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The strong enhancement of tunneling couplings typically observed in tunneling splittings in the quantum map
is investigated. We show that the transition from instanton to noninstanton tunneling, which is known to occur
in tunneling splittings in the space of the inverse Planck constant, takes place in a parameter space as well. By
applying the absorbing perturbation technique, we find that the enhancement invoked as a result of local avoided
crossings and that originating from globally spread interactions over many states should be distinguished and
that the latter is responsible for the strong and persistent enhancement. We also provide evidence showing that
the coupling across the separatrix in phase space is crucial in explaining the behavior of tunneling splittings by
performing the wave-function-based observation. In the light of these findings, we examine the validity of the
resonance-assisted tunneling theory.

DOI: 10.1103/PhysRevE.108.064210

I. INTRODUCTION

Tunneling splitting is a typical manifestation of the tun-
neling effect in quantum mechanics and it is observed, for
example, in a system with a symmetric double-well poten-
tial. The states with identical energy but different parities
are quasidegenerate and exhibit exponentially small energy
splittings, which occur as a result of the tunneling coupling
between two states supported by energetically separated po-
tential wells.

Although the tunneling splitting is a purely quantum effect,
it is possible to evaluate the splitting width in terms of the
classical orbit if one is allowed to use the complex plane.
The so-called instanton is a complex classical orbit connecting
two valleys, and its classical action is known to provide the
splitting width [1–3]. There are rigorous mathematical results
that claim that the tunneling splitting |E1 − E0| for the ground-
state doublet behaves as

lim
h̄→0

(−h̄ ln |E1 − E0|) = ρ(a, b), (1)

where ρ(a, b) is the Agmon distance between the bottoms a
and b of the potential well and the Agmon distance corre-
sponds to the classical action of the instanton orbit. Note that
the above estimate holds not only for one-dimensional but also
for multidimensional systems.

In one-dimensional systems, for the energy above the po-
tential barrier, the two wells are connected via classical orbits
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in the real plane so that tunneling doublets disappear. On
the other hand, in multidimensional systems, additional con-
served quantities other than energy may exist in the system,
either locally or globally. In that case, classical orbits may be
confined in one of the potential wells, even though the energy
of the orbits is above the potential barrier. This means that the
transition between the potential wells is energetically allowed
but dynamically forbidden. The quantum state associated with
classical orbits dynamically confined in one of the wells is
sometimes called local modes, and tunneling splittings appear
between (symmetrically) formed local modes as well as tun-
neling splittings created between the states below the potential
barrier. Such local modes are coupled via the tunneling effect
since their supports are classically separated, and this type of
tunneling is called dynamical tunneling [4,5].

Evaluation of the width of tunneling splittings associated
with dynamical tunneling would be beyond the standard ap-
proach using the instanton path. The difficulty of this problem
lies in the fact that the system is nonintegrable in general and
chaos appears in the corresponding classical dynamics.

As reported in the literature [5–13] and indeed demon-
strated in this paper, tunneling splittings do not follow a
simple exponential law but rather change their slope or even
show plateaulike structures in the splitting width versus the
inverse Planck constant plot. This implies that the magnitude
of tunneling couplings induced by dynamical tunneling can
be much larger than those predicted from the instanton or the
Agmon distance argument. The underlying mechanism of dy-
namical tunneling is thus expected to be completely different
from that derived from the existing theory.
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Although much effort has been devoted to clarifying the
signature of tunneling splittings, focusing mainly on the in-
fluence of nonintegrability [5,9,12–17], we have to say that
our understanding is still in the dark. This is mainly due to
the lack of an explicit or closed semiclassical formula that al-
lows us to evaluate tunneling splittings directly. The problem
is considered to be almost insurmountable because of enor-
mously complex aspects of the underlying classical dynamics.
Generic systems, in which dynamical tunneling occurs, are
neither completely integrable nor fully chaotic, so in con-
trast to Gutzwiller’s trace formula for ideally chaotic systems,
semiclassical formulas for eigenvalues and eigenfunctions are
not known in any form. The best we can do would be to
apply the WKB method in the time domain, for which an
explicit semiclassical formula is available. The result reveals
that chaos in the complex plane plays a crucial role in the
transition between classically forbidden phase-space regions
[18–22]. However, the connection between the behavior of
tunneling splittings and chaos in the complex plane has yet
to be clarified.

Under these circumstances, several possible scenarios have
been proposed on a phenomenological level to capture the
signature of tunneling in nonintegrable systems. The anal-
yses intend to understand how classical chaos and other
phase-space structures relate to the behavior in nonintegrable
tunneling. The present paper is essentially along the same
lines or even more phenomenological. Here our strategy is to
observe closely the nature of the tunneling couplings under
suitably chosen bases, which are given by applying the Baker-
Campbell-Hausdorff (BCH) formula. Through such purely
quantum mechanical analyses, we explain the mechanism
leading to the strong enhancement of the tunneling proba-
bility, which is a typical feature in the nonintegrable systems
[12,13,16,17].

Among many other bases representing quantum states, the
BCH basis provides a certain privilege because it can sharply
capture the transition from the instanton to noninstanton (INI)
tunneling [16]. Here instanton tunneling refers to a type
of tunneling for which the instanton approximation works
in evaluating tunneling couplings. In contrast, noninstanton
tunneling is that which the instanton approximation cannot
describe.

As reported in Refs. [12,13] and will be shown in this
paper, tunneling couplings have unexpectedly broad supports
in the BCH representation, and the strong enhancement is
caused by couplings across the separatrix in the phase space.
This picture contrasts sharply with the so-called resonance-
assisted tunneling (RAT) scenario because the RAT theory
incorporates couplings only inside the separatrix. In the RAT
theory, the coupling via nonlinear resonances is introduced
by constructing a local integrable Hamiltonian, thereby tun-
neling couplings in the RAT theory basically originate from
the associated couplings derived in the integrable system. In
other words, the coupling can be introduced only between the
regions connected by the instanton, so the transition across the
separatrix is clearly beyond the scope of the RAT theory.

The existence of broad supports in the BCH basis explains
why the strong coupling persists even when one varies the
Planck constant or a system parameter. At the same time, it
provides a reason why, in the RAT calculation, one must retain

the couplings associated with classical nonlinear resonances
even when the resonance condition no longer holds. Alter-
natively stated, if one includes the RAT coupling only when
the resonance condition is satisfied, one cannot reproduce the
characteristic signatures in the splitting plots.

The organization of the paper is as follows. In Sec. II we
introduce the system used here to study the nature of tunnel-
ing splittings. We consider a two-dimensional area-preserving
map, which is regarded as a model of the Poincaré surface of
section of the two-dimensional continuous flow Hamiltonian
system. We should consider the extent to which the results
obtained in the area-preserving map can be applied to the
continuous flow system for which the question of dynamical
tunneling was originally posed. We then introduce the inte-
grable approximation to the area-preserving map. Here the
BCH formula is used to give an integrable approximation.
In Sec. III we first study the behavior of tunneling splittings
as a function of the perturbation strength and show that the
so-called instanton-noninstanton transition [12,16] occurs in
the splitting plot. We then apply the absorbing perturbation
technique to elucidate that the strong enhancement of the
tunneling couplings after the INI transition is supported by
broad interactions over many states. In Sec. IV we perform
a wave-function-based analysis for tunneling splittings. We
show that tunneling splittings can be evaluated by referring
to the amplitude of the wave function at a specific point, the
center of two symmetrically located regular regions. This is
done using the Herring-Wilkinson formula, which allows us
to evaluate the magnitude of the tunneling splittings in terms
of wave functions in the two dynamically separated regions.
The wave-function-based analysis reveals that the coupling
beyond the separatrix gives rise to the enhancement of the
splittings. Moreover, the coupling with the region outside
the separatrix is already present in the wave functions even
in the instanton regime, although no anomalous signature is
apparently visible in the tunneling splittings. In Sec. V we
examine the splitting plot as a function of 1/h̄, which has often
been studied when testing the RAT scenario [8,9,11,23–27].
We again use the absorbing perturbation method to confirm
the robustness of the tunneling splitting enhancement and then
test the validity of the RAT calculation by actually applying
the proposed recipe. Based on the result, we point out that the
persistent enhancement is not due to the RAT-type interaction
but to the interactions widely spread over many levels. Here
the persistent enhancement is referred to as a phenomenon
in which the anomalous enhancement of tunneling splittings
compared to the integrable limit persists even with the change
of 1/h̄. Section VI provides a summary and discussion.

II. PREPARATIONS

A. Classical and quantum systems

In this paper we use the kicked-rotator Hamiltonian

H (p, q, t ) = T (p) + εV (q)
∑
n∈Z

δ(t − nτ ) (2)

as a model of nonintegrable systems, where ε and τ are the
strength and period of a perturbation, respectively. The angu-
lar frequency of the perturbation is defined as � = 2π/τ .
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FIG. 1. Plot of p vs q for (a) ε = 0.36 and (b) ε = 0.89. Gray
dots represent the points generated by the classical dynamics f . The
cyan solid curve and dots show the energy contours of the classical
BCH Hamiltonian H (M )

cl (M = 7) related to E0 and the associated
turning points qt for h̄ = 4π/70, respectively. The black dashed
curve represents the separatrix E = ε of H (M )

cl (p, q). The black box
in (a) and (b) represents the effective Plank cell.

