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Active stimuli-responsive materials, intrinsically powered by chemical reactions, have immense capabilities
that can be harnessed for designing synthetic systems for a variety of biomimetic applications. It goes without
saying that the key aspect involved in the designing of such systems is to accurately estimate the amount of
energy and power available for transduction through various mechanisms. Belousov-Zhabotinsky (BZ) reactions
are dynamical systems, which exhibit self-sustained nonlinear chemical oscillations, as their catalyst undergoes
periodic redox cycles in the presence of reagents. The unique feature of BZ reaction based active systems is that
they can continuously perform mechanical work by transducing energy from sustained chemical oscillations. The
objective of our work is to use bifurcation analyses to identify oscillatory regimes and quantify energy-power
characteristics of the BZ reaction based on nanocatalyst activity and BZ reaction formulations. Our approach
involves not only the computation of higher order Lyapunov and frequency coefficients but also Hamiltonian
functions, through normal form reduction of the kinetic model of the BZ reaction. Ultimately, using these
calculations, we determine amplitude, frequency, and energy-power densities, as a function of the nanocatalysts’
activity and BZ formulations. As normal form representations are applicable to any dynamical system, we
believe that our framework can be extended to other self-sustained active systems, including systems based
on stimuli-responsive materials.
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I. INTRODUCTION

Synthetic soft materials [1–5] that can harness energy via
chemomechanical transduction [1,2,6–13] have provided sig-
nificant impetus in the field of active matter design. These
active soft materials have been used for designing a variety
of artificial multifunctional systems that have the ability to
mimic biological functionalities [14–16]. For instance, active
polymer gels have been known to produce mechanical defor-
mations based on the chemical stimuli that they are subjected
to [17–19]. Likewise, active droplets, fueled by chemical re-
actions, generate asymmetric Marangoni flows and exhibit
directed spontaneous locomotion [20–22]. It goes without
saying that the mechanical work produced by these systems
is a direct consequence of their inherent capability to effec-
tively utilize the energy emanating from chemical reactions.
In this context, Belousov-Zhabotinsky (BZ) reaction [23–28]
based active systems are unique as they transduce energy,
from sustained chemical oscillations, to produce continuous
mechanical work [6–10,21,22]. The objective of our work is
to establish energy and power characteristics of the nanocat-
alyzed BZ reaction, of different formulations, using nonlinear
bifurcation analyses. As BZ reaction based active systems are
essentially nonlinear dynamical systems that operate far from
equilibrium, the approach presented here can be harnessed to
probe innate energy and power characteristics of other active
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systems as well. Typical applications include autonomous
nano- and micromotors [29–31], artificial microswimmers for
delivering nanoscopic cargos [32,33], drug delivery [33,34],
and chemical sensors [35,36], to name a few.

The BZ reaction is a nonlinear chemical oscillator wherein
the catalyst undergoes sustained redox cycles in the presence
of reagents [23–28]. More often than not, these chemical
oscillations manifest as the periodic color change of the BZ
solution. Traditionally, solution-based metal ions have been
used to catalyze the BZ reaction [37–39], however, recently it
has been demonstrated that the use of nanocatalysts [40–42]
enhances the dynamics of the BZ reaction in a very significant
manner. In particular, the use of nanoparticle (NP) decorated
graphene-based nanosheets as a catalyst [40,41] has resulted
in enhanced dynamics of chemical oscillations in the BZ reac-
tion system. Similar observations have been made when bare
ceria nanosheets [42] are used to catalyze the BZ reaction.
In essence, the use of high performance nanocatalysts has
opened up new avenues in the design of BZ reaction based
active systems. For instance, through modeling, simulation,
and experimental investigations, it has been demonstrated that
nanocatalyzed BZ droplets exhibit 1.75 times higher veloc-
ities compared to their traditional counterparts [21]. Similar
arguments can be made regarding BZ gels [6–8,10] that ex-
hibit great potential to be used as mass transport devices,
artificial pacemakers, cilia, sensors, actuators, etc. [6,8,10].
Thus, apart from dynamical characteristics such as amplitude
and frequency, it becomes imperative to determine the amount
of energy from BZ reactions that can be harnessed through
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various mechanisms including chemomechanical transduc-
tion. The quantification of energy and power attributes of
the BZ reaction, therefore, not only facilitates the design of
self-sustained dynamical systems but also plays a key role
in formulating strategies for finer control and regulation of
their response. Our work focuses on utilizing bifurcation anal-
yses to describe the dynamics of nanocatalyzed BZ reactions,
quantify energy of BZ oscillations, and identify conditions
under which this energy can be utilized to power other exter-
nal systems. Furthermore, we also explore energy and power
characteristics for various nanocatalysts and changes in the
BZ recipe.

Mathematically, it has been known that the chemical os-
cillations in the BZ reaction are realized when the steady
state loses its stability through Hopf bifurcation (HB) [43].
As a matter of fact, many different types of bifurcations
[23,44–46] have been identified in the BZ reaction system that
use traditional solution-based catalysts. In most of the cases,
the Oregonator model [47,48], which is the mathematical
representation of the Field-Koros-Noyes (FKN) mechanism
[49], has been used for bifurcation analyses, however, the
usage of other models [45] is not uncommon. Recently,
the nanocatalysts’ activity has been incorporated into the
Oregonator model [42,50] by identifying key steps in the
FKN mechanism, and the oscillatory dynamics of various
nanocatalyzed BZ reactions have been determined [50]. On
the energy front, it has already been established that the sus-
tained chemical oscillations in the BZ reaction take place at
the expense of continuous decrease in the Gibbs free energy
[51]. To the best of our knowledge, however, the determina-
tion of energy and power attributes of the BZ reaction has
largely been missing, although the Gibbs energy of other
chemically oscillating systems has been determined both ex-
perimentally [52] and numerically [53]. In our approach,
we calculate energy and power densities using Hamiltonian
functions for different nanocatalysts and BZ formulations,
wherein the Oregonator model has been employed to account
for changes in the BZ recipe and nanocatalyst activity. As
the energy of chemical oscillations is primarily the Gibbs
free energy of the system calculated from the redox potentials
[52], the use of Hamiltonian functions enables us to calculate
the total chemical energy stored in BZ oscillations directly
from its amplitude-frequency characteristics. These dynami-
cal attributes of the BZ reaction, on the other hand, can be
determined experimentally from the redox potentials [52], us-
ing the chronopotentiometry (CP) [42] and image processing
(IMP) techniques [40–42].

