations
P(O|t ) factorizes over the set of tests:

P(O|t ) =
M∏

m=1

ρ(Om|tim ). (8)

Each test gives information about the state σm ∈ {I,S} of an
individual im at a given time θm ∈ {0, 1, . . . , T } with a false
rate fr ∈ [0, 1]. We can thus write each observation as Om =
(im, θm, σm, fr). The probability of observation conditioned to
the infection time is therefore

ρ(Om|tim ) = (1 − fr)I
[
xθm

im
= σm

]+ frI
[
xθm

im
�= σm

]
. (9)

Here for simplicity we assume frm ≡ fr constant which im-
plies identical false-positive and negative rates. Using Bayes
rule, the posterior probability of infection times is

P(t |O) = P(t )P(O|t )

P(O)
, (10)

with P(t ) given in Eq. (6).

3. Bayes optimal setting

In the Bayes optimal setting, the parameters (λ, γ , fr) of
the epidemic spreading process are known in the inference
task. This means that the parameters (λ, γ , fr) used in the pos-
terior probability (10) are the same than the true parameters
used to generate the observations. However in many cases,
values of the parameters are unknown, and need to be in-
ferred. In such a case, we denote by (λ∗, γ ∗, fr∗) (respectively,
λI , γ I , frI ) the parameters used to generate the observations
(respectively, to infer the infection times).

B. Ensemble average

Our objective is to estimate how well observables on the
true (or planted) infection trajectory τ are approximated by
those of the inferred trajectory t , which follows the posterior
distribution given the observations O. We shall characterize
the properties of the posterior distribution (10) on a random
ensemble of contact graphs and realization of the epidemic
spreading. An instance will be defined by a contact graph G, a
ground-truth trajectory τ and a set of observation O sampled
from the distribution P(O|τ ). Three graph ensembles are con-
sidered: random regular (RR), Erdös-Rényi (ER) (defined for
example in Ref. [15]), and graph ensemble with a truncated
fat-tailed (FT) degree distribution. We will be interested in the
large size limit n → ∞, with n the number of individuals, at
fixed degree distribution. In this limit, graph instances of the
above-mentioned ensembles are locally treelike, allowing us
to exploit the cavity method to determine the typical proper-
ties of the measure (10).

1. Correlated observations

A technical difficulty arises when one tries to apply the
cavity method directly to the posterior distribution (10). This
distribution is defined for a given realization of the observa-
tions O = {Om}m=1...M . Observations O have to be treated as
quenched (disorder). While the cavity method is well-suited
for local, independent random disorder, the past history of
the epidemic spreading has introduced nontrivial long-range
correlations between the observations {Om}. To overcome this
difficulty, we rely on the set of hard constraints (5) on the
planted times that we recall here: τi = δx0

i ,S min j∈∂i{τ j + s ji}.
These constraints are expressed in terms of independent ran-
dom variables: the local delays si j and the initial-time state
x0

i . In fact, knowing these two sets of variables, it is possible
to determine each (planted) infection time: for fixed delays
{si j, s ji}(i j)∈E and seeds {x0

i }i∈V , the planted times are fixed
to be the unique solution of the set of constraints (5). Our
strategy is therefore to treat these local variables as disor-
der (quenched) variables, and consider instead the planted
time as constrained dynamical (annealed) variable. To treat
the noise in the observations, we also define the set of er-
ror bits {εm}m=1,...,M , with εm = I[σm �= xθm

im
]. We denote by

D = {{x0
i }i∈V , {εm}M

m=1, {si j, s ji}(i j)∈E } the set of all disordered
variables. At fixed disorder, the set of planted times τ and
observations O is uniquely determined. Averaging over the
disordered variables is therefore equivalent to average over
the set of observations: with this strategy we can perform the
quenched average over correlated observations. Obviously,
the price to pay with this approach is to treat planted times
as annealed variables. As a result, the BP messages are over a
couple of times (τi, ti ) instead of a single time ti, increasing
the complexity in the resolution of the RS equation with
population dynamics (see Appendix A for further details).

2. A graphical model for the joint distribution over planted
and inferred trajectories

The joint probability of the planted times τ , of the obser-
vations O = {Om} and of the inferred times t conditioned on
the disorder D is defined as

P(t,O, τ |D) = P(τ |D)P(O|D, τ )P(t |O,D, τ ) (11)

= P(τ |D)P(O|D, τ )P(t |O) (12)

= 1

P(O)
P(τ |D)P(O|D, τ )P(O|t )P(t ).

Notice that the passage from Eq. (11) to Eq. (12) is because
the inferred trajectory t is, conditionally to O, independent
from D and τ . To interpret the factorization in this definition,
we notice that the joint distribution above is the probability
to have a planted trajectory τ , to observe a set O from the
planted and to infer a trajectory t from the observations, all
conditioned to the disorder D. Therefore, this is the joint
probability of:

(1) sampling the planted τ from the prior P(τ |D), condi-
tioned on the disorder,

(2) sampling the observations O at given planted from the
likelihood P(O|D, τ ),
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(3) sampling the inferred trajectory t from the posterior
P(t |O), which can be rewritten by means of Bayes’ law as

1
P(O) P(t )P(O|t ).

Let us now analyze term by term the factors in Eq. (12).
The first term in the product is

P(τ |D) =
∏
i∈V

ψ∗(τi, τ ∂i; x0
i , {s ji} j∈∂i

)
,

with ψ∗ given in Eq. (5). The second term in the product is the
probability of having observation O = {Om} given the planted
times τ and the disorder D:

P(O|D, τ ) =
M∏

m=1

[
(1 − εm)δσm,xθm

im
+ εm

(
1 − δσm,xθm

im

)]
.

The third and the fourth terms are respectively given in
Eqs. (8) and (6). Finally, the denominator

P(O) =
∑

t

P(t )P(O|t )

can be seen as a complicated function of the observations O,
but since the observations are a deterministic function of the
disorder, we will denote it as a function of the latter:

P(O) = Z (D).

The fact that the observations are deterministically fixed when
fixed disorder, also implies that we can sum Eq. (12) over O
and since the disorder is fixed there is only one corresponding
nonzero value of O = O(D). As a consequence, we have that
P(τ , t |D) = P(t,O(D), τ |D). The joint probability distribu-
tion of planted and inferred times, conditioned on the disorder,
is thus obtained by substituting in Eq. (12) the functional form
of each factor:

P(τ , t |D) = 1

Z (D)

∏
i∈V

ψ∗(τi, τ ∂i
; x0

i , {s ji} j∈∂i
)

× ψ (ti, t ∂i )ξ (τi, ti; {εm}im=i ), (13)

with

ξ (τi, ti; {εm}im=i ) =
∏

m:im=i

ρ(Om|tim ). (14)

Note that when the error probability is zero: fr = 0 so a single
observation reads Om = (im, θm, σm, 0), the error variables are
always εm = 0 (no corruption), and ρ(Om|tim ) = I[σm = xθm

im
].

The coupling term ξ (τi, ti; {εm}im=i ) between inferred and
planted times in the joint probability becomes

ξ (τi, ti ) =
∏

Om:im=i

I
[
xθm

im
= σm

]
.

C. Nishimori conditions and replica symmetry

There is a general argument that hints at the absence of
replica-symmetry breaking in the Bayes optimal case [14,16].
However, it is not clear that this property holds in general.
The argument is a consequence of the Nishimori conditions,
that we reformulate here in our setting. Consider a given
realization of the observations O, and two configurations
t1, t2 sampled independently from the posterior distribution

PI (t |O), where the subscript I refers to the set of hyper-
parameters λI , γ I , frI used in the inference process. Let
f (t1, t2) be an arbitrary function of two configurations and
〈 f (t1, t2)〉t1,t2 =∑t1,t2

f (t1, t2)PI (t1|O)PI (t2|O) its average
over the posterior distribution. This average depends on the
observation set O. If we average, in the Bayes optimal condi-
tions, 〈 f (t1, t2)〉t1,t2 over O, then we get

EO[〈 f (t1, t2)〉t1,t2 ] = Eτ,O[〈 f (τ , t )〉t ]. (15)

This equation goes under the name of Nishimori condition
[14] and it is crucial to discuss the replica symmetry of the
posterior. Before going through the proof (which appears in
Ref. [14]), we comment its meaning: on the l.h.s. we have
that both the arguments of f are averaged over the posterior
trajectories (t1, t2), while on the right-hand side (r.h.s.) one
argument (τ ) is averaged over the prior and the other (t ) over
the posterior. In other words, Eq. (15) states that on average
(over O) it is the same to average over the planted or over
the inferred trajectories. In this sense the Nishimori condition
means that under the Bayes optimal conditions, the planted is
a fair sample of the posterior [14]. We now show the proof
of Eq. (15) taken from Ref. [14] and then we discuss its
connection with replica symmetry. The left-hand side (l.h.s.)
is

EO[〈 f (t1, t2)〉t1,t2 ]

=
∑
O

P∗(O)〈 f (t1, t2)〉t1,t2

=
∑
O

∑
t1,t2

P∗(O) f (t1, t2)PI (t1|O)PI (t2|O)

=
∑

t1,O,t2

P∗(O)
PI (t1)PI (O|t1)

PI (O)
PI (t2|O) f (t1, t2), (16)

where in the third line we used the Bayes law for PI (t1|O), and
where the subscript ∗ in the probability P∗(O) refers to the set
of planted hyperparameters λ∗, γ ∗, fr∗ used in the generation
of the observables. In the Bayes optimal setting, the two sets
of hyperparameters coincide (λ∗, γ ∗, fr∗) = (λI , γ I , frI ), so
we can interchange the subscripts I with ∗. We therefore
obtain the equality:

= EO[〈 f (t1, t2)〉t1,t2
]

=
∑

t1,O,t2

P∗(O)
P∗(t1)P(O, t1)

P∗(O)
P∗(t2|O) f (t1, t2)

=
∑
τ ,O,t

P∗(τ )P(O, τ )P∗(t |O) f (τ , t )

= Eτ,O[〈 f (τ , t )〉t ],

where in the second passage we simply renamed t1 → τ and
t2 → t . The quenched average EO is over the set of obser-
vations O. Note that in our case, we average instead over
the set of disordered variables D: as explained above, this
is equivalent to average over observations O, since O is a
deterministic function of D. We now discuss the connections
with replica symmetry by observing that the equality (15) is
true in particular when the function f is taken to be the overlap
between two configurations. In words, it states that the average
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of the overlap q between two configurations sampled indepen-
dently from the posterior, is equal to the average of the overlap
q∗ between the planted configuration and a random sample
from the posterior. Applying this equality to higher moments
of the overlap, it is actually possible to show that the two
distributions are equal. In models with gauge invariance, such
as the planted spin glass studied in Refs. [14,16], the overlap
q∗ coincides with the magnetization. It can be argued that the
magnetization is a self-averaging quantity, and therefore that
the overlap q is also self-averaging on the Nishimori line. This
argument allows to conclude that the probability distribution
of the overlap q is trivial, and therefore that there is no replica-
symmetry-breaking phase in the Bayes optimal setting. In the
case of epidemics, it is less clear that the overlap q∗ between
the planted configuration and a random sample of the posterior
is a self-averaging quantity. In fact, we observed a region (for
small seed probability γ and large transmission rate λ), which
presents signs of a failure of optimality, signalled by a lack
of convergence of belief-propagation in the thermodynamic
limit (see Sec. III, where we conjecture that this is due to
replica-symmetry breaking). A similar observation is made in
Ref. [8] on finite-size instances.

