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Continuous attractor neural networks (CANN) form an appealing conceptual model for the storage of
information in the brain. However a drawback of CANN is that they require finely tuned interactions. We here
study the effect of quenched noise in the interactions on the coding of positional information within CANN.
Using the replica method we compute the Fisher information for a network with position-dependent input and
recurrent connections composed of a short-range (in space) and a disordered component. We find that the loss
in positional information is small for not too large disorder strength, indicating that CANN have a regime in
which the advantageous effects of local connectivity on information storage outweigh the detrimental ones.
Furthermore, a substantial part of this information can be extracted with a simple linear readout.
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I. INTRODUCTION

The ring attractor neural network was proposed by Amari
in the 1970s as a practical way to memorize a collective vari-
able within a noisy neural population [1]. This work opened
the way to various theoretical applications of the concept of
continuous attractor neural networks (CANN), e.g., in the
contexts of the orientational tuning [2] or hippocampal place
cells [3], as well as to extensions, in particular to the case of
multiple attractor embeddings [4–6]. While indirect evidence
for the existence of CANN could be found in recordings of
activity in the hippocampus [7], in the enthorinal [8], and the
prefrontal cortex [9], a direct and beautiful observation of ring
attractor coding for head direction was obtained only recently
in the ellipsoid body of the fly [10].

From a theoretical point of view, CANN models rely on
recurrent excitatory interactions between neurons active for
similar values of the encoded variable, e.g., the position of the
animal in physical space, together with a long-range inhibition
preventing all cells to be active together. This combination
of local positive interactions and global inhibition creates a
localized bump of activity, whose center of mass reliably
represents the collective variable. In this regard, a crucial
condition is that the bump can be easily moved (under weak
external “sensory” inputs) to span the continuous set of values
of the variable. This condition imposes that the short-range
connections are finely tuned, so that the model be effectively
translation invariant.

When the finite-tuning condition breaks down, e.g., due
to random modulations of the interactions, the bump can get
stuck in the absence of neural noise [3]. In practice, quenched
noise in the interactions can come from imperfect learning of
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one environment, or from interferences resulting from other
information encoded (maps, objects distorting the map locally,
etc.). Quantifying the loss in the accuracy of information
storage resulting from heterogeneities in the interactions is an
important issue.

We address this question here in the framework of de-
coding of information, based on analytical and numerical
calculations. We propose an analytically tractable model of
binary (active/silent) neurons receiving position-dependent
inputs, and connected to each other through spatially coherent
and short-range interactions, on top of a disordered and in-
coherent background. Using the replica method we compute
the Fisher information in the high-dimensional neural activity
about the encoded position as a function of the intensity of
disordered interactions. This quantity was identified as a mea-
sure that is both relatively easy to compute for many systems
and objectively quantifies the information contained in the
neural activity about the stimulus (an orientation or a point in
space) [11]. It is more appropriate for this quantification than,
for example, the readout of the center of mass of a bump of
activity [12]. Yet, the Fisher information is not an information
measure in the sense of Shannon. From this point of view,
the mutual information between the stimulus and the neural
activity is the quantity we are eventually interested in [13].
However, the latter is a global quantity, integrated over all
possible stimuli and its computation is generally more difficult
than that of the Fisher information, which puts restrictions
on the system it can be calculated for [14]. In the thermody-
namic limit, the mutual information can be obtained from the
Fisher information under the condition that the correlations
are not too strong [15]. We have explicitly checked that this
prerequisite is fulfilled by our model, so that the computation
of the Fisher information is actually sufficient. For a current
review discussing both measures of information and their use
in neuroscience, see, e.g., [16].
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FIG. 1. Scheme of the network model employed in this work.
The bell-shaped curves represent the space sensitive single-neuron
(feedforward) input and the red circle a symbolic inhibitory neuron
that ensures that the summed activity of all neurons is constant.

The paper is organized as follows. In Sec. II, our model is
introduced. We establish the Fisher information as a means to
quantify the information contained in the neural activity about
the stimulus, together with its relation to other information-
theoretic measures, compute it in the thermodynamic (mean-
field) limit, and derive its analytical properties in the limiting
case of weak connection strengths. In Sec. III, we validate
our mean-field results by means of Monte Carlo calculations,
study the dependence of the Fisher information on changes in
the recurrent and feed-forward connectivity and how precise a
linear readout can be compared to the bound predicted by the
Fisher information. In Sec. IV, we put our results into context
and give an outlook to possible future directions.

II. MODEL AND METHODS

A. Distribution of neural activities

We model neurons as binary units, taking the value 1 when
active and 0 when inactive. Each neuron is receiving a “sen-
sory” input, whose value depends on the mismatch between
the position ri in physical space it is maximally responding to
and the position of the “animal”, see Fig. 1 for a scheme of our
setup. The probability distribution of activities is governed by
a Boltzmann law P(n|ξ ) ∼ e−E [n] and the energy

E [n] = −1

2

∑
i �= j

(Ji j + Ki j )nin j −
∑

i

ni U (ξ − ri ), (1)

where Ki j = K (ri − r j ) is the local part of the interaction
that we assume to be decaying in space with a typical length
scale wrec and strength Krec. J is the disordered part of the
connectivity with the statistics

〈Ji j〉 = 0, 〈Ji jJi′ j′ 〉 = g2

2N
δii′δ j j′ (2)

and U mimics the space-dependent input, which we model by

U (�x) = Uinp exp

(
−�x2

w2
inp

)
. (3)

We are assuming periodic boundary conditions. As a simple
way to model global inhibition, we impose the constraint that
the summed activity is fixed to

∑
i ni = f N = M, where f ∈

[0, 1]. Our model is closely related to that of [17], where the
case of a proper continuous attractor neural network (CANN)
is studied, so the connectivity matrix is composed of a sum
of local connectivities in different environments. However,
in this study we are interested in the effect of the disorder
on the information content in the neural activity for a single
environment. Also, the presence of other maps is not the
only source of disorder as there is always some variability in
the connectivity. Therefore, to simplify the setup, we content
ourselves with approximating the disordered contribution to
the connections as Gaussian, which also corresponds to the
high-temperature behavior of the disorder in [17].

B. Fisher information and mutual information

We now want to quantify the amount of information con-
tained in the neural activity. One possibility to do so is to
compute the Fisher information for a given stimulus ξ ,

In(ξ ) :=
〈
− ∂2

∂ξ 2
ln P(n|ξ )

〉
n
, (4)

a standard measure for the quantification of information in
neural populations [12,16]. According to the Cramér-Rao
bound, its inverse gives a lower bound on the variance of any
unbiased estimator of ξ [13]. We will discuss this relation in
greater depth in Sec. III C. Furthermore, in the thermodynamic
limit that we are interested in, it also determines the mutual
information, a connection first established in [15] and later re-
fined in [18]. The mutual information is given by the decrease
of the entropy of the neural activity due to the knowledge of
the stimulus, concretely

IMI := −
∑

n

P(n) ln P(n)

+
∫

dξ p(ξ )
∑

n

P(n|ξ ) ln P(n|ξ )

where

P(n) :=
∫

dξ p(ξ )P(n|ξ ).

In [15] [their Eq. (13)], the relation

IMI = −
∫

dξ p(ξ ) ln p(ξ )

+
∫

dξ p(ξ ) ln

(In(ξ )

2πe

)
+ O

(
1

N

)
(5)

was derived for an ensemble of neurons with fixed covari-
ances, without disorder. However, in this study we are limiting
ourselves to the saddle-point approximation of the Fisher in-
formation, which is valid up to corrections of order 1/N as
well. So the presence of disorder does not change much and
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we obtain that

〈IMI〉J = −
∫

dξ p(ξ ) ln p(ξ )

+
∫

dξ p(ξ ) ln

( 〈In(ξ )〉J

2πe

)
+ O

(
1

N

)
, (6)

where 〈· · · 〉J is indicating the average over the disordered
connectivity J . In Appendix D, we rederive this relation, for
unconnected neurons, but more directly than in [15].