It is important to note that the energy and power density
calculations from chemical oscillations are also dependent
upon whether the BZ reaction system is conservative or non-
conservative. When the BZ reaction operates at the limit cycle
(LC) it is conservative [54], as all the inherent chemical en-
ergy is utilized for oscillations and no energy is available for
powering external systems. The BZ reaction, however, be-
comes nonconservative [54] when it operates between steady
state and the LC and thus can be harnessed to continu-
ously transduce chemical energy into mechanical work. For
instance, polymer hydrogels internally powered by the BZ re-
action are known to produce sustained mechanical oscillations
by chemomechanical transduction. Thus, by comparing the

energies of chemical oscillations for BZ reactions with me-
chanical oscillations for BZ-powered hydrogels, the efficiency
of chemomechanical transduction can be established. Here,
however, we have focused on developing the methodology to
facilitate these calculations and the computation of energy-
power densities for other systems powered by the BZ reaction
are beyond the scope of this paper. As any dynamical system
can be recast into its normal form, the distinct advantage of
using our methodology for performing energy-power calcula-
tions is that it can be extended to other dynamical systems,
active or inactive.

The rest of the paper is organized into different sections
and subsections. We start with the Methodology (Sec. II) with
the description of the Oregonator model and introduce di-
mensionless parameters and variables required for bifurcation
analyses (Sec. II A). Subsequently, we compute the steady
states, their stability, and higher order bifurcations using the
normal form of the model equations (Sec. II B). Ultimately,
we develop both conservative and nonconservative Hamilto-
nian functions (Sec. II C) for the calculation of energy and
power densities. In Results and Discussions (Sec. III), we re-
port our major outcomes and discuss their implications in the
context of experiments. Finally, we summarize our findings in
Conclusions (Sec. IV).

II. METHODOLOGY

A. Kinetics of BZ reaction

The three-variable Oregonator model given below is based
on the FKN mechanism and represents the kinetics of the
BZ reaction assuming pool chemical approximation [42,43],
catalyzed by traditional solution-based metal ions [55] and
nanocatalysts including bare nanosheets [42] (CeNS) and
NP decorated graphene-based nanocomposites (0D-2D hybrid
nanocatalysts) [40,41].

dX

dτ
= k1H2AY − k2HXY + k3HAX − 2k4X 2, (1)

dY

dτ
= −k1H2AY − k2HXY + 1

2
f k5BZ, (2)

dZ

dτ
= 2k3HAX − k5BZ. (3)

Here, τ is the time, ki’s are the rate constants, A =
[BrO−

3 ], B = [all oxidizable organic species], H = [H+],
X = [HBrO2], Y = [Br−], Z = [oxidized BZ catalyst] and
f is the stoichiometric coefficient [43]. To transform the
dimensional form of the Oregonator model that incorporates
the changes in the BZ recipe and activity of the nanocatalyst,
we introduce two additional parameters, P = H

H0

A
A0

= ha and

δ = k5
k50

B
B0

= γ b where (· · · )0 represent the values for the
concentration of reagents and solution-based catalysts in the
BZ reaction [40–42]; note that γ = k5/k50 is the activity of
the nanocatalyst [42,50].

du

dt
= −u2 + Pu − f vδ

(
u − q̃P

u + q̃P

)
, (4)

dv

dt
= ε0(Pu − δv), (5)
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TABLE I. Rate constants, catalytic activity (γ ), and reference
quantities for the BZ reaction system.

Rate constants [43] Reference quantities [40,41]

k1 = 2 M−3 s−1 q̃ = 4 × 10−3

k2 = 2 × 108 M−2 s−1 ε0 = 8.8290 × 10−4

k3 = 2 × 103M−2 s−1 H0 = 0.9M
k4 = 4 × 108M−1 s−1 A0 = 0.23M
k50 = 1.10 s−1 B0 = 0.31M

Activity (γ ) of BZ catalysts
Identifier [40–42] Values [40–42]

CAN (solution-based) 1.00
Ce-GO (0D-2D hybrid) 1.57
Ce-rGO (0D-2D hybrid) 1.66
Ce-Graphene (0D-2D hybrid) 2.75
Ru-GO (0D-2D hybrid) 1.81
Ru-rGO (0D-2D hybrid) 3.63
Ru-Graphene (0D-2D hybrid) 11.81
CeNS (bare nanosheets) 4.90

where u = X/X0, v = Z/Z0, X0 = k3H0A0
2k4

, Z0 = (k3H0A0 )2

k4k50B0
, ε0 =

k50B0
k3H0A0

, q̃ = 2k1k4
k2k3

, and t = (k3H0A0)τ . Note that the above
equations describe the BZ reaction with solution-based cat-
alyst in the limiting case. The values of the parameters used
in our analyses are given in Table I.

It is imperative to note that even though the nanocatalysts
are present as a colloidal dispersion in the BZ reaction media
[21,40–42], the reaction mixture is well mixed. This ensures
the homogeneity of the chemical milieu and, therefore, allows
the BZ nanocatalysts to be available for the reaction to occur
without any diffusional effects [21,40–42]. Thus, the activity
of nanocatalysts (γ ) depends upon the reaction rate of the
catalytic step of the BZ reaction mechanism [42,50], and is
defined as the ratio of the rates of reaction with nanocatalyst
(k5) to traditional solution-based catalyst (k50) [42,50].

The steady state concentrations (uss, vss) of the variables
u and v are calculated by setting the left-hand side (LHS) of
Eqs. (4) and (5) to zero, which leads to

uss = P

2

[
1 − f − q̃ +

√
f 2 + (1 + q̃)2 − 2 f (1 − 3q̃)

]
, (6)

vss = ussP

δ
. (7)

From the above equations, we contemplate that uss is de-
pendent only on P, whereas vss depends upon both P and δ.