D. Belief-propagation equations for the joint probability

The factor graph associated with the probability distribu-
tion (13) contains short loops which compromise the use of
BP. To remove these short loops, we introduce the auxiliary
variables (τ ( j)

i , τ
(i)
j , t ( j)

i , t (i)
j ) on each edge (i j) ∈ E of the

factor graph, which are the copied times τ
( j)
i = τi, and t ( j)

i =
ti for all j ∈ ∂i. Let Ti j = (τ ( j)

i , τ
(i)
j , t ( j)

i , t (i)
j ) be the tuple

gathering the copied times on edge (i j) ∈ E . The probability
distribution on these auxiliary variables is

P({Ti j}(i j)∈E |D) = 1

Z (D)

∏
i∈V

({Til}l∈∂i;Di ), (17)

where Di = {{sli}l∈∂i, x0
i , {εm}im=i} is the disorder associated

with vertex i ∈ V , and with

({Til}l∈∂i;Di ) = ξ
(
τ

( j)
i , t ( j)

i ; ci
)
ψ∗(τ ( j)

i , τ
(i)
∂i ; {sli}l∈∂i, x0

i

)
× ψ

(
t ( j)
i , t (i)

∂i

) ∏
l∈∂i\ j

δt ( j)
i ,t (l )

i
δ
τ

( j)
i ,τ

(l )
i

, (18)

where j ∈ ∂i is a given neighbor of i. The factor graph associ-
ated with this probability distribution now mirrors the original
graph G = (V, E ) of contact between individuals, as shown in
Fig. 1. The variable vertices live on the edges (i j) ∈ E , and
the factor vertices associated with the function  live on the
original vertex set V . We introduce the Belief Propagation
(BP) message μi→ j on each edge (i j) ∈ E as the marginal
probability law of Ti j in the amputated graph in which node
j has been removed. The set of BP messages obey a set of
self-consistent equations:

μi→ j (Ti j ) = 1

zi→ j

∑
{Til }k∈∂i\ j

({Til}l∈∂i;Di )
∏

k∈∂i\ j

μk→i (Tik ),

(19)

where zi→ j is a normalization factor. These equations are
exact when the contact graph G = (V, E ) is a tree. In practice,

FIG. 1. The factor graph construction. On the left there is an
example of contact network among individuals. We map this onto the
factor graph on the right: for each individual we place a correspond-
ing factor node and for each edge between two individuals we place
the super-variable Ti j = (τ ( j)

i , τ
(i)
j , t ( j)

i , t (i)
j ) containing the planted

and the inferred trajectories of both individuals. This construction
increases the complexity of the BP messages, but allows to obtain a
disentangled factor graph map (without short loops), which mirrors
the contact network.

the BP method is also used as a heuristic on random sparse
instance. Introducing a horizon time T , the random variable
Ti j = (τ ( j)

i , τ
(i)
j , t ( j)

i , t (i)
j ) lives in a space of size O(T 4). We

see in Appendix A how to simplify the BP Eqs. (19), and
obtain a set of equivalent equations defined over modified BP
messages living in a smaller space.

1. Extension to SIR and SEIR models

The scheme described so far and the results discussed in
the next section are for the SI case. However, extending every-
thing to richer and possibly more realistic epidemic models is
almost straightforward. In Appendix C we give the necessary
ingredients to rewrite the factor graph for SIR and SEIR
models. We also show a parametrization for the SIR model
which leads to BP messages having the same complexity of
the SI case. The role of Appendix C is twofold: to show
that conceptually all the difficulties of the ensemble average
are already contained in the SI model and to give details to
any reader who wants to apply the method to more realistic
scenarios.

E. Estimators

To quantify the feasibility of inference tasks, some esti-
mators are defined in this paragraph and studied in Sec. III.
In view of that, it is useful to define Pi,t (x

∗,t
i , xt

i ) as the
marginal probability of having the planted state x∗,t

i and the
inferred state xt

i of one individual i ∈ V at a given time t ∈
{0, 1, . . . , T }.

1. Maximum mean overlap

The overlap at a given time t between the planted configu-
ration x∗,t and an estimator x̂t is Ot (x∗,t , x̂t ) = 1

N

∑N
i=1 δx∗,t

i ,x̂t
i
.

In the inference process, on a given instance, the planted
configuration is not known, and the best Bayesian estimator
is obtained by assuming that x∗,t is distributed according to
the posterior distribution. The best estimator of the overlap
x̂t,MMO is the one maximising the overlap averaged over the
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posterior:

MOt (x̂
t ) =

∑
xt

P(xt |O)Ot (x
t , x̂t ), (20)

which is achieved for x̂t,MMO
i = argmaxxt

i
(Pi,t (xt

i |O). The

overlap Ot (x∗,t , x̂t,MMO) provides a quantitative estimation of
the accuracy of the maximum mean overlap estimator x̂t,MMO.
We compute this quantity, averaged over the graph ensemble,
and the realization of the planted configurations and of the
observations:

EG,D[Ot (x̂
∗,t , x̂t,MMO)].

Note that in our formalism, we have access the marginal prob-
ability over planted and inferred configurations, conditioned
on the disorder D: Pi,t (x

∗,t
i , xt

i |D). However, as previously
explained, fixing the disorder variables is sufficient to fix the
planted configuration and the observations O.

2. Minimum mean-squared error

We also consider the squared error (SE) at a given time t
between the planted configuration xt,∗ and an estimator x̂t :

SEt (x
∗,t , x̂) = 1

N

N∑
i=1

(x∗,t
i − xi )

2.

As for the overlap, the best Bayesian estimator for the
squared error x̂t,MMSE is the one minimizing the squared error
averaged over the posterior:

MSEt (x̂
t ) =

∑
xt

P(xt |O)SE (xt , x̂t ), (21)

which is achieved for x̂t,MMSE
i =∑xt

i
Pi,t (xt

i |O)xt
i . We com-

pute the average, over the graph ensemble and the disorder, of
the squared error between the planted configuration and the
MMSE estimator:

EG,D[SEt (x̂
∗,t , x̂t,MMSE)] .

3. Area under the curve (AUC)

On a single instance, the ROC curve is computed as fol-
lows. At a fixed time t , one computes for each individual
its marginal probability Pi(xt

i = I|O). For a given threshold
ρ ∈ [0, 1], the true positive rate TPR(ρ) [respectively, false-
positive rate FPR(ρ)] is the fraction of positive (respectively,
negative) individuals with Pi(xt

i = I|O) � ρ. The ROC is the
parametric plot of TPR(ρ) versus FPR(ρ), with ρ the vary-
ing parameter. Note that the FNR (and therefore the ROC)
is undefined when all individuals are infected (all positive).
The area under the curve (AUC) can be interpreted as the
probability that, picking one positive individual i and one
negative individual j, their marginal probabilities allows to
tell which is positive and which one is negative, i.e., that
Pi(xt

i = I|O) > Pj (xt
j = I|O). This allows us to compute the

AUC under the replica-symmetric formalism.

F. Inferring the hyperparameters

The prior parameters, with which the planted epidemic is
generated, might not be accessible in the inference process.

In those cases, we propose to infer them from the obser-
vations by approximately maximizing P(O|λI , γ I ) at fixed
observations O. In this section we provide an upper bound
to the feasibility of parameters inference. It is an upper bound
because the process is described for the ensemble case, i.e.,
for an infinite-sized contact graph. This means that also the
number of observations is infinite. The idea is to find the most
typical parameters γ I , λI for the given set of observations.
For inferring γ we use the expectation maximization (EM)
method, an iterative scheme which consists in separating the
optimization process in two steps:

(1) At fixed BP messages, the update for γ at kth iteration
reads

γk = arg max
γ

〈log P(t, O|γ )〉{μ}k
, (22)

where {μ}k is a shorthand for the set of all BP messages at kth
iteration.

(2) At fixed γk , the messages are updated with BP equa-
tions.

To understand Eq. (22) we recall the definition of the vari-
ational free energy:

F [Q](γ ) := −〈log P(t,O|γ )〉Q + 〈log Q(t )〉Q. (23)

The posterior distribution P(t |O, γ ) can be shown to be
the distribution Q which minimizes F (see, for example,
Ref. [17]). If we evaluate averages with fixed BP messages,
then the dependency of F on γ is only on the first addend
of the right hand side. Then the optimization on γ reduces to
Eq. (22). By setting to zero the first derivative of Eq. (22) w.r.t.
γ we have, for the kth iteration,

γk = 1

N

∑
i∈V

pI,k
i (ti = 0|O), (24)

where pI,k
i (ti = 0|O) is the posterior probability at kth iter-

ation of EM for individual i to have infection time equal to
0 (i.e., to be the patient zero). The procedure we propose to
include the inference of patient zero probability is therefore to
simply update γ I with Eq. (24) at every sweep of BP update
on the population. We could write equations for EM in λ, but
they would be more involved. We opted therefore to simply
perform a gradient descent (GD) on the Bethe free energy.
For the epidemic propagation on graph, the Bethe free energy
can be related to the normalization of the BP messages and
BP beliefs, respectively, addressed as zi→ j and zi :

FBethe =
∑
i∈V

⎡⎣(1

2
|∂i| − 1

)
log zi − 1

2

∑
j∈∂i

log zi→ j

⎤⎦.

Overall, the inference of prior hyperparameters is done by
alternating one sweep of BP update of the messages at fixed
parameters (γ I , λI ) with one step of EM for γ and one step of
GD for λ.

III. RESULTS

In this section we explore the performance of inference
tasks for the SI model. We consider two different regimes:

(1) when the parameters of the prior distribution are
known in the inference process (Bayes optimal setting),
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FIG. 2. Several measures (first row, MMSE; second row, MMO;
third row, AUC) quantifying the hardness of epidemic inference, as
a function of patient zero probability γ , and infection probability
λ. Each column corresponds to three different times at which the
quantities are computed (from left to right: initial time t = 0, inter-
mediate time t = 4, and final time t = T = 8). The three measures
display the same behavior, except for the initial time, when AUC
is able to capture for high values of λ and γ that observations are
not informative enough. Notice that MMSE quantifies the error in
inferring individual’s states, so it has a flipped behavior with respect
to the other quantities (MMO and AUC are high when inference
performance is good). These results were obtained for ER graph
ensemble with average degree 3.

