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Chiral knife edge: A simplified rattleback to illustrate spin inversion
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We present the chiral knife edge rattleback, an alternative version of previously presented systems that exhibit
spin inversion. We offer a full treatment of the model using qualitative arguments, analytical solutions as well as
numerical results. We treat a reduced, one–mode problem which not only contains the essence of the physics of
spin inversion, but that also exhibits an unexpected connection to the Chaplygin sleigh, providing insight into the
nonholonomic structure of the problem. We also present exact results for the full problem together with estimates
of the time between inversions that agree with previous results in the literature.
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I. INTRODUCTION

The rattleback, or celt, is a boat-shaped stone (commer-
cially available as a toy) which exhibits unintuitive behavior
that at first glance seems to defy the law of conservation of
angular momentum. In its usual version it consists of a simple
rigid body with a semiellipsoidal bottom and an uneven dis-
tribution of mass so that the axes of symmetry of the ellipsoid
do not coincide with the principal axes of inertia of the rigid
body.

As with a symmetric semiellipsoidal top, the rattleback can
oscillate with respect to two horizontal axes in modes usually
called “rolling” and “pitching,” as shown schematically in
Fig. 1. When the rattleback is spun in one direction, it quickly
starts to roll up and down while the rotation velocity first
decreases, and eventually it changes sign. After a few turns
it soon begins pitching until the rotation changes direction
again. Were it not for unavoidable mechanical losses, this
periodic inversion of the rotation direction would continue
indefinitely. The misalignment between the principal axes of
inertia of the body and those of the curvature at the contact
point (generating a definite chirality in the system) couples
the spinning motion with the pitching and rolling oscillations.
As a result of this misalignment, the frictional contact force
creates a torque about the center of mass, causing the top to
invert its motion.

Most of previous analyses of the rattleback [1–4] describe
the motion by approximating the contact surface of the body
as an ellipsoid whose principal axes are rotated with respect
to the principal axes of inertia. The equations of motion are
then treated in various approximations and solved numerically
to illustrate the spin inversion. In this paper we propose an
alternative version of the rattleback in the form of a knife edge
with hanging masses that can execute the rolling and pitching
motion, with the center of mass below the point of contact. We
performed some experimental tries with the physical model
shown in Fig. 2

Our derivation of the equations of motion is simpler than
that of previous treatments, and these equations are even suit-
able for pedagogical expositions that illuminate the origin of
spin inversion. In order to distill the essence of the mechanism
of spin inversion, we first treat a simplified model in which we
freeze one of the oscillating modes—the single-mode rattle-
back.

In Sec. II we describe the simplified single-mode case,
present a qualitative explanation of its behavior and solve the
full non-holonomic equations of motion using a few reason-
able approximations. The resulting equations are simple and
amenable to a transparent interpretation of the origin of the
spin inversion. In addition, we rewrite the equations in terms
of the amplitudes of motion of the oscillating and spinning
mode, and retrieve by, in our opinion, a more direct and
“microscopic” route the equations of motion (restricted to
one mode) proposed by Tokieda and collaborators [5,6]. In
addition, we find a puzzling and unexpected equivalence of
our single-mode rattleback with the Chaplygin sleigh, one of
the classic irreversible nonholonomic systems.

In Sec. III we extend the treatment to the knife edge rattle-
back with two modes. We follow the standard nonholonomic
program to obtain analytical expressions for the equations of
motion. We also present numerical solutions that show an
equivalence with the traditional treatments.

II. SINGLE-MODE KNIFE EDGE RATTLEBACK

The rattleback effect is driven by a shift of the support-
ing point with the oscillation angles. We first attempt to the
simplest description of the phenomenon. We consider a single
oscillating mode, which plays the role of either pitching or
rolling in the usual nomenclature of the rattleback, coupled to
a spin mode and assume that the second oscillating mode is
“frozen.” Specifically, our model consists of a rigid massless
bar—a knife edge of length 2L—that stays and moves on the
(x, y) plane. Two massless segments of length � are attached
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FIG. 1. Scheme of a traditional boat-shaped rattleback. The two
oscillations and the rotational degrees of freedom are indicated

to the ends of the bar. These two segments have masses of
magnitude M/2 attached to their free ends. The set of the
three massless segments and the two point masses form a rigid
body. The system can spin with angular velocity φ̇ around the
z axis and execute small oscillations of angle θ around the
vertical, as illustrated in Fig. 3. The choice of this particular
geometry is informed by experiments we did with a chiral
knife edge that, in order to be stable, requires the center of
mass to be below the point of support.