B. Stability and higher order bifurcations

The stability of the BZ reaction system is determined by
substituting u → u − uss and v → v − vss in Eqs. (4) and
(5) and writing the Taylor series expansion, up to fifth order
derivatives, around the steady states as [50,56]

[
.
u

.
v]

T = .
x = J0x + 1

2 J1(x, x) + 1
6 J2(x, x, x)

+ 1
24 J3(x, x, x, x) + 1

120 J4(x, x, x, x, x)

+ O(||x||)6, (8)

where J0, the 2 × 2 Jacobian matrix, consisting of first order
derivatives of the right-hand side (RHS) of Eqs. (4) and (5), is
given by

J0 =
[

P − 2uss − 2 f Pδq̃ vss

(uss+Pq̃)2 f δ
(Pq̃−uss

Pq̃+uss

)
Pε0 −δε0

]
. (9)

The higher order derivatives in Eq. (8), represented by Ji

(i = 1 · · · 4), are given in Appendix A. The two characteristic
roots (eigenvalues) of J0 are

2λ1,2 = Tr[J0] ±
√

Tr[J0]2 − 4Det[J0], (10)

wherein Tr[J0] and Det[J0] are the trace and determinant of J0,
respectively. Equation (10) can be recast into a more conve-
nient form, λ1,2(μ) = μ ± ιω0(μ), by defining μ = Tr[J0]/2
and ω0(μ) =

√
Det[J0] − μ2. The chemical oscillations in the

BZ reaction system, therefore, depend upon the sign of μ pro-
vided Det[J0] > μ2. Evidently, when μ < 0, the eigenvalues
are complex conjugate with negative real parts and, hence,
the system reaches steady states with decreasing amplitude
of oscillations. On the other hand, when μ > 0, oscillations
with increasing amplitude are observed in the system and the
steady states are unstable. At an intermediate value of μ = 0,
the eigenvalues are purely imaginary and the system tran-
sitions between oscillatory and nonoscillatory regimes and,
therefore, becomes marginally stable; this transition is char-
acterized by the occurrence of Hopf bifurcation (HB) [43].
Finally, under the condition Det[J0] � μ2, no oscillations in
the system are observed as the eigenvalues are real. Thus,
for the location of HB, we set Tr[J0] = 0 and Det[J0] > 0 in
Eq. (10) to get

ηHB = δHB

PHB

= 1

ε0

[
3 f 2 + f (8q̃ − 5S) − (1 + q̃)(−1 − q̃ + S)

4 f

]
,

(11)

where S =
√

f 2 + (1 + q̃)2−2 f (1−3q̃). We treat ηHB as our
bifurcation parameter to capture the effect of changes in the
BZ recipe and the nanocatalytic activity on the BZ reaction
dynamics. It is worth mentioning here that although the RHS
of Eq. (11) is a function of f , ε0, and q̃, we treat q̃ and ε0

as constants (since they correspond to the values obtained
from the standard recipe of the BZ reaction under isothermal
conditions) and consider variation of f alone in our analysis.

To identify higher order bifurcations, we transform Eqs. (4)
and (5) from (u, v) space into normal (or standard) form,
written in terms of polar coordinates (r, θ ) as [50,57]

.
r = μr + L1r3 + L2r5 + O(|r|7), (12)

.

θ = ω0 + b1r2 + b2r4 + O(|r|6), (13)

L1 = 1
2�[〈p,C(q̄, q, q) + B(h20, q̄) + 2B(h11, q)〉], (14)

b1 = 1
2�[〈p,C(q̄, q, q) + B(h20, q̄) + 2B(h11, q)〉], (15)

L2 = 1
12�[p, E (q̄, q̄, q, q, q) + D(q, q, q, h20)

+ 6D(q̄, h11, q, q) + 3D(q̄, q̄, h20, q) + 3C(h12, q, q)
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+ 6C(h11, h11, q) + 3C(h02, h20, q)

+ 6C(q̄, h21, q) + 6C(q̄, h11, h20) + C(q̄, q̄, h30)

+ 3B(h22, q) + 3B(h12, h20) + 6B(h11, h21)

+ B(h02, h30) + 2B(q̄, h21)], (16)

b2 = 1
12�[〈p, E (q̄, q̄, q, q, q) + D(q, q, q, h20)

+ 6D(q̄, h11, q, q) + 3D(q̄, q̄, h20, q) + 3C(h12, q, q)

+ 6C(h11, h11, q) + 3C(h02, h20, q) + 6C(q̄, h21, q)

+ 6C(q̄, h11, h20) + C(q̄, q̄, h30) + 3B(h22, q)

+ 3B(h12, h20) + 6B(h11, h21) + B(h02, h30)

+ 2B(q̄, h21)〉], (17)

where Li and bi are the respective ith Lyapunov and frequency
coefficients, the expressions of which have been derived else-
where [50].

In the above equations, the complex eigenvectors q (of
J0) and p (of JT

0 ) are used to calculate the inner product
represented by 〈· · · 〉. It is worth mentioning here that by
considering the first terms on the RHS of Eqs. (12) and (13),
i.e., the linear stability of the system, one can only identify the
occurrence of HB based on the real (μ) and imaginary (ω0)
parts of the eigenvalues [see Eq. (10)]. Moreover, it is evident
from Eq. (13) that the frequency of oscillations is independent
of the amplitude in the linear limit. The inclusion of higher
order terms in Eqs. (12) and (13), however, reveals a very rich
nonlinear behavior of the BZ reaction system. For instance,
when only the first two terms of Eq. (12) are considered, then
the sign of L1 determines whether HB is subcritical (L1 > 0)
or supercritical (L1 < 0). This transition from subcritical to
supercritical HB happens at L1 = 0 through a higher order
bifurcation, called Bautin bifurcation (or generalized HB).
Likewise, the behavior of the BZ system around Bautin bifur-
cation can further be characterized through the calculation of
L2. Correspondingly, the nonlinear analysis also reveals that
the frequency of oscillations [see Eq. (13)] is dependent upon
its amplitude.

In general, the amplitude at the LCs is obtained by setting
Eq. (12) equal to zero, which leads to

rLC =

√√√√±
√

L2
1 − 4L2μ − L1

2L2
. (18)

The frequency of oscillations at the LC, on the other hand,
can be calculated by substituting Eq. (18) in Eq. (13). Equa-
tion (18) reveals that for nonzero L2, the BZ system can have
two LCs, stable (SLC) or unstable (ULC), depending upon the
values and signs of L1 and μ. These two LCs merge into one
semistable LC when L2

1 = 4L2μ, and is known as the limit
point of cycles (LPC).

