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Exposing hypersensitivity in quantum chaotic dynamics
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We study hypersensitivity to initial-state perturbation in the unitary dynamics of a multiqubit system. We
use the quantum state metric, introduced by Girolami and Anza [Phys. Rev. Lett. 126, 170502 (2021)], which
can be interpreted as a quantum Hamming distance. To provide a proof of principle, we take the multiqubit
implementation of the quantum kicked top, a paradigmatic system known to exhibit quantum chaotic behavior.
Our findings confirm that the observed hypersensitivity corresponds to commonly used signatures of quantum
chaos. Furthermore, we demonstrate that the proposed metric can detect quantum chaos in the same regime and
under analogous initial conditions as in the corresponding classical case.
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I. INTRODUCTION

Hypersensitivity to small perturbations is a defining char-
acteristic of classical chaos [1]. On the other hand, it is usually
assumed that there is no state sensitivity in the quantum realm
[2–4], although it can emerge in the correspondence limit
[5], in particular under decoherence [6]. To deal with this
problem different methods to detect chaotic behavior in the
quantum domain were proposed. Instead of state sensitivity,
one can observe sensitivity to Hamiltonian perturbation [4]
which can be measured, e.g., by the Loschmidt echo [7–9]. A
related concept to the Loschmidt echo is known as the out-of-
time-order correlator (OTOC) [10–13]. Also, commonly used
methods to detect quantum chaos consist of examining the
statistics of energy levels and eigenstates [14–17]. Finally, it is
also worth mentioning entanglement dynamics as yet another
powerful tool to investigate this problem [18–21].

In this paper we study the detection of quantum chaos using
the primordial concept of quickly growing distance between
the original and the perturbed state. We stress that not every
quantum state metric is suitable for this task. The problem of
finding a proper metric comes from three facts. First, quantum
states are not represented as points in phase space, but as
vectors in Hilbert space. Second, a scalar product (overlap)
between quantum states is invariant under unitary dynamics
and consequently, no sensitivity to perturbation can be de-
tected through any metric based on it. Finally, some quantum
state metrics can be naturally used as a measure of how well
two states can be distinguished. However, even perfectly dis-
tinguishable states, yielding the same maximal distance, can
differ in a physically meaningful way. These issues were al-
ready noticed in Ref. [22], where the physical distance, based
on the Wasserstein distance, was introduced. We note that
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the Wasserstein distance has already found applications as
a quantum state metric [23–26]. The physical distance of
Ref. [22] is basis dependent, i.e., it is a distance between
probability distributions on a metric space. The choice of the
measurement basis and the underlying metric on the set of
basis states depends on the physical property in which one is
interested. The authors of Ref. [22] used the physical distance
to derive quantum Lyapunov exponents and to evaluate their
classical limits. Moreover, they used it as a measure of quan-
tum chaos for three models: quantum kicked rotor, three-site
Bose-Hubbard model, and a spin chain.

Here, we use a basis-independent distance that is a slight
modification of the metric proposed by Girolami and Anza
[27] which can be called quantum Hamming distance (QHD).
We apply QHD to the multiqubit implementation of the quan-
tum kicked top. We choose it because QHD is extremely well
adjusted to systems living in Hilbert space possessing natural
tensor product structure. In addition, the kicked top is a very
well-known system [2,9,18–20,28–43] and our goal is not so
much to study its behavior as to prove that divergence of states
in Hilbert space, as measured by QHD, can provide a reliable
description of chaotic dynamics.

II. QUANTUM HAMMING DISTANCES

Let us emphasize that the need for no overlap-based metric
is not limited to the field of quantum chaos. An important
concern regarding the overlap metric is its inability to detect
differences between states that are physically significant [22].
Let us consider as an example three states of n qubits,

|ψ1〉 = |000 . . . 00〉, (1)

|ψ2〉 = |000 . . . 01〉, (2)

|ψ3〉 = |111 . . . 11〉. (3)
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Due to their mutual orthogonality, the overlap metric
yields dist(ψ1, ψ2) = dist(ψ1, ψ3) = dist(ψ2, ψ3). However,
the states |ψ1〉 and |ψ2〉 bare a much more physical resem-
blance than |ψ1〉 and |ψ3〉, or |ψ2〉 and |ψ3〉. In particular, an
initial microscopic perturbation

|ψ1〉 → |δ1〉 = √
1 − δ|ψ1〉 +

√
δ|ψ2〉 (4)

can unitarily evolve into a macroscopically different state

|δ2〉 = √
1 − δ|ψ1〉 +

√
δ|ψ3〉. (5)