(2) when the parameters of the prior distribution are not
known and are inferred.

The results are obtained by randomly initializing a popula-
tion of BP messages and by iterating a population dynamics
algorithm, as described in Appendix B. The algorithm stops
when the BP messages satisfy a simple convergence criterion
on the marginals, which must not fluctuate more than the
square root of size of the population. If convergence criterion
is not reached, then the algorithm stops after a fixed number of
maxiter sweeps (typically we set the population size N ∼ 104

and the total number of sweeps maxiter = 100). Convergence
is (almost always) reached when the prior is known (or in-
ferred), except for a rather interesting and unexpected regime
which is discussed later on. The algorithm shows nonconverge
zones, as expected, also when the prior is not known.

A. Results in the Bayes-optimal case

In this paragraph, we study several measures and estima-
tors that quantify the hardness of inference, varying epidemic
parameters (transmission probability λ, patient zero proba-
bility γ ), but also the fraction of observed individuals. We
compare the minimum mean-squared error (MMSE), the max-
imum mean overlap (MMO), and the area under the ROC
curve (see Sec. II E for their definition), and the Bethe free
energy (Fe) associated with the posterior distribution P(t |O).
In Fig. 2, we fix the fraction of unobserved individuals

(dilution) to dil = 0.5 (half the individuals are observed). We
set the observation time at final time T = 8, and explore the
space (γ , λ). MMSE, MMO and AUC are computed at three
different times (initial time t = 0, intermediate time t = 4,
and final time t = T = 8). We can see that MMSE and MMO
show the same behavior at all times. For very low infection
probability λ, and patient zero probability γ , we see that
MMSE is low (while MMO and AUC are high), meaning that
the information contained in the inferred posterior distribu-
tion allows to recover the planted configuration with good
accuracy. In this regime, typically seeds are surrounded by
a small neighborhood of infected individuals, well-separated
from the other seeds, making inference task easy. For high val-
ues of patient zero probability γ and infection λ, instead, the
population becomes completely infectious in few time steps.
Also in this regime, all the estimators show great performance
for intermediate (t = 4) and final times, because the posterior
marginals assign to every individual a probability 1 of being
infectious. The hard regime is for intermediate values of γ , λ.

Note also that at t = 0, MMSE (respectively MMO) is
low (respectively, high) for high values of γ . However, this
does not mean that inference performance is good in this
regime. Indeed for large γ , the majority of individuals are
patients zero, and the other individuals are likely to be infected
before the observation time T . Therefore, the observations
are (almost) all positive, making impossible to distinguish
the patients zero from the ones infected at later time. Thus,
MMSE at time t = 0 is low because the marginal posteriors
give high probability of being infected at t = 0, independently
of the transmission rate λ. However, the (few) nonpatients
zero will remain undetected. A quantity that is sensible to this
problem is the AUC, which at time t = 0 has in fact a different
behavior with respect to the other measures. Another (slightly)
different quantity, for example, is the AUC evaluated only on
non observed individuals. When many observations are done,
the AUC is dominated by the observed individuals. Thus,
evaluating AUC only on non observed individuals (AUCNO)
can be a useful tool to understand the predicting power of the
algorithm on individuals for which no information is given.
To see the difference between AUC and AUCNO, we fix
the patient zero probability γ = 0.1, and study these two
measures as a function of the infection probability λ and
the observations dilution dil (i.e., the fraction of unobserved
individuals), see Fig. 3. We see that the two estimators behave
differently, for example at the intermediate time t = 4, for low
dilution (i.e., many observations) and low transmission rate λ.
In this regime, there are only few infected individuals at the
observation time (low γ and λ). While AUC is close to 1,
AUCNO is low, indicating that it is actually hard to find who
are the unobserved infected individuals.

1. Comparison with finite-size instances

It is natural to wonder whether our ensemble results ob-
tained in the thermodynamic limit, with the RS cavity method,
are consistent with large finite-size single instances. To check
this point, we initialized large sized (N = 30 000) graphs, and
simulated discrete-time epidemic spreading and observation
protocol. We used Sibyl [5], which is a Belief Propagation
algorithm for calculating the posterior marginals in single
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FIG. 3. A comparison between AUC evaluated on all individuals
(AUC, first row) vs only unobserved individuals (AUCNO, second
row). The two measures have a very similar but not identical behav-
ior. In particular, at low dilution (many observations) the AUCNO
is systematically smaller than the AUC as expected. This difference
is more pronounced for low values of λ, and at intermediate and
final time. These results are for ER graph ensemble, with average
degree 3. We remark here that AUC is not 0.5 for dilution equal to
1. In fact, ER graphs are heterogeneous (with a Poisson law degree
distribution). This implies that some information about the proba-
bility of infection of each node is contained in the graph itself. For
example, the most connected nodes have highest probability of being
infected. This allows to achieve some reconstruction also without any
observation (dil = 1).

instance problems. We computed the MMSE, and we com-
pared it with the RS predictions. An example is shown in
Fig. 4, showing a good agreement between the RS predictions
and the results on a single large instance.

2. Information contained in the observations

All the observables described so far are time-dependent
quantities, giving an estimation on how easy/hard it is to infer
the planted individual states x∗,t

i at a given fixed time t . It is
useful to define a time-independent observable, which gives a
general overview of the inference process. We opted to study
the Bethe free energy F = − log Z (D) = − log P(O), which
can be expressed in terms of BP marginals (see its expression
in Appendix A 6). It is the free energy associated with the
posterior distribution:

P(t |O) = P(t,O)

P(O)
, (25)

where

P(O) =
∑

t

P(t,O) =
∑

t

P(O|t )P(t ).

F = − log P(O) quantifies how informative the observations
O are: the quantity P(O) is the sum of trajectories (weighted
with their prior probability) which are compatible with the ob-
servation constraints O. Observations reduce the space of the
possible trajectories; as an extreme example, if we observed
(noiselessly) every individual at every time, the space of pos-
sible trajectories would collapse on a single trajectory (the
planted solution). The plots in Fig. 5 show the free energy in
the two different regimes discussed above. The free energy is

FIG. 4. The comparison between Sibyl algorithm (BP) for a
single instance of N = 300 (triangles), N = 3000 (dots), and N =
30 000 (squares) individuals, and the ensemble results obtained in
the thermodynamic limit with population dynamics (black solid line).
The plots show the MMSE at intermediate time t = 6, as function of
the number of infected at final time T = 8, which is a function of in-
fection parameters γ and λ. For this plot the patient zero probability
is fixed at γ = 0.15. The first row represents the MMSE for random
regular graphs (degree 3) while the second row is for Erdös-Rényi
(ER) with average degree 3. Each column instead is associated with
a value of observations dilution dil: the first column is for dil = 0
(all observed) while the second is for dil = 0.5. We see a very good
agreement, that increases with the size of the the single instance
contact graph, and that we checked to persist in the other observables
(MMO and AUC).

obviously 0 for dil = 1 (no observation). However, it is close
to 0 in other cases too, e.g., for high values of λ. For those
values, the infection spreads very fast. As a consequence,
at final time all the individuals are infected. Thus, since the
observations are taken at final time, they do not bring valuable
information on the planted trajectory: they will always register
a positive (infected) result for all individuals at final time. In
other words, all trajectories sampled from the prior are com-
patible with the observation that all individuals are infected
at time T . Note however that inference can be easy in this
regime, as it can be checked comparing Fig. 5 with Figs. 2
and 3 (for times t = 4 and t = 8). In this regime, although
observations are not informative, the prior is concentrated on
few trajectories (that are compatible with all individuals being
infected at times t = 4 and t = 8), making inference task triv-
ial. The interesting (and hard) regimes are at intermediate/low
values of γ and λ and for nonzero dilution. In this regime,
although observations are informative (F positive) the prior is
not concentrated on few trajectories, making the inference a
nontrivial task.
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FIG. 5. Free-energy profile for two different regimes. Left panel:
as a function of patient zero probability γ and infection probability
λ, at fixed dilution dil = 0.5. Right panel: as a function of observa-
tions dilution dil and λ, at fixed patient zero probability γ = 0.1.
The black part of the plot corresponds to the regimes in which
observations do not bring any information, i.e., F � 0. This happens
obviously at dil = 1 because no observation is done. However, also
for nonzero dilution, the free energy can be zero. When the infection
transmission λ is high enough, in fact, all the individuals are infected
at final time with probability almost equal to 1. Since for this plot
the observations are performed at final time, then they all simply
register the infectiousness of each individual, factually carrying no
information with them. Only in the intermediate regimes, i.e., when
the numbers of infectious and susceptible individuals are comparable
to each others, observations carry information. In this regime the free
energy is nonzero and inference is non trivial. The graph ensemble
analyzed here is Erdös-Rényi with average degree 3.

3. More graph ensembles

The analysis shown so far has been performed on Erdös-
Rényi graphs. To study if and how inference performance is
affected by the graph structure, we compared the results on
three families of graphs:

(1) The random regular (RR) ensemble, where each node
has the same degree d;

(2) The Erdös-Rényi (ER) ensemble. In the large-size
limit, the degree distribution is a Poisson distribution of av-
erage d;

(3) A (truncated) fat-tailed (FT) ensemble of graphs, with
a degree distribution p(d ) = 1

Z
1

d2+a for d ∈ [dmin, dmax] and
p(d ) = 0 if d /∈ [dmin, dmax]. The quantity Z is the normaliza-
tion of the distribution and the parameter a can be fixed by
fixing the average degree.

The choice for the third graph ensemble allows for the
existence of highly connected nodes, while still being handled
by belief propagation (BP), since the distribution of the degree
is truncated to a finite maximum value dmax. In Fig. 6 (first
row), we compare the minimum mean-squared error (MMSE)
at time t = 6 for the three ensembles of graph. The average
degree is fixed to 3 in all three graph ensembles.