Hereafter, we will focus on the Fisher information, which
is easier to obtain than the mutual information that we get

for free due to Eq. (6). Determining the Fisher information
for our model, we obtain from Eq. (4) after some lines of
computation, detailed in Appendix B,

In(ξ ) =
∑
i, j

U ′(ξ − ri )〈[〈nin j〉n − 〈ni〉n〈n j〉n]〉JU ′(ξ − r j )

(7)

= [U ′(ξ − r)]TCU ′(ξ − r), (8)

where C denotes the disorder-averaged covariance matrix of
n. Conditioned on one realization of the disorder furthermore,

we have introduced the thermal average

〈 f (n)〉n := 1

ZJ (ξ )

∑
n

f (n)e−E [n], (9)

for some function f , together with the partition function

ZJ (ξ ) :=
∑

n

e−E [n]. (10)

Equation (7) can be brought into a more familiar form by noting that

∂

∂ξ
T (ξ − ri ) := ∂

∂ξ
〈ni〉n =

〈
ni

[∑
j

U ′(ξ − r j )(n j − 〈n j )〉
]〉

n

= (CU ′)i (11)

⇔ U ′(ξ − ri ) = (C−1T ′)i, (12)

where we have introduced the tuning curve T of neuron i indicating its average activity given the input ξ . With this, the Fisher
information can be written as [14]

In(ξ ) = [T ′(ξ )]TC−1T ′(ξ ). (13)
This form is more handy when dealing with experimental data because the tuning curve is (in principle) a directly measurable
quantity, whereas U ′ is not. For our purposes, however, the form of Eq. (7) is more practical because there, the only quantity
depending on the disorder is the covariance matrix. We therefore only have to compute the disorder average of the covariance
matrix, which we will tackle in the following.

C. Disorder-averaged statistics

As usual for disordered systems [19], we determine the statistics from the logarithm of the partition function, the cumulant-
generating functional (or Gibbs free energy)

〈W (h)〉J =
∫

dJ P(J ) ln

⎡
⎣ ∑

n,
∑

i ni=M

e
1
2

∑
i �= j (Ji j+Ki j )nin j+

∑
i ni[U (ξ−ri )+hi]

⎤
⎦. (14)

The computation of W proceeds along the classical lines [20], with the difference that we have a local connectivity. We therefore
do not only introduce the Gaussian helping field q to decouple the four-point terms emerging from the disorder average, but also
a space-dependent (also Gaussian) order parameter φx to decouple the local term nTKn. As is apparent from the saddle-point
equations (18) and (19), q quantifies the population-averaged variance of the activity and φx the population-averaged input to
the neuron with place field at position x. Furthermore, due to the restriction on the summed activity, we introduce the Lagrange
multiplier λ. As derived in Appendix B, we obtain the disorder-averaged cumulant-generating function in the thermodynamic
limit N → ∞,

〈W (h)〉J = extr
q,q̄,ψ,φ,λ

{
1

2
Ng2q2 − 1

2
Ng2q̄2 − 1

2
φT K−1φ − N[λ − g2(q̄ − q)] f (15)

+
∏

y

1√
2π

∫
dty e− t2

y
2

∑
x

ln[1 + eφx+txg
√

2q+U (ξ−rx )+λ+hx ]

}
(16)

=: G(h,φ, q), (17)
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where the “extr” implies a supremum over q, q̄, ψ, and φ and an infimum over λ. We comment on the latter point in Appendix A 1.
As detailed in Appendix A 2, we obtain the saddle-point equations

q =
∫

dx
∫

Dtx
1

[1 + e−(φx+txg
√

2q+U (ξ−x)+λ)]2
, (18)

φx =
∫

dy K (x − y)
∫

Dty
1

1 + e−(φy+tyg
√

2q+U (ξ−y)+λ)
, (19)

and

f =
∫

dx
∫

Dtx
1

1 + e−(φx+txg
√

2q+U (ξ−x)+λ)
, (20)

with the N-fold Gaussian measure∫
Dt = 1√

2π

∫
dte− t2

2 . (21)

The entire statistics of our system can now be determined
by taking derivatives of G with respect to h, which is set to
0 afterwards. We have to calculate the total derivative, also
taking into account the h dependence of q, φ and λ, which
in turn, by the implicit-function theorem, we obtain by taking
the total derivative with respect to h of the their saddle-point-
equations. This yields

1

N

d2

dh2 〈Wf (h)〉J

= ∂2G

∂h2 −

⎛
⎜⎜⎝

∂2G
∂h∂φ

∂2G
∂h∂q
∂2G
∂h∂λ

⎞
⎟⎟⎠

T⎛⎜⎜⎝
∂2G
∂φ2

∂2G
∂φ∂q

∂2G
∂φ∂λ

∂2G
∂q∂φ

∂2G
∂q2

∂2G
∂q∂λ

∂2G
∂λ∂φ

∂2G
∂λ∂q

∂2G
∂λ2

⎞
⎟⎟⎠

−1⎛⎜⎜⎝
∂2G
∂φ∂h
∂2G
∂q∂h
∂2G
∂λ∂h

⎞
⎟⎟⎠.

(22)

Evaluating this expression, we obtain

C = V + V KeffV + Cindirect (23)

= V (1 − KV )−1 + Cindirect, (24)

where V is the diagonal matrix with the disorder-averaged
single-neuron variances

Vxy = δxyvx, (25)

where

vx :=
∫

Dt
∂mx

∂φx
=

∫
Dt mx(1 − mx ), (26)

mx is the magnetization conditioned on the Gaussian helping
variable t ,

mx := 1

1 + e−[φx+t g
√

2q+U (ξ−x)+λ]
, (27)

the effective local connectivity Keff is given by [(Keff )−1]xy :=
− ∂2G

∂φx∂φy
and fulfills the Dyson equation

Keff
xy = Kxy +

∫
dz KxzvzK

eff
zy , (28)

and Cindirect emerges from the remaining part of the Hessian in
Eq. (22). It results in a subleading contribution to the Fisher

information (see below), so we give its precise form only in
Appendix B.

D. Disorder-averaged Fisher information

The Fisher information per neuron averaged over the dis-
order now reads

In(ξ ) =
∑

x

∑
y

U ′(ξ − x)
[
vxδx,y + vxKeff

xy vy + Cindirect
xy

]
×U ′(ξ − y). (29)

In Fig. 6 in Appendix B, we show these three contributions
separately for the parameters used for Fig. 3. The first term
stems from the single-neuron variances and is therefore also
present without the network (if present, the variances are af-
fected by the network, though). The third is always negligible,
which intuitively makes sense because it emerges from the
indirect h dependence of the free energy via g and λ, which
are both spatially unstructured. The second term emerges from
the (positive) local interactions and also contributes positively.
In order to gain a better intuition for where this term comes
from, it is useful to rederive the expression for the Fisher
information using Eq. (13), limiting ourselves to the case
without disorder. By some lines of rearrangements, shown in
Appendix B 2, we derive that the vector of the derivatives of
the tuning curves can be expressed as

T ′ = V (1 + KeffV )U ′. (30)