The overlap metric fails to capture the aforementioned micro-
macro differences, which can be crucial in quantum chaotic
systems. Put simply, the overlap metric quantifies how well
two quantum states can be distinguished, and in the case of
states (1)–(3), they are perfectly distinguishable. However,
many important properties of these states extend far beyond
mere distinguishability.

Let us consider quantum state metrics that can be inter-
preted as QHDs. The fundamental idea behind QHD (given
by Girolami and Anza [27]) involves a partition, denoted
as P, which divides the system into parts labeled as a =
1, 2, . . . , amax (1 � amax � n). Each part contains ka ele-
ments, hence

∑amax
a=1 ka = n. Let ρ and σ represent two states

of an n-partite system. The QHD between ρ and σ is defined
[27] as

D(ρ, σ ) = max
P

δP(ρ, σ ), (6)

δP(ρ, σ ) =
∑

a

1

ka
d (ρa, σa), (7)

where ρa and σa are the states of subsystems with respect to a
given partition P. In the above d (.,.) is a metric which we will
discuss in a moment. The definition of the QHD, specifically
Eq. (7), relies on the additivity. In particular, the additivity
means that D(ρ ⊗ ρ̃, σ ⊗ σ̃ ) = D(ρ, σ ) + D(ρ̃, σ̃ ). In addi-
tion, note that δP(ρ, σ ) is not a metric. This is because for
some partition P two different states ρ �= σ may give rise to
ρa = σa for all a, which implies δP(ρ, σ ) = 0. But the metric
should be equal to zero if and only if ρ = σ . This is the reason
why maximization is used in the definition (6).

In the original version, Girolami and Anza [27] use a Bures
length (also known as a Bures angle) [44]

d (ρ, σ ) = cos−1(Tr
√

σ 1/2ρ σ 1/2). (8)

However, in the subsequent sections of this paper, we employ
the distance metric based on trace distance [44,45]

d (ρ, σ ) = 1
2 Tr|ρ − σ |. (9)

The choice of using the trace distance is motivated by its
numerical tractability, as it is generally easier to evaluate com-
putationally (especially when two states are almost identical)
compared to the Bures length. The additivity property of the
QHD based on trace distance is proven in Appendix A. With
this choice, one obtains for our exemplary states (1)–(3)

D(ψ1, ψ2) = 1, (10)

D(ψ1, ψ3) = n, (11)

and

D(ψ2, ψ3) = n − 1. (12)

This is why we called this metric QHD. At this point it
is worth mentioning that the classical Hamming distance
can be also used to study properties of complex quantum
systems [46].

Additionally, to streamline our analysis, we note that for
any partition P, QHD is lower bounded by δP(ρ, σ ),

δP(ρ, σ ) � D(ρ, σ ). (13)

Therefore, if δP(ρ, σ ) is hypersensitive to perturbation, then
so is D(ρ, σ ).

Recently, one of us demonstrated in Ref. [47] that the
QHD can detect state sensitivity in specific quantum dynamics
involving three-body interactions. However, to establish the
effectiveness of such metrics in capturing quantum chaotic
features, it is crucial to demonstrate their ability to detect state
sensitivity in more realistic systems, particularly those already
known to exhibit quantum chaos based on other criteria.

In this study, we investigate the dynamics of a quantum
kicked top system consisting of n qubits [18,36], with an
interaction energy parametrized as α. We examine how a small
initial perturbation evolves over time in this system. It is well
established that as the value of α increases, the system under-
goes a quantum order-to-chaos transition [2,39]. To quantify
the effect of perturbations, we use QHD. Our analysis reveals
that QHD effectively detects hypersensitivity to perturbations
for α > 3. This result establishes a meaningful connection
between classical and quantum chaotic behaviors, shedding
light on the intuitive links between the two.