4. Noise in observations

When noise affects individuals’ observations, the inference
results get typically worse. This can be seen in Fig. 6 (second
row), where we studied the AUC as function of observations
dilution and noise (false rate, fr). For false rate equal to 0.5,
the observations carry no information, since they are wrong
half of the time. This is identical to set dilution to dil = 1,
i.e., not performing any observation. For intermediate values,

FIG. 6. Comparing feasibility of inference for different graph
ensembles and for nonzero observation noise. First row: the plots
show the MMSE at time t = 6, with observations made at final time
T = 8, as functions of the patient zero probability γ and the infection
probability λ. The three plots are (from left to right) for random
regular (RR), Erdös-Rényi (ER) and fat-tailed (FT) graph ensembles.
The average degree is fixed to 3 for the three ensembles examined. It
can be seen that the profiles share similarities, but the more the degree
distribution widens (from RR to ER to FT), the flatter is the MMSE.
This is due to the presence (or absence) of high-degree nodes. In RR
ensemble, all nodes have the same degree, so for example we see that
inference is more difficult at low values of γ and values of λ. In this
region, the presence of highly connected nodes simplifies inference
because they (and their neighbours) will probably be infectious at
time t = 6. The dashed lines correspond to the cases studied in
Fig. 4 at dilution 0.5. The only difference is in the y axis, which
is λ for this plot and the number of infected for the plots in Fig. 4.
Second row: the AUC as function of observations’ dilution (dil) and
false rate (fr). The AUC decreases with fr and dil. The false-positive
rate and false-negative rate are assumed to be the same. The patient
zero probability is fixed to γ = 0.03 and the infection probability is
λ = 0.03. The ensemble graph is random regular with degree 11.

we see that increasing false rate and/or dilution always leads
to worse inference, as expected.

5. Application to a real network

We show here how our predictions on the infinite-size limit
can be applied to more realistic random ensembles. Given
a real finite network, we consider the configuration model
ensemble with a degree distribution taken from the degree
sequence of the graph. The cavity method allows to approx-
imately find the expected value of each desired estimator in
each regime for that ensemble, in the thermodynamic limit.
We applied this procedure to a network of sexual contacts
[18] from the data repository [19], and compared the results
on the single instance with the cavity method approximation
on the infinite-size limit (see Fig. 7). The first row shows the
ensemble results, while the second shows single-instance re-
sults obtained with Sib. The phase diagrams show the AUC at
initial, intermediate and final time as function of the infection
and the observation dilution in the Bayes-optimal regime. The
agreement between the two results is good, implying that the
quality of inference performance in this setup depends mostly
on the degree distribution, which is a global characteristic of
the network.
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FIG. 7. An application of the cavity method to a real network.
First row: ensemble predictions for AUC at time 0,4,8. Second row:
results obtained on the real network using Sib [5], the epidemic
inference algorithm based on BP, the single instance method corre-
sponding to the cavity method. The predictions are quite similar to
the results obtained by Sib. Some differences can be seen for low
values of the infection probability λ, where Sib has higher perfor-
mance. A possible explanation could have been that the ensemble
algorithm makes an incorrect estimate in the number of infectious
individuals, however, we checked that the ensemble prediction for
the number of infectious individuals in time is correct and consistent
with Sib (not shown). The reason why Sib performs better than the
cavity method should be related to the fact that at a single instance
level the observations O are more informative than in the ensemble
case: if one individual is observed in the state S, then it is true
that the infection cascade did not pass through it. Therefore, the
correlations among its neighboring individuals drop down due to
the S observation, which factually cuts the network. This reasoning
does not subsist in the ensemble case, where the network is not
fixed. Therefore, we expect lower AUC in the regime in which the
S observations are more frequent (low infection λ). For this plot, the
value of the patient zero probability is fixed at γ = 0.2 and there is
no noise in observations, which are all made at time T = 8.

6. Convergence-breakdown for low seed probability

A surprising behavior of the Belief Propagation equa-
tions was observed in Ref. [8], for single instances at small
values of γ , the patient zero probability. In fact, even in the
Bayes optimal conditions, BP stops to converge. We checked
that this breakdown of convergence is actually present even
in the thermodynamic limit, using our population dynamic
algorithm. This lack of convergence, therefore, seems to be
related to a more profound reason. To understand what is
happening, we simplified the framework by setting the infec-
tion probability λ to 1 and by observing all the individuals at
final time. In this regime, in Fig. 8 the black dots represent
the number of iterations needed for the population dynamics
algorithm to converge. Around γ = γ̃ = 0.013 the algorithm
stops converging. An intuitive explanation to explain this be-
havior is the following: for γ around γ̃ at final time many
individuals are observed infectious (I) and a small (but ex-
tensive) part are observed susceptible (S). As λ = 1, the sole
nondeterministic part of the process is the initial state, so the
inference problem reduces to guess the position of the patients
zero. The S individuals not only signal that they were not
infected in the epidemic process, but also that any patient zero
must be at distance >T . For example, for a RR graph, this
excludes a sphere centered in S-observed with d (d − 1)T −1

FIG. 8. Study of population dynamics, Monte Carlo and number
of clusters for zero-patience inference. We studied, for a RR graph
with degree 3, the convergence of population dynamics (infinite
graph) and Monte Carlo (finite-size graph). It breaks down at around
γ̃ � 0.013. The black dots represent the number of iterations for
population dynamics to reach convergence, normalized by the total
number of iterations allowed. The continuous squared-marked lines
represent the fraction of successful Monte Carlo runs, for several
sizes (N, 2N, 4N , with N = 5000). We say that MC is successful
every time it reaches a configuration which satisfies the observations
(see main text). The failure of Monte Carlo coincides with BP failure.
We conjecture that this is due to replica-symmetry breaking. We
think that the main reason of this breakdown is because the space
in which a patient zero can be placed in the posterior becomes
clustered (see Fig. 9). To support this conjecture, we plot the frac-
tion of connected components of the subgraph of all the individuals
that could be the patients zero without violating the S observations.
This number, as expected, grows sharply in the interval in which
BP ceases to converge. The failure of convergence arises when the
number of possible zones to place the patient zero (continue, blue
line) becomes higher to the actual fraction of patients zero (dotted,
blue line). This suggests that when the number of zones in which
a patient zero might be becomes larger than the number of patients
zero, then the problem becomes hard, as illustrated in Fig. 9.

individuals. For γ around γ̃ these spheres touch and intersect,
so that the group of individuals eligible to be the patients zero
gets separated in clusters. In Fig. 9 we give a plot in 2D of the
phenomenon. When the number of observed S is sufficiently
high, due to the fact that there are few patients zero, the space
in which patients zero could physically be gets fragmented.
To check that this is what actually happens in a random reg-
ular graph, we initialized a graph and counted the connected
components in which a patient zero could be present without
violating the S observations. This number actually sharply
increases in the decreasing γ direction, around γ̃ , i.e., when
the algorithm stops converging. Further evidence of a phase
transition is given by Monte Carlo dynamics. We implemented
a simple Monte Carlo simulation on a graph. We first sampled
the planted (ground-truth) configuration, from which we col-
lected the observations. The observation protocol was set to
observe all the individuals at the final time T (without obser-
vation noise). Then we started a Metropolis-Hasting Monte
Carlo simulation to sample a configuration satisfying all the
observations. To do so, we initialize a configuration by doing
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FIG. 9. A 2D plot to visualize the geometric change undergone
by the configuration space that could explain why population dynam-
ics and Monte Carlo schemes stop to converge. In this plot, obtained
by simulating epidemic spreading in a two-dimensional lattice, we
compare two scenarios. To the right, γ is higher, namely there are
more patients zero (green dots). This implies that the number of
infected (green, red, and gray dots) is higher, so the number of
S-observed individuals (no dots) is smaller. The patients zero can
not be too close to the S-observed individuals because the infection
probability is 1, so the observation constraint would be violated. The
red dots represent all the individual which might be the patient zero
according to the observations (i.e., individuals tested I and not too
close to S-observed individuals). When the number of patients zero is
lower, (left) the number of S-observed individuals increases. So the
possible zones to accommodate patients zero (green plus red dots)
reduce and get clustered. This could create several separated states
of the posterior, each one corresponding to a possible combination
of placements of patients zero.

a sample x of the prior distribution. The initialization configu-
ration typically does not satisfy the observations. So we make
the following move: we randomly select an individual and we
change its t = 0 state by sampling the I state with probability
γ [and the S state with probability (1 − γ )]. Subsequently, the
initial state configuration is evolved (deterministically, since
the infection probability is λ = 1). The configuration at final
time is then checked to be consistent with the observations. In
particular, we introduced the energy

U = −
N∑

i=1

log p
(
oi|xT

i

)
, (26)

where x is the configuration and each oi is the observation
on the ith individual. In principle p(oi|xT

i ) should be either 0
(when the configuration does not satisfy the observations) or
1 (when the observation is satisfied). To avoid infinite energy
barriers, we introduced a small noise in observations, which
we reduced during the Monte Carlo by means of an annealing
procedure. In other words, the energy is just a penalization for
each broken constraint. At each step, the move in the space of
initial states described above is made. The move is accepted
by following a standard Metropolis scheme. The MC stops
when the configuration satisfies all constraints. For each value
of γ we repeated 60 times the MC scheme and computed the
fraction of runs in which the algorithm was able to reach a
configuration satisfying all observation constraints. We plot
in Fig. 8 the fraction of Monte Carlo processes that reached a
configuration of the posterior. We clearly see that this quantity
drops down around γ̃ . Due to the failure of BP equations (for
finite and infinite graph), the explosion of possible patient

FIG. 10. Ensemble algorithm breakdown outside Nishimori con-
dition. Keeping fixed λ∗ = 0.3 and the parameters γ ∗ = γ I = 0.03,
while instead moving the inference parameter 0.0 < λI < 0.8 and
the dilution between 0 and 1 we see that for high values of λI the
algorithm does not converge and provides nonphysical results for the
free energy.

zero zones and the failure of the Monte Carlo scheme we
conjecture replica-symmetry-breaking transition around γ̃ .

B. Departing from Bayes-optimal conditions

It is well known that when inference is performed with
imperfect knowledge of the prior distribution parameters, it
is possible to observe a replica-symmetry-breaking (RSB)
phase transition. This is due to the fact that outside the Bayes
optimality regime, the Nishimori conditions are no longer
guaranteed to be valid, see Sec. II C. An RSB phase can
manifest itself with a convergence failure of the population
dynamics algorithm, which is based on the replica-symmetry
hypothesis. This is exactly what we see in Fig. 10. We recall
that we use a star (∗) to label the parameters with which the
planted configuration is generated, e.g., λ∗ is the true infection
probability, while λI is the infection probability used by the
algorithm in the inference process. For this plot we fixed γ ∗ =
γ I (so we gave to the algorithm the exact value of patient
zero probability) and we studied the free-energy landscape by
varying λI and the observations dilution. There exists a zone in
which the number of iterations reaches the maximum allowed
number (which was set to 100). In this zone, the observables
show an oscillating behavior. This suggests a breakdown of
the algorithm validity, which may be caused by an RSB phase
transition. In any case, when the prior is not known, some
difficulties arise in epidemic inference. A good strategy to
avoid them is to infer the prior parameters, as shown in the
next paragraph.