By using a half-τ (symmetrized) integration, the classical
dynamics from the nth kick to the (n + 1)th kick is expressed
as the symplectic mapping

f = fV (τ/2) ◦ fT (τ ) ◦ fV (τ/2), (3)

where fV (τ ) : (q, p) �→ (q, p − τεV ′(q)) and fT (τ ) :
(q, p) �→ (q + τT ′(p), q). Here the prime stands for the
derivative with respect to the argument. The classical map
f is equivalent to the second-order symplectic numerical
integrator (scheme) for the autonomous Hamiltonian
H1(p, q) = T (p) + εV (q) with a time-step size τ .

In this paper we set T (p) = p2/2, V (q) = cos q, and τ =
1. The classical map f is called the (symmetrized) Chirikov-
Taylor standard map. Typical phase-space portraits generated
by f are shown in Figs. 1(a) and 1(b).

Adopting the canonical quantization, the wave-packet dy-
namics from the nth kick to the (n + 1)th kick is expressed

as

Û = exp

(
− i

h̄

ε

2
V (q̂)

)
exp

(
− i

h̄
T ( p̂)

)
exp

(
− i

h̄

ε

2
V (q̂)

)
,

(4)

which is referred to as the quantum map [28,29]. We focus
our attention on quasistationary states of the quantum map (4).
The eigenvalue equation is given as

Û |�n〉 = un|�n〉, un = exp

(
− i

h̄
En

)
, (5)

where |�n〉 is the quasieigenstate (Floquet state) and En is
the associated quasieigenenergy. Below we assign a quantum
number in ascending order of the eigenvalues for H1: The
quantum number m of eigenstates |�m〉 is determined by the
quantum number of an eigenstate |J (1)

n 〉 of H1 attaining the
maximal overlap |〈�m|J (1)

n 〉|2.

B. Integrable approximations to the quantum map

The quantum map (4) is expressed as a product of non-
commutative operators. Here we introduce an integrable
approximation for the operator Û by applying the BCH for-
mula [12,16,30]. The BCH expansion for the quantum map Û
gives an infinite series of the Hamiltonian expressed as

Ĥeff ( p̂, q̂) =
∑

j∈odd integer

(
− i

h̄

) j−1

ĥ j ( p̂, q̂), (6)

with ĥ j given by

ĥ1 = T̂ + εV̂ ,

ĥ3 = 1
24 ([T̂ , [T̂ , εV̂ ]] − [εV̂ , [εV̂ , T̂ ]]),

ĥ5 = · · · , (7)

where [·, ·] is a commutator. Here we call Ĥeff ( p̂, q̂) the ef-
fective quantum BCH Hamiltonian. Assuming the canonical
quantization rule p̂ψ (q) = h̄

i
∂
∂q ψ (q) and q̂ψ (q) = qψ (q), the

Hamiltonian (6) can be rewritten as a power series of h̄,

Ĥeff ( p̂, q̂) = Hcl( p̂, q̂) + O(h̄). (8)

The classical Hamiltonian Hcl can be obtained by taking the
limit of h̄ → 0 in Eq. (8). Note that the classical Hamiltonian
Hcl is equivalent to a modified Hamiltonian for the classical
map f in the context of the geometric numerical integration
[31,32].

In some situations, it was proved that the BCH series (8)
converges under appropriate operator norms [33], but we are
not sure that the current BCH series does so. Within our
numerical calculations, it was shown that the accuracy of
the series improves up to a certain optimal truncation order
and provides an extremely good approximation to the exact
results, but the series becomes less accurate as the order
increases further [12]. The series thus behaves like an asymp-
totic series. On the other hand, if we regard the BCH series
(8) as a classical Hamiltonian, the resulting Hamiltonian flows
trace well the iterated orbits generated by the classical map f
if the order of truncation is taken to be optimal. However, it
is known that the classical BCH series does not converge in
general [31].
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Throughout our paper, we use the truncated BCH Hamil-
tonian H (M )

eff , where M stands for the order of truncation in
the series (6). Now we introduce the eigenvalue E (M )

n and the
corresponding eigenstate |J (M )

n 〉 for Ĥ (M )
eff as

Ĥ (M )
eff

∣∣J (M )
n

〉 = E (M )
n

∣∣J (M )
n

〉
. (9)

Note that the Mth-order BCH Hamiltonian Ĥ (M )
eff is one dimen-

sional and time independent, which means that the classical
system associated with H (M )

cl is completely integrable.
Now let

E (res,n)
k = En + kh̄�, k ∈ Z, (10)

be single- or multiphoton (quantum) absorption energies, i.e.,
the energy excited by the periodic perturbation with the an-
gular frequency �. We say that the eigenenergy Em (m 	= n)
is a resonance energy with respect to En and the quantum
resonance occurs between the states |Jn〉 and |Jm〉 if the con-
dition Em = E (res,n)

k holds for some k. Correspondingly, the
quasienergies En and Em create an avoided crossing associated
with the quantum resonance between En and Em. Note that
here we assume that the symmetry of |Jm〉 agrees with that of
|Jn〉.

C. Symmetries

In order to discuss tunneling splittings, we impose the
periodic boundary condition on the phase space as (q, p) =
(−2π, 2π ] × (−π, π ]. The number of states up to the energy
Hcl(p, q) = ε corresponding to the separatrix is evaluated us-
ing the formula

nsep =
⌊ Aε

2π h̄
− 1

2

⌋
. (11)

Here Aε denotes the area enclosed by the separatrix given by
the condition Hcl = ε [see Figs. 1(a) and 1(b)].

We note the symmetry of the wave function. In the q repre-
sentation, the eigenstate Jn(q) := 〈q|Jn〉 has two symmetries:
parity symmetry Jn(−q) = ±Jn(q) and translational sym-
metry Jn(q + 2π ) = ±Jn(q). The quasieigenstate �n(q) :=
〈q|�n〉 of the quantum map has the same symmetries as the
integrable one. We will employ the notation (±,±) in order to
specify the parity and translational symmetries, respectively.
For the librational modes (n < nsep), tunneling splittings are
created between a pair of states:

�En = E (−,−)
2n+1 − E (+,+)

2n for even n,

�En = E (+,−)
2n+1 − E (−,+)

2n for odd n. (12)

In the cosine-potential case, the rotational modes (n > nsep)
provide tunneling splittings between a pair of states given as

�En = E (−,+)
2n − E (+,+)

2n−1 for even n,

�En = E (−,−)
2n − E (+,−)

2n−1 for odd n. (13)

In Fig. 2(a) we plot the energy spectra as a function of ε.
The yellow and blue lines represent the levels for En > ε and
En < ε, respectively. The levels with symmetries (+,−) and
(−,+) are grayed out, since we are focusing on the n = 0
doublet (here called the ground-state doublet). We can see
that some yellow lines change their color to blue and then

they approach the other blue lines. We notice that some levels
forming the doublets within the librational mode change their
partner state to the states belonging to different symmetry
classes when they pass through the separatrix [see Eqs. (12)
and (13)]. This implies that doublets are not observed in the
vicinity of the separatrix since the doublets are in the process
of changing their partners. In the following, we will omit the
indices specifying the symmetries, unless it causes confusion.

Numerical calculations are performed by using arbitrary
precision arithmetic in Mathematica, PYTHON with the MP-
MATH package, and MATLAB with the ADVANPIX toolbox [34].

III. TUNNELING SPLITTING �En VS ε

Figure 2 displays the quasienergy spectrum En as a function
of ε for several values of h̄, together with the tunneling split-
ting �En (black solid curve) and �En (black dashed curve).
As can be seen, the spectrum has a periodic structure in
E ∈ (−π h̄, π h̄] reflecting the periodic perturbation in time.
The tunneling splitting in the nonintegrable system switches
from a smooth to a nonsmooth dependence, whose switching
point is denoted by ε� in Fig. 2(b).

In the regime ε > ε�, the tunneling splitting �En [black
solid curves in Fig. 2(b)] shows the nonsmooth behavior
accompanied by spikes, which persistently deviate from the
integrable one, which is shown by a dashed curve in each
figure. Avoided crossings with a third state cause spikes, and
we specifically refer to such spikes as quantum resonance
(10).

The quantum numbers of the third states are shown with
a guideline whose number with the symbols + and − implies
the quantum number of the third state. The label + or − means
that the third state has the same symmetry as |� (+,+)

0 〉 or
|� (−,−)

1 〉, respectively. The yellow and blue curves in Fig. 2(a)
represent the rotational and librational modes, respectively,
that interact with the ground-state doublet to form avoided
crossings in the parameter regime.