III. KICKED TOP

The classical kicked top model describes the dynamics
of an angular momentum vector J, which is governed by
the Hamiltonian H (t ) = H0 + H1

∑+∞
n=−∞ T δ(t − nT ). Here,

H0 = βJy represents the natural dynamics, and H1 = α
2J J2

z
represents the “kicks” that occur periodically with a period
of T . It is well established that the model undergoes a tran-
sition from order to chaos as the parameter α increases. This
transition generally takes place in the regime 1 < α < 6.

Here, we examine the quantum version of the kicked top
model implemented on spin s = n/2, which is equivalent to a
system of n interacting qubits. The dynamics is discrete, and a
single step of the evolution can be described by the following
equation,

|ψt+1〉 = U1U2|ψt 〉, (14)

where

U1 = ei α
4n

∑n
i, j=1 σ (i)

z σ
( j)
z , (15)

and

U2 = ei β

2

∑n
i=1 σ (i)

y . (16)

In the above equation, σ
(i)
j represents the Pauli- j matrix

(where j = x, y, z) acting on the ith qubit. In physical terms,
this model describes a system of spin-1/2 particles in a mag-
netic field with a magnitude proportional to β. The spins
naturally precess, but their motion is periodically interrupted
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by pairwise interactions. The energy of interaction is pro-
portional to α. To simplify the equations of motion, it is
common to choose β = π/2. However, even with this choice,
the system can exhibit intricate behaviors. Notably, it has
been demonstrated in Ref. [28] that a quantum analog of
the order-to-chaos transition can be observed within the same
range of α.

IV. METHODS

We conduct a numerical investigation into the evolution
of the aforementioned system for β = π/2, exploring vari-
ous choices of α. In each simulation run, we initialize the
system in the symmetric pure product state ρ0 = |ψ0〉〈ψ0|,
where |ψ0〉 = |χ〉⊗n, with |χ〉 = cos θ |0〉 + eiφ sin θ |1〉. The
parameters θ and φ are randomly chosen. These symmetric
qubit states, known as coherent spin states [48], are considered
the most classical spin states as they minimize the uncertainty
of the spin-n/2 operators Sj = 1

2

∑n
i=1 σ

(i)
j . The coherent

spin states are eigenstates of the spin operator Sk|ψ0〉 =
n
2 |ψ0〉, where k = (cos φ sin θ, sin φ sin θ, cos θ ) represents
the axis onto which the spin-n/2 is projected, Sk = k · S, and
S = (Sx, Sy, Sz ).

Furthermore, we examine the evolution of the perturbed
(pure) state ρ ′

0 = |ψ ′
0〉〈ψ ′

0|, where |ψ ′
0〉 = |χ ′〉⊗n. |χ ′〉 is given

by |χ ′〉 = Rϕ|χ〉, where Rϕ = ei ϕ

2 σm denotes a single-qubit
rotation about a randomly chosen m axis, σm = m · s and
s = (σx, σy, σz ). The rotation angle is denoted by ϕ (ϕ 
 1).
Finally, we evaluate the distance D(ρt , ρ

′
t ) and analyze its

dependence on the parameters t , ϕ, and α.
It is important to note that both the initial state ρ0 and

the perturbed state ρ ′
0 are symmetric, meaning they remain

unchanged under the permutation of spins. This symmetry
is preserved throughout the evolution due to the symmetric
nature of the evolution operators U1 and U2. Consequently,
the states ρt and ρ ′

t also maintain their symmetry. As a result,
the dynamics of the n-qubit system occur within a symmetric
subspace of dimension n + 1. This characteristic significantly
simplifies the complexity of numerical simulations and facili-
tates the analysis of the obtained data.

We found that in our numerical simulations, the optimal
partition is a partition of the system into single qubits, i.e.,
amax = n, ka = 1 for each a. Because the system is symmetric,
we get

D(ρt , ρ
′
t ) = n

2
Tr|ρ̃t − ρ̃ ′

t |, (17)

where ρ̃t is the state of a single-qubit subsystem of ρt and
ρ̃ ′

t is the state of a single-qubit subsystem of ρ ′
t . The general

method of how to evaluate states of subsystems is given in
Appendix B.