1. Inferring epidemic prior’s parameters

We infer the prior parameters by (approximately) mini-
mizing the Bethe free energy. In particular, for the patient
zero probability γ we use the expectation maximization (EM)
method. For the infection probability λ, instead, we perform a
gradient descent (GD) on the free energy. This mixed strat-
egy (EM for inferring γ and GD for λ) was adopted due
to its simplicity in terms of calculations. To check if the
method works, we studied inference in the same conditions
of Fig. 2. We therefore fixed observations dilution to 0.5, and
we explored the space of patient zero probability γ ∗ against
infection probability λ∗. Initializing the inferring parameters
to γ I = λI = 0.5, the results are shown in Fig. 11. The plot
shows a comparison between the observables computed by
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FIG. 11. A comparison between the inference feasibility (quan-
tified here with MMMSE and free energy) in the case in which
prior’s parameters are known (first column) and when instead they are
learnt (second column). The quantities are represented as functions
of the planted parameters γ ∗ and λ∗. In the first row the MMSE at
intermediate time t = 4 is plotted: on the left there is the optimal
Bayes result, already shown in Fig. 2, while on the right there is the
result obtained when the infection and patient zero parameters λI and
γ I are learned. On the second row the same comparison (i.e., Bayes
optimality on the left and hyperparameters’ learning on the right)
is done for free energy. In both cases (MMSE and free energy) the
initial conditions for the hyperparameters were set to λI = 0.5 and
γ I = 0.5. The results are for the Erdös-Rényi ensemble with average
degree of 3. Observations are made at final time T = 8.

inferring the prior parameters and their respective quantities
in the Bayes optimal case, i.e., the ones plotted in Fig. 2 (first
row) and Fig. 5 (left). The prior parameters are learned by
minimizing the free energy, which agrees almost perfectly
with the optimal one. There is a strong agreement also for
other observables, as the MMSE, which we plotted at time
t = 4 To actually see how well the prior hyperparameters are
inferred, we plot them in function of their planted respective
quantity (see Fig. 12). It is again important to compare the
results of prior parameters inference with the single instance
results on finite graphs. Indeed, the inference results shown so
far are for infinitely large graphs. The number of observations
is therefore infinite too. It is then crucial to see whether for
finite-size graphs (and finite information) it is possible to
achieve comparable results to the ensemble. In Fig. 13 we see
that this is the case. We compare the population dynamics and
the single instance code by analyzing step-by-step their gra-
dient descent on the patient zero and infection probabilities.
The plot shows that, as expected, the ensemble inference is
more precise due to infinite amount of information available.
However, the values inferred by the single instance algorithm
are very close to the true ones.

FIG. 12. The inferred prior parameters in function of their re-
spective planted quantities. The plot is obtained at zero dilution (all
individual observed) and for (uniformly) scattered observations in
time. In the left panel, patient zero parameter γ I is plotted in function
of γ ∗ for different values of λ∗. The right panel’s lines are instead the
values of the infection λI as function of λ∗ for different values of γ ∗.

2. Addressing biased observations

In realistic contexts, observations are not taken uniformly
at random from the population. This is because infected peo-
ple might manifest some symptoms, which push them to test
themselves. The probability of being observed is therefore
typically higher for infected people than for susceptible ones.
A first consequence is that the fraction of infected individu-
als in the population is not equal to the fraction of infected
ones in the set of observed individuals. If in the inference
process this is not considered, then the risk is to achieve low
performance. Not considering the bias of observations means
to infer with an incorrect prior parameter, i.e., outside of

FIG. 13. Inference of prior parameters with the ensemble code
(pop dynamics) compared to the single instance result, obtained
running the belief propagation (BP) algorithm on a contact network
of N = 10 000 nodes. The plot shows the gradient descent in free
energy with respect to the two parameters γ I and λI which respec-
tively represent the patient zero and the infection probabilities. For
the infection λI the gradient descent is performed using the Sign De-
scender technique with learning rate 0.01, while for γ I we used the
expectation maximization method. The results are for Erdös-Rényi
(ER) graphs with average degree 3. All the individuals are observed
at final time.
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FIG. 14. Considering (and inferring) bias in observation allows
to recover Nishimori conditions and improves inference perfor-
mance. The bias is generated by symptomatic individuals, which are
all assumed to be tested. The probability for an infected individual of
being symptomatic was set to p+ = 0.5. Asymptomatic individuals
can also be tested. For this plot, the probability for an asymptomatic
individual to be randomly selected for a test was set to pr = 0.04.
The left plot shows the estimated fraction of infected individuals
over time. Considering the bias in the inference process allows to
reconstruct this function. On the right plot we compared inference
performance when the bias is considered vs when it is neglected.
Considering the bias systematically improved the AUC. The patient
zero probability was set to γ = 0.03 and the infection probability to
λ = 0.25. The observations are all performed at time T = 8.

the Nishimori conditions. To quantify this bias, we introduce
p+, the probability for an infected individual to be symp-
tomatic. We assume that all infected symptomatic individuals
are tested. Asymptomatic individuals are instead tested at
random with probability pr . From this, the probability for an
infected individual to be tested, with a positive test result is

P(tested, positive|I ) = (1 − fr)[p+ + pr (1 − p+)],

and similarly,

P(tested, negative|I ) = fr[p+ + pr (1 − p+)].

For susceptible states S:

P(tested, positive|S) = prfr,

P(tested, negative|S) = pr (1 − fr).

The unbiased case is recovered for p+ = 0. We want to com-
pare inference results when the bias p+ is considered and
when instead is neglected. In Fig. 14 (left panel), we see a
substantial overestimation of the infection when ignoring the
bias. In the right panel, we see that the AUC is systematically
higher when the bias is included. We finally inferred the bias
p+ by minimizing the free energy (following exactly the same
procedure of the transmission rate’s inference). This process
allows to include the unknown bias without affecting perfor-
mances.

IV. CONCLUSION

In this paper, we study the feasibility of inference
in epidemic spreading on a contact graph. Using the
replica-symmetric cavity method, we give quantitative pre-
dictions of several estimators [minimum mean-square error
(MMSE), maximum mean overlap (MMO), and area under

the ROC curve (AUC)], in different regimes depending on
the characteristics of the epidemics, the observations and the
contact graph.

In the Bayes-optimal setting, we show that for a large range
of the model’s parameters, the RS predictions are in good
agreement with the results obtained on finite-size instances.
It was noted in Ref. [8] that BP equations did not converge
on large instances in a particular region of the parameters (at
low seed probability and high rate transmission), a fact that
is also confirmed by our simulations. Our simulations in that
region show a lack of convergence of the cavity equations in
the thermodynamic limit (answering thus negatively to the
conjecture in Ref. [8] of it being to finite-size effects), and
strongly hinting to replica-symmetry breaking.

In the non-Bayes optimal setting (i.e., when the parameters
of the posterior differ from the parameters used in the prior),
we observe a region where the iterative numerical resolution
of the replica-symmetric cavity equations does not converge,
suggesting the presence of a replica-symmetry-breaking tran-
sition. We show however that inferring parameters allowing
to recover performance comparable to the one obtained in the
Bayes optimal setting is possible with a simple iterative pro-
cedure, for a large range of the prior’s parameters. There are
however situations in which one is forced to work outside the
Bayes optimal case (and for which replica-symmetry breaking
is to be expected), e.g., when some parameters of the model
are known only approximately but are too many to infer or
when the knowledge of the contact network itself is imperfect.

Averaging over correlated disorder within the framework
of the cavity method is the main technical issue addressed in
this paper. The strategy developed here could be applied to
more involved irreversible epidemic models, such as the SIR
and SEIR model. The main limitation would be an increase
of space size of the dynamical variables: each compartment
added would come with a additional couple of transition
times (one planted and one inferred time). The strategy could
be applied more generally to any model in which disorder
can be decomposed into a set of local (independent) random
variables s, and a set of correlated variables τ that can be
computed from the first set. Note however that each element
of the correlated disorder τ should be expressed only as a
function of a local subset of τ and s. In other words, there
must exist a function

ψ (τ |s) =
∏
i∈V

ψi(τi|τ ∂i, s∂i ), (27)

with arbitrary factors ψi, which for fixed s is nonzero only for
a given value τ .
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APPENDIX A: BP EQUATIONS AND BETHE FREE
ENERGY

In this Appendix we derive a simplified version of the
BP Eqs. (19) introduced in Sec. II D. These simplified equa-
tions [given in Eqs. (A13) and (A14)] are over a set of
modified messages represented in Fig. 15.

1. Clamping

In the numerical resolution of the cavity equations, it will
be convenient to introduce a horizon time T + 1 above which
the epidemic evolution is not observed. This results in a
modification of the function ψ∗ ensuring the constraints on
infection times:

ψ∗(τi, τ ∂i, x0
i , {s ji}

) = I[τi = δx0
i ,S

× min(T + 1, min
l∈∂i

(τl + sli ))]. (A1)

FIG. 15. The compact optimized version of BP equations. The
μ messages are functions of ∝ T 2 values, since σ ∈ {0, 1, 2} and
c ∈ {0, 1}. For this reason we keep the population of μ messages.
Each iteration of the optimized BP consists in computing the ν

message from a set of μ messages and after the extraction of disorder,
according to Eq. (A13). Then from the ν message, by performing the
summation on the last argument described in Eq. (A14), the new μ

message is obtained.

