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Attractive and repulsive interactions in the one-dimensional swarmalator model
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We study a population of swarmalators, mobile variants of phase oscillators, which run on a ring and have
both attractive and repulsive interactions. This one-dimensional (1D) swarmalator model produces several
of collective states: the standard sync and async states as well as a splaylike “polarized” state and several
unsteady states such as active bands or swirling. The model’s simplicity allows us to describe some of the
states analytically. The model can be considered as a toy model for real-world swarmalators such as vinegar eels
and sperm which swarm in quasi-1D geometries.
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I. INTRODUCTION

Large groups of coupled oscillators have been used to
model diverse phenomena [1–3]. Early studies considered
oscillators with no spatial embedding; they were coupled
all-to-all with uniform strength [2]. Later this simplification
was relaxed and oscillators were given different arrangements
in space. Rings of oscillators were studied, which produced
splay states and chimeras [4–7], and lattices, which produced
vortices and spirals [8–10].

New work [11–13] considers the next step in this sequences
of generalizations: It considers oscillators which are free to
move around in space—oscillators which sync and swarm.
Swarmalators, short for swarming oscillators, couple their
internal and external degrees of freedom bidirectionally: Their
movements depend on their phases, just as their phases depend
on their movements. With a view to explaining the behavior
of biological microswimmers [14–21], chemical micromo-
tors [22–29], and other system which both sync and swarm
[30–34] researchers have studied swarmalators with pinning
[35–37], local coupling [38], stochastic coupling [39], delayed
coupling [40], external forcing [41], phase frustration [42],
and other effects [42–54]. Applications of swarmalators to
robotics have also been considered [55–60].

Here we add to this young literature by studying swar-
malators with a mix of attractive and repulsive interactions.
Mixed sign couplings (mixed sign coupling meaning a mix-
ture of positive-attractive and negative-repulsive couplings)
are common in systems of regular oscillators, for example in
neurons which have both attractive and inhibitory couplings
[61]. We suspect they are also common in systems of swar-
malators. Active colloids, for instance, have hydrodynamic
interactions which can switch from being attractive to repul-
sive as the relative orientation between particles changes [62].

*bhao2@hawk.iit.edu
†mzhong3@iit.edu
‡Corresponding author: kevin.p.okeeffe@gmail.com

A theoretical understandings of how mixed sign couplings
changes the phenomenology of swarmalators in lacking. A
first step towards filling in this gap was recently taken [63]
by studying swarmalators which move around in two dimen-
sions (2D). New states were found but were unfortunately
analytically intractable. Hence, we restrict the swarmalators
movements to a 1D ring with a view to making the analysis
simpler (this 1D model may also be derived from the 2D
swarmalator model and in that sense captures the essence of
2D swarmalator phenomena). This 1D model could also be
used for real-world modeling purposes, since sperm, Janus
colloids, and other natural swarmalators are often confined to
quasi-1D ringlike geometries [64–68] and likely have a mix
of attractive and repulsive interactions in some settings. Our
main findings are a variety of new collective states which we
describe with a mix of theory and numerics.

II. MODEL

The 1D swarmalator model [12,13] we study is

ẋi = ν + Ji

N

N∑
j

sin(x j − xi ) cos(θ j − θi ), (1)

θ̇i = ω + Ki

N

N∑
j

sin(θ j − θi ) cos(x j − xi ), (2)

where (xi, θi ) ∈ (S1,S1) are the position and phase of the
ith swarmalator for i = 1, . . . , N , and ν and ω represent the
constant natural frequency and (Ji, Ki ) are the associated cou-
plings constants. Note S denotes the unit circle. For simplicity,
we set Ji = J = 1 and draw the phase coupling K from

h(K ) = pδ(K − Kp) + qδ(K − Kn), (3)

where p + q = 1. We see a fraction p of the swarmalators
have positive couplings Kp > 0, and the remaining q = 1 − p
have negative coupling Kn < 0. This mix of positive and
negative coupling has been studied before in the regular Ku-
ramoto model [69], where the oscillators with Kp were called
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“conformists,” since positive coupling tends to synchronize
oscillators (in that sense the oscillators “conform”) and those
with negative coupling Kn tend to antisynchronize (and in that
sense are contrarian). We will use the same terminology here.
For simplicity, we set J = 1 without loss of generality by
rescaling time which leaves a model with three parameters
(p, Kp, Kn). The model with identical couplings (J, K ) [12]
and couplings of form (Jj, Kj ) [70] were previously studied;
this (Ji, Ki ) coupling study is a natural generalization of these
works. The 1D swarmalator model may also be derived from
the 2D swarmalator model [11] (see Appendix in Ref. [12]).