If the third state is supported by a chaotic region in the
phase space, we may assume that the resulting spikes are
caused by the interaction with chaotic states. The enhance-
ment of tunneling splitting induced by such a mechanism
is called chaos-assisted tunneling [14,15,35]. If chaotic re-
gions are significantly developed in the phase space, avoided
crossings associated with chaotic states are expected to occur
frequently. Such a signature could be seen as a manifestation
of classical chaos in tunneling splittings. In the nearly inte-
grable regime, however, the area of chaotic regions is not large
enough to identify chaotic states. Therefore, we will not use
the term chaotic states in the following.

References [7,36–38] pointed out that the classical nonlin-
ear resonances (the so-called Poincaré-Birkhoff chains) can
also induce avoided crossings. On the basis of this obser-
vation, Ref. [9] developed a hybrid method to evaluate the
tunneling splitting �En based on the quantum perturbation
treatment whose coupling strength is determined by the clas-
sical phase-space information. The mechanism implied by
this recipe is called resonance-assisted tunneling. Further im-
provements have been made in [11,26].

In the following argument, we would like to draw the
reader’s attention to a difference between a single spike, which

064210-4



DYNAMICAL TUNNELING ACROSS THE SEPARATRIX PHYSICAL REVIEW E 108, 064210 (2023)

FIG. 2. (a) Plot of En vs ε. The solid curves show the quasienergy spectrum for (i) h̄ = 4π/70 and (ii) h̄ = 4π/90. The black curve shows
the energies of the ground-state doublet. The yellow and blue lines represent the levels for En > ε and En < ε, respectively. (b) Plot of �E0

vs ε. The black curve shows the tunneling splitting �E0 for the ground-state doublet. The dashed curve shows the tunneling splitting of the
ground-state doublet for the BCH Hamiltonian. The gray dots represent the tunneling splitting obtained by the Herring-Wilkinson splitting
formula (25). Quantum numbers of the third (resonant) states are inserted in the figures together with +’s or −’s. The + and − states interact
with �

(+,+)
0 and �

(−,−)
1 to create the spikes. Orange-yellow curves indicate the absorbed splitting �E

0 for the ground-state doublet. The lists
L of the absorber are (b i) L = {28, 25, 24, 21, 20, 16, 17, 37, 36, 33} and (b ii) L = {32, 29, 28, 25, 24, 20, 21, 41, 16, 17, 40, 37, 36, 33, 32}.
The absorbing perturbation is applied over the entire ε regime.

occurs as a result of local interaction between the doublet and
a third state, and the persistent enhancement of tunneling split-
tings typically observed in the �En vs ε plot [7,14,15,35,38]
or the �En vs 1/h̄ plot [6,9–11,24,25,27,39–43]. In the earlier
works, the spikes and the persistent enhancement were not
clearly distinguished. However, we will present evidence that
they are phenomena with different origins.

A. Absorbing perturbation

In this section we introduce the absorbing perturbation,
which allows us to suppress the interaction with third states
and observe its influence on the tunneling splitting �En. To
this end, we first formulate the absorbing perturbation method
[12].

Let |Jn〉 be the basis of the Mth-order BCH Hamiltonian
Heff . We introduce the absorbing operator

P̂ = 1l − 

2

∑
�∈L

|J�〉〈J�|, (14)

where  is the strength of the absorbing perturbation and L is
the list of quantum numbers that specify the states to be ab-
sorbed. Then we consider the (right) eigenvalue equation for
the absorbing operator1

P̂Û
∣∣�

n

〉 = u
n

∣∣�
n

〉
, u

n = e−(i/h̄)E
n , (15)

where the absorbed quasienergy E
n takes a complex value in

general. Note that the quantum number is assigned in the same
manner as the closed system.

Assuming  is a small parameter, we can apply the second-
order perturbation leading to

u
n 
 un

⎛
⎝1 − 

2

∑
�∈L

|a�,n|2 + 2

4

∑
�∈L

∑
m 	=n

|a∗
�,na�,m|

un − um
um · · ·

⎞
⎠,

(16)

1The symmetric form P̂Û P̂∗ may be better to keep the original
symmetry.
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where

a�,n = 〈J�|�n〉. (17)

Here the asterisk stands for the complex conjugate. Since the
second term in Eq. (16) is real, it controls the decay rate. The
first-order absorbed (right) quasieigenstate is expressed as

∣∣�
n

〉 
 |�n〉 − 

2

∑
m 	=n

bm,n|�m〉 (18)

= |�n〉 − 

2

∑
m 	=n

∑
k

bm,nak,m|Jk〉, (19)

where

bm,n =
∑
�∈L

a∗
�,ma�,n

un − um
um. (20)

Quantum perturbation theory gives us an intuitive interpreta-
tion for the absorbing perturbation, i.e., the absorbing operator
subtracts |Jk〉 from the exact state |�n〉. Therefore, it can
be considered a subtractive perturbation compared with the
standard additive perturbation. Furthermore, the subtraction
weight becomes larger as the system approaches the reso-
nance condition, i.e., um and un get closer to each other.

Under this setting, we define the absorbed quasienergy
splitting as

�E
0 = ∣∣E

1 − E
0

∣∣. (21)

Note that the absorbed quasieigenenergy E
n is complex and

so �E
n will be evaluated as a distance in the complex plane.

Thus if Im�E
n becomes larger than Re�E

n , then �E
n be-

comes greater than �En, which means that the decay process
induced by the absorber overwhelms the tunneling oscillation
between the wells. Therefore, we have to introduce the ab-
sorbers carefully so as not to destroy the original spectrum.

B. Results

The green-yellow curves in Fig. 2(b) represent the ab-
sorbed tunneling splitting for the ground-state doublet �E

n
with different values of . The list L associated with the
absorbing perturbation is given in the figure caption.

As shown in Fig. 2(b), the absorbing perturbation sup-
presses the spikes, which means that the influence of the
third (resonant) states is removed from the tunneling splitting
�En. Nevertheless, the splitting �E

n still keeps deviating
from the integrable one. Moreover, the absorbing perturbation
reveals the staircaselike structure of the splitting �E

n , which
is formed by the repetition of plateaus and steeply decaying
parts.

This result strongly implies that the effect of interaction
with a third state is only around the spike. In other words, the
range of interaction creating spikes is limited to a rather short
range. It should be noted that the deviation from integrable
tunneling nevertheless remains even after removing spikes. A
similar result was obtained by applying a weak Wick rotation
(θ � 1) to a quantum map [10].

IV. WAVE-FUNCTION-BASED OBSERVATION FOR
TUNNELING SPLITTING �En

In the regime ε < ε�, as shown in Fig. 2, the tunneling
splitting �En decays monotonically as a function of ε and
can be well approximated by the splitting for the integrable
limit. From this result one might think that the mechanism of
tunneling in this regime is essentially the same as that of the
integrable system in this regime and can be well captured by it
[11,40,42]. In this section we will show that even in the regime
ε < ε� tunneling tails exhibit signatures that are different from
those appearing in the completely integrable system. This is
done by performing a wave-function-based observation via
the Herring-Wilkinson formula. At the same time, our analysis
explains why, as explained in Sec. III, the integrable approx-
imation succeeded in reproducing the behavior of tunneling
splitting, even though the system is nonintegrable.

The ε dependence of the tunneling splitting �En for the
integrable system, e.g., H1(p, q) = p2/2 + ε cos q, can be ob-
tained by applying the WKB calculation

�E 
 ωε (E )

π h̄
eiSε/h̄, (22)

where Sε = ∫ qt

−qt
p(q; E )dq. Here the turning point qt is de-

fined by the zeros of p(q; E ) and ωε (E ) is the classical angular
frequency. Note that there is a pair of solutions ±p(q; E ).
One of the solutions with Imp(q) < 0, leading to a diver-
gent contribution, is to be removed as a result of the Stokes
phenomenon, while the other branch gives a tunneling contri-
bution. The latter orbit, running in the purely imaginary-time
direction, is often referred to as the instanton [3,44]. There-
fore, we call the first decaying parameter region the instanton
region [see the inset in Fig. 2(b i)]. It is also referred to as
direct coupling [35] or direct tunneling [9,11,40].

For h̄ � 1, the energy of the ground-state doublet can be
approximated as E = −ε, and the complex (instanton) action
is evaluated as

Sε = 8
√−ε (23)

in the integrable limit [10]. Thus the tunneling splitting �En

decreases monotonically as a function of ε.