2. Simplifications

To simplify the BP Eqs. (19), we will start by writing the
functions ψ∗, ψ in a simplified way:

ψ∗(τ ( j)
i , τ

(i)
∂i , {sli}l∈∂i, x0

i

) = δx0
i ,Iδτ

( j)
i ,0 + δx0

i ,S

∏
l∈∂i

I
[
τ

( j)
i � τ

(i)
l + sli

]− δx0
i ,SI
[
τ

( j)
i < T + 1

]∏
l∈∂i

I
[
τ

( j)
i < τ

(i)
l + sli

]
(A2)

and

ψ
(
t ( j)
i , t (i)

∂i

) =
∑

x0
i

γ
(
x0

i

) ∑
{sli}l∈∂i

∏
l∈∂i

w(sli )I
[
t ( j)
i = δx0

i ,S min
(
T + 1, t (i)

l + sli
)]

= γ δ
τ

( j)
i ,0 + (1 − γ )

⎡⎣∏
l∈∂i

( ∞∑
s=1

w(s)I
[
t ( j)
i � t (i)

l + s
])− I

[
τ

( j)
i < T + 1

]∏
l∈∂i

( ∞∑
s=1

w(s)I
[
t ( j)
i < t (i)

l + s
])⎤⎦

= γ δ
τ

( j)
i ,0 + (1 − γ )

⎡⎣∏
l∈∂i

a
(
t ( j)
i − t (i)

l − 1
)− I

[
τ

( j)
i < T + 1

]∏
l∈∂i

a
(
t ( j)
i − t (i)

l

)⎤⎦
= γ

(
t ( j)
i

)(∏
l∈∂i

a
(
t ( j)
i − t (i)

l − 1
)− φ

(
t ( j)
i

)∏
l∈∂i

a
(
t ( j)
i − t (i)

l

))
, (A3)

where we have defined

a(t ) = (1 − λ)tH (t ),

γ (t ) =
{
γ if t = 0
1 − γ if t > 0 ,

φ(t ) =
{

0 if t = 0 or t = T + 1
1 if 0 < t < T + 1 ,

(A4)

where H (t ) is the Heaviside step function, with H (0) = 0. We also notice that the function  constraints the planted and inferred
times of the incoming messages to the equality: τ

(k)
i = τ

( j)
i , and t (k)

i = t ( j)
i for all k ∈ ∂i \ j. We can now rewrite the first BP
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equation with the expression of ψ∗, ψ :

νi→ j (Ti j ) = γ
(
t ( j)
i

)
ξ
(
τ

( j)
i , t ( j)

i , ci
)

zi→ j

⎧⎪⎨⎪⎩a
(
t ( j)
i − t (i)

j − 1
)
δx0

i ,Iδτ
( j)
i ,0

∏
k∈∂i\ j

⎡⎢⎣∑
t (i)
k

a
(
t ( j)
i − t (i)

k − 1
)∑

τ
(i)
k

μk→i (Tki )

⎤⎥⎦

+ a
(
t ( j)
i − t (i)

j − 1
)
δx0

i ,SI
[
τ

( j)
i � τ

( j)
j + s ji

] ∏
k∈∂i\ j

⎡⎢⎣∑
t (i)
k

a
(
t ( j)
i − t (i)

k − 1
)∑

τ
(i)
k

μk→i (Tki )I
[
τ

( j)
i � τ

(i)
k + ski

]⎤⎥⎦
− a
(
t ( j)
i − t (i)

j − 1
)
δx0

i ,SI
[
τ

( j)
i < T + 1

]
I
[
τ

( j)
i < τ

( j)
j + s ji

]
×
∏

k∈∂i\ j

⎡⎢⎣∑
t (i)
k

a
(
t ( j)
i − t (i)

k − 1
)∑

τ
(i)
k

μk→i (Tki )I
[
τ

( j)
i < τ

(i)
k + ski

]⎤⎥⎦

− φ
(
t ( j)
i

)
a
(
t ( j)
i − t (i)

j

)
δx0

i ,Iδτ
( j)
i ,0

∏
k∈∂i\ j

⎡⎢⎣∑
t (i)
k

a
(
t ( j)
i − t (i)

k

)∑
τ

(i)
k

μk→i (Tki )

⎤⎥⎦

− φ
(
t ( j)
i

)
a
(
t ( j)
i − t (i)

j

)
δx0

i ,SI
[
τ

( j)
i � τ

( j)
j + s ji

] ∏
k∈∂i\ j

⎡⎢⎣∑
t (i)
k

a
(
t ( j)
i − t (i)

k

)∑
τ

(i)
k

μk→i (Tki )I
[
τ

( j)
i � τ

(i)
k + ski

]⎤⎥⎦
+ φ

(
t ( j)
i

)
a
(
t ( j)
i − t (i)

j

)
δx0

i ,SI
[
τ

( j)
i < T + 1

]
I
[
τ

( j)
i < τ

( j)
j + s ji

]
+ φ

(
t ( j)
i

)
a
(
t ( j)
i − t (i)

j

)
δx0

i ,SI
[
τ

( j)
i < T + 1

]
I
[
τ

( j)
i < τ

( j)
j + s ji

]
×
∏

k∈∂i\ j

⎡⎢⎣∑
t (i)
k

a
(
t ( j)
i − t (i)

k

)∑
τ

(i)
k

μk→i (Tki )I
[
τ

( j)
i < τ

(i)
k + ski

]⎤⎥⎦
⎫⎪⎬⎪⎭, (A5)

where Tki = (τ (i)
k , τ

(k)
i = τ

( j)
i , t (i)

k , t (k)
i = t ( j)

i ) in the r.h.s., due to the constraint on the incoming times (and Ti j =
(τ ( j)

i , τ
(i)
j , t ( j)

i , t (i)
j ) in the l.h.s.).

3. Summation over the planted times

We can see on the above equation that the r.h.s. depends on the planted time τ
(i)
j only through the sign:

σ ji = 1 + sgn
(
τ

(i)
j − τ

( j)
i + s ji

)
, (A6)

with the convention that sgn(0) = 0. We therefore introduce the notation

ν̃i→ j
(
τ

( j)
i , σ ji, t ( j)

i , t (i)
j

) = νi→ j
(
τ

( j)
i , τ

(i)
j , t ( j)

i , t (i)
j

)
(A7)

for all τ
(i)
j such that σ ji = 1 + sgn(τ (i)

j − τ
( j)
i + s ji ). We also introduce the message

μ̃i→ j

(
σi j, τ

(i)
j , t ( j)

i , t (i)
j

) =
∑
τ

( j)
i

μi→ j

(
τ

( j)
i , τ

(i)
j , t ( j)

i , t (i)
j

)
I
[
σi j = 1 + sgn

(
τ

( j)
i − τ

(i)
j + si j

)]
. (A8)

With these definitions, the BP equation becomes

ν̃i→ j (T̃i j ) = γ
(
t ( j)
i

)
ξ
(
τ

( j)
i , t ( j)

i , ci
)⎧⎪⎨⎪⎩a

(
t ( j)
i − t (i)

j − 1
)
δx0

i ,Iδτ
( j)
i ,0

∏
k∈∂i\ j

⎡⎢⎣∑
t (i)
k

a
(
t ( j)
i − t (i)

k − 1
) 2∑

σki=0

μ̃k→i (T̃ki )

⎤⎥⎦

+ a
(
t ( j)
i − t (i)

j − 1
)
δx0

i ,SI[σ ji ∈ {1, 2}]
∏

k∈∂i\ j

⎡⎢⎣∑
t (i)
k

a
(
t ( j)
i − t (i)

k − 1
) 2∑

σki=1

μ̃k→i (T̃ki )

⎤⎥⎦
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− a
(
t ( j)
i − t (i)

j − 1
)
δx0

i ,SI
[
τ

( j)
i < T + 1

]
I[σ ji = 2]

∏
k∈∂i\ j

⎡⎢⎣∑
t (i)
k

a
(
t ( j)
i − t (i)

k − 1
)
μ̃k→i

(
σki = 2, τ

( j)
i , t (i)

k , t ( j)
i

)⎤⎥⎦

− φ
(
t ( j)
i

)
a
(
t ( j)
i − t (i)

j

)
δx0

i ,Iδτ
( j)
i ,0

∏
k∈∂i\ j

⎡⎢⎣∑
t (i)
k

a
(
t ( j)
i − t (i)

k

) 2∑
σki=0

μ̃k→i (T̃ki )

⎤⎥⎦

− φ
(
t ( j)
i

)
a
(
t ( j)
i − t (i)

j

)
δx0

i ,SI[σ ji ∈ {1, 2}]
∏

k∈∂i\ j

⎡⎢⎣∑
t (i)
k

a
(
t ( j)
i − t (i)

k

) 2∑
σki=1

μ̃k→i (T̃ki )

⎤⎥⎦

+ φ
(
t ( j)
i

)
a
(
t ( j)
i − t (i)

j

)
δx0

i ,SI
[
τ

( j)
i < T + 1

]
I[σ ji = 2]

∏
k∈∂i\ j

⎡⎢⎣∑
t (i)
k

a
(
t ( j)
i − t (i)

k

)
μ̃k→i

(
σki = 2, τ

( j)
i , t (i)

k , t ( j)
i

)⎤⎥⎦
⎫⎪⎬⎪⎭,

(A9)

where T̃i j = (τ ( j)
i , σ ji, t ( j)

i , t (i)
j ) and T̃ki = (σki, τ

(k)
i = τ

( j)
i , t (i)

k , t (k)
i = t ( j)

i ) for all k ∈ ∂i \ j. In the above equation we have
dropped the normalization factor zi→ j , since the message ν̃i→ j is not a probability but the value taken by the (normalized) BP
message νi→ j for any τ

(i)
j achieving the equality (A6). The other BP equation becomes

μ̃i→ j

(
σi j, τ

(i)
j , t ( j)

i , t (i)
j

) =
T +1∑

τ
( j)
i =0

μi→ j

(
τ

( j)
i , τ

(i)
j , t ( j)

i , t (i)
j

)
I
[
σi j = 1 + sgn

(
τ

( j)
i − τ

(i)
j + si j

)]

=
T +1∑

τ
( j)
i =0

νi→ j
(
τ

( j)
i , τ

(i)
j , t ( j)

i , t (i)
j

)
I
[
σi j = 1 + sgn

(
τ

( j)
i − τ

(i)
j + si j

)]

=
T +1∑

τ
( j)
i =0

ν̃i→ j
(
τ

( j)
i , σ ji = 1 + sgn

(
τ

(i)
j − τ

j
i + s ji ), t ( j)

i , t (i)
j

)
I
[
σi j = 1 + sgn

(
τ

( j)
i − τ

(i)
j + si j

)]
,

(A10)

which gives for each value of σi j

μ̃i→ j

(
0, τ

(i)
j , t ( j)

i , t (i)
j

) = I[τ j − s ji > 0]

τ
(i)
j −s ji∑

τ
( j)
i =0

ν̃i→ j
(
τ

( j)
i , σ ji = 2, t ( j)

i , t (i)
j

)
,

μ̃i→ j

(
1, τ

(i)
j , t ( j)

i , t (i)
j

) = I[τ j − s ji � 0]ν̃i→ j
(
τ

( j)
i = τ

(i)
j − s ji, σ ji = 2, t ( j)

i , t (i)
j

)
,

μ̃i→ j

(
2, τ

(i)
j , t ( j)

i , t (i)
j

) =
T +1∑

τ
( j)
i =ζ+

i j

ν̃i→ j
(
τ

( j)
i , σ ji = 1 + sgn

(
τ

(i)
j − τ

j
i + s ji ), t ( j)

i , t (i)
j

)