C. Energy and power densities

In order to estimate the energy and power densities, we
write the generalized Hamiltonian (H) function as

H = Hc − K, (19)

where Hc and K are the contributions from conservative
and dissipative (nonconservative) mechanisms [58]. It is well
known that any dynamical system is conservative [54] at the
LC, i.e., when

.
r = 0, and dissipative otherwise. In the context

of the BZ reaction, therefore, no energy (or power) can be
harnessed from the chemical oscillations when the reaction is
at the LC. To obtain the relevant expressions for each of the
terms in Eq. (19), we transform Eqs. (12) and (13) from or-
dinary to canonical polar coordinates (alternatively known as
standard action angle coordinates) to derive (see Appendix B)
the expression for the Hamiltonian (Hc) at the LC as follows:

Hc = ω0r2
LC

2
+ b1r4

LC

4
+ b2r6

LC

6
. (20)

The power characterized by
.

H is obtained by taking the
total time derivative of Eq. (19) after the substitution of Hc

and K (see Appendix B) as
.

H = 1
3 r

.
r(3r2 b1 + 4b2)

= 1
3 r2(μ + L1r2 + L2r4)(3r2 b1 + 4b2). (21)

The above expression clearly shows that at the LC (r =
rLC),

.
r = 0 and thus the power

.

HLC = 0. To reiterate, Hc

represents the energy stored in the chemical oscillations that
is, thermodynamically, the total Gibbs free energy density of
the BZ reaction [59,60].

III. RESULTS AND DISCUSSIONS

Figure 1 shows the variation of steady state concentrations
of the oxidized catalyst (vss) and the activator (uss) with f
computed using Eqs. (6) and (7) for nanocatalyzed BZ reac-
tions of different formulations. In particular, Figs. 1(a) and
1(b) show (vss) (solid line) and (uss) (dotted line) along f for
different values of h and γ , respectively. We observe from
Fig. 1 that the profiles of all the curves remain similar; i.e.,
uss and vss curves pass through a point of inflection while
exhibiting a monotonic decreasing trend as f increases.

The steady state profiles, shown in Figs. 1(a) and 1(b), can
be analyzed from the mechanism of the BZ reaction at particu-
lar h and γ values. It is well known that the increase in f leads
to an increase in the inhibitor concentration [39,43,61] which,
in succession, lowers the values of u and v. This lowering of
u−v values is reflected in the monotonically decreasing trends
of uss and vss. To understand the occurrence of the point of
inflection, let us examine the mechanism of the BZ reaction
at very low and very high values of f . At lower f values, the
inhibitor concentration is low, due to which the concentration
of the activator remains high [39,43,61]. Consistent with the
FKN mechanism, this high activator concentration results in
even more production of the activator through autocatalysis
[39,43,61] and thus establishes positive feedback. At higher f ,
however, the inhibitor concentration remains high enough to
suppress the autocatalytic process and thus the rate of produc-
tion of u and, consequently, the production of v, slows down.
These asymmetric changes in the production rates with the
increase in f are mathematically observed as the occurrence
of the point of inflection. As far as the shifts in the uss and
vss curves are concerned, the change in h and γ values have
opposite effects. In Fig. 1(a), the increase in h leads to an
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FIG. 1. The steady states profiles of oxidized catalyst (vss ) and activator (uss ) with stoichiometric coefficient f for different (a) h, and (b)
γ values. The solid and dotted lines represent vss and uss, respectively.

overall high activator concentration, through the change in the
concentrations of H species and, thus, both uss and vss, shift
towards higher values. On the other hand, an increase in γ

in Fig. 1(b), which signifies the increase in catalyst activity,
increases the overall inhibitor concentration that ultimately
translates into lower vss values [23]; the value of uss, however,
remains unaffected in accordance with Eq. (6).

In Fig. 2, we explore the effect of BZ reaction formulations
and nanocatalysts’ activity through Hopf bifurcation (HB)
curves, constructed using Eq. (11) in η− f space; the first
(L1) and second (L2) Lyapunov coefficients have been used to
characterize HB curves as subcritical (HB+) and supercritical
(HB−); the transition from HB+ to HB− occurs at Bautin
bifurcation (BB). Specifically, the HB curves for different
values of h and γ are shown in the respective Figs. 2(a) and
2(b) and, correspondingly, the variation of L1 [calculated us-
ing Eq. (14)] and L2 [calculated using Eq. (16)] for particular
values of h = 1.10 and γ = 11.81 are captured in Figs. 2(c)
and 2(d), respectively. We note that, according to Eq. (11),
the variations in η also reflect the change in γ for different
h, and the change in h for different γ . The area bounded
by the HB curve represents the region wherein the sustained
chemical oscillations in the BZ reaction are observed. Mathe-
matically, in the region below the HB curve, Tr[J0] > 0 and,
hence, the eigenvalues of J0 are complex conjugate with posi-
tive real parts. Thus the HB curve demarcates the transition
between the oscillatory and nonoscillatory regimes for the
BZ reaction.

We witness that irrespective of the location of the HB
curves in Figs. 2(a) and 2(b), the position of BB remains
fixed at a particular value of f . It is evident, from Figs. 2(c)
and 2(d), that at BB, the value of L1 becomes zero, whereas
L2 remains negative. In addition, all the curves in Figs. 2(a)
and 2(b) intersect the abscissa (η = 0) at the two extreme
values of f , as Eq. (11) becomes quadratic in f and, there-

fore, independent of h and γ . In essence, Fig. 2 signifies that
the increase in h and γ increases the domain of chemical
oscillations for the BZ reaction. From the analyses standpoint,
variations in h and γ scale the oscillatory regime, according
to Eq. (11), and do not alter the dynamic characteristics of the
BZ reaction system. We therefore choose h = 1.10 and γ =
11.81 for subsequent analyses in our manuscript. The choice
of h = 1.10 signifies comparatively more acidic conditions,
whereas γ = 11.81 indicates high activity nanocatalysts in the
BZ reaction milieu. Thus the bifurcation diagrams in Fig. 2 are
critical in identifying the regimes of chemical oscillations in
BZ reactions, which otherwise, are quite tedious to determine
via experiments and computer simulations.