A. Herring-Wilkinson splitting formula

The Herring-Wilkinson splitting formula [45–47] is a for-
mula that allows us to evaluate the tunneling splitting in
terms of the wave function that forms a tunneling doublet. Let
us consider a one-dimensional time-independent Hamiltonian
H = p2/2 + εV (q) with a symmetric double-well potential.
Let ψL(q) and ψR(q) be the states associated with congruent
equienergy manifolds located in the left and right regions,
respectively. Assume further that the exact eigenstates can be
approximated as

�±(q) 
 1√
2

[ψL(q) ± ψR(q)], (24)

with energies E ± �E/2. For the sake of simplicity, we will
drop the quantum number n here. Due to the (one-dimensional
and time-independent) Herring-Wilkinson splitting formula,
the tunneling splitting between two states ψL(q) and ψR(q) is
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evaluated as

�E 
 h̄2[ψ ′∗
R (q)ψL(q) − ψ∗

R (q)ψ ′
L(q)]q=0, (25)

where the prime stands for the derivative with respect to q.
Assuming further that ψL (R)(q) is expressed by a local WKB
solution around q = 0,

ψL (R) ∼ e(i/h̄)Sε (q;E ), Sε (q; E ) = ±
∫ q

∓qt

p(q′; E )dq′, (26)

and inserting (26) into the formula (25), we reach the semi-
classical formula of the tunneling splitting (22). Here qt

denotes the turning point close to q = 0.
In nearly integrable systems, according to the

Kolmogorov-Arnold-Moser (KAM) theorem, invariant
curves supporting the WKB states survive under small
perturbations. However, one cannot develop WKB theory
for tunneling splittings in nearly integrable systems in the
same way because KAM curves do not bridge congruent
equienergy-invariant manifolds in the complex plane, but are
expected to have a border of analyticity [48–50]. This prevents
us from constructing semiclassical states ψL (R)(q). Therefore,
to compute wave functions based on the Herring-Wilkinson
splitting formula, we use here localized wave functions
constructed numerically, instead of the WKB states,

�L (R)(q) = 1√
2

[�0(q) ± �1(q)], (27)

where �n(q) (n = 0, 1) are states obtained by direct numerical
calculations.

The Herring-Wilkinson splitting formula for Floquet sys-
tems can be applied analogously to the time-independent one
(see the Appendix). The gray dots in Fig. 2(b) represent
the tunneling splittings calculated based on the Herring-
Wilkinson splitting formula. The derivatives in Eq. (25) are
evaluated numerically using the second-order (central) differ-
ence scheme. As can be seen in Fig. 2, the Herring-Wilkinson
splitting formula works well, suggesting that the amplitude
�L (R)(q) at q = 0 controls the tunneling splittings.

B. Wave-function-based observation

Before moving on to the analysis for the nonintegrable
system, we will discuss integrable systems for reference. Let
|J0〉 and |J1〉 form the ground-state doublet for the BCH basis.
The localized states are constructed as

JL (R)(q) = [J0(q) ± J1(q)]/
√

2. (28)

Figure 3(a) illustrates the wave function JL(q) for several
values of ε. The WKB argument predicts how wave func-
tions behave as a function of ε. The (local) WKB solution
is expressed as Eq. (26) with p(q; E ) = √

2[E − V (q)]. Since
the imaginary action Sε (q) increases monotonically with q,
the resulting WKB wave function decays monotonically and
exponentially from the left turning point −qt to the opposite
turning point qt . Then the manifold supporting the WKB wave
function connects to the real branches ±p(q; E ) and generates
oscillatory pattern in wave function. It is difficult to identify
the turning points for q < 0 from the profile of JL(q) because
the ground state does not have nodes. On the other hand, the
turning points qt for q > 0 can be identified from the wave

FIG. 3. (a) Wave functions JL (q) for the ground-state doublet of
the BCH Hamiltonian with h̄ = 4π/70. (b) and (c) Husimi represen-
tation of JL (q) in log10 scale with several different values of ε. The
associated manifolds p±(q; E ) and the turning points qt are shown
by the cyan curves and the cyan dots, respectively. The black box in
(b) and (c) shows the effective Plank cell.

function JL(q) since there is a sharp dip at the turning points
qt . Note that the quantum number of the ground-state doublet
is zero, so the oscillatory pattern associated with the real
branches ±p(q; E ) for q > 0 appears just as a single convex
around q = π , which is found in Fig. 3(a).

Due to the the Herring-Wilkinson splitting formula (25),
one can find that the ε dependence of the tunneling splitting
�En almost follows the ε dependence of the amplitude of
the wave function around q = 0. Recall that Sε (q = 0; E ) is
proportional to

√−ε, so the amplitude of JL(q = 0) decays
as e−√

ε/h̄ [see Eq. (23)]. Therefore, the splitting �E decays
monotonically as a function of ε or 1/h̄.

Now we turn to the nonintegrable case. Figure 4(a) demon-
strates the wave functions JL(q) (gray curves) and �L(q) (red
curves) and the absorbed ones �

L (q) (green-yellow curves)
for several different values of ε. The corresponding Husimi
representations for ψL(q) are shown Fig. 4(b).

As shown in Fig. 4(a i), in the region ε � ε�, the wave
function �L(q) is well approximated by the integrable one
JL(q). Moreover, there is no noticeable difference in the
Husimi representation between |�L〉 and |JL〉 [see Figs. 4(a i)
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FIG. 4. (a) Wave functions of the quantum map �L (q) (red), the associated integrable system JL (q) (gray), the perturbation term χL (q)
in Eq. (30) (black), and the absorbed wave function �

L (q) (green-yellow curves) whose absorbing perturbation strength  is shown in the
color scale to the right. The value of the parameter ε, which is also shown in the inset of Fig. 2(b i), is (a i) 0.15, (a ii) 0.3, (a iii) 0.624, and
(a iv) 0.85. The Husimi representations of (b) �L (q) and (c) χL (q) are shown in log10 scale. The cyan solid line and the light gray dashed
curve represent the contour curves specified by (b) Hcl = E0 and (c) Hcl = ε. The Planck constant is chosen as h̄ = 4π/70. The black boxes in
(b) and (c) stand for the effective Planck cell.

and 4(b i)]. It should also be noted that there are several
avoided crossings with the rotational modes in this regime,
but such avoided crossings do not create visible spikes in the
tunneling splitting �En.

As ε approaches ε�, on the other hand, although the tun-
neling splitting �En coincides with the integrable one [see
Fig. 2(b i)], the tunneling tail of �L(q) significantly deviates
from that of JL(q) [see Fig. 4(a ii)]. Notice that the tunneling
tail for �L(q) exhibits oscillatory patterns in the region 0 <

q < 2π , which originates from the transversal KAM curves
running outside of librational KAM curves [see Fig. 4(b ii)].
This observation strongly suggests that tunneling across the
separatrix plays an significant role in the deviation of �L(q)
from JL(q). According to the Herring-Wilkinson splitting for-
mula, we can predict the magnitude of the tunneling splitting
from the amplitude of the wave function at q = 0. Indeed, we
can see in Fig. 4(b ii) that the amplitude of �L(q) at q = 0
matches that of JL(q).

For the regime ε > ε�, on the other hand, the oscillatory
pattern spreads across the separatrix and covers the region
containing q = 0 [see Fig. 4(a iii)]. As a result, the tunnel-
ing splitting �En no longer follows the integrable one and
starts to deviate [see Fig. 2(b i)]. We also recognize that

the wave function �
n (q) keeps an oscillatory pattern even

when the absorbing perturbation is applied. In particular, the
amplitude at q = 0 is several orders of magnitude larger than
that in the integrable one. This robustness gives rise to the
persistent deviation of the tunneling splitting �En from the in-
tegrable prediction, meaning that once the deviation appears,
the tunneling splitting �En can never be approximated by the
integrable splitting. The existence of an oscillatory pattern
implies that multiple modes are involved in creating the wave
function (see Fig. 4).

As shown here, the wave function is more informative than
the tunnel splitting. The tunnel splitting concerns only the
value of the wave function at q = 0, but the wave function
reveals how the deviation from the integrable tunneling pro-
ceeds. In particular, even in the parameter regime where the
tunnel splitting obtained from the integrable approximation
well approximates that for the nonintegrable map, we can
detect the difference in the wave function.

C. Tunneling across the separatrix

As discussed in Refs. [12,16], the quantum perturbation
calculation based on the BCH Hamiltonian reproduces the
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tunneling tail of the exact eigenstates. In this section we
further proceed with wave-function-based observations using
quantum perturbation theory and examine the nature of the
oscillatory patterns that are thought to be caused by the tunnel-
ing across the separatrix, found in the preceding section (see
Fig. 4).

The one-step time evolution generated by the Mth-order
BCH Hamiltonian Û (M )

eff := e−(i/h̄)Ĥ (M )
eff is very close to the time

evolution driven by the quantum map Û . Now we introduce
the residual operator as

δÛM = Û − Û (M )
eff , (29)

which can be made sufficiently small as we increase the trun-
cation order M. The residual operator δÛM can be regarded
as the small perturbation for the integrable time-one evolu-
tion Û (M )

eff . For the optimal truncation M, the exact state is
expanded in terms of BCH eigenstates as a perturbative form

|�n〉 ≈ ∣∣� (BCH)
n

〉 = |Jn〉 + |χn〉, (30)

where

|χn〉 :=
∑
m 	=n

〈Jm|δÛM |Jn〉
e−(i/h̄)Em − e−(i/h̄)En

|Jm〉. (31)

Note that the standard perturbation theory consists of the
known parameters, while Eq. (31) contains nontrivial terms
related to the residual operator δÛM .