III. NUMERICS

Numerical experiments were performed by us to explore
the behavior of our model. We used Matlab’s ODE solver
“ode45” to run our simulations. The swarmalators are initially
positioned in [0, 2π ] and their initial phases were drawn in the
same domain, both uniformly at random. We studied various
parameters (p, Kp, Kn) and observed seven collective states.
Four of these are static, in the sense the individual swarmala-
tors are ultimately stationary in both x and θ . In contrast, the
remaining three were unsteady.

We used three order parameters to catalog the states: the
rainbow order parameters W± used in previous studies of
swarmalators [11] and the mean velocity V . Their definitions
are

W± = S±eiφ± := 1

N

N∑
j=1

ei(x j±θ j ) (i = √−1), (4a)

V := 1

N

N∑
j=1

〈|ẋ j |〉t . (4b)

The magnitudes S± where 0 � S± � 1 measure the amount
of space-phase correlation. When xi and θi are uncorrelated,
the order parameters take minimal values S± = 0. When xi

and θi are perfectly correlated, however, one is maximal, and
the other minimal (S+, S−) = (1, 0). The opposite happens
when xi, θi are anticorrelated xi = −θi + C, S+ = 0, S− =
1. The symmetry in our model means that perfect correla-
tion and anticorrelation occur equally, so we instead define
Smax, Smin = max S±, min S± which eliminates this degener-
acy (in the sense that Smax is always 1 and Smin = 0 for the
both the correlated and anticorrelated cases). Finally, we note
that when the positions are fully synched xi = C1 and the
phase are fully synched θi = C2, then both S± are maximal
simultaneously S+ = S− = 1.

We next discuss each of the collective states. We recom-
mend viewing Supplemental Movie 1 at this point, which
shows all the states at once [71]. Having this visual in mind
will be helpful when reading the verbal descriptions and as-
sociated figures. We also provide a github link [72] to code
to simulate the model, which can be helpful to get a deeper
understanding of the states.

A. Static synchrony

The swarmalators ultimately synchronize at two fixed
points (x∗, θ∗) and (x∗ + π, θ∗ + π ), where the two groups

FIG. 1. Stationary collective states. Scatter plots of four sta-
tionary states in the (x1, x2) plane, where (x1, x2) = (cos x, sin x)
and the swarmalators are colored in terms of their phases. Simu-
lations were run with N = 500 swarmalators for variable numbers
of time units T and step size dt = 0.1. (a) Static sync state for
(J, Kn, Kp, p) = (1, −0.5, 0.5, 1) and T = 100. (b) Polarized state
for (J, Kn, Kp, p) = (1, −0.5, 0.5, 0.8) and T = 1000. (c) Static
phase wave state for (J, Kn, Kp, p) = (1,−0.5, 0.5, 0.2) and T =
100. (d) Static async state for (J, Kn, Kp, p) = (1,−3, 0.5, 0.1) and
T = 100.

are spaced π units equally apart. Figure 1(a) shows this
state where swarmalators are depicted as colored dots moving
around the unit circle. The color represents the phase θi, and
the location on the circle represents the swarmalator’s posi-
tion xi (recall the position is a circular variable xi ∈ S1). The
rainbow order parameters W± are plotted as larger dots (recall
these are complex numbers with magnitude <1 so they lie
inside the unit disk) and are colored red and blue, respectively,
so as to distinguish them from each other (so the color does
not refer to a phase, as it does for the individual swarmalators).
Looking at Fig. 1(a), you can see the individual swarmala-
tors sit at fixed points with the same phase or color and
that S± = 1, as expected in the static sync state. Figure 2(a)
shows an alternate representation of the state: a scatter plot
of the swaramlators in (x, θ ) space, where conformists are
colored blue and contrarians are colored red. This sync state
occurs in the limit case when all swarmalators are conformists
p = 1. This can be seen in Fig. 3 which plots our three
order parameters Smax, Smin,V versus p for different values
of (Kp, Kn). Notice in each panel the sync state is achieved
when p = 1; S± = 1 and V = 0 at the right-hand edge of the p
axis. Figure 4 clearly illustrates the numerical and theoretical
consistency in the transition between the static sync state and
other states. This state was reported before [12].