In Fig. 3, we explore the details of the bifurcation diagram
(of Fig. 2), for h = 1.10 [Fig. 3(a)] and γ = 11.81 [Fig. 3(b)],
and determine dynamical characteristics [in Fig. 3(c)] ex-
hibited by the nanocatalyzed BZ reaction system in various
subregions below the HB curve. These divisions are identified
through the calculations of L1 and L2 across the entire η− f
space using Eqs. (14) and (16), respectively. In particular,
the regions R1, R2, R3 and R3′ [in Figs. 3(a) and 3(b)]
separated by the respective curves HB+, HB−, C0, C0′,
and the trajectories at points W 1−W 4 represented in
Fig. 3(c), have been used to analyze BZ oscillations; the
trajectories are determined from numerical simulations of
Eqs. (4) and (5).

Let us examine the trajectories in Fig. 3(c) in the context
of points W 1−W 5 of Figs. 3(a) and 3(b). It is to be noted
that, along the line W 1−W 5, the value of f is fixed at 0.7
and thus uss and vss values remain unchanged [see Eqs. (6)
and (7)]. When the value of η corresponds to W 1, the BZ
system is in region R3 wherein the eigenvalues are complex
with negative real parts [see Eq. (10)]. Thus, irrespective of
the initial concentrations of u and v, the chemical oscilla-
tions in the BZ reaction decay in amplitude and, ultimately,
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FIG. 2. The effect of BZ reaction formulations on the bifurcation diagram. The curves represent the HB line for different (a) h, and (b) γ

values. The corresponding variations of L1 and L2 at HB for (c) h = 1.10, and (d) γ = 11.81 are shown.

the system approaches the steady state. Correspondingly, any
trajectory for W 1 [in Fig. 3(c)] spirals down and the steady
state becomes a stable focus. Upon decrease of η to point
W 2, which lies just outside the HB+ curve, the stable (solid
circle) and unstable (dashed circle) LCs coexist, as repre-
sented in Fig. 3(c); the existence of these two LCs is evident
from Eq. (18). The behavior of the BZ reaction, therefore,
depends upon the initial values of u and v. When the BZ
systems starts from either side of the SLC, but still remains
outside the ULC, the trajectories approach the SLC [W 2 in
Fig. 3(c)]. On the contrary, when the BZ systems starts from
inside the ULC, the trajectories spiral towards the steady state
and, therefore, the amplitude of chemical oscillations in BZ
reaction continuously decays and eventually, dies out. As we
further decrease η beyond W 2, the system crosses the HB+
curve and reaches W 3 in region R2, which is confined between
the HB+ (L1 > 0) and C0 (L1 = 0) curves. As soon as the

system crosses HB+, the real part of the eigenvalues becomes
positive and the steady states loses its stability. As the steady
states transition from stable (at W 2) to unstable (at W 3), the
ULC encountered at W 2 disappears and only the SLC is left
behind. Thus, any trajectory in region R2, irrespective of the
initial conditions, approaches the SLC as shown in Fig. 3(c)
(see W 3); any further decrease of η in region R2 leads to an
increase in the size of the SLC and, hence, the amplitudes of
chemical oscillations in the BZ reaction increase.

As the system crosses C0 and enters the region R1 to
reach W 4, L1 changes its sign, from positive to negative,
and a SLC of much smaller amplitude [small solid circle in
Fig. 3(c)] appears. Except for the reduction in amplitude of
chemical oscillations, the characteristics of the BZ reaction
at W 4 essentially remains identical to W 3. When the system
reaches W 5 upon further reduction of η, the BZ system en-
ters the region R3′ (where L1 > 0) by crossing C0′ (where
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FIG. 3. The detailed bifurcation diagram with sub-regions based on the Lyapunov coefficients. The sub-regions for (a) h = 1.10, (b)
γ = 11.81 and (c) the respective trajectories along the lines W 1 − W 4; the schematic representation of the trajectories is depicted in the inset.
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L1 = 0). The eigenvalues in R3′ become real and positive
and, therefore, the SLC disappears and the unbounded tra-
jectories (see Fig. S5 in the Supplemental Material (SM)
[62]) come into existence. Consequently, as the system travels
from region R1 to R3′, the BZ reaction transitions from be-
ing oscillatory to nonoscillatory (see Fig. S6 of the SM [62]
for classification of regions and dynamics in terms of λ, L1,
and L2).

In short, as we move from point W1 to W5 in Figs. 3(a) and
3(b) by reducing the value of η, no LCs exist at W 1 and W 5,
one SLC exists at both W 3 and W 4, and two LCs exist at W 2.
In a physical system, the dynamical behavior of the BZ reac-
tion described by the trajectories in Fig. 3(c) manifests as the
change in the intensity of color or electrochemical potential of
the BZ reaction media [40–42,63,64]. The periodic changes in
these variables represent the chemical oscillations (or LC) in
the BZ reaction, whereas their static values indicate steady
state conditions. At unbounded trajectories (W 5), however,
both the color intensity and the electrochemical potentials
continuously increase as the BZ reaction progresses.

In Fig. 4, we quantify the amplitude and frequency of
chemical oscillations at the LC in different regions identified
in Figs. 3(a) and 3(b) along f for two cases: first, when h is
fixed and γ is varied [Figs. 4(a) and 4(c)] and second, when γ

is fixed and h is varied [Figs. 4(b) and 4(d)]. The amplitudes in
Figs. 4(a) and 4(b) are calculated using Eq. (18), whereas the
variation of the (angular) frequencies (ω) in Figs. 4(c) and 4(d)
is obtained using Eq. (13). The insets in Fig. 4 show rLC and
ω for particular values of γ and h, wherein the sign changes
of L1 and L2 are depicted by shaded regions. For the sake of
clarity, in the foregoing paragraphs, we first analyze amplitude
variations depicted in Figs. 4(a) and 4(b) and subsequently
discuss frequency variations in Figs. 4(c) and 4(d).