Combining this expression with Eq. (13) and C = V +
V KeffV , we are getting back Eq. (29) (without the contribu-
tion of the disorder) after canceling a factor (V + V KeffV ),
as expected. However, it is also insightful to write down the
expression before this cancellation,

In =
=(T ′ )T︷ ︸︸ ︷

(U ′)T(V + V KeffV )

=C−1︷ ︸︸ ︷
[V + V KeffV ]−1

=T ′︷ ︸︸ ︷
(V + V KeffV )U ′,

(31)

because it gives an intuition about how the local connectivity
shapes the Fisher information: First, it modifies the tuning
curves, which is captured by the term V KeffVU ′; second, it
introduces cross-covariances, which is captured by the term
V KeffV contributing to the covariance. As is apparent from
Fig. 2(a), the tuning curves are sharpened with increasing Krec,
which is reflected by the fact that the direct contribution of
the cross-covariances to the Fisher information is positive; see
Fig. 6. The cross-covariances, in turn, are detrimental in our
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(a) (b)

FIG. 2. (a) Tuning curves for a network without disorder in the connectivity for different strengths of local interactions. (b) Corresponding
change in the Fisher information; the dotted lines show Eq. (31) with the term V KeffV in the middle part, constituting C−1, removed. Parameters:
g = 0, wtwo point = 0.1, Uinp = 0.2, wone point = 0.07, f = 0.15.

case: They reduce the Fisher information, as is apparent from
panel (b) in Fig. 2.

We can study further Eq. (29) analytically, which amounts
to examining the saddle-point equations (18) to (20). In par-
ticular, we can do this in the limiting case g → 0. In this
limit, the Gaussian integrals become trivial. As detailed in
Appendix A 3, we can use for the study of the derivatives
of q, φ, and λ that, in Eqs. (18) to (20), these quantities are
(implicitly) given by

0 = ∂

∂[{φx}x, λ, q]
Gg(g, q, φ, λ), (32)

with G as given in Eq. (17) and therefore, by the implicit-
function theorem,

∂

∂g

⎛
⎝{φx}x

λ

q

⎞
⎠ = −

(
∂2

∂[{φx}x, λ, q]2 Gg[q,φ, λ]

)−1

× ∂2

∂g∂[{φx}x, λ, q]
Gg[q,φ, λ]. (33)

For a reasonable choice of the parameters, also guaranteeing
the stability of the saddle-point solution, ∂2

∂[{φx}x,λ,q]2 Gg is in-
vertible (which we as well check numerically by computing it
explicitly in Appendix B). The partial derivative of ∂{φx}x,λ,qG
with respect to g vanishes in the limit g → 0, as we show in

Appendix A 3. Therefore, the derivatives of q, φ, and λ with
respect to g go to 0 for vanishing g. This results carries over
to higher-order cumulants and to the cumulant-generating
functional itself. Because the Fisher information depends on g
only via these quantities, its derivative vanishes in the limit of
g → 0:

lim
g→0

∂

∂g
In(ξ ) = 0. (34)

The derivatives with respect to the strength of the local inter-
action, Krec, however, in general do not vanish for vanishing
connectivity. Therefore even small connection strengths will
have a (beneficial) effect, as seen before.

III. NUMERICAL VALIDATION OF MEAN-FIELD
RESULTS AND APPLICATIONS

A. Monte Carlo simulation

To validate our computation derived for the thermody-
namic limit, we perform Monte Carlo simulations for multiple
sets of parameters; see Fig. 3. We use a standard Metropolis
algorithm, taking into account the condition of a fixed total
activity by flipping always two spins, in opposite direction,
as suggested in [17]. The code for these simulations, along
with the implementation of the mean-field results, is provided

(a) (b)

FIG. 3. The Fisher information per neuron in dependence on the disorder, in comparison with Monte Carlo simulations. In panel (a),
the network is strongly input driven, and in panel (b) only weakly. Parameters: (a) Krec = 5, wrec = 0.1, Uinp = 2.25, winp = 0.07, f = 0.15;
(b) Krec = 20, Uinp = 0.2, other parameters as in panel (a).
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(a) (b)

FIG. 4. Interplay of feedforward, local, and disordered recurrent input shaping the Fisher information. For panel (a), we scale the synapses
according to Eq. (35), keeping the other parameters fixed; for panel (b), we keep the the Fisher information constant, varying Uinp and Krec

concertedly. Parameters: (a) Kmax
rec = 8, wrec = 0.1, Uinp = 0.2, winp = 0.07, f = 0.15, gmax = 0.16; (b) g = 5, other parameters as in panel (a).

in [21]. The results confirm our mean-field result that the
disorder diminishes the Fisher information, but quite slowly
if the disorder is on a moderate level, as predicted by Eq. (34)
and visible in Fig. 3.

B. Influence of the network on the Fisher information

In an attractor network, disorder may result from the pres-
ence of other maps stored in the same network. Therefore it
scales in the same way as the spatially dependent part of the
connectivity. It is thus interesting to examine the behavior of
the Fisher information when both parts of the connectivity are
scaled by the same factor r:

K → rK, J → rJ. (35)

Because the derivative of the expression for the Fisher infor-
mation with respect to the disorder strength g vanishes for
g = 0, the effect of the local part of the connectivity dominates
for small synaptic strength: The Fisher information initially
increases. This can be understood from what we have derived
before: Increasing the local connectivity sharpens the tuning
curves and therefore increases the signal. This effect is dimin-
ished (but not canceled) by the introduction of covariances
between the neurons (see also [12]). For larger scaling factors,
however, this overall beneficial effect is wiped out by the
disorder, whose detrimental effect eventually dominates; see
Fig. 4(a).

Finally, we ask if we can keep the Fisher information con-
stant by increasing the recurrent weights when the input gets
weaker. We have plotted lines of constant Fisher information
for varying strength of the input and the recurrent connections
in Fig. 4(b). We can indeed make up to a decrease in the input
by strengthening local connections, even though of course
only in a limited range.

C. Linear readout

To put our results into context and convey a more intuitive
understanding, we briefly discuss what one can learn from the
Fisher information about the accuracy of a linear readout.

We have fitted a readout vector w to the activity as mea-
sured after the thermalization process (so the random initial
conditions should not play a role) and computed the squared

residual error as

〈res(ξ )〉ξ := min
w

〈〈‖w · n − ξ‖2
2

〉
n

〉
ξ

= 〈ξ 2〉ξ − 2wT
trainCtest

ξ,n + wT
trainCtest

n,nwtrain, (36)

where

wtrain = [
Ctrain

n,n + λ · 1
]−1

Ctrain
ξ,n , (37)

and where 〈· · · 〉n and 〈· · · 〉ξ denote the thermal average over
the configurations n and the average over the distribution of
the stimulus ξ , respectively, and λ denotes the strength of the
L2 regularization that we impose. We might expect to obtain
an upper bound for the accuracy of the linear estimator by the
Cramér-Rao bound. However, due to the periodic boundary
conditions, the estimate from the linear readout ξest. = w · n
will be biased. This is particularly apparent at the borders 0
and 1, where the estimate will always be 1

2 , corresponding to
random guessing. The farther away from the them the stimulus
is situated, the less pronounced the effect becomes. We have
therefore limited the fitted stimuli to ξ ∈ [0.4, 0.6]. However,
even in this regime, the linear readout gets biased in the highly
disordered regime, so that there the Cramér-Rao bound only
applies in its generalized form in [13], their Eq. (12.333):

〈(w · n − ξ )2〉n � (1 + b′(ξ ))2

In(ξ )
+ b(ξ )2, (38)

where b(ξ ) := 〈w · n〉ξ − ξ is the bias of the linear estimator.
In case of random guessing, in particular, b′(ξ ) = −1, so
that the error is solely determined by the square of the bias.
Therefore, the bound given by the Fisher information in Fig. 5
is only meaningful for small disorder (g ∼ 0.1, 0.5), whereas
for greater disorder, it is invalidated by the bias, up to the point
where the linear readout basically generates a random guess
(for g ∼ 2). In the low-disorder regime, however, we observe
that the error of the linear readout is not far from the optimal
case given by the Cramér-Rao bound.