Using the ground-state doublet calculated by Eq. (31), we
construct the superposed wave functions |χL (R)〉 := (|χ0〉 ±
|χ1〉)/

√
2. The black curve in Fig. 4(a) displays the wave

function χL(q), and the corresponding Husimi representation
is shown in Fig. 4(c). The parameter values ε plotted in Fig. 4
are marked with arrows in Fig. 2.

For ε � ε�, as shown in Fig. 4(a i), the relation χL(q) <

JL(q) holds in the entire q regime, so the contribution from
χL(q) is not visible in the state �L(q). As illustrated in Fig. 3,
the tunneling tail of JL(q) decays exponentially as predicted
by the WKB formula (26), whereas the amplitude of χL(q)
tends to increase up to the end of the first plateau of the
�E-ε plot [compare the amplitudes of χL(q) (black curves)
in Figs. 4(a i)–4(a iii)]. As ε increases, the oscillatory pattern
mentioned above appears and gradually expands to form a
plateau. The left edge of the plateau finally reaches q = 0,
as seen in Figs. 4(a ii) and 4(a iii). Thus, we can specify the
critical perturbation strength ε� as a parameter value at which
the amplitude at q = 0 crosses over between JL(q) and χL(q).
Figure 4(a ii) is closest to such a crossover situation. This
crossover is directly observed in the Husimi representation of
|χL〉. Note that the oscillatory pattern localized on a transver-
sal KAM curve persists even in the second steeply decaying
region in the �En vs ε plot [see Figs. 4(a iv), 4(b iv), and
4(c iv)].

The projection onto the basis |Jm〉 gives further information
on the wave function. Figure 5 displays the amplitudes of
the expansion coefficients 〈Jm|�L〉 and 〈Jm|�

L 〉 and the tran-
sition matrix elements 〈Jm|δÛ |JL〉. The corresponding wave
functions in the q representation of Figs. 5(a) and 5(b) are
drawn in Figs. 4(a iii) and 4(a iv), respectively. As shown
in Fig. 5(a), the amplitudes 〈Jm|�L〉 and the perturbed one
〈Jm|χL〉 show the spikes, marked by the arrow in the plot. This

FIG. 5. Projection of the exact wave function |�L〉 (black solid
curves) and the absorbed one |�

L 〉 (green-yellow curves) onto the
basis states |Jm〉 for (a) ε = 0.624 and (b) ε = 0.85. Cyan dashed and
red solid curves represent 〈Jm|δU |JL〉 and 〈Jm|χL〉, respectively. The
black arrow in (a) displays the resonant (third) state [see Figs. 2(a i)
and (b i)].

is because the transition matrix elements do not contain the
energy denominator giving rise to resonances whereas |χL〉
has the energy denominator.

As can be seen in Fig. 5, the amplitude of the resonance
peak decreases significantly as the absorbing perturbation
strength  increases. When  is close to 1, the amplitudes
〈Jm|�

L 〉 and 〈Jm|δÛ |JL〉 almost coincide with each other. This
shows that the absorbing perturbation effectively suppresses
the influence of avoided crossings, since the latter amplitude
excludes the energy denominator terms in the perturbation.

For even larger ε shown in Fig. 5(b), the amplitudes
〈Jm|δÛ |JL〉 and 〈Jm|�L〉 almost coincide with each other,
which means that the influence of avoided crossings becomes
negligible. In fact, the absorbing perturbation gives a small
effect on the oscillatory pattern of the wave function �

L (q)
[see Fig. 4(a iv)] and the expansion coefficient for 〈Jm|�

L 〉
[see Fig. 5(b)]. We also present a situation where the value
of ε is chosen such that the doublet states are away from any
avoided crossings. In this case, quantum resonances do not
happen and correspondingly no spikes appear in 〈Jm|χL〉.

064210-9



HANADA, IKEDA, AND SHUDO PHYSICAL REVIEW E 108, 064210 (2023)

Our observations reveal that the influence of the avoided
crossings are well localized around the spikes as discussed
in Sec. III A. Furthermore, the plateau region around q = 0,
which brings the persistent enhancement of the tunneling
splitting �En, is induced by the broadly spreading transition
matrix elements 〈Jm|δÛ |JL〉 across the separatrix. These re-
sults provide strong evidence showing that the robustness of
the tunneling splitting enhancement, which has been verified
in Sec. V C, is due to transition matrix elements 〈Jm|δÛ |JL〉
with such unique properties.

V. THE 1/h̄ DEPENDENCE FOR THE SPLITTING

In the preceding section, we analyzed the behavior of tun-
neling splittings as a function of the perturbation strength ε,
keeping h̄ fixed. In this section we fix ε and observe tunneling
splittings as a function of 1/h̄. Such an observation has been
made frequently in the literature [6,9–11,24–26,40–42]. We
show here that the scenario obtained in the preceding sec-
tion holds true in the latter case as well.

A. Response to the absorbing perturbation

As seen in Fig. 6, the plot of �En vs 1/h̄ typically cre-
ates a staircase structure. The underlying mechanism for the
staircase structure was closely studied in Ref. [12]. In our fol-
lowing argument, we will specifically focus on the first steeply
decaying part (1/h̄ < 2), which will be called the instanton re-
gion hereafter. For larger 1/h̄, the first plateau (2 < 1/h̄ < 4)
and the second steeply decaying region (4 < 1/h̄ < 5) follow
(see also Fig. 6).

As is the case in the preceding section, when we apply
the absorbing perturbation, the spikes created as a result of
avoided crossings disappear, yet the staircase backbone re-
mains, as seen in Fig. 6. In this calculation, the absorber is
made up of the states with the quantum number specified in
the box of Fig. 6 and applied in the whole 1/h̄ regime. Note
that spikes in the �En vs 1/h̄ plot appear around avoided
crossings, not necessarily just at a particular avoided crossing
point as in the �En vs ε plot.

As has been clarified in Ref. [12] and will be discussed
below, the ground-state doublet and excited states are broadly
or even almost equally coupled with excited states. Such a
signature explains the robustness of the staircase structure
against the absorbing perturbation. Note that this scenario is
already known from the analysis for the �En vs ε plot in the
preceding section.

B. Resonance-assisted tunneling and the signature of coupling

In this section we examine whether the scenario re-
vealed through the absorbing perturbation experiment and
the coupling nature under the BCH representation could be
compatible with the RAT picture by carrying out the calcula-
tion following the recipe presented in Refs. [9,11,26]. Within
the RAT theory, the concrete recipe for calculating quantities
related to tunneling via classical nonlinear resonances first
makes use of information taken from classical resonances in
question and then applies quantum perturbation theory. In this
sense the method is hybrid, combining classical data with the
standard quantum perturbation scheme.

FIG. 6. The black and green-yellow solid curves are the
exact tunneling splitting �E0 and the absorbed splitting
�E

0 , respectively (the absorbing strength is given in the
legend). The gray dots represent the tunneling splitting
obtained using the Herring-Wilkinson splitting formula. The
list of quantum states used to construct the absorber is L =
{16, 17, 18, 35, 36, 37, 32, 33, 52, 53, 48, 49, 72, 68, 69, 28, 29, 44,

45, 46, 64, 65}. The black dashed curve represents the tunneling
splitting �E0 of the BCH Hamiltonian. The numbers in the blue and
yellow boxes indicate the quantum number of the resonant (third)
states. The blue and yellow boxes distinguish whether the third
state is a librational or rotational mode, respectively. The symbol +
indicates the third state has the same symmetry as that for |� (+,+)

0 〉
and the symbol − indicates it belongs to the opposite symmetry
state. Regions (a), (b), and (c) of 1/h̄ refer to the first (instanton)
decay, the first plateau, and the second steeply decaying region (see
the text).

The wave function associated with a classical r:s resonance
is locally constructed from the RAT scheme as∣∣�(RAT)

n

〉 = |Jn〉 +
∑
k>0

Bn+kr,n|Jn+kr〉, (32)

where

Bn+kr,n =
kc∏

�=1

An+�r,n+(�−1)r

En − En+�r + �sh̄ω
, (33)

with

An+�r,n+(�−1)r = Vr:s(Ir:s)eiφk

(
h̄

Ir:s

)kr
√

(n + kr)!

n!
. (34)

Here En denotes the unperturbed energy and Ir:s represents the
action satisfying the classical resonance condition ω:� = r:s,
where ω and � are the internal and external (perturbative) fre-
quencies. The matrix element Bm,n is sparse and has nonzero
values only if the condition m = n + kr for k > 0 is satisfied
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FIG. 7. Phase-space portraits of the classical map f with ε =
(15/16)2 and (a) 1/h̄ = 4.5 and (b) 1/h̄ = 8.8. The classical res-
onance with r:s = 8:1 is shown as red dots. The energy contours
of the BCH Hamiltonian Hcl associated with the RAT scheme are
drawn as solid curves (see the legends). The separatrix of the BCH
Hamiltonian is shown by the black dashed curve.