B. Polarized state

Here the swarmalators segregate into contrarian and con-
formist clumps, spaced a distance of π/2 from each other as
seen in Fig. 1(b) and Fig. 2(b). The conformists neighbor the
contrarians and vice versa. In order, Conformist → Contrarian
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FIG. 2. Scatter plots in (x, θ ) space. Distributions in (x, θ ) space
corresponding to different states. Simulations were run with N =
500 swarmalators for variable numbers of time units T and step
size dt = 0.1. Swarmalators coupling with Kp and Kn are presented
as blue dots and red dots, respectively. (a) Static sync state for
(J, Kn, Kp, p) = (1, −0.5, 0.5, 1) and T = 100. (b) Polarized state
for (J, Kn, Kp, p) = (1, −0.5, 0.5, 0.8) and T = 500. (c) Static phase
wave state for (J, Kn, Kp, p) = (1, −0.5, 0.5, 0.2) and T = 100.
(d) Static async state for (J, Kn, Kp, p) = (1, −3, 0.5, 0.1) and T =
100.

FIG. 3. Order parameters and averaged velocity for different
coupling distributions. Asymptotic behavior of the order param-
eters Smax := max(S+, S−) (blue dots) and Smin := min(S+, S−)
(red dots) versus p for other parameters (J, Kp, N, T, dt ) =
(1,0.5,500,1000,0.1). (a) It shows the transition from static async to
unsteady state with p varying from 0 to 1 when Kn = −2. (b) It shows
the transition from phase wave to polarized state with p varying from
0 to 1 when Kn = −0.8. (c) It shows the transitions from phase wave
to unsteady state and then polarized state when Kn = −0.25. Each
data point represents the average of last 10% realizations.

FIG. 4. Phase diagram in (P, Kn) plane with fixed Kp = 0.5. Each
state is indicated by a distinct color. The black curves and lines
represent the theoretical predictions. Parameters in simulation we
used are (J, N, T, dt ) = (1, 5000, 1000, 0.1).

→ Conformist → Contrarian. Since the conformists and the
contrarians are maximally separated in their “opinions,” we
call this the polarized state. The fixed points are (x∗, θ∗),
(x∗ + π/2, θ∗π/2), (x∗ + π, θ∗ + π ), and (x∗ + 3π/2, θ∗ +
3π/2). The order parameters take values V = 0, Smax = 1,
and 0 < Smin < 1 as illustrated in Fig. 3 and Fig. 4. This state
has not been seen before in systems of swarmalators.

C. Static phase wave

Sometimes the swarmalators arrange themselves in a phase
wave with xi = ±θi + C where the ± occur with equal proba-
bility as shown in Fig. 1(c) and Fig. 2(c). The order parameters
are V = 0, Smax = 1, and Smin = 0 as seen in Fig. 3. Figure 4
shows the region of occurrence of the state. This state was
previously reported [12].

D. Static asynchrony

A static async state can be formed as well, depicted in
Fig. 1(d). It is more clearly seen in the (x, θ ) plane in Fig. 2(d).
Swarmalators are distributed uniformly, which means every
phase can occur everywhere, resulting in all colors appearing
everywhere, as shown in Fig. 1(d). Since xi and θi are un-
correlated, Smax = Smin = 0 and V = 0; see Fig. 3. Figure 4
presents the region of occurrence of the state given the nu-
merical conditions and theoretical prediction. This state was
reported before [12].

E. Breathing polarized state

Here the polarized state destabilizes and begins to breath
as shown in Fig. 5(a) [note that for this and the other unsteady
states we do not show the plots of them are colored dots on the
unit circle; this representation was not informative. Moreover,
in Fig. 3 of S±(p),V (p) we group all these states under the
umbrella “unsteady”]. The swarmalators stay in their contrar-
ian or conformist clumps (by clump we mean a delta function
mass; they all have the same position or phase) but now the
clumps move in small loops about their former fixed points
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FIG. 5. Unsteady collective states. Top row: Scatter plots in (x, θ ) space. Second row: Time series of order parameters respec-
tively. Third row: (x(t ), θ (t )) of a single swarmalator for each case. [(a), (d), and (g)] Simulation parameters: (p, Kp, Kn, T, dt, N ) =
(0.75, 0.1, −0.7, 1000, 0.25, 500). Swarmalators execute swaying in four clusters. [(b), (e), and (h)] Simulation parameters:
(p, Kp, Kn, T, dt, N ) = (0.6, 1, −0.5, 1000, 0.25, 500). Swarmalators execute swirling in circular motions with noisy Smax and Smin. [(c), (f),
and (i)] Simulation parameters: (p, Kp, Kn, T, dt, N ) = (0.5, 2, −0.1, 1000, 0.25, 500). Swarmalators execute shear flow as denoted by the
black arrows, in which order parameters have noisy oscillations.