IV. DISCUSSION AND OUTLOOK

In this work, we have studied an attractor-inspired neural
network with a connectivity consisting of two parts: (1) ex-
citatory couplings between neurons that are similarly tuned
to stimuli, and (2) a quenched random background without
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FIG. 5. Inverse residual of a linear fit of the neural activity to
estimate ξ , averaged over ξ ∈ [0.4, 0.6]. Only for small g (approx-
imately the first two data points at 0.1 and 0.5) is this estimate
approximately unbiased, and therefore only there does the Cramér-
Rao bound guarantee that the Fisher information is an upper bound.
Note that in this plot, differently from all the others, we are plotting
the total Fisher information for all 100 neurons, not the averaged,
single-neuron analog. Parameters are as in Fig. 3(a).

local tuning. We have studied the influence of both of these
contributions on the information about the stimulus contained
in the neural activity through the analytical computation of
the Fisher information. As expected, the local part of the
connectivity enhances the information content, whereas the
disordered part degrades it. However, the latter effect is mild.
By fitting a linear readout to estimate the driving stimulus we
show that the Fisher information is not only a formal estimate
of the information contained in the neural activity, but also
gives a useful bound on how much of it can be extracted with
simple decoders.

It has been recognized for a long time that the presence
of disorder in the interactions could impact the information
stored in attractor networks in the form of patterns. In the case
of CANNs this translates into a breaking of the translational
symmetry of bump-like solutions; see for instance [3] and box
3 in [22]. However, despite the loss of translation invariance,
noise in the neural activity (controlled here by the inverse
of the coupling strength, playing the role of temperature in
statistical mechanics) may be sufficient to move the bump
[23]. We here show that the disorder does not wipe out all
information in the attractor network. In particular, the Fisher
information is robust to the introduction of disorder, staying
constant to first order in g. Consequently, globally enhancing
the connectivity strength [the local and the disordered part by
the same factor, as in Eq. (35)] initially always has a beneficial
effect, which is overtaken by the effect of the disorder only for
larger connectivity. In real biological networks, the connec-
tivity is not fixed, but builds up during development, partially
through learning [24]. One might therefore speculate if this
process is optimized for the synaptic strengths to eventually
match this “sweet spot.”

Similarly, we can ask for the information-theoretical im-
plication of the development of tuning curves as observed in
the visual cortex. In young animals, recurrent connections be-
tween similarly tuned neurons get enhanced, others weakened
[25], and the orientation selectivity is sharpened [26]. Accord-

ing to our analysis, these changes in recurrent connectivity
could compensate a decrease in strength of sensory inputs
[27]; see Fig. 4(b).

While our model allows for this kind of qualitative con-
siderations, it is minimal in the sense that it contains the
ingredients needed to study the effects we are interested in
in their simplest form. This of course limits biological plau-
sibility and calls for enhancements. From a technical point of
view, we did of course not consider all possible scenarios. We
give below an outlook on possible further directions, starting
with the technical aspects.

The results we have obtained here hold for binary-valued
neurons. From a neuroscience perspective, this assumption
can be interpreted as follows. Consider the neural population
activity in a time bin of duration �t . If �t is small enough (in
practice, not larger than the inverse of the typical firing rate),
it is likely that each neuron i has fired at most once in a time
bin. We can therefore represent its activity through a binary
variable ni equal to 0 in the absence of a spike, or to 1 if a spike
has been emitted. This point of view was adopted in data-
driven models of the hippocampal activity [7]. If the duration
�t is large, the binary hypothesis breaks down and continuous
models, taking into account the real-value nature of firing
rates, should be considered. Continuous-attractor models with
real-valued neurons show similar—albeit for some parameters
a bit richer [28]—behavior as models with binary neurons [3],
so we do not expect our conclusions to be qualitatively mod-
ified in that setting. In addition, binary patterns represent an
important limiting case: They may maximize the retrievable
information, in the case of random memories, as compared to
more complex ones [29].

Then, we have limited ourselves to a parameter regime far
away from phase transitions. In particular we have not con-
sidered the low-temperature/high-connectivity regime. The
analysis of this case (without the computation of the Fisher
information) was carried out by one of us and collaborators
in a series of papers [17,23,30], in the specific case of back-
ground noise due to a extensive number αN of alternative
attractors embedded in the network. Although the quenched
noise distribution in this case was not Gaussian we do not
expect the phase diagram to significantly change. Based on
these previous works we can thus build educated guesses on
what to expect in terms of information theory. Note that, in
terms of scaling, the square of the disorder strength used here,
g2, roughly corresponds to the load α in [17] [compare, e.g.,
their saddle-point equations, Eq. (28), to ours, Eqs. (18) to
(20)].

Analog to [17], we expect a glassy phase for large disor-
der and weak local connectivity, a ferromagnetic (”bump”)
phase for weak disorder and strong local connectivity, and
a paramagnetic phase in the case where both contributions
are small (large-temperature regime). In the present study,
we have basically stayed in the last regime (however, the
activity was still bump-like due to the feedforward input). This
limitation has also allowed us to stick to the replica-symmetric
solution of the saddle-point equations, an assumption that
might not be satisfied at very low temperature and strong
enough disorder; however, the comparison with the results
of Monte Carlo simulations in Fig. 3 led to reasonable re-
sults. This is expected; for spin-glass models, the effect of

064301-7



TOBIAS KÜHN AND RÉMI MONASSON PHYSICAL REVIEW E 108, 064301 (2023)

replica-symmetry breaking is typically rather limited, in par-
ticular close to the Almeida-Thouless line. In order to study
the glassy regime, corresponding to a network load α beyond
the critical value, we expect that replica symmetry breaking
has to be considered. However, as for the Fisher information,
we expect it to be approximately zero in the glassy state
because the activity would no longer show any dependence
on space (besides a residual one due to the input), and the
disorder-averaged single-neuron variances vanish for large
disorder (and all other cumulants as well). As for the para-
magnetic to ferromagnetic transition, we expect a qualitative
change in the shape of the neural activities, with considerably
sharper bumps on the ferromagnetic side of the transition. Due
to the mechanisms discussed around Eq. (13), we expect a
corresponding steep increase in the Fisher information.

On a more biological side, we have made, for convenience,
several unrealistic assumptions that could be waived. The
receptive fields in our setup, for example, have all the same
shape and size and are evenly spaced; in reality there is of
course variability in shape and they are scattered in the en-
vironment. In particular, place fields may cluster near new
objects [31], suggesting the importance of taking into account
inhomogeneous densities. These features could rather easily
be included in our framework, at least if the probability distri-
butions for the single-neuron properties are independent. The
additions suggested above only require another average over
them (see also Appendix D). Then, though we have studied a
one-dimensional stimulus, the features determining the Fisher
information, such as the sharpness of the tuning curve, can
also be defined in higher dimensions, and we expect qualita-
tively the same results in that case. Last of all, it would be
interesting to better understand how much of the information
we have estimated can be extracted from the neural population
in practice, beyond the linear readout mechanism considered
here.
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APPENDIX A: COMPUTING THE
CUMULANT-GENERATING FUNCTION

As indicated in the main text, computing the Fisher infor-
mation basically amounts to calculating the covariance matrix
of the activity, which we obtain from the disorder-average of
the cumulant-generating functional defined in Eq. (14), or,
in other words, of the logarithm of the partition function. In
the following, we will explain step by step how to take into
account its features, starting with the fixed total activity, then
including the disordered part of the connectivity and finally
deriving and analyzing the saddle-point equations for this case
in order to compute the cumulant-generating functional in the
thermodynamic limit.