The configuration space of the system is determined by the
two angles θ and φ, and the position x of the center of the
horizontal bar (point O in Fig. 3) on the x, y plane. To com-
pletely define the dynamics of the model, we need to specify
the sliding conditions of the horizontal bar on the plane. We
will assume that at any moment there is a single contact point
xC with a nonslip condition between the bar and the plane. The
instantaneous zero velocity of the physical contact point is the
additional ingredient that completely defines the dynamics.
Yet, the nontrivial condition from which the subtle properties
of the system will emerge is the change of contact point with
the value of θ . We impose that the instantaneous contact point
is at a distance Dθ from the center x of the bar:

xC = x + Dθ ûφ,

where ûφ is a unit vector in the direction of the bar. This
prescription, that introduces chirality into the system, will
be fully justified within the more complete modeling that

FIG. 2. Chiral rattleback built using a pizza cutter disk as a knife
edge. The cylinder is for support only and is kept fixed.

FIG. 3. Sketch of the single-mode rattleback. The horizontal bar
lies completely on the x, y plane, at an angle φ with respect to x̂. The
instantaneous contact point (indicated by × and having zero velocity)
is at distance Dθ from the center point O.

includes the two oscillating modes of the system and a more
realistic knife edge geometry, to be presented in Sec. III.

The essence of the single-mode system is that there is
only one oscillatory degree of freedom (in addition to the
unconstrained rotation around ẑ), so the second oscillation
must be frozen, somehow. In Fig. 4 we propose a possible
physical realization of the single mode. The (half)-cylindrical
shape of the body prevents the rolling oscillation (Fig. 1) to
take place. Note that in this case the center of mass of the
system is above the contact point.

A. Qualitative explanation of the spin inversion

Consider the case in which D = 0, namely, the contact
point is always the middle point of the bar. Also, let us take
φ̇ = 0. Under these conditions all we have is a simple pendu-
lum which, for small values of θ , executes a harmonic motion
of the form

θ (t ) ∝ cos ω0t . (1)

This oscillation does not couple to φ. During the oscillation,
there is a friction force (provided by the constraint) of the form

f (t ) ∝ θ̈ (t ) ∝ −θ (t ) (2)

acting at the pendulum’s support point, as sketched in
Fig. 5(a).

If the contact point changes with θ (i.e., D �= 0), the force
f (t ) will now be applied at a distance Dθ away from the center
O of the bar [Fig. 5(b)]. This force now generates a torque with

FIG. 4. A possible realization of the single-mode rattleback, con-
sisting of a half-cylinder with a helical knife edge (marked in red).
The line of contact of the cylinder with the table is frictionless, with
the exception of the point of contact of the knife edge with the table
(marked with a cross), which has zero instantaneous velocity.
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FIG. 5. Origin of the oscillation-spin coupling in the single-mode
rattleback. In (a) the supporting point is kept fixed, and the reaction
force due to the oscillation (indicated with the arrows) does not
generate any torque onto the system. In (b) the supporting point
shifts proportionally to θ , and therefore the reaction force produces
a torque always with the same orientation.

respect to O, giving rise to an acceleration of φ in the form

φ̈ ∼ f × Dθ ∼ −Dθ2. (3)

The torque appears in a well-defined direction, independently
of the sign of θ , and is proportional to the energy of the
oscillatory mode. Note that this fact appeared as a postulate in
one of the first full mathematical treatments of the rattleback
[7].

This pedagogical exposition of the oscillation-rotation cou-
pling is at the heart of the rattleback effect in more complex
setups. Now we proceed to the full analysis of this single-
mode rattleback.