Finally, the value of D(ρt , ρ
′
t ) differs from one simulation

to the other because it depends on the initial state that is
chosen randomly. That is why we introduce average distance

Dt = 〈D(ρt , ρ
′
t )〉ρ0 , (18)

in which we average over 100 numerical runs. Therefore, Dt

reflects a property of the system, not a property of a particular

FIG. 1. Left: The plot of Dt for n = 1000 and ϕ = 0.01. The
points were joined for better visibility. The red (solid) plot corre-
sponds to α = 6 and the blue (dotted) one to α = 1. Right: The
corresponding growth of the single-qubit entropy.

state. Note also that for ϕ 
 1 the initial distance

D(ρ0, ρ
′
0) = n ϕ

2
(19)

is independent of the initial state (see Appendix C).

V. RESULTS

Our most important finding is that Dt can be used as a
witness of quantum chaos. In particular, it grows rapidly for
the values of α corresponding to the chaotic regime and slowly
for the values corresponding to the regular regime. An exam-
ple of such behavior is presented in Fig. 1 (left), where we
consider the system of n = 1000 qubits and the perturbation
angle ϕ = 0.01. We compare two cases, α = 6 (red plot) and
α = 1 (blue plot).

Interestingly, in the chaotic regime Dt grows fast and
then it decreases fast, resulting in a peak. The reason for
this behavior comes from the fact that Dt is an averaged
comparison between single-qubit substates ρ̃t and ρ̃ ′

t . They
initially diverge (Dt grows), but due to the entangling nature
of the kicked top dynamics they get more entangled with
the rest of the system, therefore they become more mixed.
The more mixed they become, the more similar they get (Dt

decreases).
The amount of entanglement between the qubit and the

rest of the system can be measured by linear entropy St =
1 − Tr(ρ̃2

t ). An example of how St changes in time is repre-
sented in Fig. 1 (right). It is clear that the peak in Dt matches
the growth of St . Note that the fast growth of entanglement
within the multipartite system is usually considered to be a
signature of quantum chaos [18–20,32,36,37,40,49,50] (for a
detailed discussion, see Ref. [41]). The entanglement time is
analogous to the Ehrenfest time tE , the time after which the
correspondence principle is no longer valid. Intuitively, this
happens when the uncertainties are of the order of the size of
the system, which is exactly what is manifested by entangled
states.

Because of the above, the position of the peak of Dt can
be considered as the Ehrenfest time of the system. In Fig. 2
we show how Dt depends on the number of qubits n. It is ex-
pected [20,51,52] that Ehrenfest time scales as tE ∼ h−1/2

eff for
regular and as tE ∼ ln(h−1

eff ) for chaotic dynamics, where heff

is the effective Planck constant. For systems confined to the
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FIG. 2. The plots of Dt for ϕ = 0.01 and different values of n.
It is visible that the Ehrenfest time scales as ln n for α = 6 and as√

n for α = 1.

symmetric subspace the effective Planck constant is [20,53]
inversely proportional to the dimension of this subspace. Thus
we expect tE ∼ n1/2 for regular and as tE ∼ ln(n) for chaotic
dynamics. The position of the peaks in Fig. 2 roughly fulfills
this expectation. This confirms that our quantum chaos wit-
ness based on Dt is in accordance with the usually used ones.

Another interesting problem is to investigate if our
quantum chaos witness works in the range for which
both chaotic and regular behaviors are known to coex-
ist (1 < α < 6). In this case, the chaotic properties of
the system depend on the initial state and we can no
longer use the averaged witness Dt . Instead, we return
to D(ρt , ρ

′
t ). Moreover, we relate the observed quantum

behavior to the behavior of classical trajectories with analo-
gous initial conditions. The method for evaluating classical
trajectories is given in Appendix D.

In Fig. 3 we show two examples for α = 2.3. In the first one
(blue, dotted) the initial conditions θ and φ correspond to a
classical regular trajectory (see Fig. 3, right). It is clear that in
this case D(ρt , ρ

′
t ) does not change much (see Fig. 3, left). The

second example (red, solid) corresponds to a classical chaotic
trajectory and it is well visible that in this case D(ρt , ρ

′
t )

grows. This observation confirms that our approach could be
also used to witness quantum chaos in the transition region.