[9,26]. The summation is taken up to

kc =
⌊

1

r

(Areg

2π h̄
− 1

2

)⌋
. (35)

Here Areg stands for the area of the regular tori centered
at (q, p) = (±π, 0). There may be arguments about how to
determine the regular region in the corresponding quantum
system [25,26,40]. Here we assume that the regular region
Areg is the region bounded by separatrix Aε of Hcl for sim-
plicity.

To obtain the tunneling splitting, we can use the following
formula based on the Herring-Wilkinson formula:

�E (RAT)
n = �En +

∑
0�k�kc

|Bn,k�|2�En+rk . (36)

Here �En denotes the tunneling splitting of the unperturbed
Hamiltonian.

We now perform the RAT calculation and see how it works
in a situation where a visible nonlinear resonance appears (see

Fig. 7). The parameters of RAT are determined through the
relations [11,24,26]

Ir:s = 1

4π
(S+

r:s + S−
r:s), (37)

√
2mr:sVr:s = 1

16
(S+

r:s − S−
r:s), (38)√

2Vr:s

mr:s
= 1

r2
arccos(trMr:s/2), (39)

where S+ (−)
r:s are the phase-space region bounded by the

outer and inner separatrices for the r:s classical resonance,
respectively, and Mr:s is the monodromy matrix of the stable
periodic point associated with the r:s classical resonance. In
the RAT scheme, the unperturbed Hamiltonian can be taken
independently of the determination of coupling terms. Here
the truncated BCH Hamiltonian Ĥeff is used for the unper-
turbed Hamiltonian.

The recipe of the RAT scheme first requires finding visible
nonlinear resonances in the region enclosed by separatrix. In
the present case, the r:s = 8:1 resonance chain is the lowest
resonant condition and most visible, as can be easily seen
from Fig. 7. Of course, there should be an infinite number of
nonlinear resonances buried in the regular region. However, if
we require that the size of the nonlinear resonances should be
comparable to the size of the Planck cell, then the r:s = 8:1
resonance is the only candidate expected to make a RAT
contribution. According to the RAT prescription, the ground-
state doublet is coupled as E0 → E16 → E32 → E48 → · · · ,
if En+kr < ε holds.2 In the case 1/h̄ = 4.5, 8.5, 12.5, . . ., the
levels E16, E32, E48, . . . satisfy the quantum resonance condi-
tion (10) with E0.

First, let us focus on the first steeply decaying (instanton)
region, labeled (a) in Fig. 8. We can find that the results in
Eq. (36), obtained according to the RAT recipe, reproduce the
splitting curve shown in Fig. 8. In this case, the upper limit
of the sum in Eq. (36) is taken as kc = 0. We should note that
the reproducibility of the instanton region depends strongly
on how the unperturbed Hamiltonian Ĥeff is constructed, al-
though this issue has not been explicitly addressed in the
literature. The truncated BCH Hamiltonian Ĥeff is suitable for
this purpose.

Next we shift our focus to the first plateau region, labeled
(b) in Fig. 8. In this region, the RAT is obviously unable to
reproduce the plateau structure. This is because the upper limit
of Eq. (36) kc is still zero in the first plateau region, meaning
that there is no contribution in the RAT recipe. Recall that the
RAT theory starts with the assumption that the Hamiltonian
is expressed in terms of action-angle variables. This restricts
the quantum transition within the same action-angle space,
which means that the RAT scheme can only treat the transition
inside the separatrix. This is a fundamental limitation of the
integrable approximation framework. One cannot go beyond
the separatrix with a single pair of action-angle variables.

2The quantum numbers n = 16, 32, 48, . . . are equal to 8, 2 ×
8, 3 × 8, . . . if they are considered in (reduced) Hilbert space with
the same symmetry.
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FIG. 8. The black solid and dashed curves are tunneling splitting
�E0 obtained by the exact calculation and �E0 obtained by diago-
nalizing the BCH Hamiltonian, respectively. The cyan curve is the
tunneling splitting �E (RAT)

0 obtained by the RAT calculation scheme
using the r:s = 8:1 nonlinear classical resonance. The gray vertical
lines indicate values of 1/h̄ at which the value of kc in Eq. (36) is
incremented by one. The regions (a), (b), and (c) are the first steeply
decaying (or instanton), first plateau, and second steeply decaying
regions, respectively (see the text for details). The parameter values
used for our RAT calculation are S+

r:s = 6.573, S−
r:s = 7.280, and

TrMr:s = 1.701 463 596 85.

One could alternatively say that in the plateau region the
state giving the coupling to the ground state via the r:s = 8:1
resonance is located beyond the separatrix. This can also be
justified by the fact that the most dominant mode of con-
tribution decomposition in the plateau region is beyond the
separatrix (see Ref. [12]).

It would be worth examining the characteristic of the wave
function since the splitting is well approximated by the am-
plitude of the associated wave function |�L (R)〉 at q = 0. As
shown in Figs. 9(a i) and 9(a ii), the result of the RAT wave
function |�(RAT)

n 〉 is equal to |Jn〉 in the first steeply decaying
and plateau region due to kc = 0. However, as clearly shown
in Fig. 9(a ii), there is a significant difference between |�L〉
and |�(RAT)

L 〉 in the region 0 < q < 2π . The Husimi repre-
sentation of these wave functions tells us that the tunneling
tail of |�L〉 has a large amplitude in the transversal KAM
curve region, which means the tunneling occurs across the
separatrix. This is evidence implying that the coupling beyond
the separatrix is responsible for the formation of the plateau in
the �E0 vs 1/h̄ plot.

The value of kc switched to 1 when the second steeply
decaying region starts. In other words, the perturbation (sec-
ond) term in Eq. (36) starts to contribute to �E (RAT)

n . As
demonstrated in Fig. 8, the result of the RAT calculation
shows rather good agreement with the exact one in the second

steeply decaying region. This implies that the amplitude of
the wave function at q = 0 is also well predicted by the RAT
calculation, which can be indeed verified in Figs. 9(a iii)
and 9(a iv). We notice that the RAT calculation reasonably
reproduces the wave function for the region q � 0. The RAT
prediction typically shows artificial jumps (see Fig. 8). This is
a known problem, as pointed out in Ref. [24], that is due to
the discontinuous incrementation of kc with varying h̄.

At first glance, the RAT scenario captures the tunneling
mechanism at least for the second steeply decaying region,
that is, the tunneling coupling is enhanced via the classical
nonlinear resonance. However, as will be argued below, the
mechanism described by the RAT scenario only works in a
limited situation. We will closely examine the assumptions
implicit in the RAT theory and carefully consider the mech-
anism underlying the tunneling process.

Before going into more detail, we would like to emphasize
that the limitation of the RAT prediction is already manifested
in the wave-function profile for the q > 0 region. As shown in
Figs. 9(a iii) and 9(a iv), the RAT wave function does not pre-
dict the exact one in q > 0 even in the second steeply decaying
region, and agreement is achieved only for the region q � 0.
The RAT theory fails to predict the tunneling transition across
the separatrix. As can be seen in Fig. 9(a iv), the region of
the wave function showing oscillatory patterns has a support
outside of the separatrix [see Fig. 9(b iv)]. Since the RAT
scheme only considers the transition within the separatrix,
it can never predict the oscillatory region. According to the
Herring-Wilkinson splitting formula, we should recall that �E
reflects the value of the wave function only at q = 0. There-
fore, if q = 0 is included in the region showing oscillatory
patterns, the RAT calculation fails to predict �En, and such
regions appear periodically in the �En vs 1/h̄ plot.

C. Origin of persistent coupling

Here we focus on the spike observed in the second steeply
decaying region labeled (c) in Fig. 8. At 1/h̄ = 4.5, as shown
in Fig. 8, the spike appears in the splitting curve as a result
of the interaction between the ground-state doublet and the
third states labeled by 16+ and 17− (see Fig. 6). The quan-
tum resonance can be associated with the r:s = 8:1 classical
resonance since the third level is located on the opposite side
of the ground-state doublet across the classical resonance [see
Fig. 7(a)].

This is exactly the expected situation in the RAT scheme,
where the underlying classical resonance is directly linked to
a quantum resonance and responsible for generating spikes in
the splitting curve. The RAT theory provides a local Hamilto-
nian for the situation observed here by means of the classical
canonical perturbation analysis. Note that this correspondence
was analyzed in [36] and later argued in the context of the
RAT theory [9]. In the latter paper, the instanton description
is applied by constructing the local pendulum Hamiltonian.
References [38,43] have actually demonstrated that such cor-
respondence holds in relation to the RAT theory.