B. Full analysis

The unconstrained Lagrangian of the system in Fig. 3 is

L = 1
2 M(ẋ2 + �2θ̇2 + L2φ̇2 + 2�θ̇ ẋ · v̂φ ) − 1

2 Mg�θ2,

where v̂φ = (− sin φ, cos φ) is a unit vector perpendicular to
the instantaneous direction of the horizontal bar, and φ is the
angle of the bar with respect to the x axis on the plane of the
table.

The two nonholonomic constraints are zero velocity of the
point of contact along the direction of the bar (note that the
point of contact is at rest with respect to the bar),

ûφ · ẋ = 0, (4)

and zero velocity in the direction perpendicular to the bar,

ẋ · v̂φ + Dθφ̇ = 0, (5)

with ûφ = (cos φ, sin φ) the unit vector in the direction of the
bar.

The constraint equations (4) and (5) are linear and can be
written in matrix form as

∑2
j=1 ai, j (q)q̇ j = 0, with i = 1, 2,

and q the coordinates (x, θ, φ). As is standard in the treatment
of nonholonomic systems [8], we impose the constraints in the
equations of motion through Lagrange multipliers:

d

dt

∂L
∂ q̇i

− ∂L
∂qi

=
2∑

j=1

λ ja j,i(q). (6)

Our constrained equations have the form

ML2φ̈ = −M�θ̇ ẋ · ûφ + λ2Dθ (7a)

M

(
�2θ̈ + �

d

dt
ẋ · v̂φ

)
= −Mg�θ (7b)

M

(
ẍ + �

d

dt
θ̇ v̂φ

)
= λ2v̂φ + λ1ûφ. (7c)

From Eq. (7c) and using the constraints we obtain

λ2 = M(−D(φ̇θ̇ + θφ̈) + �θ̈ ). (8)

Replacing the value of the multiplier in Eq. (7a) we obtain

ML2φ̈ = λ2Dθ � MDθ (−Dφ̇θ̇ + �θ̈ ), (9)

where we neglected a term ∼θ2φ̈ over ∼φ̈, an approximation
which we will also adopt in what follows.

The equations of motion for θ and φ become

φ̈ = D�

L2
θ θ̈ −

(
D

L

)2

θ θ̇ φ̇, (10a)

θ̈ = −g

�
θ +

(
D

�

)
(θφ̈ + θ̇ φ̇). (10b)

Finally, note that from Eq. (10b) we have

θ θ̇ φ̇ = �

D
θ̈ θ + g

D
θ2 − θ2φ̈,

which when replaced in Eq. (10a) leads to the final form of
the equations of motion, and constitutes one of the results of
the present paper:

φ̈ = −gD�

L2
θ2, (11a)

θ̈ = −g

�
θ + D

�
θ̇ φ̇. (11b)

The above equations contain the essential elements of spin
inversion. Equation (11b) describes a harmonic oscillator of
amplitude θ (t ) with a friction term with effective friction
coefficient −D

�
φ̇. This frictional term comprises the back ac-

tion of the φ mode over θ . Equation (11a) corresponds to a
torque around the z axis of constant sign, in agreement with
the qualitative argument presented in Sec. II A. If we start
with φ̇ > 0 and θ infinitesimal, the “negative friction” term
in Eq. (11b) gives rise to an increase in amplitude of θ and,
from Eq. (11a), a simultaneous decrease in the value of φ̇. This
decrease is monotonous, as it is proportional to −θ2. When φ̇

changes sign, the corresponding frictional term gives rise to
an attenuation of the amplitude of θ until φ̇ is constant and
negative. This behavior is illustrated in Fig. 6 where we show
a numerical solution of Eqs. (11).
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FIG. 6. Numerical solution of the single-mode rattleback of
Eqs. (11) illustrating the spin inversion accompanied by an increase
and decrease of the amplitude of the oscillating mode. The initial
condition has φ̇ = 0.1

√
g/�, and θ very small. Other parameters used

were �/L = 1, D/� = 1.

C. The single-mode rattleback and the Chaplygin sleigh

There is a remarkable formal analogy between the present
single-mode rattleback and one of the prototypical nonholo-
nomic mechanical systems—the Chaplygin sleigh [9] shown
in Fig. 7.

The analogy emerges when considering the previous equa-
tions of the single-mode rattleback in terms of slightly
different variables. Let us first define

Aφ = φ̇.