FIG. 3. Left: The plot of D(ρt , ρ
′
t ) for n = 500, ϕ = 0.01, and

α = 2.3. This value of α corresponds to both chaotic and regular
behaviors. The evolution depends on the choice of initial conditions
determined by θ and φ [red (solid) and blue (dotted)]. Right: The cor-
responding classical trajectories for the analogous initial conditions.
Stars mark starting points.

VI. CONCLUSIONS

We demonstrated that in the case of quantum systems one
can detect chaos using a quantum Hamming distance [27]
(QHD) in Hilbert space. We analyzed the quantum kicked top
dynamics of n qubits and found that QHD between two quan-
tum states can rapidly grow. This finding confirms the results
of Ref. [22], namely that just as classical chaotic dynamics,
quantum chaotic dynamics is hypersensitive to perturbations.

Our method of detecting quantum chaos is in accordance
with previously developed methods. For example, we found
that the growth of QHD matches the growth of entanglement
[41]. Moreover, we argued that the time after which QHD
reaches its maximum corresponds to the Ehrenfest time tE
[20,51,52], which scales as n1/2 and log(n) in the regular and
chaotic regimes, respectively. Finally, we showed that QHD
can be used to distinguish between regular and chaotic dy-
namics in situations where the system exhibits both behaviors
for different initial conditions.

In this paper we initiate a research program of studying
quantum chaos with the help of QHD. The next step is to
investigate other discrete-time systems, continuous-time sys-
tems, and continuous-variable systems.
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APPENDIX A: ADDITIVITY PROPERTY OF QHD BASED
ON TRACE DISTANCE

Here, we prove the additivity of the metric

D(ρ, σ ) = max
P

δP(ρ, σ ), (A1)

where

δP(ρ, σ ) =
∑

a

1

ka
d (ρa, σa) (A2)

and

d (ρ, σ ) = 1
2 Tr|ρ − σ |. (A3)

The additivity property implies

D(ρA ⊗ ρB, σA ⊗ σB) = D(ρA, σA) + D(ρB, σB). (A4)

Assume partition P into states ρ
j
AB and σ

j
AB for which we

have δP(ρAB, σAB). We will show that we can obtain at least
as large δP′ (ρAB, σAB) for partition P′, which is obtained by
splitting each ρ

j
AB (σ j

AB) into ρ
j
A and ρ

j
B (σ j

A and σ
j

B). We use
the following property of trace distance (see Ref. [55]):

1
2 Tr|ρA ⊗ ρB − σA ⊗ σB|

� 1
2 Tr|ρA − σA| + 1

2 Tr|ρB − σB|. (A5)
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The above implies

1

k j
A + k j

B

d
(
ρ

j
AB, σ

j
AB

)

� 1

k j
A

d
(
ρ

j
A, σ

j
A

) + 1

k j
B

d
(
ρ

j
B, σ

j
B

)
, (A6)

where ρ
j
A and σ

j
A consist of k j

A elementary subsystems and ρ
j
B

and σ
j

B consist of k j
B elementary subsystems. Therefore

∑
j

1

k j
A + k j

B

d
(
ρ

j
AB, σ

j
AB

)

�
∑

j

1

k j
A

d
(
ρ

j
A, σ

j
A

) +
∑

j

1

k j
B

d
(
ρ

j
B, σ

j
B

)
, (A7)

which implies that maximum is obtained by splitting each ρ
j
AB

(σ j
AB) into ρ

j
A and ρ

j
B (σ j

A and σ
j

B).