1. Effects of the fixed total activity and the space-dependent
part of the coupling

As mentioned in the main text, we fix the summed activity
of all neurons to a certain number M, mimicking the effect
of a global inhibition. This determines the partition function,
which reads

ZM[h] =
∑

n,
∑

i ni=M

exp

⎛
⎝∑

i< j,

Ki jnin j +
N∑

i=1

hini

⎞
⎠.

Explicitly performing the spin sums under this limitation is
difficult, so we introduce the Fourier series with ZM[ j] as
coefficients:

Uk[h] :=
N∑

M=0

ei2πkMZM[h]

=
N∑

M=0

ei2πkM
∑

n

δM,
∑

i ni
exp

⎛
⎝∑

i< j,

Ki jnin j +
N∑

i=1

hini

⎞
⎠

=
∑

n

exp

⎛
⎝∑

i< j,

Ki jnin j +
N∑

i=1

hini

⎞
⎠ N∑

M=0

ei2πkMδM,
∑

i ni

=
∑

n

exp

⎛
⎝∑

i< j,

Ki jnin j +
N∑

i=1

(hi + i2πk)ni

⎞
⎠.

Applying the transform to obtain the Fourier coefficients from
a periodic function, we get

ZM[h] =
∫ 1

0
dk e−i2πkMUk[ j] =

∫ 1

0
dk

∑
s

exp

⎡
⎣∑

i< j,

Ki jnin j − i2πk

(
M −

N∑
i=1

ni

)
+

N∑
i=1

hini

⎤
⎦.

For N  1, we can evaluate the k integral in the saddle-point approximation, so that in this limit we replace the partition function
by its “grand-canonical” counterpart

Z f ,gc[h] := inf
λ

⎡
⎣∑

n

exp

⎛
⎝∑

i< j,

Ki jnin j +
N∑

i=1

hini + λ

(
N∑

i=1

ni − N f

)⎞
⎠
⎤
⎦,

where we have introduced f := M
N and λ = i2πk. Note that even though the stationary value of λ is real, we are integrating it

along the imaginary axis (using what is known as Bromwich contour; see, e.g., [32], Appendix C), as always when the integration
variable has been introduced as Lagrange multiplier. Varying λ, we are therefore looking for the infimum, not the supremum.
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We obtain the “grand-canonical” cumlant-generating function that we will work with:

Wλ[h] := ln

⎡
⎣∑

s

exp

⎛
⎝∑

i< j,

Ki jnin j +
N∑

i=1

[hini + λ(ni − f )]

⎞
⎠
⎤
⎦, λh, j,K ( f ) such that

∂Wλ[h]

∂λ
= N f .

Now we decouple the interacting term by means of a Gaussian helping field,

exp

⎛
⎝1

2

∑
i �= j,

Ki jnin j

⎞
⎠ = 1

(2π )
N
2
√

det (K )

∫
dφ e− 1

2 φTK−1φ+∑
i φini ,

and replace the φ integral by another saddle-point approximation:

W [h] = sup
φ

inf
λ

[
−1

2
φTK−1φ +

∑
i

[ln(1 + ehi+λ+φi ) − λ f ]

]
.

For the examples shown in the figures, we are assuming a rectangular shape for K ,

K (ri − r j ) =
{

Krec for |ri − r j | � wrec,

0 otherwise, (A1)

but this choice is only made for convenience; the theoretical results extend to general shapes.

2. Incorporating disorder

Drawing random connections in addition to the spatially ordered ones additionally modifies the extremizing probability
distribution and introduces more contributions to the pairwise covariances. We would like to compute the quenched average of
the cumulant-generating functional, so

〈W (h)〉J =
∫

dJ P(J ) ln

[∑
n

e
1
2

∑
i �= j (Ji j+Ki j )nin j+

∑
i (niU (ξ−ri )+hini )

]
(A2)

= lim
n→0

∫
dJ P(J )

[
−1 + ∑

n1,...,nn e
∑

i �= j (Ji j+Ki j )
∑n

α=1 nα
i nα

j +
∑

i nα
i (U (ξ−ri )+hi )

n

]
, (A3)

where we have used the replica trick to represent the logarithm [19]. As indicated in the main text, Eq. (2), we assume that
the couplings are uncorrelated and Gaussian, so that, after the standard procedure of introducing appropriate helping fields, we
obtain ∫

dJ P(J ) e
∑

i �= j Ji j
∑n

α=1 nα
i nα

j (A4)

= exp

⎛
⎝−1

2

g2

N

∑
i

∑
α,β

nα
i nβ

i

⎞
⎠∏

α

[ √
N

g
√

2π

∫
dq̄α exp

(
−1

2

N

g2
q̄2

α + q̄α

∑
i

nα
i

)]
(A5)

×
∏
α �=β

[ √
N

g
√

2π

∫
dqαβ exp

(
−1

2

N

g2
q2

αβ + qαβ

∑
i

nα
i nβ

i

)]
. (A6)

We combine this result with the contribution from the network without disorder, but local connectivity and solve the resulting
integral, assuming replica symmetry in q and φ. The validity of the assumption of replica symmetry is validated numerically
by comparing our theoretical results with the outcomes of Monte Carlo computations, and is discussed in Sec. IV. Dropping
subleading terms in N , we solve the integrals in saddle-point approximation and obtain for W

〈W (h)〉J = lim
n→0

extr
q,q̄,φ

⎡
⎣ − 1

n
+ e− 1

2 Ng2n(n−1)q2− 1
2 Ng2nq̄2

e− 1
2 nφT K−1φ

n
(A7)

×
⎛
⎝∏

l,γ

1∑
nγ

l =0

⎞
⎠(∏

k

eg2q
∑

α �=β nα
k nβ

k

)
eg2 q̄

∑
i

∑
α nα

i e
∑

i

∑n
α=1 nα

i φi+∑
i

∑n
α=1 nα

i (U (ξ−ri )+hi )

⎤
⎦ (A8)
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= 1

2
Ng2q2 − 1

2
Ng2q̄2 − 1

2
φT K−1φ (A9)

+
∏

k

1√
2π

∫
dtk e− t2

k
2

∑
i

ln
[
1 + eφi+tig

√
2q+U (ξ−ri )+g2(q̄−q)+hi

]
. (A10)

Taking now into account the restriction on the total activity in addition, the mean-field cumulant-generating functional reads

〈W (h)〉J = extr
q,q̄,φ,λ

{
1

2
Ng2q2 − 1

2
Ng2q̄2 − 1

2
φT K−1φ − Nλ f (A11)

+
∏

k

1√
2π

∫
dtk e− t2

k
2

∑
i

ln[1 + eφi+tig
√

2q+(U (ξ−ri ))+g2(q̄−q)+λ+hi ]

}
. (A12)

Because we are evaluating this quantity only at its extremal values, we are free to express it in shifted coordinates, λ + g2(q̄ −
q) → λ, in order to simplify our expressions and to get rid of q̄, so that we obtain

〈WI (h)〉J = extr
q,q̄,ψ,φ,λ

{
1

2
Ng2q2 − 1

2
Ng2q̄2 − 1

2
φT K−1φ − N[λ − g2(q̄ − q)] f . (A13)