We now separate the motion in the periodic mode as θ (t ) =
Aθ (t )eiωt . We are interested in a situation in which the “bare”
frequency ω of the mode is large, that is,

φ̇ � ω =
√

g

�
,

and where A(t ) is slowly varying in the timescale of 1/ω, that
is, Ȧ � ω. In this regime we are safe to make the following
approximation for θ2 (replacing cos2 ωt by its mean value

FIG. 7. The Chaplygin sleigh consists of a rigid body supported
on a horizontal plane at three points, two of which slide freely
without friction while the third (point A) is a knife edge, a constraint
that allows no motion perpendicular to its edge. (Picture used with
permission from Anthony Bloch’s book [8].)

〈cos2 ωt〉 = 1/2),

θ2 � 1
2 A2

θ (t ),

and we are safe to neglect the terms indicated below for the
time derivatives of θ (t ):

θ̇ = {Ȧθ + iωA}eiωt � iωAθeiωt , (12)

θ̈ = {Ä + 2iωȦθ − Aθω
2}eiωt � {2iωȦθ − Aθω

2}eiωt . (13)

Replacing Eq. (13) in Eq. (11b) we obtain

{2iωȦθ − Aθω
2}eiωt = −Aθω

2eiωt + D

�
iωAθeiωt φ̇, (14)

Ȧθ = D

2�
AθAφ, (15)

and therefore we arrive at

Ȧφ = −gD�

2L2
A2

θ , (16a)

Ȧθ = D

2�
Aθ Aφ. (16b)

These equations have the same structure as those of the
Chaplygin sleigh, provided we identify the variable v (the
velocity along the sleigh, or ξ̇ in the notation of Fig. 7) with
the amplitude φ̇ = Aφ , and the orientation of the sleigh θ

with the amplitude of the single oscillatory mode Aθ of the
rattleback. In fact, the well-known tendency of the sleigh
to convert its rotational energy into a positive value of v

corresponds to the property of the single-mode rattleback to
harvest the kinetic energy of the oscillation, and transform it
into rotational motion around z, with a well-defined chirality.
This remarkable analogy provides a different interpretation of
the process of spin inversion in the rattleback, as it shares a
close formal analogy with the irreversible dynamics of the
Chaplygin sleigh. The physical difference rests in the fact that
v in the sleigh corresponds to a linear velocity, whereas Aφ

corresponds to an angular velocity.
As with the sleigh [8], Eq. (16b) has a family of equilibria

(i.e., points at which the right-hand side vanishes) given by
Aθ = 0, Aφ �= 0. Linearizing about any of these equilibria, one
finds a zero eigenvalue together with a negative eigenvalue
if Aφ > 0 (the stable case) and a positive eigenvalue if Aφ <

0 (the unstable case). The solution curves are ellipses in the
Aθ , Aφ plane, as shown in Fig. 8.

The time dependence of Aθ , Aφ can be fully worked out,
and the final expressions are

Aφ = A0 tanh

(
A0Dt

2�

)
, (17a)

Aθ = A0L

�
√

g
sech

(
A0Dt

2�

)
, (17b)

where A0 is the asymptotic value (t → ±∞) of Aφ . In Fig. 9
we show the agreement between these solutions and the full
solution in Fig. 6.

III. TWO-MODE KNIFE EDGE RATTLEBACK

The single-mode rattleback we discussed in the previous
section sheds light on the origin of the coupling mechanism
between oscillation and (chiral) rotation. Yet it was presented
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FIG. 8. Phase portrait of the motion amplitudes of the single-
mode rattleback.

with a “prescription” for the shift of the contact point. It
is important to check if this mechanism, or a similar one,
can be implemented in a well-defined mechanical system that
includes both the pitching and rolling modes. We show here
that a fully consistent two-mode rattleback can be constructed
starting from the ideas of the previous section.