Now we move our attention to the region away from the
spike. Here it is important to recall that, even in the region
without spikes, we have kept the couplings with the third
states 16+ and 17− in the RAT calculation shown above.

064210-12



DYNAMICAL TUNNELING ACROSS THE SEPARATRIX PHYSICAL REVIEW E 108, 064210 (2023)

FIG. 9. (a) The red, cyan, and gray solid curves represent the exact wave function �L (q), the RAT wave function �RAT
L (q), and the

integrable one JL (q) in the q representation, respectively, for (i) 1/h̄ = 1.6, (ii) 1/h̄ = 3.2, (iii) 1/h̄ = 4.5, and (iv) 1/h̄ = 5.1. The plots of the
Husimi representation for (b) �L (q) and (c) �RAT

L (q) are in logarithmic scale. The energy contour En+kr (k = 0, 1) and E = ε are indicated
by the cyan solid curves. The white dashed curve is included as a guide. The effective Planck cell is indicated by the black box in the top left
corner of each panel.

Otherwise, the splitting curve drops down to the instanton
level (the yellow curve in Fig. 8). However, the RAT theory
does not tell us why we should or are allowed to keep the
coupling with the third states even away from the spikes.
In other words, the RAT contribution has to be introduced
persistently, even far from an avoided crossing, to reproduce
the exact curve. Note that there is no a priori principle within
the RAT theory about when to apply quantum perturbations.
One can switch on and switch off the interaction arbitrarily by
hand.

As explained in some literature, the association between
classical nonlinear resonances and the corresponding quan-
tum states is done in the following way. Given a system
with two degrees of freedom, whose Hamiltonian is a func-
tion of two action variables I1 and I2 with a parameter λ,
for simplicity, if quantum levels degenerate at λ = λ0, the
situation can be expressed semiclassically as H (I1, I2, λ0) =
H (I ′

1, I ′
2, λ0). Provided |In − I ′

n| � 1 (n = 1, 2), we can ex-
pand H (I ′

1, I ′
2, λ0) around I ′

n = In to obtain

H (I ′
1, I ′

2, λ0) = H (I1, I2, λ0) + (I1 − I ′
1)ω1

+ (I2 − I ′
2)ω2 + · · · , (40)

where ωn = ∂H/∂In (n = 1, 2). Now assuming the semiclas-
sical quantization condition In = (m + αn/4)h̄, where αn is

the Maslov index, we find the condition at λ = λ0,

rω1 = sω2, (41)

where r = m1 − m′
1 and s = m2 − m′

2, which is exactly the
classical resonance condition. Therefore, the degeneracy or
interaction of two states implies the existence of a resonance
in the corresponding classical system. The interaction gen-
erally makes the degenerated levels lift slightly to give an
avoided crossing. In other words, the presence of avoided
crossings may be linked to the classical nonlinear resonances.

It should be recalled, however, that not all avoided
crossings are necessarily associated with classical nonlinear
resonances, since avoided crossings also occur in one-
dimensional systems [26,39], where resonances do not exist.
Therefore, the correspondence between avoided crossings and
classical nonlinear resonances is a question to be investigated
and is still an ongoing topic [38,43,51–53].

The basic idea of the RAT theory is that a nonlinear
resonance mediates the two states straddling the classical res-
onance. Therefore, the invariant manifolds supporting the two
states should be located on opposite sides of the resonance
under consideration. Otherwise, the classical resonance can-
not produce the tunneling coupling. When varying ε or 1/h̄,
one can realize such a situation only at a certain value of ε

or 1/h̄ [see Figs. 7(a) and 8]. If the doublet associated with
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the avoided crossing interacts with a third state, the spike is
created precisely at this moment. However, RAT persistently
introduces the coupling associated with the 1:8 classical reso-
nance even if there exist no 1:8 classical resonance in between
the levels E0 and E16 if the resonant condition is not satisfied
[cf. Figs. 7(b) and 8]. There is no justification for keeping the
coupling in the off-quantum-resonance situations.

It is also important to note that the same mechanism in-
volving an avoided crossing and a third state works not only
in the nonintegrable system but also in the completely inte-
grable system. The spikes in the tunneling splitting plot appear
there, as pointed out in Ref. [26] and actually demonstrated in
Ref. [39]. Thus, one cannot say that the enhancement invoked
by instantaneous spikes implies the quantum manifestation of
classical nonintegrability.

These arguments immediately raise the question of why
the RAT calculation shown in Fig. 8 reasonably predicts the
tunneling splitting in the second steeply decaying region.
A key to understanding this is the existence of the broadly
spread interactions observed in Fig. 10. As mentioned above,
the broad peak is robust against the change of 1/h̄ and ε.
It survives persistently so that the interaction is maintained
even away from the peaks or avoided points. As a result
of such a coupling signature, the coupling calculated based
on the RAT theory could be replaced by another component
in the broad peak, leaving the result unchanged. We have
already confirmed that this is indeed possible by performing
the absorption experiment. Even if we remove the coupling
associated with the RAT calculation, the decay region does not
drop to the instanton level and remains the same. This clearly
shows that the RAT coupling is not a necessary condition for
reproducing the exact calculation.

We can provide additional evidence showing that the cou-
pling strength can be reproduced by the RAT and that it is not
specific to the coupling obtained by the RAT. As displayed in
Fig. 10(a), the modes 16+ and 17−, which are dominant when
spikes are generated, are no longer dominant modes; only one
of them is when the parameter is away from the spike [see
Fig. 10(b)].

The enhancement due to the presence of spikes or
avoided crossings and the persistent enhancement supported
by widespread couplings should be distinguished as different
mechanisms. From the perspective of perturbation theory, one
can say that the former occurs as a result of the near degen-
eracy of the energy denominator, while the latter comes from
the nature of transition matrix elements [13].

A crucial issue is therefore reduced to explaining why the
persistent enhancement found in the �En vs ε and �En vs 1/h̄
plots emerges. In Ref. [13] we investigated in detail and found
a singular nature of the broadly extended couplings, which
also supports that the coupling signature is quite different
from that predicted by RAT theory. A deeper understanding
of this nontrivial coupling signature should be explored based
on the semiclassical analysis [21,22]. However, this is beyond
the scope of the present paper [54].

VI. CONCLUSION AND DISCUSSION

As reported in previous studies, the width of the tunnel-
ing splittings deviates from that predicted by the integrable
approximation [5–13]. Once it deviates from the integrable

FIG. 10. The solid black and red lines indicate the expansion co-
efficients for the exact wave function 〈Jm|�L〉 and the wave function
〈Jm|χL〉 for (a) 1/h̄ = 4.5 and (b) 1/h̄ = 5.1. The black dashed curve
represents 〈Jm|δÛ |JL〉. The cyan bar represents the expansion coeffi-
cient 〈Jm|� (RAT)

L 〉. The black arrow indicates the resonant (third) state
(see also Fig. 8).

prediction, it persists even if the inverse Planck constant [12]
is varied or, as shown in Sec. III, some system parameter
is changed. It would therefore be reasonable to regard the
observed phenomena as a manifestation of the nonintegra-
bility of the system. The origin of such enhanced tunneling
should go back to the underlying classical mechanics. The
task requires the semiclassical formulation of specifying in-
dividual energy levels for mixed-type nonintegrable systems,
but unfortunately it is unavailable.

In this paper, using the integrable basis constructed from
the BCH expansion, we first studied the mechanism of strong
and persistent enhancement, by observing the response to
absorbing perturbation, and the nature of wave functions. We
found that the deviation of tunneling splittings from the inte-
grable prediction is observed when we plot the splitting not
only as a function of the inverse Planck constant 1/h̄ but also
as a function of the perturbation strength ε of the system. The
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latter plot allows us to see the origin of the enhancement more
directly, as discussed in Sec. III.

If one sweeps the system parameter, the splitting width is
enlarged and shows a spiky peak. Spikes appear as a result
of the collision of a doublet with a third state to produce
an avoided crossing in the energy space. The relationship
between these spikes and the enhancement has been a matter
of discussion since the notion of chaos-assisted tunneling was
proposed [15,35]. It should be recalled that spikes can also be
seen even in integrable systems, so the existence of spikes is
not a property shared only by nonintegrable systems.

Here we have claimed that the origin of spikes and
the persistent enhancement of tunneling splittings should be
distinguished. This was shown by applying the absorbing
perturbation technique [12]: Even after removing interactions
associated with avoided crossings, the enhancement of tun-
neling couplings remains. This strongly suggests that the type
of interactions supporting the persistent enhancement is of
a long-range nature in the energy space. In addition to the
energy states forming an avoided crossing in question, also
many other levels are involved in the persistent enhancement.

With the help of wave-function-based analysis, we revealed
that the coupling across the separatrix is responsible for the
persistent enhancement of tunneling couplings. The Herring-
Wilkinson formula allowed us to analyze the behavior of
tunneling splittings as a function of the perturbation parameter
ε. With this tool, it was shown that tunneling splittings are
well reproduced by the value of wave function at the central
unstable fixed point. At the same time, it was pointed out that
the wave function in other regions has richer information than
the splitting width.