as indicated by the black arrows. Correspondingly, S± barely
execute oscillations about their mean values [Fig. 5(d)]. How-
ever, V > 0. Figure 5(g) shows that the oscillations of x(t ) and
θ (t ) rise and fall incessantly and periodically. We devised two
additional parameters δx and δθ , which we refer to as rotation,
to distinguish among the three unsteady states, as shown in
Fig. 6. If a swarmalator completes a full rotation (from 0
to 2π ) in either x or θ , then we denote δx = 1 or δθ = 1,
respectively; otherwise, they are set to 0. Figure 6 presents
the fractions of rotations of all swarmalators. Both fractions
of total δx and δθ take on the value of 0.

F. Swirling

In this state the conformists stay in their clumps, but the
contrarian break out into a noisy vortexlike structure as seen in
Fig. 5(b); note that the red dots are dispersed, but the two blue
clumps remain. The vortices periodically form and disperse,
and within each vortex the contrarians swirl as indicated by
the black arrows. This vacillatory motion manifests as irreg-
ular times series of S± as shown in Fig. 5(e). Fractions of

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Breathing
Polarized
State

Active
Bands

Swirling
Static
Polarized
State

FIG. 6. Fractions of rotations plot for different p. δx and δθ repre-
sent the rotation of x and θ , respectively. The dotted line is the theo-
retical prediction of the analysis of static polarized state. (Kp, Kn) =
(1.5,−0.6). (T, N, J, dt ) = (2000, 600, 1, 0.1). First 30% data are
dropped.
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δx = 1, while fractions of δθ < 1. By combining the oscilla-
tory behavior in Fig. 5(h) with the fractions of rotations in
Fig. 6, the state can be distinguished. This state has not been
reported before.

G. Active bands

Swarmalators form a bandlike structure in (x, θ ) space
which moves and breaks up periodically [Fig. 5(c)]. Here
the swarmalators’ positions are almost synchronized, but their
phases are distributed. The overall macroscopic motion is
somewhat irregular as indicated by the time series of S±
[Fig. 5(f)]. Figure 5(i) shows the oscillatory behavior of a
typical swarmalator (the vortices appear and disperse periodi-
cally). Both fractions of δx and δθ are equal to 1. By combining
the pattern in Fig. 5(i) with rotations, we can determine this
state, as shown in Fig. 6.

IV. ANALYSIS

Here we analyze the stability of the static async and po-
larized states. The static phase wave, though static, was too
difficult to crack. The same is true of the breathing polarized,
swirling, and active band states; being unsteady, their analysis
was intractable.

A. Polarized state

We analyze the stability of the state for all finite N using
standard methods, namely linearizing around the fixed points:
(xi, θi ) = (x∗, θ∗), (x∗ + π/2, θ∗ + π/2), (x∗ + π, θ∗ + π ),
and (x∗ + 3π/2, θ∗ + 3π/2). The algebra is somewhat in-
volved, but the essence of our approach is simple: Take
advantage of the block structure of the associated Jacobean
M. It turns out its easier to move to (ξ, η) coordinates defined
by ξi = xi + θi, ηi = xi − θi. The ODEs in this frame are

ξ̇i = J+S+ sin(
+ − ξ ) + J−S− sin(
− − η), (5)

η̇i = J+S+ sin(
+ − ξ ) + J+S− sin(
− − η), (6)

where J± = (J ± K )/2.