We use a similar geometry of two masses hanging from
the ends of a bar with an inverted “U” form. However, the
horizontal part of the bar is modified to set the contact point
as sketched in Fig. 10. The central portion of the bar has a
semicircular profile of radius D. The plane of the circle is
perpendicular to the horizontal plane and forms an angle α

with the bar, as indicated in Fig. 10(b).
The configuration of the system is determined by two

(small) oscillation angles θ1 and θ2, the rotation angle φ

around ẑ, and the position x of the middle point of the knife
edge. The unconstrained Lagrangian of the system can thus be
written as

L = 1
2 M

{
ẋ2 + (L2 + �2)θ̇2

2 + �2θ̇2
1 + L2φ̇2

+ 2�ẋ · (θ̇1v̂φ − θ̇2ûφ )
} − 1

2 Mg�
(
θ2

1 + θ2
2

)
.

FIG. 9. Analytical solutions [Eqs. (17)] of the amplitude equa-
tions (16) for A0 = 0.1

√
g/l , �/L = 1, D/� = 1. In dotted lines we

also plot the full solution for θ (Fig. 6) for comparison.

FIG. 10. (a) Sketch of the knife edge, two-mode rattleback. The
disk, bars, and masses define a single rigid body. The basic oscillation
(θ1, θ2) and rotation φ modes are indicated. The red part of the disk
qualitatively indicates the possible contact points depending of the
values of θ1 and θ2. (b) Upper view, indicating the definition of the
chiral angle α.

The contact point with the supporting surface is the instan-
taneous lowest point of the circle, and the constraint is that
this physical point must has zero velocity. This leads to the
following constraints:

ẋ · ûα = 0 (18a)

Dθαφ̇ + ẋ · v̂α = 0, (18b)

where we have defined θα = (θ2 cos α − θ1 sin α), and ûα ,
v̂α are horizontal unitary vectors along and perpendicular to
the plane of the circle. From here, the dynamical equations
follow:

ML2φ̈ = −M�ẋ · (θ̇1ûφ + θ̇2v̂φ )

+ λ2Dθα (19a)

M

(
�2θ̈1 + �

d

dt
ẋ · v̂φ

)
= −Mg�θ1 (19b)

M

(
(�2 + L2)θ̈2 − �

d

dt
ẋ · ûφ

)
= −Mg�θ2 (19c)

M

(
ẍ + �

d

dt

(
θ̇1v̂φ − θ̇2ûφ

)) = λ2v̂α + λ1ûα. (19d)

These equations, along with the constraints [Eqs. (18)], enable
us to derive the equations of motion in a simplified form by
neglecting small terms, as we did previously:

�2θ̈1 = −g�θ1 + D�θ̇αφ̇ cos α (20a)

(�2 + L2)θ̈2 = −g�θ2 + D�θ̇αφ̇ sin α (20b)

L2φ̈ = −D2θαθ̇αφ̇ + �Dθα (θ̈1 cos α + θ̈2 sin α).

(20c)
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FIG. 11. Numerical solutions of Eqs. (20) with parameters
�/L = 1/2, D/� = 1/2, α = π/4. Note the periodic reversal of φ̇,
driven alternatively by the activation of the θ1 and θ2 modes. The
reversal time tR is indicated.

These equations are the generalization of those of the pre-
vious section for the single-mode model. Note the similarity
in the structure. Variables θ1 and θ2 are oscillation modes that
get an effective friction term proportional to φ̇, which can be
positive or negative. In turn, the variable φ gets an acceleration
that depends quadratically on the θ variables. Note also that
there are terms that are proportional to the product θ1θ2 orig-
inating in the nonzero chiral angle α. A qualitatively similar
set of equations has been derived by Tokieda and collaborators
[5,6] using a heuristic approach for the boat-shaped rattleback.
We show in Fig. 11 a numerical solution of Eqs. (20) with an
initial condition having a finite value of φ̇, and infinitesimal
values of θ1 and/or θ2 (to avoid remaining at an unstable
fixed point). From this initial condition the model evolves by
periodically reverting the sign of φ̇ by coupling it alternatively
to the oscillation modes. In this way, compared to the single-
mode system, there is no longer a systematic tendency to
rotate in a single direction but an alternation between rotation
in both senses. In the long run, the average value of φ̇ is zero.
In addition, in the Supplemental Material [10] a video of our
realization of Fig. 2 is presented.