We witness, in Figs. 4(a) and 4(b), that irrespective of
the values of γ and h, the inherent profiles of all the curves
remain the same; there is one key difference, however. In
Fig. 4(a), we observe that with increase in γ , rLC increases,
whereas in Fig. 4(b), it decreases with increase in h. In
addition, rLC profiles undergo many undulations with f , which
are attributed to the sign changes of L1 and L2 (see Figs. S1
and S2 of the Supplemental Material (SM) [62]) and their
relative magnitudes [computed using Eqs. (14) and (16)]. In
short, rLC, which represents the amplitude of chemical oscil-
lations at the LC, is largest when γ is highest in Fig. 4(a)
and h is lowest in Fig. 4(b). Moreover, the comparison be-
tween the ordinates of Figs. 4(a) and 4(b) reveals that the
values of rLC are about two orders of magnitude higher in
Fig. 4(a).

Thus it is inferred from Figs. 4(a) and 4(b) that, in order
to obtain high amplitude chemical oscillations, the scenario
depicted in Fig. 4(a) is more desirable. To be specific, the
increase in nanocatalyst activity must be preferred over a
decrease in the acidity of the solution. From a similar line of
reasoning, it is evident that finer adjustments in the amplitude
of chemical oscillations can be brought about by the variations
in the acidity of the solution, while the nanocatalyst activity
must be used otherwise. As we have explained in Fig. 2, the
interplay between activator and inhibitor concentrations with
f is primarily responsible for higher values of rLC at lower
values of f and vice versa.

The observations in Figs. 4(c) and 4(d) are quite similar
to Figs. 4(a) and 4(b); i.e., the overall profile of the curves
remains the same irrespective of the parameters, γ or h. Let
us analyze Figs. 4(c) and 4(d) in the context of Figs. 4(a) and
4(b). Figures 4(c) and 4(d) reveal that, as we move towards
increasing values of f , the characteristics of ω change as
the system enters different regions identified in Fig. 3. For
instance, in Figs. 4(c) and 4(d), ω decreases for lower values
of f , where the system is in the R1 and R2 regions. Likewise,
when the system is in region R3′, where the eigenvalues are
real and positive (see Fig. S3 of the SM [62]), ω is nonex-
istent. As soon as the system exits R3′ and reenters region
R1, ω increases monotonically along f , and the change in its
curvature corresponds to the sign changes in L1 and L2 (see
Figs. S1 and S2 of the SM [62]).

The decrease and increase in ω at, respectively, lower and
higher f values, are due to the variations in b1 and b2 com-
puted using Eqs. (15) and (17) (see Fig. S4 of the SM [62]).
The values of b1 and b2 remain negative with small magni-
tudes irrespective of the values of γ , h, and f ; as a result,
ω depends on amplitude (rLC) only when its value is high
enough. Also, since b1 and b2 are always negative, ω at the LC
can become significantly lower than the base frequency [ω0 in
Eq. (13)] when rLC is high. Thus, the undulations observed in
Figs. 4(c) and 4(d) correspond to the magnitude of rLC that,
in turn, depends upon the sign changes in L1 and L2 and their
relative magnitudes [see insets of Fig. 4(c) and 4(d)]. The
implications of Figs. 4(c) and 4(d) for experimental investiga-
tions are similar to that of Figs. 4(a) and 4(b); i.e., variations
in nanocatalyst activity must be adopted for bringing about
large variations in ω, and the acidity of the solution must be
tweaked to achieve its finer control.

The experimental measurements of the amplitudes of
chemical oscillations (or rLC) can be achieved in various
ways. For instance, it has been demonstrated that the in-
tensities of red and blue colors in the nanocatalyzed BZ
reactions measured using IMP [40–42] can lead to direct
determination of amplitudes. On the other hand, the deter-
mination of activator and inhibitor concentrations can also
be carried out using spectrophotometric analysis wherein the
absorbance of the BZ solution is measured with an UV-vis
detector [63,64]. The measurements of electrochemical po-
tential [63] in conjunction with spectrophotometric analysis,
have also proved to be successful in determining the am-
plitudes of chemical oscillations. In these techniques, the
maximum absorbance peak and the maximum deviation of
electrochemical potential, which corresponds to the maximum
amplitude of chemical oscillations (rLC) from its reference
state, are measured. As far as the frequency in a physical
system is concerned, the change in ω is manifested as a fast
or slow transition in the color of the BZ reaction media.
Higher ω means the BZ media show faster color changes
as the reaction progresses and vice versa. From a chemistry
perspective, higher ω also indicates faster cyclic production
and consumption of the activator (u) and inhibitor that can be
measured using the techniques described above. In general,
we deduce that the increase and decrease in the amplitude
and frequency of chemical oscillations are in agreement with
the experimental analyses reported in the literature [23,40–
42,65].
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FIG. 4. The amplitude (rLC ) and frequency (ω) of chemical oscillations at different γ and h values with stoichiometric coefficient f . (a–b)
shows the variation in rLC and (c–d) shows the variation in ω with f for different values of γ when h = 1.10 and for different values of h when
γ = 11.81. The insets in (a) and (c) shows the detailed profile for h = 1.10, and in (b) and (d) for γ = 11.81 that are characterized based on
the signs of L1 and L2.

Figure 5 shows the variation of energy density (Hc) at
LCs with variation in γ and h; the insets show the magni-
fied versions of these variations for higher values of f . In
particular, Figs. 5(a) and 5(b) show the profiles of energy
density (Hc) at the LC, calculated using Eq. (20) for fixed
h and γ , respectively. It is quite evident from Fig. 5 that the
γ and h values do not qualitatively influence the profiles of
Hc. The insets in Figs. 5(a) and 5(b) show that as we move
along the lower values of f (right to left), each Hc profile
first increases, reaches a maximum, and then gradually drops

down to zero. With the further decrease in f , the system enters
the nonoscillatory regime, R3′, and therefore Hc becomes
nonexistent. Moreover, just like in Fig. 3, the region R3′
decreases in Figs. 5(a) and 5(b) as η increases. Finally, as the
systems exits R3′ upon lowering of f and enters the oscillatory
regime R2, Hc begins to increase to even higher magnitudes
and, ultimately, reaches a maximum before going to zero at
f = 0.5. Comparison between Figs. 5(a) and 5(b) reveals that
the Hc values for Fig. 5(a) are two orders of magnitude higher
than Fig. 5(b), which is consistent with Fig. 4. Thus, tweaking

064211-9



VANDANA RAJPUT AND PRATYUSH DAYAL PHYSICAL REVIEW E 108, 064211 (2023)

FIG. 5. The variation of energy density (Hc ) with stoichiometric coefficient f for different (a) γ when h = 1.10 and (b) h when γ = 11.81.
The insets show the profile of Hc at higher f values.

the activity of the nanocatalysts, rather than the acidity of the
solution, leads to large changes in the energy density of the
BZ reaction at LCs.