+
∏

k

1√
2π

∫
dtk e− t2

k
2

∑
i

ln[1 + eφi+tig
√

2q+U (ξ−ri )+λ+hi ]

}
(A14)

=: Gg(h,φ, q, λ), (A15)

which leads to the saddle-point equations

q = f +
∫

dx
∫

Dt

{
1

[1 + e−(φx+txg
√

2q+U (ξ−x)+λ+hx )]2
− 1

[1 + e−(φx+txg
√

2q+U (ξ−x)+λ+hx )]

}
, (A16)

q̄ = f , (A17)

f =
∫

dx
∫

Dt
1

1 + e−(φx+txg
√

2q+U (ξ−x)+λ+hx )
dx, (A18)

φ(x) =
∫

K (x − y)
∫

Dt
1

1 + e−(φy+tyg
√

2q+U (ξ−y)+λ+hy )
dy. (A19)

Drawing the limit of N → ∞, we have turned the sums over neuron sites into integrals over space, which we indicate by
renaming the indices to x and y instead of i and j. Finally, setting h = 0 and using Eq. (A18) to simplify Eq. (A16), we obtain the
final saddle-point equations as given in the main text, Eqs. (18) to (20). Note that this simplification is valid for the saddle-point
values q, {φx}x, and λ; however, when taking further derivatives of G with respect to h (as necessary to determine covariances),
we have to assume general q, {φx}x, and λ (not as given in the saddle point) and therefore have to use the right-hand side of
Eq. (A16), and not of Eq. (18).

3. Analysis of the saddle-point equations in the limit g → 0

The quantities q, φx, and λ are implicitly given by

0 = ∂

∂[{φx}x, λ, q]
Gg[q,φ, λ]. (A20)

For g = 0, the integrands in the saddle-point equations (18) to (20) become independent of t and we can perform the Gaussian
integrals, so that we obtain

q =
∫

dx
1

[1 + e−(φx+U (ξ−x)t )+λ)]2 , (A21)

φx =
∫

dy K (x − y)
1

1 + e−(φy+U (ξ−y)+λ)
. (A22)

f =
∫

dx
1

1 + e−(φx+U (ξ−ri )+λ)
, (A23)

the latter two corresponding to Eqs. (12) and (13) in [17]. In particular, all auxiliary fields have a well-behaved limit for g → 0.
Furthermore, from Eq. (A20), we obtain the derivatives of the auxiliary variables with respect to g, to be given by

∂

∂g

⎛
⎝{φx}x

λ

q

⎞
⎠ =

(
∂2

∂[{φx}x, λ, q]2 G[q,φ, λ]

)−1
∂2

∂g∂[{φx}x, λ, q]
Gg[q,φ, λ]. (A24)

064301-10



INFORMATION CONTENT IN CONTINUOUS ATTRACTOR … PHYSICAL REVIEW E 108, 064301 (2023)

Further differentiating ∂
∂[{φx}x,λ,q] Gg[q,φ, λ] with respect to g yields

∂2

∂g∂[{φx}x, λ, q]
Gg[q,φ, λ] =

⎛
⎜⎝ {∫ dy Kxy

∫
Dty ty

√
2q · my(1 − 2my)}x∫

dy
∫
Dty ty

√
2q · my(1 − 2my)∫

dx
∫

Dty ty
√

2q · my(1 − 2my)(1 − my)

⎞
⎟⎠ g=0= 0, (A25)

with mx as introduced in Eq. (27). The last equality in Eq. (A25) holds because, for g = 0, mx is independent of tx
and the remaining tx integrand is antisymmetric. To obtain the derivatives of the order parameters at g = 0, we therefore
only have to check that differentiating ∂{φx}x,λ,qG with respect to q, φx, and λ once more yields a regular Hessian. We
obtain

∂2

∂[{φx}x, λ, q]2 Gg[q,φ, λ] =

⎛
⎜⎝−(K−1)xy + δxyvy vx g2κ3

x

vy
∫

dz vz g2
∫

dz κ3
z

g2κ3
y g2

∫
dz κ3

z g2 + g4
∫

dz κ4
z

⎞
⎟⎠, (A26)

where we have omitted the tx dependence of mx for brevity and have introduced the higher-order cumulants

κ3
x :=∂2mx

∂φ2
x

=
∫

Dt mx(1 − 2mx )(1 − mx ), (A27)

κ4
x :=∂3mx

∂φ3
i

=
∫

Dt mx(1 − mx )
(
1 − 6mx + 6m2

x

)
(A28)

(the fourth-order one for later use). It is not apparent why the Hessian should have a zero mode; indeed, this would mean in
particular that the saddle-point approximation is not well defined. So as long as we trust the saddle-point approximation, we
also know that the derivatives of the order parameters with respect to g vanish for g = 0. Also, in Appendix B, we numerically
confirm that the Hessian does not have zero modes for g → 0.

APPENDIX B: COMPUTING THE FISHER INFORMATION

First, we convince ourselves that computing the Fisher information simply amounts to computing the covariance matrix.
Consider the probability distribution for the neural network state n, conditioned on the stimulus ξ , P(n|ξ ), given by

P(n|ξ ) = 1

ZJ (ξ )
e
∑

i niU (ξ−ri )+
∑

i< j (Ji j+Ki j )nin j

and

ZJ (ξ ) =
∑

n

e
∑

i niU (ξ−ri )+
∑

i< j (Ji j+Ki j )nin j .

For the Fisher information, we need the second derivative of the logarithm of P with respect to ξ :

− ∂2

∂ξ 2
ln (P(n|ξ )) = − ∂2

∂ξ 2

∑
i

niU (ξ − ri ) + ∂2

∂ξ 2
lnZJ (ξ )

= − ∂

∂ξ

∑
i

niU
′(ξ − ri ) + ∂

∂ξ

∂
∂ξ
ZJ (ξ )

ZJ (ξ )
= −

∑
i

niU
′′(ξ − ri ) +

∂2

∂ξ 2 ZJ (ξ )

ZJ (ξ )
−

(
∂
∂ξ
ZJ (ξ )

ZJ (ξ )

)2

.

Upon averaging over the neurons states of the neuron ni, we obtain

In(ξ ) =
〈
− 1

ZJ (ξ )

∑
n

e
∑

i niU (ξ−ri )+
∑

i< j Ji j nin j
∑

i

niU
′′(ξ − ri )

+ 1

ZJ (ξ )

∑
n

e
∑

i niU (ξ−ri )+
∑

i< j Ji j nin j

⎡
⎣∑

i

niU
′′(ξ − ri ) +

(∑
i

niU
′(ξ − ri )

)2
⎤
⎦

−
(

1

ZJ (ξ )

∑
n

e
∑

i niU (ξ−ri )+
∑

i< j Ji j nin j
∑

i

niU
′(ξ − ri )

)2〉
J

(B1)

=
∑
i, j

U ′(ξ − ri )〈[〈nin j〉n − 〈ni〉n〈n j〉n]〉JU ′(ξ − r j ), (B2)
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(a) (b)

FIG. 6. The Fisher information per neuron in dependence on the disorder, with contributions from different parts of covariance as defined
in Eq. (23). Parameters are as in Fig. 3.

where we have used the usual thermal average

〈 f (n)〉n := 1

ZJ (ξ )

∑
n

f (n)e
∑

i niU (ξ−ri )+
∑

i< j Ji j nin j . (B3)

As indicated before, to determine the Fisher information,
we therefore just have to compute the covariance matrix,
which we achieve by differentiating the cumulant-generating
functional twice with respect to h, considering all indirect
dependencies via the auxiliary fields (evaluated at their re-
spective saddle-point values). Taking into account both the
fixed total activity and the disorder, the cumulant-generating
functional is given by Eq. (A15). Formally differentiating this
expression yields

d2

dh2 〈Wf (h)〉J

= ∂2G

∂h2 + 2
∂2G

∂h∂φ

∂φ

∂h
+ 2

∂2G

∂h∂q

∂q

∂h
+ 2

∂2G

∂h∂λ

∂λ

∂h
(B4)

+ ∂2G

∂q2

(
∂q

∂h

)2

+ ∂2G

∂λ2

(
∂λ

∂h

)2

+ ∂φ

∂h
∂2G

∂φ2

∂φ

∂h
(B5)

+ 2
∂2G

∂q∂λ

∂q

∂h
∂λ

∂h
+ 2

∂2G

∂q∂φ

∂q

∂h
∂φ

∂h
+ 2

∂2G

∂λ∂φ

∂λ

∂h
∂φ

∂h
.