=
ζ−

i∑
τ

( j)
i =ζ+

i

ν̃i→ j
(
τ

( j)
i , σ ji = 2, t ( j)

i , t (i)
j

)
+ I
[
τ

(i)
j + s ji � T + 1

]
ν̃i→ j

(
τ

( j)
i = τ

(i)
j + s ji, σ ji = 1, t ( j)

i , t (i)
j

)
+ I
[
τ

(i)
j + s ji < T + 1

] T +1∑
τ

( j)
i =τ

(i)
j +s ji+1

ν̃i→ j
(
τ

( j)
i , σ ji = 0, t ( j)

i , t (i)
j

)
, (A11)

where ζ+
i = max(0, τ

(i)
j − si j + 1) and ζ−

i = min(T + 1, τ
(i)
j + s ji − 1).
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4. Summation over the inferred times

To reduce further the space of variables over which the BP messages are defined, we define the following message:

μ′
i→ j

(
σi j, τ

(i)
j , ci j, t (i)

j

) =
∑
t ( j)
i

μ̃i→ j

(
σi j, τ

(i)
j , t ( j)

i , t (i)
j

)
a
(
t (i)

j − t ( j)
i − ci j

)
, (A12)

with ci j ∈ {0, 1}. Using this definition, the first BP equation becomes

ν̃i→ j (τ
( j)
i , σ ji, t ( j)

i , t (i)
j ) = γ

(
t ( j)
i

)
ξ
(
τ

( j)
i , t ( j)

i , ci
)⎧⎨⎩a

(
t ( j)
i − t (i)

j − 1
)
δx0

i ,Iδτ
( j)
i ,0

∏
k∈∂i\ j

⎡⎣ 2∑
σki=0

μ′
k→i

(
σki, τ

(k)
i , cki = 1, t (k)

i

)⎤⎦
+ a
(
t ( j)
i − t (i)

j − 1
)
δx0

i ,SI[σ ji ∈ {1, 2}]
∏

k∈∂i\ j

⎡⎣ 2∑
σki=1

μ′
k→i

(
σki, τ

(k)
i , cki = 1, t (k)

i

)⎤⎦
− a
(
t ( j)
i − t (i)

j − 1
)
δx0

i ,SI
[
τ

( j)
i < T + 1

]
I[σ ji = 2]

∏
k∈∂i\ j

μ′
k→i

(
σki = 2, τ

(k)
i , cki = 1, t (k)

i

)

− φ
(
t ( j)
i

)
a
(
t ( j)
i − t (i)

j

)
δx0

i ,Iδτ
( j)
i ,0

∏
k∈∂i\ j

⎡⎣ 2∑
σki=0

μ′
k→i

(
σki, τ

(k)
i , cki = 0, t (k)

i

)⎤⎦
− φ

(
t ( j)
i

)
a
(
t ( j)
i − t (i)

j

)
δx0

i ,SI[σ ji ∈ {1, 2}]
∏

k∈∂i\ j

⎡⎣ 2∑
σki=1

μ′
k→i

(
σki, τ

(k)
i , cki = 0, t (k)

i

)⎤⎦
+ φ

(
t ( j)
i

)
a
(
t ( j)
i − t (i)

j

)
δx0

i ,SI
[
τ

( j)
i < T + 1

]
I[σ ji = 2]

∏
k∈∂i\ j

μ′
k→i

(
σki = 2, τ

(k)
i , cki = 0, t (k)

i

)⎫⎬⎭.

(A13)

The second BP equation becomes

μ′(0, τ
(i)
j , ci j, t (i)

j

) = I[τ j − s ji > 0]
∑
t ( j)
i

a
(
t (i)

j − t (i)
i − ci j

) τ
(i)
j −s ji∑

τ
( j)
i =0

ν̃i→ j
(
τ

( j)
i , σ ji = 2, t ( j)

i , t (i)
j

)
,

μ′(1, τ
(i)
j , ci j, t (i)

j

) = I[τ j − s ji � 0]
∑
t ( j)
i

a
(
t (i)

j − t (i)
i − ci j

)
ν̃i→ j

(
τ

( j)
i = τ

(i)
j − s ji, σ ji = 2, t ( j)

i , t (i)
j

)
,

μ′(2, τ
(i)
j , ci j, t (i)

j

) =
∑
t ( j)
i

a
(
t (i)

j − t (i)
i − ci j

)⎡⎢⎣ ζ−
i∑

τ
( j)
i =ζ+

i

ν̃i→ j
(
τ

( j)
i , σ ji = 2, t ( j)

i , t (i)
j

)
+ I
[
τ

(i)
j + s ji � T + 1

]
ν̃i→ j

(
τ

( j)
i = τ

(i)
j + s ji, σ ji = 1, t ( j)

i , t (i)
j

)
+ I

[
τ

(i)
j + s ji < T + 1

] T +1∑
τ

( j)
i =τ

(i)
j +s ji+1

ν̃i→ j
(
τ

( j)
i , σ ji = 0, t ( j)

i , t (i)
j

)⎤⎥⎦. (A14)

5. BP marginals

Once a fixed-point of the BP Eqs. (A13) and (A14) is found, the BP marginal can be expressed as

Pi(τi, ti ) =
∑
τ ∂i,t ∂i

Pi (τi, ti, τ ∂i, t ∂i )

= 1

Zi

∑
τ ∂i,t ∂i

ξ (τi, ti; ci )ψ
∗(τi, τ ∂i

; {sli}l∈∂i, x0
i

)
ψ (ti, t ∂i )

∏
l∈∂i

μl→i (τl , τi, tl , ti )

= 1

Zi

γ (ti )ξ (τi, ti; ci )

⎛⎝δx0
i ,Iδτi,0

∏
l∈∂i

⎡⎣ 2∑
σli=0

μ′
l→i

(σli, τi, cli = 1, ti )

⎤⎦
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+ δx0
i ,S

∏
l∈∂i

⎡⎣ 2∑
σli=1

μ′
l→i

(σli, τi, cli = 1, ti )

⎤⎦− δx0
i ,SI[τi < T + 1]

∏
l∈∂i

μl→i (σli = 2, τi, cli = 1, ti )

− φ(ti )δx0
i ,Iδτi,0

∏
l∈∂i

⎡⎣ 2∑
σli=0

μ′
l→i

(σli, τi, cli = 0, ti )

⎤⎦− φ(ti )δx0
i ,S

∏
l∈∂i

⎡⎣ 2∑
σli=1

μ′
l→i

(σli, τi, cli = 0, ti )

⎤⎦
+ φ(ti )δx0

i ,SI[τi < T + 1]
∏
l∈∂i

μ′
l→i

(σli = 2, τi, cli = 0, ti )

)
. (A15)

6. Bethe Free Energy

The Bethe free energy is written

F = −
∑
i∈V

log Zi + 1

2

∑
i∈V

∑
j∈∂i

log Zi j, (A16)

where Zi is the normalization of the BP marginal written above, and with

Zi j =
∑
Ti j

νi→ j (Ti j )ν j→i(Ti j )

=
∑
Ti j

νi→ j (Ti j )μ j→i (Ti j )

= 1

zi→ j

∑
{Til }l∈∂i

({Til}l∈∂i )
∏
l∈∂i

μl→i (Til )

= Zi

zi→ j
, (A17)

where zi→ j is the normalization of the BP message νi→ j :

zi→ j =
∑

{Til }l∈∂i

({Til}l∈∂i )
∏

k∈∂i\ j

μk→i (Tik )

=
∑

τ
( j)
i ,τ

(i)
j ,t ( j)

i ,t (i)
j

ν̃
(
τ

( j)
i , σ ji = 1 + sgn

(
τ

(i)
j + s ji − τ

( j)
i

)
, t ( j)

i , t (i)
j

)
, (A18)

where ν̃ is the unnormalized message defined in Eq. (A7). We obtain an expression of the free-energy in terms of the
normalizations Zi , zi→ j :

F = 1

N

∑
i∈V

(
di

2
− 1

)
log Zi − 1

N

1

2

∑
i∈V

∑
j∈∂i

log zi→ j . (A19)

7. Entropy and Energy

To compute the entropy it is sufficient to subtract energy and free energy:

S = U − F.

The energy is simply the average of the Hamiltonian:

H = −
∑

i

log ψ −
∑

i

log ξ −
∑

i

log ψ∗,

U = −
∑

i

〈log ψ〉 −
∑

i

〈log ξ 〉 −
∑

i

〈log ψ∗〉

= −
∑

i

〈log ψ〉.

U = −
∑

i

1

Zi

ui ,
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with

ui :=
∑

{Ti j} j∈∂i

∏
j∈∂i

m j→i (Ti j )ψ (ti, t∂i )ψ
∗(τi, τ∂i )ξ (ti, τi ) log ψ (ti, t∂i ).

Comparing this formula with the expression for Zi ,

Zi =
∑

{Ti j} j∈∂i

∏
j∈∂i

m j→i (Ti j )ψ
∗(τi, τ∂i )ξ (ti, τi )ψ (ti, t∂i ),

we see that the computation of the energy requires similar calculations to the ones already performed to compute free energy.
The only additional difficulty is in the log ψ factor. Let us first trace over the planted variables. We keep τi fixed:∑

τ∂i

∏
j∈∂i

m j→i (Ti j )ψ
∗(τi, τ∂i ) = δx∗

i,0,Iδτi,0

∏
j∈∂i

∑
τ j

m j→i(t j, ti, τ j, τi )

+ δx∗
i,0,S

∏
j∈∂i

∑
τ j

m j→i(t j, ti, τ j, τi )I[τi � τ j + s ji]

− I[τi � T ]δx∗
i,0,S

∏
j∈∂i

∑
τ j

m j→i(t j, ti, τ j, τi )I[τi < τ j + s ji]

=:
3∑

v=1

∏
j∈∂i

mv
j→i

(ti, t j, τi ).

So we have

Zi =
∑

ti,τi,{t j} j∈∂i

3∑
v=1

f
τi,x∗

i,0
v

∏
j∈∂i

mv
j→i

(ti, t j, τi )ξ (ti, τi )ψ (ti, t∂i ).

Now remember that the original message m and the compressed factor to node message ν are related by

νψi→ j (ti, t j, τi, 1 + sign(τ j − τi + s ji )) = mψi→ j (ti, t j, τi, τ j ).

So the sums we have to compute are

m0
j→i

(ti, t j, 0) =
∑
τ j

m j→i(t j, ti, τ j, 0)

=
∑
τ j

νψ j→i(t j, ti, τ j, 1 + sign(−τ j + si j )),

m1
j→i

(ti, t j, τi ) =
∑

τ j�τi−s ji

m j→i(t j, ti, τ j, τi )

=
∑

τ j�τi−s ji

ν j→i(t j, ti, τ j, 1 + sign(τi − τ j + si j )),

m2
j→i

(ti, t j, τi ) =
∑

τ j>τi−s ji

m j→i(t j, ti, τ j, τi )

=
∑

τ j>τi−s ji

ν j→i(t j, ti, τ j, 1 + sign(τi − τ j + si j )).