Figure 6 shows the variation of power density (
.

H) with
variation in γ [Fig. 6(a)] and h [Fig. 6(b)] against the am-
plitude of chemical oscillations, r. It is worth mentioning
here that r is different from rLC, as the latter represents the

amplitude at the LC. In Figs. 6(a) and 6(b), the value of r is
continuously varied from zero (steady state) to rLC and, there-
fore, all the profiles intersect abscissa at these corresponding
points. In particular, in Figs. 6(a) and 6(b), the power density
.

H is obtained for a fixed f using Eq. (21) and is plotted
against the amplitude (r) of chemical oscillations for different
γ (when h is fixed) and h (when γ is fixed). The inset in

FIG. 6. The variation of power density (
.

H) with stoichiometric coefficient f for different (a) γ when h = 1.10 and (b) h when γ = 11.81.
The inset shows the enlarged profile of

.

H at higher γ .
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Fig. 6(a) depicts the enlarged profile of Ḣ for higher γ values.
The comparison between Figs. 5(a) and 6(a) reveals that even
though Hc is highest for Ru-Graphene, the corresponding

.

H
is lowest; a similar trend is also observed for other values
of γ . On the other hand, the reverse trend is observed when
Figs. 5(b) and 6(b) are compared. In this case, the magnitude
of

.

H is higher for Fig. 6(b) compared to Fig. 6(a). Thus, the
tweaking of the acidity of the solution leads to large variations
in the values of

.

H.
For designing the active systems based on the BZ reaction,

it becomes imperative to understand the implications of Hc

and
.

H. Mathematically, Hc represents the energy density in
a conserved system and, therefore, no power from the BZ os-
cillations can be harnessed to continuously energize external
systems; this is revealed from Figs. 6(a) and 6(b) wherein
.

H = 0 at rLC. In other words, the external systems can be
continuously powered when the BZ reaction is in the
nonconserved state; i.e., the BZ reaction operates between
steady state and the LC (see Fig. 3: 1, R2, vicinity of W 2 in
R3). To elaborate, when the steady state is unstable and the BZ
reaction exhibits the SLC (R1, R2 in Fig. 3), the oscillations
can be harnessed to continuously power the external systems
and, consequently, the amplitude of BZ oscillations (r) de-
creases, compared to its amplitude at SLC (rLC), by an amount
that corresponds to the power drawn by the external system.
On the contrary, when the BZ reaction exhibits a stable steady
state together with the ULC (Fig. 3: vicinity of W 2 in R3),
the chemical oscillations continuously decrease and external
systems can be powered for a very short period of time. In
either case, the magnitude of power generated depends on the
nanocatalyst activity and acidity of the BZ reaction.

IV. CONCLUSIONS

We investigated the effect of different nanocatalysts and
reaction formulations on the dynamical and energy-power
characteristics of a nanocatalyzed BZ reaction using bifurca-
tion analyses. To determine these attributes, we modified the
Oregonator model and introduced parameters to account for
the changes in the nanocatalyst activity and BZ recipe. We
first computed the steady states and found that with increase
in acidity, the reaction favors the production of activator. On
the contrary, the production of inhibitor is enhanced when
the nanocatalysts activity increases. We then performed lin-
ear stability analyses to trace the loci of HB and broadly
identified the regimes of chemical oscillations with respect to

changes in nanocatalyst activity including BZ formulations.
Our calculations revealed that these oscillatory regimes rad-
ically expand when nanocatalyst activity or acidity of the
solution is increased. Through nonlinear stability analyses,
we then obtain a detailed bifurcation diagram by determining
the nature of HB and subdividing the oscillatory regimes into
various regions. To do so, we computed first and second Lya-
punov coefficients at HB and observed that the location of BB
remains invariant irrespective of the changes in nanocatalysts
activity and BZ formulations. The calculations of Lyapunov
and frequency coefficients at non-HB locations revealed the
coexistence of SLC and ULC.

Next, we quantified the amplitude and frequency of chem-
ical oscillations using Lyapunov and frequency coefficients
in different regimes. We established that high nanocatalyst
activity is more desirable to achieve chemical oscillations of
large amplitudes and high frequencies, which is in agreement
with the experimental studies. Furthermore, we formulated
the Hamiltonian functions to calculate the energy and power
densities of BZ oscillations. As expected, the energy density
at the LC qualitatively follows similar characteristics as am-
plitude and frequency profiles; however, the power density
follows the opposite behavior. In other words, the highest
energy density corresponds to the lowest power density, and
vice versa. Finally, we established that the power density
becomes maximum when the amplitude is almost half the
amplitude at the LC and becomes zero at the LC. We believe
that the analyses and the framework developed in the paper
can be extended to determine the energy harvesting potential
of other nonlinear dynamical systems including active and
stimuli-responsive material systems.
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APPENDIX A: HIGHER ORDER DERIVATIVES FOR Ji

We write Eqs. (4) and (5) as follows,

du

dt
= M(u, v), (A1)

dv

dt
= N (u, v), (A2)

and subsequently represent the higher order matrices Ji (i =
1 · · · 4) in Eq. (8) using the above equations as

J1 =
[

Muu Mvu Muv

Nuu Nvu Nuv

Mvv

Nvv

]
2×4

, (A3)

J2 =
[

Muuu Mvuu Muvu
Nuuu Nvuu Nuvu

Mvvu Muuv Mvuv

Nvvu Nuuv Nvuv

Muvv Mvvv

Nuvv Nvvv

]
2×8

, (A4)

J3 =
[

Muuuu Mvuuu Muvuu
Nuuuu Nvuuu Nuvuu

Mvvuu Muuvu Mvuvu
Nvvuu Nuuvu Nvuvu

Muvvu Mvvvu Muuuv

Nuvvu Nvvvu Nuuuv

. . .
Mvuuv Muvuv Mvvuv

Nvuuv Nuvuv Nvvuv

Muuvv Mvuvv Muvvv

Nuuvv Nvuvv Nuvvv

Mvvvv

Nvvvv

]
2×16

, (A5)
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TABLE II. Expressions for higher order derivatives.