The Jacobian has form

M =
[

Zξ Zη

Nξ Nη

]
, (7)

where

(Zξ )i j = ∂ξ̇i

∂ξ j
, (8)

(Zη )i j = ∂ξ̇i

∂η j
, (9)

(Nξ )i j = ∂η̇i

∂ξ j
, (10)

(Nη )i j = ∂η̇i

∂η j
. (11)

Plugging the values for the derivatives yields at the fixed
points gives

Mps =
[

A(Kp, Kn) B(−Kp,−Kn)

A(−Kp, Kn) B(Kp, Kn)

]
, (12)

where A is

Ai j (x, y) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−(N−1)
2N (J + x) i = j, i < np

−(N−1)
2N (J + y) i = j, i � np

J+x
2N i �= j, i < np

J+y
2N i �= j, i � np

and B is

Bi j (x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2[N/2−np−1)+1]
2N (J + x) i = j, i < np

2[N/2−np−1)+1]
2N (J + y) i = j, i � np

J+x
2N i < np, i < np

− J+x
2N i < np, i � np

− J+y
2N i � np, i < np

J+y
2N i � np, i � np

,

where np = ceil(pN ) is the number of swarmalators with
K = Kp. Intuitively, what is going on here is that each A, B are
subdivided into contrarian and conformist populations. Look
at the diagonal elements of A: The first np have coupling Kp,
while the remaining N − n(p) have coupling Kn. We write
A, B below for the (n, p) = (4, 1/4) so the structure can be
seen visually,

A =

⎡
⎢⎢⎢⎢⎢⎣

− 3
8 (x + 1) x+1

8
x+1

8
x+1

8
y+1

8 − 3
8 (y + 1) y+1

8
y+1

8
y+1

8
y+1

8 − 3
8 (y + 1) y+1

8
y+1

8
y+1

8
y+1

8 − 3
8 (y + 1)

⎤
⎥⎥⎥⎥⎥⎦

B =

⎡
⎢⎢⎢⎢⎢⎣

3(x+1)
8

1
8 (−x − 1) 1

8 (−x − 1) 1
8 (−x − 1)

1
8 (−y − 1) 1

8 (−y − 1) y+1
8

y+1
8

1
8 (−y − 1) y+1

8
1
8 (−y − 1) y+1

8
1
8 (−y − 1) y+1

8
y+1

8
1
8 (−y − 1)

⎤
⎥⎥⎥⎥⎥⎦.

Now we will get back to our goal of finding the eigenvalues
λ of M. A well-known fact for block matrices is det(M ) =
det(AD − BC) if the submatrices AD, BC commute, which
is the case for us. To find the λ, we write det(M − λI ) =
det[(A − λI )(D − λI )] − BC). We define

G := (A − λI )(D − λI ) − BC (13)

G inherits the structure of B and has thus six unique elements:

G =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

g1(p, N, λ) i = j, i < np

g2(p, N, λ) i = j, i � np

g3(p, N, λ) i < np, i < np

g4(p, N, λ) i < np, i � np

g5(p, N, λ) i � np, i < np

g6(p, N, λ) i � np, i � np

,
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or, in block format,

G =
[

G1 G2

G3 G4

]
, (14)

where (G1)i, j = g1, . . . . We want to find the eigenvalues λ̂ of
G for which we need det(G − λ̂I ). Notice, however, that the
submatrices Gi are nonsquare, so we cannot use the previous
formula we used, det(M ) = det(AD − BC). Instead, we use
Schur’s formula:

det(G − λ̂I ) = det(G1 − λ̂I ) det((G4 − λ̂I )

− G3(G1 − λ̂)−1G2) (15)

det(G − λ̂I ) = det(G1 − λ̂I ) det(G5). (16)

Now all that is left is to find expressions for the determinants.
This was the bottleneck in the calculation. After much algebra,
we find

det(G1 − λ̂I ) = (g1 − g3)np−1[g3(np − 1) + g1]

− λ̂
[
(g1 − g2)n2

p

]
np−1 (17)

det(G5) = (ã + b̃λ̂ + λ̂2)(g6 − g2 + λ̂)nq−1

g3(np − 1) + g1 − λ̂
, (18)

where nq := N − np is the number of swarmalators with K =
Kn, ã = ∑

j ãigi, and b̃ = ∑
i, j

˜bi, jgig j (for convenience we

do not write out ãi, b̃i). Multiplying these together and equat-
ing to zero yields four distinct eigenvalues:

λ̂0(p, N, λ) = g1 − g3 w · m np − 1, (19)

λ̂1(p, N, λ) = g2 − g6 w · m nq − 1, (20)

λ̂2/3(p, N, λ) = 1

2

∑
i

aigi, (21)