Local modes obtained by the superposition of the states
forming a doublet provide information about which compo-
nents contribute to the splitting enhancement. It is essential
that the coupling with the outer rotational domains is always
present even in the parameter regime where the integrable
approximation works. Moreover, nothing seems to happen
in the splitting plot. The strong enhancement of tunneling
splittings occurs when the contribution from the outer region
exceeds that predicted by the integrable approximation. After
the transition, the splitting width increases as a function of the
perturbation parameter and then decreases again. It has been
shown that the coupling with the outer regions is always dom-
inant. As a result, the wave function exhibits a plateau with
oscillatory patterns, whose signature contrasts sharply with
the local modes obtained by the integrable approximation.

Based on the analysis of splittings and wave functions in
parameter space, we revisited the plot of the splitting against
the inverse Planck constant. In particular, we examined the
validity of the RAT scenario as an explanation for the persis-
tent enhancement of tunneling couplings. Since the original
idea of the RAT theory was to evaluate the tunneling cou-
pling based on the integrable approximation, i.e., the coupling
between symmetrically invariant manifolds via a nonlinear
resonance, the coupling cannot be introduced between the
regions that are not connected by the integrable approxima-
tion. The transition across the separatrix, or equivalently the
coupling with outer states, cannot be captured by the type
of coupling assumed in the RAT theory. As demonstrated in
Sec. V, the situation following the original spirit of the RAT

theory does exist and the proposed prediction has been shown
to work. However, such a situation is limited, occurring only
around spikes of splitting.

On the other hand, as explained above, the strong enhance-
ment observed for the first time just after the transition from
the instanton to the plateau region appears due to the coupling
with outer states. This situation is obviously beyond the scope
of the RAT theory. To reproduce the exact quantum behav-
ior, one has to maintain the coupling “by hand”; otherwise
the splitting curve will drop to the curve predicted by the
integrable approximation. The RAT couplings nevertheless
provide a reasonable prediction because the coupling for the
exact state is broadly spread, not localized around a particular
resonance state. The existence of broad coupling thus explains
why keeping the RAT coupling yields a reasonable result,
even though it is inconsistent with the original idea: incor-
porating only the coupling associated with specific nonlinear
resonances.

In addition, in the periodically perturbed system, the
spikes of the splitting curve �En appear due to the quantum
resonance condition (10). This results in a one-to-one cor-
respondence between the spikes and the avoided crossings.
Each spike can be interpreted as a single- or multiphoton
(quantum) absorption process except for the case k = 0 in
the quantum resonance condition (10). It could be possible
to associate the quantum resonances for the case k = 0 with
classical resonances, as discussed in time-independent two-
dimensional Hamiltonian systems [36,37]. On the other hand,
in [11,26] the authors tried to link the quantum resonances
for k 	= 0 to some classical resonances. However, in order to
develop an argument analogous to that made in [36,37] for
periodically perturbed systems, one should first establish the
relation between avoided crossings and classical resonances
in the case of k = 0.

Furthermore, as explained in Sec. V C, even in the param-
eter regime where the steep decay appears in the splitting
vs the inverse Planck constant plot, the widespread coupling
supports an overall bottom up from the integrable curve be-
cause the corresponding regions are already beyond the first
transition point from the instanton to the plateau regime in the
splitting vs the perturbation parameter ε plot.

In this paper the nature of the tunneling couplings has been
investigated by observing the matrix elements under the BCH
basis or wave-function-based arguments. It turns out that the
origin of the persistent enhancement can be reduced to the
existence of the interaction over many states and the coupling
across the separatrix. Recall that the role of the separatrix in
the system with a simple parabola potential was studied in
the Wigner representation [55]. The type of tunneling studied
there is different from the tunneling across the separatrix
discussed in this paper, but the nonlocal nature of the wave
functions induced by the presence of the separatrix could be
shared in our situations. In any case, as already emphasized,
the link to the underlying classical mechanics is still miss-
ing. The present observation has to be reformulated in the
language of complex classical dynamics.

One aspect consistent with our conclusion here is that
complex orbits can wander anywhere in the complex space in
an ergodic way, even though the real phase space is divided
into regular and chaotic components. This fact has so far
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been rigorously proved only for polynomial maps [56–59], but
numerical results suggest that it holds more generally [60–62].
Ergodicity in the complex plane, more precisely in the Ju-
lia set, means that all orbits initially located in the regular
region move not only inside the separatrix but also into the
outer region. In other words, no matter how close to the real
plane the initial conditions are, complex orbits can go over
the separatrix. It is very likely that the tunneling couplings
can appear via the complex space. For this reason, it would
be a possible scenario that the tunneling coupling across the
separatrix leading to the strong enhancement arises from the
ergodic nature of the dynamics in the complex plane [54].
If this is true, we should say that chaos in complex space
produces an anomalous tunneling transport that is completely
absent in integrable systems.
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APPENDIX: SPLITTING FORMULA FOR A FLOQUET
SYSTEM

In this Appendix we derive the splitting formula for the
Floquet system. The derivation essentially follows the idea
used in Ref. [47].

Here we consider the time-dependent Schrödinger equa-
tion

Ĥ (p, q, t ) = − h̄2

2

∂2

∂q2
+ V (q, t ), (A1)

with a time-periodic potential V (t + τ ) = V (t ), where τ is
the period. Let ω = 2π/τ be the frequency of the periodic
perturbation. Let H(�) be the associated Hilbert space. Here
� denotes the domain on which the wave function acts.

The Floquet theorem guarantees the existence of a solution
satisfying

ψ(n,m)(q, t ) = e−iE(n,m)t/h̄u(m,n)(q, t ), (A2)

u(n,m)(q, t + τ ) = u(n,m)(q, t ), (A3)

K̂u(n,m)(q, t ) = E(n,m)u(n,m)(q, t ), (A4)

where K̂ = Ĥ (t ) − ih̄∂t is a Hermitian operator [63,64] and

E(n,m) = En + mh̄ω, (A5)

u(n,m)(q, t ) = un(q, t )eimωt , (A6)

where m ∈ Z. The 2π modulus of the time-evolution operator
gives rise to multivalued quasienergies, which is known as

the Brillouin structure. The operator K̂ acts on the extended
Hilbert space denoted by L2([0, τ ]) ⊗ H(�). Let f and g be
the states in the extended Hilbert space and the associated
inner product be

〈 f |g〉 = 1

τ

∫ τ

0

∫
�

f ∗(q, t )g(q, t )dx. (A7)

In the following discussion, we limit ourselves to the first
quasienergy Brillouin zone m = 0 and omit the suffix m here-
after. We further assume the Hamiltonian has a symmetry as
H (q, t ) = H (−q, t ), which could lead to a set of congruent
torus in the corresponding classical phase space. We consider
here the ground-state doublets u0(q, t ) and u1(q, t ) in the same
sense in the main text and define the associated tunneling
splitting as �E = |E1 − E0|.

The localized states on left (right) tori are introduced as

|L (R)〉 = (|u0〉 ± |u1〉)/
√

2, (A8)

whose the quasienergies are degenerated to give Ẽ = (E1 +
E0)/2. By using these basis, the Floquet Hamiltonian can be
expressed as

K̂

(|L〉
|R〉

)
=

(
Ẽ �E/2

�E/2 Ẽ

)(|L〉
|R〉

)
. (A9)

Let us introduce a time-independent Hermitian projection
operator [47] such that

�̂|L〉 ≈ 0, �̂|R〉 ≈ |R〉. (A10)

Tunneling splitting can then be expressed as

�E/2 ≈ 〈R|[�̂, K̂]|L〉
= 〈R|[�̂, Ĥ ]|L〉 − 〈R|[�̂, ∂t ]|L〉

= h̄2

2τ

∫ τ

0
dt

∫
�

dq(u∗
Rδu′

L − u′∗
R δuL ), (A11)

where δ stands for a Dirac delta function. The second term is
equal to zero when we assume �̂ is time independent. The first
term is evaluated analogously as the time-independent case to
give

〈R|[�̂, Ĥ ]|L〉 = 1

τ

∫ τ

0
dt

∫
�

dq u∗
R[�̂, Ĥ ]uL (A12)

= − h̄2

2τ

∫ τ

0
dt

∫
�

dq(u∗
Rθu′′

R − u′′∗
L θuR), (A13)

where the asterisk and the primes represent complex conju-
gate and the derivative with respect to q, respectively. Here
we have done a partial integration based on the fact that the
boundary contributions to the integral turn out to be zero,

u(q, t ) = u′(q, t ) = 0, q ∈ ∂�, (A14)

for both periodic and unbounded domains. We then obtain the
splitting formula for the Floquet system as

�E ≈ h̄2

τ

∫ τ

0
dt[u∗

R(0, t )u′
L(0, t ) − u′∗

R (0, t )uL(0, t )]. (A15)
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