Derivatives Expressions

Second order Muu = 4δ f vPq
(u+Pq)3 − 2, Mvu = Muv = − 2Pqδ f

(u+Pq)2

Third order Muuu = − 12δ f vPq
(u+Pq)4 , Mvuu = Muvu = Muuv = 4δ f Pq

(u+Pq)3

Fourth order Muuuu = 48δ f vPq
(u+Pq)5 , Mvuuu = Muvuu = Muuvu = Muuuv = − 12δ f Pq

(u+Pq)4

Fifth order M5u = − 240δ f vPq
(u+Pq)6 , Mvuuuu = Muvuuu = Muuvuu = Muuuvu = Muuuuv = 48δ f Pq

(u+Pq)5

J4 =
[

M5u Mvuuuu Muvuuu
N5u Nvuuuu Nuvuuu

Mvvuuu Muuvuu Mvuvuu
Nvvuuu Nuuvuu Nvuvuu

Muvvuu Mvvvuu Muuuvu
Nuvvuu Nvvvuu Nuuuvu

. . .
Mvuuvu Muvuvu Mvvuvu
Nvuuvu Nuvuvu Nvvuvu

Muuvvu Mvuvvu Muvvvu
Nuuvvu Nvuvvu Nuvvvu

Mvvvvu Muuuuv Mvuuuv

Nvvvvu Nuuuuv Nvuuuv.

. . .
Muvuuv Mvvuuv Muuvuv

Nuvuuv Nvvuuv Nuuvuv

Mvuvuv Muvvuv Mvvvuv

Nvuvuv Nuvvuv Nvvvuv

Muuuvv Mvuuvv Muvuvv

Nuuuvv Nvuuvv Nuvuvv

. . .
Mvvuvv Muuuvv Mvuvvv

Nvvuvv Nuuuvv Nvuvvv

Muvvvv M5v

Nuvvvv N5v

]
2×32

(A6)

The mathematical expressions for the nonzero terms of Ji

(i = 1 · · · 4) are given in Table II.

APPENDIX B: DERIVATION OF HAMILTONIAN
FUNCTIONS

To derive the Hamiltonian functions, we transform
Eqs. (12) and (13) from (r, θ ) �→ (R, θ ) [66–68] using r =√

2R as [58] [
.

R
.

θ

]
=

[
2R

(
μ + 2L1R + 4L2R2

)
ω0 + 2b1R + 4b2R2

]

=
[− ∂H

∂θ

∣∣
R=RLC

∂H
∂R

∣∣
R=RLC

]
+

[
∂K
∂θ

− ∂K
∂R

]
. (B1)

At R = RLC, the dissipative terms involving K are zero
[58]; i.e.,

[
Ṙ
θ̇

]
R=RLC

=
⎡
⎣2RLC

(
μ + 2L1RLC + 4L2R2

LC

)︸ ︷︷ ︸
=0

ω0 + 2b1RLC + 4b2R2
LC

⎤
⎦

=
[
− ∂H

∂θ

∣∣
R=RLC

∂H
∂R

∣∣
R=RLC

]
(B2)

Substituting Eq. (B2) in Eq. (B1) and subsequently solving
the

.

θ equation, we obtain the expression of K as

∂K

∂R
= 2b1(RLC − R) + 4b2

(
R2

LC − R2
)
. (B3)

Integrating the above equation with boundary conditions
K (R) = K and K (RLC) = 0, we get

K = − 1
3 (R − RLC)2[3b1 + 4b2(R + 2RLC)]. (B4)

We then compute the expression for H by integrating
.

θ
from the first part of Eq. (B1) as

H = ω0R + b1R2 + 4b2R3

3
+ C(θ ). (B5)

The constant C(θ ) is obtained by differentiating Eq. (B5)
with respect to θ as shown below:

dC(θ )

dθ
= ∂H

∂θ
= −2R(μ + 2L1R + 4L2R2). (B6)

Upon integrating above equation, we get

C(θ ) = −2R(μ + 2L1R + 4L2R2)θ. (B7)

Substituting Eq. (B7) in Eq. (B5), we obtain

H = ω0R + b1R2 + 4b2R3

3
− 2R(μ + 2L1R + 4L2R2)θ.

(B8)

Taking the total derivative of the above equation with re-
spect to time gives

.

H = −2
.

R θ (μ + 4L1R + 12L2R2). (B9)

Putting R = RLC in Eqs. (B8) and (B9), we get

Hc = ω0RLC + b1R2
LC + 4b2R3

LC

3

− 2RLC
(
μ + 2L1RLC + 4L2R2

LC

)
θ, (B10)

.

Hc = −2θ
(
μ + 4L1RLC + 12L2R2

LC

)
(

.

R |R=RLC ). (B11)

Since, at the LC
.

R |R=RLC = 0, i.e., μ + 2L1RLC +
4L2R2

LC = 0, we get the expressions for Hc and
.

Hc as follows:

Hc = ω0RLC + b1R2
LC + 4b2R3

LC

3
, (B12)

.

Hc = 0. (B13)
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Using the back transformation from canonical polar to
ordinary coordinates, (R, θ ) �→ (r, θ ), using r = √

2R, in
Eqs. (B4), (B8), and (B12) we obtain the expressions for K ,
H, and Hc as

K = − 1

12

(
r2 − r2

LC

)2[
3b1 + 2b2

(
r2 + 2r2

LC

)]
, (B14)

H = 1

12

[(
6ω0r2

LC − 3b1
(
r4 − 2r2r2

LC

)

− 2b2
(
r6 − 3r2r4

LC + r6
LC

))]
, (B15)

Hc = ω0r2
LC

2
+ b1r4

LC

4
+ b2r6

LC

6
. (B16)
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