At this point, the following comment is important. We have
completely neglected energy dissipation in the problem. In
fact, the nonholonomic constraint is nondissipative, as the
velocity of the contact point is always zero. This is an ideal
situation that can only be approximately satisfied in a real sit-
uation. In the case in which some dissipation is included, the
rattleback comes to complete stop eventually. It is interesting
to note that most common plastic toy rattlebacks display only
one of the two possible inversions and a preferred direction of
rotation. This is related to the amount of energy dissipation
in them that prevents the amplitude increase of the second
oscillation mode. In some sense, these toys are dissipation-
induced single-mode rattlebacks.

A. Time between spin reversals

A natural question in the rattleback dynamics concerns
the time elapsed between spin reversals. A qualitative un-
derstanding can be gained from Eqs. (11) and (17). Note
from Eqs. (11) that the initial conditions θ (0) = θ̇ (0) = 0 and
φ̇(0) = φ̇0 constitute an unstable situation for which θ (t ) = 0

FIG. 12. Numerical results for the inversion time tR (see Fig. 11)
as a function of φ̇0 for D/� = 1/2 (a), and as a function of D/� for
φ̇0 = 0.1

√
g/� (b). In both cases �/L = 1/2. The straight lines depict

a power law with exponent −1, that is, in both cases the expected
result for Eq. (22).

and φ̇(t ) = φ̇0. In order for the spin reversal to take place, we
need an initial condition θ (0) �= 0. Now, from Eq. (17b) we
see that the time t0 for θ to increase from a small value θ0 � 1
to its maximum θmax is given by

t0 � 1

φ̇0

�

D
ln

(
θ0

θmax

)
. (21)

In fact, tR will be ∼t0, if we consider that θ0 in Eq. (21) is the
background value of the inactive mode, at the maximum am-
plitude of the active mode driving the inversion. Essentially,
this is to say that

tR � 1

φ̇0

�

D
(22)

up to a factor that depends weakly (logarithmically) on
the parameters of the model and initial conditions chosen.
Equation (22) is in agreement with Eq. (46’) in Garcia and
Hubbard’s treatment [7], as well as with Kondo and Nakan-
ishi’s paper [11]. We can use this expression to estimate the
reversal time tR in the two-mode case, as defined in Fig. 11.
We have done a few simulations to check this expression. In
Fig. 12 we show the numerically determined value of tR for
different parameters, showing an overall good agreement to
expression (22).

IV. CONCLUSIONS

We presented the chiral knife edge as a model for a
rattleback and showed a full treatment of the model using
qualitative arguments, and analytical as well as numerical
solution of the nonholonomic equations. We first concentrated
on a reduced, one-mode problem which contains the essence
of the physics of spin inversion. In short, a harmonic oscilla-
tion θ (t ) requires a restoring force f ∼ θ̈ (t ) ∼ −θ (t ). Now,
the crucial ingredient of the rattleback is the shift of the
contact point from its average positions by an amount ∼θ .
Therefore the restoring force generates a torque around ẑ of
value ∼θ2(t ) that drives spinning in a well-defined direction.

In the single-mode rattleback, chirality is established by
the sign of the displacement of the contact point in relation
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with the displacement of the oscillating coordinate. Chiral-
ity emerges as different points in configuration space, and
their image on a plane mirror cannot be brought to coin-
cide with themselves. This translates into spinning in one
preferred sense of rotation. If the initial condition corre-
sponds already to a spin rotation in the preferred direction,
the oscillating mode is not excited and spin inversion does
not take place. Our treatment vis a vis the analogy with
the Chaplygin sleigh shows that the two-mode knife edge
rattleback can be assimilated to two dynamically coupled
single modes with opposite chiralities. The combined dynam-
ics of the complete system gives rise, in the nondissipative
case treated in our paper, to an indefinite sequence of spin
inversions.

In addition, we presented an unexpected connection be-
tween the single-mode knife edge and the Chaplygin sleigh,
a prototypical nonholonomic system. We also presented nu-
merical results for the two-mode knife edge that illustrate spin
inversion in both directions. Finally, we presented a qualitative
treatment of the time between inversions that agrees with
previous results in the literature. We think the paper offers
insight on the dynamics of the rattleback, and we plan to
explore further consequences in a forthcoming work.
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