±1

2

√√√√(∑
i

bigi

)2

− 4
∑
i, j

ci jgig j w · m 1,

(22)

where w · m means “with multiplicity,” and we have dropped
the dependence on λ for the gi. The other coefficients depend
on p, N : ai = ai(p, N ), bi = bi(p, N ), and ci, j = ci, j (p, N ).
Now, recall these λ̂ are the eigenvalues of G, but our target
are those of M. So we set λ̂i = 0 and solve for λ. After much
calculation, we eventually derive:

λ0 = 0, (23)

λ1 = ± 1
2

√
J (qKp + pKn), (24)

λ2 = 1
2 [−p(J + Kp) ±

√
p2(J + Kp)2 − 8JKp p + 4JKp],

(25)

λ3 = 1
2 [−q(J + Kn) ±

√
q2(J + Kn)2 − 8JKnq + 4JKn],

(26)

where q = 1 − p and the multiplicities are 2, 1, np − 1, nq −
1. Notice that λ2 becomes λ3 under the transformation
(p, Kp) → (q, Kn).

We have done the hard work. Now its time to use the λ

to deduce the stability of the polarized state. The zeroth λ0

does not play a role in the bifurcation; it simple corresponds
to the rotational symmetry in the model. The first λ1, however,
undergoes a (degenerate) saddle node bifurcation when the
argument of the radical becomes real. The second λ2 has
negative real parts for all parameter regimes of interest and
so is unimportant, while the final λ3 undergoes a (degenerate)
hopf bifurcation. Thus, the state is stable when

J (qKp + pKn) < 0, (27)

J + Kn > 0, (28)

p � 1
2 . (29)

When J = 1, the critical Kn values are as follows:

Kn = −q

p
Kp, (30)

Kn = −1. (31)

The dotted black lines in Fig. 3 shows these predictions are
consistent with numerics.

B. Static sync state

The fixed points of this state are (x∗, θ∗) and (x∗ + π, θ∗ +
π ). Similarly, by linearizing around the fixed points in (ξ, η)
space, we seek the eigenvalues λ of the Jacobian M in Eq. (7).
Plugging in the values for the derivatives yields at the fixed
points gives

Mss =
[

A(Kp, Kn) A(−Kp, Kn)

A(−Kp, Kn) A(Kp, Kn)

]
, (32)

where A is the same subblock in Eq. (7).
By using the following identity for symmetric block matri-

ces, the egienvalues λ of Mss can be found:

det E :=
[

C D

D C

]
= det(C + D) det(C − D). (33)

Applying this identity to Mss yields:

λ0 = 0, (34)

λ1 = −J, (35)

λ2 = −Kp(N − np) + Knnp

N
, (36)

λ3 = −Kp, (37)

λ4 = −Kn, (38)

with multiplicities 2, N − 1, 1, floor(np/2), N − 2 −
floor(np/2). Hence, the state is stable when

J > 0, (39)

Kn, Kp > 0, (40)
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FIG. 7. Order parameters and averaged velocity plots for other
coupling distributions. The same structure is observed in (a) Gaus-
sian with variance σ = 0.5 and in (b) a mixture of Gaussians with
(Kp, Kn, σ ) = (−2, 1, 0.5). Simulation parameters: (J, T, dt, N ) =
(1, 2000, 0.5, 500).

which also means p = 1. The dashed black lines in Fig. 3 in-
dicate that these predictions are consistent with the numerical
results.

C. Incoherence

This state is analyzed is the same manner as previous
studies: We take the N → ∞ limit and perturb around ρ0 =
(2π )−2. The calculation is virtually the same, and the result is
the same also, so we just quote the result:

〈K〉c = −〈J〉, (41)

where the 〈.〉 denotes the average. For the h(K ) = pδ(K −
Kn) + qδ(K + Kp) example this becomes

ps = 1 + Kn

Kn − Kp
, (42)

which, interestingly, is identical to the result found for con-
stant coupling [12] and Kj coupling [70]. Figure 3 shows these
predictions are consistent with numerics.