APPENDIX B: CALCULATION OF m-QUBIT
DENSITY MATRIX

As mentioned in the main text, the evolution operators
are symmetric. Thus, evolution will be constrained to the n+
1-dimensional effective Hilbert space, provided that the sys-
tem will be initialized in a symmetric state. This effective
Hilbert space is spanned by the Dicke states

∣∣dn
k

〉 =
(

n

k

)−1/2

|n, k〉 + permutations. (B1)

In the above we use particular states of n qubits with k ones
and n − k zeros,

|n, k〉 = |1 . . . 10 . . . 0〉 = |1〉⊗k ⊗ |0〉⊗n−k . (B2)

Now, let us assume that the n-qubit system is in the arbitrary
symmetric state

|
〉 =
n∑

k=0

ak

∣∣dn
k

〉
, (B3)

ρ = |
〉〈
| =
n∑

k,k′=0

aka∗
k′
∣∣dn

k

〉〈
dn

k′
∣∣. (B4)

We need to consider the subsets of m qubits achieved via trac-
ing over n − m qubits. The corresponding m-qubit subsystem
state (m � n) is given by

ρ (m) =
n∑

l=0

〈n − m, l|ρ|n − m, l〉 + permutations. (B5)

It follows that (for l � k)

〈n − m, l|dn
k 〉 =

(
n

k

)−1/2

|1〉⊗(k−l ) ⊗ |0〉⊗m−(k−l )

+ permutations. (B6)

For l > k one has 〈n − m, l|dn
k 〉 = 0. The same result is ob-

tained for any of
(n−m

l

)
permutations of |n − m, l〉. The above

equation (for l � k) can be also written as

〈n − m, l|dn
k 〉 =

(
n

k

)−1/2( m

k − l

)1/2∣∣dm
k−l

〉
. (B7)

Therefore

ρ (m) =
n∑

k,k′=0

aka∗
k′

(
n

k

)−1/2(n

k′

)−1/2

×
∑

l

(
n − m

l

)(
m

k − l

)1/2( m

k′ − l

)1/2

|dm
k−l〉

〈
dm

k′−l

∣∣.
(B8)

Finally, let us define p = k − l and q = k′ − l . Therefore, the
state of m qubits is given by

ρ (m) =
n−m∑
l=0

m∑
p,q=0

ap+l a
∗
q+l

(
n − m

l

)(
n

p + l

)−1/2

×
(

n

q + l

)−1/2(m

p

)1/2(m

q

)1/2∣∣dm
p

〉〈
dm

q

∣∣. (B9)

For m = 1 the above formula simplifies to

ρ (1) = ρ̃ =
n−1∑
l=0

1∑
p,q=0

ap+l a
∗
q+l Mpq(n, l )|p〉〈q|,

where

M00(n, l ) = 1

n
(n − l ),

M01(n, l ) = M10(n, l ) = 1

n

√
(n − l )(l + 1),

and

M11(n, l ) = 1

n
(l + 1).

APPENDIX C: CALCULATION OF INITIAL DISTANCE

In this Appendix, we prove Eqs. (19) in main text. Without
losing generality, let the initial state of a single qubit be

ρ̃ =
(

1 0
0 0

)
. (C1)

The perturbed state is given by

ρ̃ ′ = Rϕ ρ̃ R+
ϕ , (C2)

where Rϕ = ei ϕ

2 m·s denotes a single-qubit rotation about the m
axis, with unit vector m = (mx, my, 0), and s = (σx, σy, σz ).
The rotation angle ϕ is assumed to be small (ϕ 
 1). The
linear in ϕ approximation gives

ρ̃ ′ = ρ̃ + i
ϕ

2
[m · s, ρ̃]. (C3)

Note that

[m · s, ρ̃] = im′ · s, (C4)

where m′ = (my,−mx, 0). Now we have from Eq. (9) in the
main text

D(ρ, ρ ′) = n

2
Tr|ρ̃ − ρ̃ ′| = nϕ

4
Tr|m′ · s| = nϕ

2
. (C5)
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APPENDIX D: CLASSICAL KICKED TOP

The dynamics of the classical kicked top is given by the following equation,⎛
⎝xt+1

yt+1

zt+1

⎞
⎠ =

⎛
⎝ 0 sin(αxt ) cos(αxt )

0 cos(αxt ) − sin(αxt )
−1 0 0

⎞
⎠

⎛
⎝xt

yt

zt

⎞
⎠. (D1)

The above equation was used to produce the right part of Fig. 3 in the main text. In this figure, we use coordinates (φ, z) where
φ = arg(x + iy).
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