(B6)

We obtain the derivatives of q and φ by taking the total
derivatives of their defining equations, i.e., (A16) and (A19),
which yields

0 = d

dh
∂

∂q
G(h,φ, q, λ)

= ∂2G

∂q2

∂q

∂h
+ ∂2G

∂λ∂q

∂λ

∂h
+ ∂2G

∂φ∂q

∂φ

∂h
+ ∂2G

∂q∂h
, (B7)

0 = d

dh
∂

∂λ
G(h,φ, q, λ)

= ∂2G

∂q∂λ

∂q

∂h
+ ∂2G

∂λ2

∂λ

∂h
+ ∂2G

∂φ∂λ

∂φ

∂h
+ ∂2G

∂λ∂h
, (B8)

0 = d

dh
∂

∂φ
G(h,φ, q, λ)

= ∂2G

∂q∂φ

∂q

∂h
+ ∂2G

∂λ∂φ

∂λ

∂h
+ ∂2G

∂φ2

∂φ

∂h
+ ∂2G

∂φ∂h
, (B9)

so that we obtain after inserting into (B6)

d2

dh2 〈Wf (h)〉J

= ∂2G

∂h2 −

⎛
⎜⎜⎝

∂2G
∂h∂φ

∂2G
∂h∂q
∂2G
∂h∂λ

⎞
⎟⎟⎠

T⎛⎜⎜⎝
∂2G
∂φ2

∂2G
∂φ∂q

∂2G
∂φ∂λ

∂2G
∂q∂φ

∂2G
∂q2

∂2G
∂q∂λ

∂2G
∂λ∂φ

∂2G
∂λ∂q

∂2G
∂λ2

⎞
⎟⎟⎠

−1⎛⎜⎜⎝
∂2G
∂φ∂h
∂2G
∂q∂h
∂2G
∂λ∂h

⎞
⎟⎟⎠.

(B10)

In order to compactly write down the entries of the matrix and
the vectors above, we introduce the effective local connectiv-
ity

(
K−1

eff

)
xy

:= − ∂2G

∂φx∂φy
⇔

[(
∂2G

∂φ∂φ

)−1
]

xy

= −(Keff )xy,

(B11)

which fulfills the Dyson equation, whose concrete form we
obtain by performing the derivatives of G explicitly:(

K−1
eff

)
xy

= (K−1)xy − δxyvx (B12)

⇔ Keff
xy = Kxy +

∫
KxzvzK

eff
zy . (B13)

Using the identities derived in Appendix C, in particular
Eq. (C9), we can note the final form of the covariance matrix:

C = V + V KeffV − (1N + V Keff )(gκ3, v)

S−1

(
gκ3

v

)
(1N + KeffV ), (B14)

where V is the diagonal matrix with the disorder-averaged
variances vi and

S =
(

N + g2 ∑
i κ

4
i g

∑
i κ

3
i

g
∑

i κ
3
i

∑
i vi

)
+

(
gκ3

v

)
Keff (gκ3, v).

(B15)

The Fisher information, finally, is then given by

In(ξ ) =
∑
x,y

U ′(ξ − x)CxyU
′(ξ − y). (B16)
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The last term from (B14) contributes to the Fisher information
with a term containing (twice) the expression(

gκ3

v

)
(1N + KeffV )U ′. (B17)

The space-dependence of the contribution from the covariance
is mostly determined by the shape of U (multiplications by
K or Keff merely smear it out), so that multiplication with its
derivative with U ′ is well approximated by a spatial derivative
and summation over space and therefore yields a contribution
close to 0. This part of the covariance therefore only yields
subleading contributions to the Fisher information (see Fig. 6)
and we can neglect it in the analysis. This makes sense
because it emerges from the source- dependence of q and λ,
the auxiliary variables representing the disorder and the global
inhibition, which are global quantities. It is therefore expected
that their contribution to the spatial information is negligible.

1. Analysis of the covariance matrix

Having an analytical expression for the covariance matrix
at hand, we can investigate its behavior for special cases, in
particular around g = 0. Because it depends on g only via the
cumulants v, κ3, and κ4, we primarily have to examine their
behavior near g = 0. We observe that

d

dg
vx = ∂

∂g
vx + ∂vx

∂q

∂q

∂g
+

∫
dy

∂vx

∂φy

∂φy

∂g
+ ∂vx

∂λ

∂λ

∂g

(B18)

= ∂

∂g

∫
Dt mx(1 − mx )

=
∫

Dt t
√

2q mx
(
1 − 3mx + 2m2

x

) g=0= 0, (B19)

where we have used the result from Appendix A 3 that the
derivatives of the auxiliary variables with respect to g vanish
as g goes to 0. Again because mx does not depend on tx for
g = 0 and the remaining integral over tx is antisymmetric, it
also yields 0. With the same argument, the derivatives of the
other cumulants vanish as well. Therefore, the linear orders
of all g-dependent quantities, that the covariance C depend
on, vanish. Thus, the derivatives of the covariances and of the
Fisher information equal 0 for g = 0 as well, as is apparent
from the plots in Fig. 3.

2. Relating inputs and tuning curves by means of Keff

Without disorder, the tuning curve T in the thermodynamic
limit is given by

Tx =
∫

dy K (x − y)
1

1 + e−(φy+U (ξ−y)+λ)
, (B20)

φy =
∫

dx K (y − z)Tz, (B21)

and therefore we can write for its derivative
T ′ = T (1 − T )(U ′ + KT ′) (B22)

⇔ [1 − T (1 − T )K]T ′ = T (1 − T )U ′, (B23)

T ′ = (1 − V K )−1VU ′ = (V −1 − K )−1U ′ (B24)

⇔ T ′ = V (1 + K (V −1 − K )−1)U ′, (B25)

where we have abbreviated Vi j = δi j fi(1 − fi ). We further-
more have

Keff = K + KV Keff (B26)

⇔ (1 − KV )Keff = K (B27)

⇔ Keff = (1 − KV )−1K = V −1(V −1 − K )−1K (B28)

⇔ Keff = K (V −1 − K )−1V −1 (B29)

⇔ KeffV = K (V −1 − K )−1, (B30)

where we obtained the second-to-last equivalence by trans-
posing. Inserting this expression into Eq. (B25), we arrive at
Eq. (30).