V. OTHER COUPLING DISTRIBUTIONS

Besides the double delta distribution with certain fractions
p and q, we also studied the phase couplings K from other
distributions:

(1) single Gaussian distribution: h(K ) ∼ N (μ, σ |K ) and
(2) mixed Gaussian distribution: h(K ) ∼ pN (Kn, σ |K ) +

(1 − p)N (Kp, σ |K ),
where N (μ, σ |x) is the normal distribution for random vari-
able x. The same states were also found in each case. Figure 7
summarizes them by plotting the order parameters. Besides,
by setting (μ, σ ) = (−0.5, 0.1), the system with single Gaus-
sian coupling distribution gives us a static phase wave state
which is not shown in Fig. 7(a). Also, we can get static sync
by letting (p, Kp, σ ) = (0, 2, 0.1) in the mixed Gaussian case.

VI. MATCH TO REAL-WORLD SWARMALATORS

Sperm are prototypical microswimmers that exhibit col-
lective behavior by synchronizing their tail movements while
swarming in a solution [14]. When contained within 1D rings,
sperm obtained from ram semen transition from an isotropic
state resembling the static async state to a vortex state, where

sperm rotate either clockwise or counterclockwise [67]. This
suggests that their positions and orientations are arranged in a
manner akin to the static phase wave. It is worth noting that
the static phase wave actually represents a state of uniform
rotation and remains motionless in the frame that moves along
with the natural frequencies ω, ν [67]. Additionally, the tran-
sition involves a temporary reduction in rotational velocity,
as observed in the decay shown in Fig. 4(a) of Ref. [67],
which aligns with characteristics of a Hopf bifurcation, similar
to the ring model. It is important to highlight that, unlike
other research on synchronizing sperm, in this case, the phase
variable refers to the orientation of the sperm [14], not their
tail rhythm.

Vinegar eels, a type of nematode found in beer mats and
tree wound slime [16,21], are swarmalators because they
sync the wriggling of their heads and swarm in solution.
Their collective movement suggests a potential interaction be-
tween this synchronization and the swarming behavior [16,21]
(neighboring eels synchronize more easily than those at a
distance, indicating an interaction between synchronization
and swarming. The synchronized eels likely influence their
local hydrodynamic environment, subsequently affecting each
other’s movements, thus showcasing an interaction between
swarming and synchronization). When these eels are confined
to 2D disks and maneuver near the 1D ring boundary, they
create metachronal waves. In these waves, the pattern of their
gait phase and their spatial positions around the ring resem-
ble the configuration seen in the static phase wave [16,21].
However, it is essential to note that the metachronal waves
possess a winding number k > 1, signifying that a full rotation
in physical space x leads to k > 1 rotations in phase θ .

VII. DISCUSSION

Swarmalators are a new subfield with little to no theoretical
results. Our work is as part of a research series [12,13,70]
whose goal is to develop a theory for swarmalators by first
focusing on the simplest models possible (the 1D model
presented here) and trying to solve those. That is, we fol-
low the the minimal modeling or physicists tradition. This
is the approach Winfree and later Kuramoto took with their
famous coupled oscillator models which essentially launched
the field; we follow in their footsteps.

The naked 1D swarmalator model, that with uniform
natural frequencies (ν, ω) and couplings (J, K ), was first in-
troduced and solved in Ref. [12]. Then distributed natural
frequencies (ν, ω) → (νi, ωi ) [13] and random Kj couplings
(J, K ) → (Jj, Kj ) [70] were studied. Here we tackled Ki

couplings (J, K ) → (Ji, Ki ) and found some new states: the
polarized state, which we characterized analytically, as well as
the unsteady breathing, swirling, and active band states, which
we characterized numerically. In the future work, before
delving into the study of van Hemmen couplings (J, K ) →
(Ji j, Ki j ), it would also be interesting to study the role that
J plays. We will remove the simplicity J = 1 and investigate
the consequences when this position coupling strengths are
also chosen in a similar manner like K’s, (Ki’s, and Ki j’s).
Next we will complete the random coupling sequence by
studying van Hemmen couplings (J, K ) → (Ji j, Ki j ), where
Ki j is drawn from h(K ) = 1

4δ(K − μ + γ ) + 1
2δ(K − μ) +
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1
4δ(K − μ − γ ) (and in theory the same for J; although
we may set Ji j = 1 for simplicity). This is a crude two-
parameter representation of a unimodal distribution with mean
μ and γ . Van Hemmen couplings Ki j are well studied in
the Ising model of statistical physics and are more realistic
than the Ki, Kj couplings models [since then randomness is
associated with an interaction between a pair (i, j) of

oscillators, which is more common in nature] and thus may
be applicable to real world swarmalators such as vinegar eels
and sperm.
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