Notice that

m1
j→i

(ti, t j, τi ) = m2
j→i

(ti, t j, τi ) + ν j→i(t j, ti, τi − s ji, 2).

Now it is time to deal with planted times. Let us observe that

ψ (ti, t∂i ) = γ (ti )(1 − λ)S1 [1 − (1 � ti � T )(1 − λ)S2 ],

where

γ (ti) = γ δti,0 + (1 − γ )(1 − δti,0),

S1 :=
∑
j∈∂i

(ti − t j − 1)+,
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S2 :=
∑
j∈∂i

θ (ti − t j − 1).

We want to find the BP distribution of ti, S1, S2 to average over ψ log ψ. We define

F v,τi
k (ti, S1, S2) : =

∑
{t j} j�k

∏
j�k

mv
j→i

(ti, t j, τi )δS1,
∑

j�k (ti−t j−1)+δS2,
∑

j�k θ (ti−t j−1).

Therefore,

F v,τi
k+1 (ti, S1, S2) =

∑
{t j} j�k+1

∏
j�k+1

mv
j→i

(ti, t j, τi )δS1,
∑

j�k+1(ti−t j−1)+δS2,
∑

j�k+1 θ (ti−t j−1)

=
∑
tk+1

mv
k+1→i

(ti, tk+1, τi )
∑

{t j} j�k

∏
j�k

mv
j→i

(ti, t j, τi )

× δS1−(ti−tk+1−1)+,
∑

j�k (ti−t j−1)+δS2−θ (ti−tk+1−1),
∑

j�k θ (ti−t j−1)

=
∑
tk+1

mv
k+1→i

(ti, tk+1, τi )F
v,τi

k (ti, S1 − (ti − tk+1 − 1)+, S2 − θ (ti − tk+1 − 1))

and

F v,τi
0 (ti, S1, S2) = δS1,0δS2,0,

and for our purposes we want to find F v,τi
|∂i| (ti, S1, S2). Now we

have an iterative scheme to compute the measure. Once the
function is found we simply have

ui =
∑

ti,τi:ξ (ti,τi )=1

3∑
v=1

f
τi,x∗

i,0
v

∑
S1,S2

F v,τi
|∂i| (ti, S1, S2)ψ (ti, S1, S2)

× log ψ (ti, S1, S2).

APPENDIX B: REPLICA-SYMMETRIC FORMALISM

The aim of the cavity method is to characterize the typical
properties of the probability measure (17) that we recall here

P({Ti j}(i j)∈E |D) = 1

Z (D)

∏
i∈V

({Til}l∈∂i;Di ),

for typical random graphs and for typical realization of the
disorder D = {Di}, in the thermodynamic limit N → ∞. In
the simplest version of the cavity method, called replica sym-
metric (RS), one assumes a fast decay of the correlations
between distant variables in the measure (17), in such a way
that the BP Eqs. (19) converge to a unique fixed-point on
a typical large instance, and that the measure (17) is well
described by the locally treelike approximation. We consider a
uniformly chosen edge (i j) ∈ E in a random contact graph G,
and call P rs the probability law of the fixed-point BP message
μi→ j thus observed. Within the decorrelation hypothesis of
the RS cavity method, the incoming messages on a given
factor node are i.i.d. with probability P rs. This implies that the
probability law P rs must obey the following self-consistent
equation:

P rs(μ) =
∞∑

d=0

rd

∑
Di

P(Di )
∫ d∏

i=1

dprs(μi )

× δ[μ − f bp(μ1, . . . , μd ;Di )], (B1)

where f bp(μ1, . . . , μd ;Di ) is a shorthand notation for the
r.h.s. of Eq. (19), and p(Di ) is distribution of the local disor-
der Di = {{sli}l∈∂i, x0

i , {εm}im=i} associated with a given node
i. We numerically solved these equations with population
dynamics. Using the above simplifications, we are left with
two types of BP messages: μ′

i→ j
is defined over the vari-

able ((σi j, τ
(i)
j , ci j, t (i)

j )) living in a space of size 6(T + 1)2,

and ν̃i→ j is defined over the variable (τ ( j)
i , σ ji, t ( j)

i , t (i)
j ),

living in a space of size 3(T + 1)3. We store only a popu-
lation of messages μi→ j , this requires to keep in memory
O(NT 2) numbers, with N the population size. Computing a
new element μ of the population requires in principle O(T 4)
operations, but can be reduced to O(T 3) by computing the
cumulants of the temporary message ν.

1. Replica-symmetric Free Energy

Once averaged over the graph and disorder, the replica-
symmetric prediction for the free energy is

F RS =
∑

d

pd

(
d

2
− 1

)∑
c

p(c)
∑

x

γ (x)
d∏

i=1

w(si )
∫ d∏

l=1

× dPRS(μl ) log Zi (μ1, . . . , μd ; x, c, s1, . . . , sd )

− dav

2

∑
d

rd

∑
x

γ (x)
∑

c

pc

∑
s1,...,sd

d∏
k=1

w(sk )
∫ d∏

k=1

× dPRS(μk ) log zi→ j (μ1, . . . , μd ; x, c, s1, . . . , sd ).

(B2)

APPENDIX C: GENERALIZATIONS TO SIR AND SEIR

We describe now, in the framework of the SIR model, a
general strategy which can be straightforwardly applied also
to the SEIR case. After that, we introduce a parametrization
that, for the SIR model, allows to maintain the same number
of variables of the SI case in the belief propagation algorithm.
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FIG. 16. The super variable for the SIR model includes copies of
the planted and inferred recovery time.

1. General strategy

The idea is to simply increase the number of variables.
While the SI model trajectory needs only one number per
individual to be described, the SIR model needs two: the
infection and the recovery times. The first step is therefore
to introduce, for each individual i, its infection time t I

i and
its recovery time tR

i . Then, we can rewrite Eq. (4), defining
t = {t I

i , tR
i }i∈V :

P
(
t |{x0

i

}
, {si j, s ji}, {ri}

)
=
∏
i∈V

ψ∗(t I
i , tR

i , t I
∂i, tR

∂i, x0
i , {s ji} j∈∂i, ri

)
,

where we introduced the new set of recovery delays {ri}i∈V ,
which are interpreted as the time interval in which the in-
dividual is in the I state. Each ψ∗ has an expression which
strongly resembles Eq. (5), except for the fact that now
an individual j ∈ ∂i can only infect the individual i before
recovering:

ψ∗ = I
[
t I
i = δx0

i ,S min
j∈∂i

f
(
t I

j + s ji, tR
j

)]
I
[
tR
i = t I

i + ri
]
,

where

f (t, tR) =
{

t if t < tR

T if t > tR .

The meaning of f is to state that the tentative infection time
from j to i can only be smaller then the recovery time, namely
j can not infect i if j has already recovered. Once the ψ∗ has

FIG. 17. The optimized factor graph for the SIR model.

been generalized, we can move to modifying Eq. (7),

ψ =
∑

x0
i ,{s ji} j∈∂i,ri

[
γ
(
x0

i

)(∏
j∈∂i

ω(s ji )

)
ρ(ri )ψ

∗

× (t I
i , tR

i , t I
∂i, tR

∂i, x0
i , {s ji} j∈∂i, ri

)]
,

where ρ is the distribution of recovery delay, ρ(ri ) = υ(1 −
υ )ri , υ ∈ [0, 1]. Equation (13) becomes

P(t, τ |D) =
∏

i

ψ∗(τ I
i , τR

i , τ I
∂i, τ

R
∂i, x0

i , {s ji} j∈∂i, ri )
)

× ψ
(
t I
i , tR

i , t I
∂i, tR

∂i

)
ξ
(
t I
i , tR

i , τ I
i , τR

i , {εm}im=i
)
.

(C1)

The factor graph associated to this equation, as for Eq. (13),
contains loops. Therefore, it is necessary to introduce copies
of the infection and the recovery times, exactly as described
in the main text for the SI model. To implement the cavity
method it is therefore necessary to define each super-variable
Ti j by including the recovery (planted and inferred) times, as
shown in Fig. 16. The factor graph at this point is identical to
the one in Fig. 1 and the BP equations are formally the same
to Fig. 15, with the messages that however depend on more
variables. This generalization can be done also for the SEIR
model, simply introducing an exposure time tE

i , an exposure
delay ei distributed according to ζ (ei ), and generalizing ψ∗
by imposing that the infection can not happen during the
exposure time interval.

2. Efficient parametrization for the SIR model

Switching from the infection times to the transmission
times avoids to increase the number of variables in the BP
messages. The idea is that, instead of using copies of the in-
fection time {t ( j)

i } j∈∂i
i∈V , it is convenient to describe the epidemic

trajectory with the infection transmission times {ti j} j∈∂i
i∈V . Each

ti j is interpreted as the time at which i tries to infect its
neighbor j. To actually know the infection time of j it is
therefore necessary to take the minimum of the transmissions:

t I
j = min

i∈∂ j
{ti j}. (C2)

The scheme consists therefore to work with {ti j} j∈∂i
i∈V , {ti}i∈V ,

and {tR
i }i∈V . After the new messages converge, the infection

variables are found with Eq. (C2). We now show that with
this parametrization no copies of the recovery time have to
be introduced, differently from the previous paragraph. We
define t = {ti j} j∈∂i

i∈V , {t I
i }i∈V , {tR

i }i∈V and we have

P(t |{x0
i }, {si j, s ji}, {ri})

=
∏
(i, j)

ψ∗(ti j, t I
i , tR

i , {tki}k∈∂i, tR
∂i, x0

i , si j, ri
)
,

and each factor is

ψ∗ = I
[
ti j = f

(
δx0

i ,S min
k∈∂i\ j

{tki} + si j, tR
i

)]
I
[
tR
i = t I

i + ri
]

× I
[
t I
i = min

k∈∂i
{tki}
]
. (C3)
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The ψ function is always obtained by summing ψ∗ over the
delays, i.e., x0

i , si j, ri. The factor graph equation is therefore

P(t, τ |D) =
∏

i

ξ
(
t I
i , tR

i , τ I
i , τR

i , {εm}im=i
)∏

j∈∂i

× (ψ∗(τi j, τ
I
i , τR

i , {τki}k∈∂i\ j, τ
R
∂i, x0

i , si j, ri
)

× ψ
(
ti j, t I

i , tR
i , {tki}k∈∂i\ j, tR

∂i

))
,

which, different from Eqs. (13) and (C1), does not contain
any loops (see Fig. 17), so it is straightforward to implement
BP equations on it: since the recovery times and the infection
times are indeed in leaves (nodes attached only to one factor),
they can be traced out, so that the BP equations only involve
a number of variables which is the same of the SI case. Note
that still the BP equations will be a bit slower than the SI case
due to the different nature of the factors [Eq. (C3)], which are
slower to compute.
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