APPENDIX C: MATRIX-VECTOR CALCULUS

1. Inversion of a matrix with blocks on the diagonal
of the sizes N and M

Assume we have a matrix of the form

U :=
(

A b

bT a

)
, (C1)

where

A ∈ RN×N , b ∈ RN×M, a ∈ RM×M (C2)

a and A are symmetric and A is invertible. To invert it, we
make the ansatz

V :=
(

C d

dT c

)
. (C3)

Multiplying U and V , we obtain the conditions

AC + bdT = 1N , (C4)

Ad + bc = 0, (C5)

bTC + adT = 0, (C6)

bTd + ac = 1M . (C7)

Solving (C5) for d and inserting into (C7), we obtain

c = (a − bTA−1b)−1

and

d = −A−1b(a − bTA−1b)−1.

Solving (C4) for C and inserting the previous results, we
obtain

C = A−1 + A−1b(a − bTA−1b)−1(A−1b)T.

Plugging these results into the left-hand side of (C6), which
we did not use so far, we obtain

bT(A−1 + A−1b(a − bTA−1b)−1(A−1b)T)

− a[A−1b(a − bTA−1b)−1]T

= ((A−1b)T + (bTA−1b − a + a)(a − bTA−1b)−1(A−1b)T)

− a(a − bTA−1b)−1(A−1b)T

= a(a − bTA−1b)−1(A−1b)T − a(a − bTA−1b)−1(A−1b)T

= 0,
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therefore our ansatz is consistent. Summarizing, we can write the inverse of U as

U −1 =
(

A−1 0

0 0

)
+

(−A−1b

1M

)
(a − bTA−1b)−1(−(A−1b)T,1M ). (C8)

2. Vector-matrix-vectors multiplication

Calculating cross-covariances, we are interested in calculating objects of the type

(B b)

(
A b

bT a

)−1(
B

bT

)
.

Making use of (C8), we then obtain

(B b)

(
A b

bT a

)−1(
B

bT

)
= BA−1B + (1N − BA−1)b(a − bTA−1b)−1bT(1N − A−1B). (C9)

APPENDIX D: RELATING FISHER AND MUTUAL INFORMATION FOR UNCOUPLED NEURONS WITH
INHOMOGENEOUSLY DISTRIBUTED PLACE FIELDS

Here, we consider independent neurons, but allow variability in the tuning curves T . The probability distribution of the neural
population is then given by

P(n) =
N∏

i=1

{niTi(ξ ) + (1 − ni )[1 − Ti(ξ )]}Pξ (ξ ). (D1)

To compute the mutual information, we first need to compute the entropy of this distribution, which is given by

huncond = − lim
N→∞

1

N

∑
n

〈P(n) ln [P(n)]〉T ,

where we denote by 〈· · · 〉T the average over the variability of the tuning curves. The tricky part here is that we average over a
logarithm, a complication that we deal with by introducing replicas (n + 1 in this case because of the prefactor P(n); compare
[33]), which leads to

huncond = − lim
N→∞

1

N
lim
k→0

1

k

{∫ k∏
α=0

[dξαPξ (ξα )]

(〈[
k∏

α=0

T (ξα ) +
k∏

α=0

[1 − T (ξα )]

]〉
T

)N

− 1

}
(D2)

= − lim
N→∞

1

N
lim
k→0

1

k

{∫ k∏
α=0

[dξαPξ (ξα )][GT (ξ)]N−1

}
, (D3)

where we have introduced

GT (ξ) :=
〈[

n∏
α=0

T (ξα ) +
n∏

α=0

[1 − T (ξα )]

]〉
T

.

An obvious idea is now to evaluate Eq. (D3) in saddle-point approximation, as also shown in [14,15]. This is indeed what
we will do, but with a small twist because one of the eigenvalues of the Hessian of GT vanishes for n → 0. However, this
replicon mode can be identified to be the one corresponding to the replica-symmetric direction. This allows us to transform the
n + 1-dimensional integral over ξα such that the first coordinate corresponds to the replica-symmetric direction (1, . . . , 1) and
the other n are orthogonal to it. In this way we can perform the integral over the first coordinate exactly and only the orthogonal
directions are evaluated in saddle-point approximation. Having determined the unconditioned entropy in this way, we obtain the
mutual information MI = huncond − hcond by subtracting

hcond = − lim
N→∞

1

N

∑
n

∫
dξ 〈P(n|ξ ) ln [P(n|ξ )]〉T (D4)

from the unconditioned entropy. Performing the limit of k → 0 in Eq. (D3), we see that, to zeroth order, huncond equals hcond, so
that the mutual information is, to first order, given by the one-loop correction

IMI =
∫

dξPξ (ξ )

[
1

2
ln

(
−Nλ1,k=0

T (ξ )

2π

)
− 1

2
− ln[Pξ (ξ )]

]
+ O

(
1

N

)
(D5)
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where λ1,k=0
T is the n-fold degenerate eigenvalue of GT at k = 0 (see below). Note that our computation neither requires the

introduction of helping fields to perform the average over the state space of the neural population, as in [15], nor do we assume
it to be normally distributed, as in [14]. However, in return, we are assuming the neurons to be independent, which limits the
applicability of our approach.

What is left to do is the computation of the Hessian of GT . On the replica-symmetric line, we only have two values for its
entries, the diagonal and the off-diagonal. We calculate

∂2GT

∂ξ 2
α

∣∣∣∣
ξ0=···=ξn=ξ

=
∑

n=0,1

〈
k∏

γ=0,γ �=α

{nT (ξγ )(1 − n)[1 − T (ξγ )]}(2n − 1)T ′′(ξα )

〉
r

∣∣∣∣∣
ξ0=···=ξn=ξ

(D6)

=
∑

n=0,1

(2n − 1)〈{nT (ξ ) + (1 − n)[1 − T (ξ )]}kT ′′(ξ )〉r (D7)

k=0= 0 (D8)

and

∂2GT

∂ξα∂ξβ

∣∣∣∣
ξ0=···=ξn=ξ

(D9)

=
∑

n=0,1

〈
k∏

γ=0,γ �=α,β

{nT (ξγ ) + (1 − n)[1 − T (ξγ )]}(2n − 1)2T ′(ξα )T ′(ξβ )

〉
r

∣∣∣∣∣
ξ0=···=ξn=ξ

(D10)

=
∑

n=0,1

〈{nT (ξ ) + (1 − n)[1 − T (ξ )]}k−1[T ′(ξ )]2〉r (D11)

k=0=
〈[

1

T (ξ )
+ 1

1 − T (ξ )

][
T ′(ξ )

]2
〉

r

=
〈

[T ′(ξ )]2

T (ξ )(1 − T (ξ ))

〉
r

. (D12)

The eigenvalues of the Hessian of GT are given by

λ0(ξ ) = ∂2G

∂ξ 2
α

∣∣∣∣
ξ0=···=ξn=ξ

+ n
∂2G

∂ξα∂ξβ

∣∣∣∣
ξ0=···=ξn=ξ

,

λ1(ξ ) = ∂2G

∂ξ 2
α

∣∣∣∣
ξ0=···=ξn=ξ

− ∂2G

∂ξα∂ξβ

∣∣∣∣
ξ0=···=ξn=ξ

,

where the first one is nondegenerate, whereas the second one is n-fold degenerate. Inserting Eqs. (D8) and (D12), we obtain that,
for k = 0,

λ0(ξ )
k=0= 0, (D13)

λ1(ξ )
k=0= −

〈
[T ′(ξ )]2

T (ξ )(1 − T (ξ ))

〉
r

, (D14)

where the latter expression equals minus the Fisher information In(ξ ) for the stimulus ξ . Therefore, inserting this result into
Eq. (D5), we finally obtain

IMI = 1

2

〈
ln

(
NIn(ξ )

2π

)〉
ξ∼Pξ

−1

2
−〈ln[Pξ (ξ )]〉ξ∼Pξ

+O
(

1

N

)
, (D15)

as expected according to [15].
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